
0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2679742, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. -, NO. -, AUGUST 2016 1

Refactoring Inspection Support for Manual
Refactoring Edits

Everton L. G. Alves, Myoungkyu Song, Tiago Massoni, Patrı́cia D. L. Machado, Miryung Kim

Abstract—Refactoring is commonly performed manually, supported by regression testing, which serves as a safety net to provide
confidence on the edits performed. However, inadequate test suites may prevent developers from initiating or performing refactorings.
We propose REFDISTILLER, a static analysis approach to support the inspection of manual refactorings. It combines two techniques.
First, it applies predefined templates to identify potential missed edits during manual refactoring. Second, it leverages an automated
refactoring engine to identify extra edits that might be incorrect. REFDISTILLER also helps determine the root cause of detected
anomalies. In our evaluation, REFDISTILLER identifies 97% of seeded anomalies, of which 24% are not detected by generated test
suites. Compared to running existing regression test suites, it detects 22 times more anomalies, with 94% precision on average. In a
study with 15 professional developers, the participants inspected problematic refactorings with REFDISTILLER vs. testing only. With
REFDISTILLER, participants located 90% of the seeded anomalies, while they located only 13% with testing. The results show
REFDISTILLER can help check the correctness of manual refactorings.

Index Terms—Refactoring, Refactoring Anomalies, Code Inspection

F

1 INTRODUCTION

Developers often refactor systems manually [29]. According
to recent studies, developers do not use refactoring tools, de-
spite their awareness of automated refactoring in Integrated
Development Environments (IDE) [25], [32], [46]. Murphy
et al. find that about 90% of refactoring edits are done man-
ually [29]. Negara et al. show that expert developers prefer
manual to automated refactoring [32]. Vakilian et al. find
that automated refactoring is underused and misused [46].

Despite the original intention of improving software
quality and productivity through refactoring, manual ap-
plication of refactoring edits often leads to error-proneness.
Several studies find there is a strong correlation between
the timing and location of refactorings and bug fixes [24].1

Weißgerber and Diehl find that a high ratio of refactoring
is often followed by an increasing ratio of bug reports [24],
[47]. Bavota et al. find that refactorings involving hierarchies
induce faults frequently [8]. In a field study of refactoring
at Microsoft, 77% of the survey participants perceive that
refactoring comes with a risk of introducing subtle bugs
and functionality regression. Developers find it difficult
to ensure the correctness of manual refactoring—“I would
like code understanding and visualization tools to help me make
sure that my manual refactorings are valid.” (a quote from a
professional developer [25]).

Existing approaches for ensuring correctness of manual
refactoring are limited. Rachatasumrit and Kim find that
regression testing suites in practice are often inadequate for
covering refactored locations and ineffective in detecting
refactoring errors [39]. SafeRefactor validates refactoring
edits by leveraging an existing test generation engine and
by comparing test results between the old and new program

1. In this article, we use the terms bug, fault, anomaly and refactoring
problem interchangeably. In our study, participants also used these
terms when discussing refactoring issues.

versions [43]. However, it also requires having enough test
coverage. GhostFactor validates whether certain behavior
preserving conditions are satisfied for refactoring edits in
C# [20]; however, it detects only missing edits and does not
detect extra edits that may change a program’s behavior.

Due to their complexity and error-proneness, refactoring
edits require special attention during maintenance and in-
spection tasks [1], [2]. Ge et al.’s survey with professional
developers lists four reasons why refactoring inspection de-
serves a special attention [48]: (1) refactoring helps to trans-
mit design decisions and conventions; (2) the motivation
for refactoring needs to be justified; (3) refactoring exposes
previously hidden problems, and (4) a refactoring patch
needs to be validated whether non-refactoring changes are
intermingled or not.

This article proposes REFDISTILLER [3], a static analysis
approach and tool to help developers inspect refactorings.
REFDISTILLER detects possible refactoring anomalies and
provides useful information regarding the location of the
detected refactoring anomalies and their possible causes.
The tool focuses on two classes of refactoring anomalies:
missing and extra edits. In the first phase, Missing Edit
Anomaly Detector (MEDETECTOR) searches for constituent
edits that may have been neglected by the developer. In the
second phase, Extra Edit Anomaly Detector (EEDETECTOR)
searches for extra edits that are beyond the required refactor-
ing steps. REFDISTILLER currently supports six widely used
refactoring type [31]: extract method, inline method, move
method, pull up method, push down method, and rename
method.

REFDISTILLER reports the type of a refactoring anomaly,
its location, and additional hints about how to fix the
anomaly. Since REFDISTILLER provides a pure refactoring
version for comparison, the pure refactoring version can be
used as a starting point to fix the detected anomaly.

We evaluate REFDISTILLER using three different meth-

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2679742, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. -, NO. -, AUGUST 2016 2

ods. First, we apply it to a data set composed by 100 refac-
toring transformations with seeded refactoring anomalies.
These refactoring errors do not generate any compilation
errors, and many of them are not checked by state-of-the-art
automated refactoring engines such as Eclipse. 96% of the
anomalies were detected by REFDISTILLER, and 24 of these
detected anomalies were missed by the generated test suites.
We also apply REFDISTILLER to three open source projects,
XMLSecurity, JMeter, and JMock, to assess its performance
on real-world scenarios. REFDISTILLER presented a 94% pre-
cision, whereas 97% of anomalies are not found by the exist-
ing test suite for each project written by developers. Finally,
we conduct a user study with 15 professional developers,
in which they found REFDISTILLER useful for inspecting
refactoring, having saved them an average of 17% inspection
time. The participants also were able to detect and locate
more refactoring anomalies using REFDISTILLER than using
tests alone.

In summary, our paper makes the following contribu-
tions:

• We present REFDISTILLER, a novel static analysis ap-
proach and an open source implementation to detect
anomalies in manual refactoring.2 Its scope is cur-
rently the most comprehensive among existing tech-
niques, covering six widely used refactoring types
and it focuses on anomalies that do not generate any
compilation errors.

• By providing debugging information regarding the
location and potential cause of refactoring anoma-
lies, REFDISTILLER helps developers to double check
whether their manual refactoring edits are correct.

• Our empirical evaluation shows that REFDISTILLER

can detect potential missing and extra edits with
high precision. Our static analysis approach can
effectively complement testing by detecting more
anomalies.

• Our user study shows that REFDISTILLER can help
detect more anomalies and save inspection time
by providing useful feedback, compared to running
tests only.

2 MOTIVATING EXAMPLE

This section motivates our approach and illustrates how
REFDISTILLER would help a developer in inspecting refac-
toring edits.

Suppose Bob works as a developer in the XMLSecurity
project, a library that provides security APIs for managing
XML files. While working on several tasks, Bob notices an
opportunity to reduce code duplication and decides to per-
form an extract method refactoring manually. Figures 1(a)
and (b) show the edit performed by Bob: code insertion is
marked with ‘+’, deletion with ‘−’. Bob extracts line 4 to
a new method initializeDigest and adds a call at line
5. However, although aiming a behavior-preserving edit, he
forgets to update variable digestValueElement with the
return value of initializeDigest() (a newly created
method)–line 5. Bob does not suspect that he mistakenly

2. https://sites.google.com/site/refdistiller/

1 class Reference {
2 boolean verify() throws .. {
3 Element digestValueElem = (Element) new Node(0);
4 digestValueElem = this.getChildElementLocalName(..);
5 byte[] p1 = Base64.decode(digestValueElem);
6 byte[] p2 = this.calculateDigest();
7 boolean re = MessageDigestAlgorithm.isEqual(p1, p2);
8 if (!re) { .. }
9 return re;

10 }
11 Element updateElement(){ ... }
12 }
13

14 class XMLClipher {
15 void addTransform(Transform transform) {
16 transforms.add(transform);
17 }
18 }
19

20 class Transformer { .. }

(a) original code

1 class Reference {
2 boolean verify() throws .. {
3 Element digestValueElem = (Element) new Node(0);
4 - digestValueElem = this.getChildElementLocalName(..);
5 + initializeDigest();// This line should be

digestValueElem = initializeDigest();
6 byte[] p1 = Base64.decode(digestValueElem);
7 byte[] p2 = this.calculateDigest();
8 boolean re = MessageDigestAlgorithm.isEqual(p1, p2);
9 if (!re) { .. }

10 return re;
11 }
12

13 + Element initializeDigest() {
14 + Element digestValueElem;
15 + digestValueElem = this.getChildElementLocalName(..);
16 + return digestValueElem;
17 + }
18 Element updateElement(){ ... }
19 }

(b) Extract Method refactoring with missing edits

1 class XMLClipher {
2 - void addTransform(Transform transform) {
3 - transforms.add(transform);
4 - }
5 }
6

7 class Transformer {
8 + void addTransform(Transform transform) {
9 + try {

10 + Transform transform = Transform.getInstance(..);
11 + transforms.add(transform);
12 + } catch (InvalidTransformException ex) {
13 + ..
14 + }
15 + }
16 }

(c) Move Method refactoring with extra edits

Fig. 1. An example of problematic refactoring edits. (a) The origi-
nal code. (b) Code after Bob’s Extract Method refactoring. Lines 4
is extracted to create a new method initializeDigest. Variable
digestValueElem should have been updated with the return value
of the new method. Because there is no compilation error, Bob misses
the required edit. (c) Code after Bob’s Move Method refactoring. During
the Move Method refactoring, underlined statements at lines 9–10 and
12–14 are added as extra edits in addTransform.

changed the program semantics, since there is no compila-
tion error and existing tests in XMLSecurity still pass. This is
an example where a missing edit is erroneously introduced.

When using REFDISTILLER for inspecting his refactor-
ing, Bob or a second inspector would easily identify the
problem since the MEDETECTOR module applies a static
analysis to detect this missing edit and locates the poten-
tial root cause of the problem. It reports that there is a
problem with the statement updated at line 5. It should

https://sites.google.com/site/refdistiller/

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2679742, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. -, NO. -, AUGUST 2016 3

Anomalies

• Type

• Location

• Possible Cause

Refactoring Detection

(RefFinder)

Inputs Outputs

RefDistiller

MEDetector EEDetector

P
Original

Version

Pr
Manual

Refactoring

Version

Cp (Required Edits)

• Required method deletion

• Required method addition

• Required field deletion

• Required field addition

• Required updates to caller

• Required updates to type,

method, field, and variable

bindings

• ...

Cd (ChangeDistiller)

• Found method deletion

• Found method addition

• Found field deletion

• Found field addition

• Found updates to caller

• Found updates to type,

method, field, and

variable bindings

• ...

Cp – Cd ≠ ?

Eclipse

Refactoring

APIs

P’
Pure

Refactoring

Version

P’ ≠ Pr

RefSet

Fig. 2. RefDistiller overview.

be digestValueElem = initializeDigest(); in-
stead of initializeDigest();.

Bob performs a move method refactoring (Figures 1(a)
and (c)). He moves method addTransform from class
XMLClipher to class Transformer. During this refactor-
ing, he adds new statements at lines 9–10 (underlined) and
12–14. Although this extra edit may be Bob’s intended edit,
it may be worthwhile for others to note this behavior change
during code inspection or for Bob to reconfirm his intent,
because this edit deviates from the pure move method edit.
By comparing a pure-refactoring version against the manual
refactoring version, EEDETECTOR locates and highlights the
differences at lines 9–10 and 12–14.

The aforementioned missing and extra edits do not
create any compilation errors. Thus, they are likely to pass
unnoticed. The extra edits made during refactoring are not
always errors and could be intentional; however, revisiting
these extra edits during peer reviews can be useful [25].

3 REFDISTILLER

Figure 2 illustrates REFDISTILLER. It first takes as input the
original version P and the manually refactored version Pr ,
applying RefFinder [38] to infer the types and locations
of refactoring edits performed between P and Pr , which
we call RefSet. With this information, REFDISTILLER de-
tects potential refactoring anomalies. We define refactoring
anomalies as edits that are not always bugs but often lead
to behavioral changes. In the following sections, we discuss
the two REFDISTILLER modules: MEDETECTOR, responsible
for detecting missing edits and EEDETECTOR, responsible
for revealing extra edits. REFDISTILLER is implemented as
an Eclipse plug-in, and it is available to download at its
website.3

3.1 MEDETECTOR: Detecting Missing Edits
MEDETECTOR applies static analysis for detecting edits that
might have been missed by a developer during manual
refactoring. For each refactoring type, we define template
rules to describe required constituent edits (Table 1). The
rules are based on Fowler’s mechanics for correct refactor-
ings [17] and the literature about formal specifications of
refactorings [9], [17], [35], [40]. Moreover, the rules were
also inspired by common refactoring anomalies reported
in the literature [8] and the authors’ experience with con-
ducting refactorings in real projects. We target the follow-
ing six refactoring types, as they are the most commonly
applied [29]: extract method, inline method, move method,
pull up method, push down method, and rename method.
Each refactoring type requires a proper refactoring template.
For each matched refactoring edit in RefSet, MEDETECTOR

compares a set of expected edits Cp with actual manual edits
Cd, generated by ChangeDistiller [14]. ChangeDistiller ex-
tracts source code changes using tree differencing, reporting
change types such as adding or deleting a method, inserting
or removing a statement, or changing the modifier of a
method declaration.

For each refactoring type in RefSet, MEDETECTOR up-
dates the set of required method and field reference updates,
Cp, with the constituents edits based on predefined template
rules. A new required edit is a triple <Type, Element,
Location>, where Location represents the specific code
element where the edit is expected (e.g., class, method, and
field), Element represents the code element involved in
the edit, and Type indicates the type of expected edit. For
instance, <’Update Statement’, m2n, m1o> defines
the edit adding an assignment statement into m1o, with
m2n referenced in the right-hand side of the assignment.

When assessing edits, it is important to check whether
method calls, field accesses, and type declarations are pre-
served before and after manual refactoring. Therefore, we
create a new checking type Binding Problem, which is
not currently supported by ChangeDistiller. MEDETECTOR

includes a binding object to Cp every time a reference, e.g.,
a method call, a variable access, or a field access, differs in
the original code, from its correspondent in the refactored
code. Those references are syntactically associated with the
respective class and object scope. Our binding-checking
strategy compares AST trees in order to verify preservation
of desired references. MEDETECTOR verifies whether the
associations remain for modified methods, their callers, and
their direct callees. Similarly, it checks all refactored fields
and corresponding accessor methods.

MEDETECTOR reports the following nine types of warn-
ing messages for mismatches between Cp and Cd:

• Binding problem: Detected a problematic reference
binding X which may have affected method Y.

• Missing method: Method X was not found in Class Y.
• Missing statement update: There is at least one missing

statement to be updated in the method X’s body.
• Missing statement addition: There is at least one miss-

ing statement to be inserted in the method X’s body.
• Missing statement deletion: There is at least one miss-

ing statement to be deleted in the method X’s body.

3. https://sites.google.com/site/refdistiller/

https://sites.google.com/site/refdistiller/

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2679742, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. -, NO. -, AUGUST 2016 4

TABLE 1
The refactoring change rules of the MEDETECTOR’s templates.

Extract Method (P : original version, Pr : modified version, m1o: method to be refactored, m2n: extracted method,
[startLine, endLine]: portion to be extracted)

1 Cp ={}; co = getClass(P, m1o);
Cp = Cp ∪ {<‘Add Functionality’, m2n, co>}

Modified version Pr must include a method not existing in original version P .

2
STMo = getStatements (m1o, [startLine, endLine])
IF (haveDependencies (P, STMo)) THEN
Cp = Cp ∪ {<‘Update Statement‘, m2n, m1o>};

If any extracted statements (STMo) modify the value of variable(s) used in the rest
of the method, the modified method must have a new variable update. The updated
variable must be associated to the return value of a calling to the new method.

3 IF (NOT haveDependencies (P, STMo)) THEN
Cp = Cp ∪ {<‘Insert Statement’, m2n, m1o>};

If Rule 2 is not applicable, there must be a new statement related to the calling of the
new method in the modified version.

4
FOREACH (s in STMo) DO
Cp = Cp ∪ {<‘Delete Statement’, s, m1o>};
Cp = Cp ∪ {<‘Insert Statement’, s, m2n>};

For each extracted statement, there must be a deleted statement in the original method
m1o and an inserted statement (same statement) in the modified method m2n. The
order of inserted statements must be the same as extracted.

5

C = getCallers(P, m1o);
FOREACH (c in C) DO
m = getMethod(Pr, c);
BindingProbs = checkBindingProblem(c, m);
FOREACH (b in BindingProbs) DO
Cp = Cp ∪ {<‘Binding Problem’, b, c>};

All callers of m1o in the modified version (m from Pr) must preserve all method and
variable references from the original version P .

6

C = getCallers(Pr, m2n);
FOREACH (c in C) DO
m = getMethod(P, c);
BindingProbs = checkBindingProblem(c, m);
FOREACH (b in BindingProbs) DO
Cp = Cp ∪ {<‘Binding Problem’, b, c>};

All callers of methods with similar signature (same name but different parameters) of
m2n in the modified version must preserve all method and variable references from
the original version P .

7

unionSet = m1o ∪ m2n;
BindingProbs = checkBindingProblem(m1o, unionSet);
FOREACH (b in BindingProbs) DO
Cp = Cp ∪ {<‘Binding Problem’, b, m1o>};

The methods and variable references in m1o must be the combination of the references
from the original method in the new version m1o and the newly added one m2n,
except the references affected by the application of Rule 2 or 3.

Inline Method (P : original code, Pr : modified version, m1o: method to be inlined)

8 Cp ={}; co = getClass(P, m1o);
Cp = Cp ∪ {<‘Remove Functionality’, co>}

There must be a deleted method in the modified version Pr .

9

STMo = getStatements (m1o, []);
C = getCallers(P, m1o);
FOREACH (c in C) DO
m2n = getMethod(Pr, c);
IF (isNotVoid (c)) THEN
Cp = Cp ∪ {<‘Update Statement’, c>};

FOREACH (s in STMo) DO
Cp = Cp ∪ {<‘Insert Statement’, s, c>};

If the inlined method m1o has a return type, there must be an updated statement in
each of its callers. Also, for all callers, there must exist a sequence of inserted statement
inlined from m1o.

10 Same steps as in Rule 5. See 5.

Move Method (P : original version, Pr : modified version, m1o: method to be refactored, m2n: newly added method)
11 Cp = Cp ∪ {<‘Remove Functionality’, co>} There must be a method deleted in the original version P .

12 co = getClass(Pr, m1o);
Cp = Cp ∪ {<‘Add Functionality’, co>}

There must be a new method in the modified version Pr .

13

C = getCallers(P, m1o);
FOREACH (c in C) DO
IF (isAssociatedWithField(m1o)) THEN
Cp = Cp ∪ {<‘Change Attribute Type’, c>};

ELSE Cp = Cp ∪ {<‘Update Statement’, c>};

For all callers of m1o, if the method call is associated to a field, there must be an
attribute type change in P and a statement update otherwise.

14 Same steps as in Rule 5. See 5.

15 IF (checkBindingProblem(m1o, m2n)) THEN
Cp = Cp ∪ {<‘Binding Problem’, m1o>};

All method and variable references in m1o must remain the same in the modified
version Pr .

16

C = getCallers(P, m1o);
FOREACH (c in C) DO
m = getMethod(Pr, c);
IF (verifyAccessibilityChange (c, m)) THEN
Cp = Cp ∪ {<‘Change Visibility’, m>};

Added method m2n must be visible to the callers of the removed method m1o.

Pull Up Method: rules 5, 11, 12, and 15.
Push Down Method: rules 5, 11, 12, and 15.
Rename Method (P : original code, Pr : modified version, m1o: method to be renamed, m2n: renamed method)

17 Cp ={}; co = getClass(P, m2n);
Cp = Cp ∪ {<‘Rename Method’, co>}

There must be a method in Pr that had its signature changed when compared to the
original version P .

18
C = getCallers(P, m2n);
FOREACH (c in C) DO
Cp = Cp ∪ {<‘Update Statement’, c>};

For all callers to m2n, there must be an updated statement in modified version Pr .

19

C = getCallers (P, m1o);
Cr = getCallers (Pr, m2n);
IF (C 6= Cr) THEN

Cp = Cp ∪ {<‘Binding Problem’, m2n>};

The set of callers of the original method must be identical after the renaming.

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2679742, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. -, NO. -, AUGUST 2016 5

• Missing type update: The type associated with field X
needs to be updated.

• Missing renaming: Method X was not renamed.
• Not removed method: Method X should have been

removed from Class Y.
• Visibility problem: Method X is not visible for one of

its callers.

To illustrate application of the refactoring templates, we
discuss the template rules for the extract method refactoring,
in which the newly created method is placed in the same
class from which the code was extracted. However, extrac-
tion to a different class can be decomposed into extracting
the method first, then moving the method. Rules 1-7 in Table
1 define steps to check whether the extraction is successful.
The rules focus on (i) correct placement of the newly created
method and extracted statements, (ii) reference consistency
with respect to its callers, and (iii) scoping consistency with
respect to parameters and local variables. Failing to perform
any of those steps may lead to behavioral changes. Rules 5,
6 and 7 perform a binding check to verify whether the meth-
ods and fields still reference the equivalent AST elements af-
ter the refactoring edits. This binding analysis is important,
since simple code modifications may lead to subtle errors
in variable and method references. For example, the newly
created method could unexpectedly override a method in a
superclass. Similarly, we check whether a renamed method
overrides an inherited method in the refactored version. The
rules are presented in pseudo code, and the following shows
the meaning of the auxiliary functions:

• getClass(P, m) returns the containing class of
method m to be refactored.

• getCallers(m) returns all callers of method m.
• getStatements(m, [beginLine;endLine])

returns the statements from line beginLine to
line endLine. If an empty range (i.e, []) is given, it
returns all statements from method m.

• checkBindingProblem(m1, m2) verifies wheth-
er all references to methods or variables within m1
and m2 are identical, returning a set of problematic
reference objects.

• haveDependencies(m, stm) verifies whether the
remaining statements in method m, after extracting
statements stm from method m, depend on any state-
ment within extracted statements stm.

• isAssociatedWithAField(m) verifies whether a
designated method m accesses any field declared in
the same class.

The rules depicted in Table 1 are not final; due to
the inherent complexity of manual refactorings in object-
oriented systems, it is hard to glimpse all possible effects
they might produce in a code base. These rules cover the
most important constituent edits that, when missed (not
checked), often lead to behavioral changes. However, the
rule set may be extended in the future, when the users of
REFDISTILLER report additional cases of common refactoring
mistakes.

The rules in Table 1 cover some of the six most com-
mon refactoring types [31]. However, other refactoring edits
may share similar constituent steps. For instance, similar to

TABLE 2
Conditions checked by EEDETECTOR. When any of these situations
happen in the context of a Push Down Method, the Eclipse engine will
generate a “not” safe refactoring. EEDETECTOR avoids those cases.

Bug C1: class under refactorings; C2: target class; m: method
under refactorings

320115 Method m is to be pushed down, and it directly
calls a method that is invisible from the target
class.

348278 Method m is to be pushed down, and it contains a
method call using the keyword this.

356698/355322 Method m contains a super access to a method that
is overridden/overloaded in class C1.

290618/355324 Method m contains a call to a method that is
overridden/overloaded in the target class C2.

195003 Method m is to be pushed down, which contains
a field access using the keyword this.

195004 Method m is to be pushed down, whose callee
invokes another method by the origin class (e.g.,
new ClassX().foo().)

pull up method, the pull up field refactoring takes a field
declared in a specific class and moves it to the superclass.
Therefore, a pull up field template could be based on the
pull up method template and a subset of the same rules
can be reused. Thus, we believe REFDISTILLER can be easily
extended to support other refactoring types.

3.2 EEDETECTOR: Revealing Extra Edits

Recent studies show that developers often apply refactor-
ing in the context of bug fixes and feature additions and
interleave refactorings with extra semantic changes [25],
[31]. Such extra edits are not always errors and could
be intentionally made during refactoring. Nevertheless, ac-
cording to a study at Microsoft, developers report that they
would like to see semantic changes that deviate from pure
refactoring separately, especially when checking refactoring
correctness [25].

As shown in Figure 2, EEDETECTOR takes as input Ref-
Set, which is generated by RefFinder. For each refactoring
instance, it automatically applies an equivalent refactoring
using a modified version of Eclipse’s refactoring engine and
creates a version with pure refactoring, P ′. This version
reflects what would be a correct and safe refactoring. Then,
EEDETECTOR compares the generated pure refactoring ver-
sion against the manual refactoring version, Pr . Differences
between the two versions are highlighted.

Despite being a widely used refactoring tool, the Eclipse
refactoring engine is not bug-free. Several studies found
bugs in the Eclipse refactoring engine—the conditions under
which refactoring generates compilation errors or behav-
ioral changes [10], [23], [42]. Naively using the Eclipse
refactoring engine to create a pure refactoring version can
lead EEDETECTOR to false positives. To address this prob-
lem, EEDETECTOR first performs a checking step to avoid
behavior-modifying refactorings. For each refactoring edit,
if any of the bug conditions is matched, EEDETECTOR will
not apply the automated refactoring and will instead report
a warning message to the user. Table 2 summarizes the
bug conditions checked by EEDETECTOR for a push down
method refactoring; Eclipse generates unsafe refactoring for
those scenarios. The first column indicates the bug number

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2679742, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. -, NO. -, AUGUST 2016 6

from Eclipse’s bug tracker,4 and the second column shows
a brief description of the bug condition where refactoring
creates a compilation error or subtle behavioral change.
Our technical report [7] describes all bug conditions for
which EEDETECTOR checks, for the remaining five consid-
ered refactoring types.

It is important to highlight that EEDETECTOR might
report refactoring problems that are not always real faults.
However, we consider these to be still useful information
as they are deviations from pure refactoring and deserve
attention.

4 DETECTION CAPABILITY

For assessing REFDISTILLER’s effectiveness in detecting
anomalies, we perform two studies. We first use a data
set with seeded refactoring anomalies to investigate its
detection capability. In the second study, we assess REFDIS-
TILLER’s effectiveness and applicability in real scenarios us-
ing three open source projects by mining refactorings from
their repositories. For both studies, we compare REFDIS-
TILLER’s results to regression testing as a baseline, as it is
a de-facto method of validating refactorings in practice [25].

RQ1: Is REFDISTILLER effective in detecting refactoring
anomalies?

In Sections 4.1 and 4.2, we discuss the details of each
study. In Section 4.3, we discuss why it is difficult to di-
rectly compare REFDISTILLER to other related approaches in
practice and include a theoretical comparison to GhostFac-
tor [20], Ge et al.’s approach [21] and SafeRefactor [43].

4.1 Application to Seeded Anomalies
Data Set. To answer RQ1 we use a data set of one hundred
refactoring transformations with seeded anomalies. Each
transformation is a pair (p1, p2) of Java programs, where
both p1 and p2 are free of compilation errors and p2 contains
at least one seeded refactoring anomaly that changes the
behavior of the first version. The data set covers all six
refactoring types and includes both missing edits (50) and
extra edits (50).

The 50 seeded anomalies with missing edits are assem-
bled from three sources. Most anomalies (38, 76% of missing
edits) come from Soares et al.’s effort in detecting bugs in
refactoring IDEs [42], [43]. In their work, they randomly
generate small Java programs that are fed as input to Eclipse
and other tools, making the applied refactoring yield pro-
grams with behavior distinct from the original —we assume
these anomalies are as hard to detect manually. Therefore,
Soares et al. are our study’s main source of anomalies.

Missing edit anomalies are also established from the
work by Cornélio et al. in defining formal, proved rules
for refactoring [9]. Each rule specifies metaprograms which
programs must match for the refactoring to be applied; also,
rules can only be applied correctly when a number of pre-
conditions are fulfilled by those programs. Although rules
are based on a small theoretical language, it strongly resem-
bles Java, and the preconditions in general are applicable,
since they are conservative. For instance, the extract method

4. The Eclipse bug tracker—https://bugs.eclipse.org/bugs/

rule (Rule 3.1 in Cornélio et al’s work [9]) establishes several
preconditions for a correct method extraction; one forbids
the newly extracted method to be previously declared in
any superclass or subclass of the current class. For our study,
eight missing edit anomalies (16%) are built by intentionally
skipping one of the preconditions—Anomaly EM4 [7], as an
example, extracts the method as an overriding method from
the superclass, violating the precondition.

Also, four missing edit anomalies (8%) are defined
as variations from the guidelines of Fowler’s refactoring
book [17]. We apply mechanics (steps to be taken in manual
refactoring) partially, by skipping one step that does not
add compilation errors. For instance, Anomaly MM10 [7] is
obtained by leaving out the call to the moved method—this
call should be included as defined by one of the mechanics’
steps.

Similarly, all extra edit anomalies are obtained by de-
liberately inserting random changes between steps from
Fowler’s mechanics [17]. Similar methodologies for insert-
ing anomalies have been used in prior empirical studies on
refactoring [8], [10], [20], [22], [43]. For example, Gligoric
et al. systematically apply refactorings at a large number
of places in well-known, open source projects and col-
lected failures during refactoring or while trying to com-
pile the refactored projects [22]. Two categories of changes
are included: for the first, we add arbitrary statements
to the body of methods affected by the refactoring—for
instance, assigning a new value to an existing variable
or updating an existing expression with a mathematical
operation—z=amount replaced by z=amount+10; for the
second, we change control flow by adding if statements or
modifying their boolean condition.

Table 3 shows the distribution of seeded anomalies per
refactoring type. Columns S, C, and F present the number
of anomalies from Soares et al. [42], Cornélio et al. [9] and
Fowler [17] respectively. Extra edit anomalies are split into
A (changed or added statements) and B (updated boolean
expressions). Our technical report includes a complete de-
scription of source code snippets and bug symptoms of
each refactoring anomaly [7]. The dataset was assembled
by the first author and later revised by two of the remaining
authors.

TABLE 3
Distribution of seeded anomalies per refactoring type (ME: missing edit

anomalies, EE: extra edit anomalies, S: the number of seeded
anomalies which are collected from Soares et al.s’ work, C: the number
of seeded anomalies which are collected from Cornlio et al.’s work, F:

the number of seeded anomalies which are adapted from Fowler’s
book, A: changed or added statements, B: changed boolean

expressions, and T: the total number).

Refactoring Type ME EE

S C F T A B T

Extract Method 1 2 2 5 6 0 6
Inline Method 0 4 1 5 8 1 9
Move Method 8 1 1 10 6 3 9
Pull Up Method 10 0 0 10 9 0 9
Push Down Method 15 1 0 16 4 4 8
Rename Method 4 0 0 4 6 3 9

Total 38 8 4 50 38 12 50

Procedure. We compare REFDISTILLER against regression

https://bugs.eclipse.org/bugs/

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2679742, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. -, NO. -, AUGUST 2016 7

testing, which is our baseline. We use an automated
feedback-directed random test generation tool, Randoop5

to create JUnit test suites [37]. Test suites created by Ran-
doop have been successfully used to identify refactoring
problems in prior work [28], [42], [43] and to find critical
bugs in well-known refactoring engines (e.g., Eclipse and
Netbeans). Although there are other test generation tools
such as EvoSuite [18], a recent study [4] finds that, for
the purpose of refactoring validation, EvoSuite’s suites, in
general, present similar or worse results when compared to
Randoop’s suites. To increase the variability of generated
tests, a set of extra methods is added to the transformations
independently. We run Randoop with a time limit of 100
seconds and the maximum test size of five statements. This
configuration of 100 seconds was chosen by Soares et al. [41].
Soares et al. concluded that running Randoop for more
than 90 seconds does not significantly increase test coverage
rates for finding refactoring faults. Table 4 presents details
regarding the generated test suites and corresponding test
coverage at the level of statements and methods.

TABLE 4
Generated test suites and their coverages (TS: the number of test

cases).

TS Coverage Rate

Statement Method

Extract Method 11,228.7 63.6% 88.5%
Inline Method 8,568.4 59.1% 87.2%
Move Method 3,430.3 63.7% 89.0%
Pull Up Method 2,462.1 60.4% 86.2%
Push Down Method 3,807.0 62.7% 89.2%
Rename Method 3,268.4 64.5% 90.7%

Average 5,460.8 62.3% 88.5%

First, we run REFDISTILLER on each pair of the original
and refactored program in our data set. We collect results
for MEDETECTOR and EEDETECTOR and manually validate
their outcomes to collect recall and precision. The validation
process worked as follows. The first author analyzed results.
Later, the results were validated in the meetings with two
of the remaining authors. When there were disagreements,
each case was put to a second analysis round and a joint
decision was made.

Next, we run the regression test suite on both the original
version and the refactored version. Any differences in the
test outcomes are then considered as anomalies detected by
regression testing.

We summarize the results using Precision and Recall,
which are defined as follows: TotF is the set of all injected
refactoring anomalies; TP (true positives), the set of cor-
rectly identified anomalies; and FP (false positives), the set
of incorrectly identified anomalies:

Precision =
|TP |

(|TP |+ |FP |)
, Recall =

|TP |
|TotF |

Results. Regarding recall, REFDISTILLER detects 96% of all
seeded anomalies, outperforming regression testing by 21%.
Table 5 summarizes the results. MEDETECTOR detects 47

5. http://randoop.github.io/randoop/

anomalies out of 50, and EEDETECTOR detects 49 anomalies
out of 50.

REFDISTILLER finds refactoring anomalies that are not
easy to identify because they require understanding of com-
plex code structures, e.g., overriding relationships in a deep
class hierarchy. For instance, one of the callers of an inlined
method is not updated after refactoring, referencing a dif-
ferent method with the same signature from its superclass
at a higher level. This type of anomaly is seldom predicted
when designing tests, generating subtle behavior changes
that can easily pass unnoticed.

REFDISTILLER detects 24 anomalies that are not found by
testing. Figure 3 shows a case in which tests fail to detect
the anomaly. Lines 5-6 from Calc.getVal are extracted to
extrMeth, and if/else statements are added to the new
method (see Figure 3(b), underlined code). The extra edit
changes the control flow depending on inputs. Although the
generated test suite consists of more than 12,000 test cases
with high test coverage (62.5% of statement coverage and
88.5% method coverage), this anomaly is not detected by
test suites generated for the original version. The tests are
inadequate to explore how extra edits can affect pre-existing
methods or new ones and thus are incapable of exploring
this new path. To identify the bug from Figure 3(b), the
developer or the test generation tool must include a test
case with a negative input to getVal in the old version.

It is important to highlight that REFDISTILLER comple-
ments testing. Although REFDISTILLER alone detects 96%
of true seeded anomalies, 4 anomalies remain undetected.
However, when both REFDISTILLER and testing are applied
together, 3 additional anomalies are detected with 99% de-
tection rate—100% for missing edits and 98% for extra edits.
When applied alone, testing has a 75% detection rate only.
Moreover, REFDISTILLER finds 24 anomalies not identified
by testing, while testing alone identified only 3 anomalies
not identified by REFDISTILLER.

False Negatives. 4 anomalies are not detected by REFDIS-
TILLER (3 anomalies are not detected by MEDetector and 1
anomalies are not detected by EEDetector); they can only
be detected by changing the state of an object/variable
due to exception handling at runtime. Figure 4 exemplifies
one of those false negatives. Lines 5-8 from Element.m
are extracted into method n. In the original version, for b
true, when the exception e is thrown at Line 7, method
m(boolean) returns the state of x after the assignment
x = 23. However, after extracting the method, when the
same exception is thrown, the state of variable x is still 42
in the original method, which is then returned. This missing
edit anomaly is hard to identify using MEDETECTOR since
our current templates are not capable of capturing complex
changes in the control flows due to incomplete refactoring.
Heuristics to consider those scenarios are planned as future
work.

Precision. We assess REFDISTILLER’s precision by determin-
ing how many of the detected anomalies are indeed true
anomalies. MEDETECTOR finds 63 missed edits, of which 47
are correct, resulting in 75% precision. EEDETECTOR finds
50 extra edits, of which 49 are correct. REFDISTILLER in total

http://randoop.github.io/randoop/

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2679742, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. -, NO. -, AUGUST 2016 8

TABLE 5
Result of precision and recall (SA: the number of seeded anomalies, M: the number of anomalies detected by MEDETECTOR, E: the number of
anomalies detected by EEDETECTOR, T: the number of anomalies detected by Testing, TP: the number of true positives, P %: precision, R %:

recall, M-T: the number of anomalies detected only by MEDETECTOR, T-M: the number of anomalies detected only by testing, M∩T: the number of
anomalies detected by both MEDETECTOR and testing, M∪T: a sum of anomalies detected by MEDETECTOR and testing, E-T: the number of

anomalies detected only by EEDETECTOR, T-E: the number of anomalies detected only by testing, E∩T: the number of anomalies detected by both
EEDETECTOR and testing, and E∪T: a sum of anomalies detected by EEDETECTOR and testing).

MEDETECTOR Testing Comparison for
Seeded Anomalies

SA M TP P % R % T R % M-T T-M M∩T M∪T

Extract Method 5 4 4 100% 80% 3 60% 2 1 3 5
Inline Method 5 5 5 100% 100% 3 60% 2 0 3 5
Move Method 10 10 9 90% 90% 10 100% 0 1 8 10
Pull Up Method 10 20 9 45% 90% 10 100% 0 1 9 10
Push Down Method 16 20 16 80% 100% 12 75% 4 0 12 16
Rename Method 4 4 4 100% 100% 4 100% 0 0 4 4

Sub Total 50 63 47 75% 94% 42 84% 8 3 39 50

EEDETECTOR Testing Comparison for
Seeded Anomalies

SA E TP P % R % T R % E-T T-E E∩T E∪T

Extract Method 6 6 6 100% 100% 5 83% 1 0 4 6
Inline Method 9 9 9 100% 100% 6 66% 3 0 6 9
Move Method 9 9 9 100% 100% 4 44% 5 0 4 9
Pull Up Method 9 9 9 100% 100% 8 88% 1 0 8 9
Push Down Method 8 8 7 87% 87% 4 50% 3 0 4 7
Rename Method 9 9 9 100% 100% 6 66% 3 0 6 9

Sub Total 50 50 49 98% 98% 33 66% 16 0 32 49

Total 100 113 96 85% 96% 75 75% 24 3 71 99

1 class Calc {
2 int getVal(int amnt) {
3 if (amnt > 10) {
4 int x = amnt + 10;
5 int z = x + 10;
6 return z;
7 } else {
8 int x = amnt * amnt;
9 return x; } }

10 }

(a) Original version.

1 class Calc {
2 int getVal(int amnt) {
3 if (amnt > 10){
4 int x = amnt + 10;
5 - int z = x + 10;
6 - return z;
7 + return extrMeth(x);
8 } else {
9 int x = amnt * amnt;

10 return x; } }
11 + int extrMeth(int x) {
12 + if (x > 0)
13 + return x + 10;
14 + else return -1;
15 + }
16 }

(b) Code after Extract Method refactoring

with extra edits underlined.

Fig. 3. Anomaly detected by REFDISTILLER but not by testing.

finds 113 anomalies, of which 96 are correct, resulting in
overall 85% precision.

Most false positives are due to incorrect identification
of refactoring types by RefFinder. Although there are only
one hundred refactorings seeded in the data set, RefFinder
identified 32 additional refactoring instances. For instance,
for a single pull up method refactoring, RefFinder reports an
additional move method application. MEDETECTOR there-
fore runs two templates to check for potential refactoring
missing edits, where it finds one false positive with respect
to move method. For a push down refactoring with an
extra edit, RefFinder reports three refactoring types: move
method, extract method, and push down method. The
change is moving method calc from class A to subclass
B, turning the method call to delegation B.calc. When
EEDETECTOR applies the push down method and move

1 class Element {
2 int m(boolean b) {
3 int x = 42;
4 try {
5 if (b) {
6 x = 23;
7 throw new Expt();
8 }
9 } catch (Expt e) {

10 return x; }
11 return x; }
12 int test() {
13 return m(true);}
14 }

(a) Original version.

1 class Element{
2 int m(boolean b) {
3 int x = 42;
4 try {
5 - if (b) {
6 - x = 23;
7 - throw new Expt();
8 - }
9 + x = n(b, x);

10 } catch (Expt e) {
11 return x; }
12 return x; }
13 + int n(boolean b, int x)

throws Expt {
14 + if (b) {
15 + x = 23;
16 + throw new Expt();
17 + }
18 + return x; }
19 int test() {
20 return m(true); }
21 }

(b) Code after a problematic Extract

Method edit. Method m returns a different

value when exception e is thrown due to a

different of variable x’s state.

Fig. 4. Missing edit anomaly: Extract Method edits.

method refactorings, it correctly reports two types of extra
edit errors. On the other hand, when it applies the false
positive Extract Method refactoring with the Eclipse refac-
toring engine, it generates an incorrect edit. EEDETECTOR

then attempts to compare the incorrect refactoring version
with the manual version and subsequently reports a false
positive extra edit.

Although 85% precision is high, it is lower than testing.
Validation by testing does not generate any false positives
(100% precision). However, it is important to emphasize that

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2679742, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. -, NO. -, AUGUST 2016 9

although not generating false positives, testing misses sev-
eral anomalies detected by REFDISTILLER. In a real scenario,
undetected refactoring problems often result in software
deterioration.

4.2 Evaluation using Open Source Projects
To further assess REFDISTILLER’s effectiveness in real scenar-
ios, we apply REFDISTILLER to three open source projects:
XMLSecurity—a library for providing security functional-
ity for XML such as authorization and encryption, JMe-
ter—a performance analysis application for measuring per-
formance under different load types, and JMock—a library
for testing applications with mock objects.6

Data Set. For XMLSecurity and JMeter, we use data from
prior work on refactoring change impact analysis [39],
which identifies actual refactoring edits performed through-
out several versions of these systems. The subject programs
are drawn from the Software Infrastructure Repository
(SIR) [12]. XMLSecurity contains 18 KLOC, while JMeter
contains 32 KLOC. Since SIR provides release-level changes,
we mine commit histories and map each refactoring edit to
the earliest and closest commit revision. From this analysis
we collect five pairs of versions. For JMock, we go through
its repository history and search for commits with refactor-
ing edits using RefFinder [38].7 From this mining, we select
three versions in which refactoring edits are found.

Study Results. Table 6 shows the number of missing and
extra edits detected by REFDISTILLER: XMLSecurity (P1),
JMeter (P2), and JMock (P3). Rn is each revision pair. We
only found three available refactored versions of JMock, so
R3, R4 and R5 do not apply.

Running REFDISTILLER takes on average 41.4, 205, and
26.5 seconds for the three projects respectively. We manually
inspect individual anomalies to determine correcteness, and
precision is 90%, 98%, and 100% for the three projects
respectively. To calculate precision we use the same equation
as described in Section 4.1.

We compare REFDISTILLER’s anomaly detection capa-
bility with the error detection capability of existing JUnit
regression tests included in SIR. The anomalies detected by
REFDISTILLER and tests are later inspected by the authors.
Table 8 presents the average number of existing test cases
per system (considering versions) and their respective cov-
erage rates. Though existing regression test suites are inad-
equate for covering refactoring edits, we use the existing
tests as is to highlight the difficulty of validating refactoring
edits without a static analysis technique in practice. These
test suites detect only 2, 0, and 2 refactoring anomalies in the
subject programs respectively. The results are aligned with
the prior finding that only a small portion of refactoring ed-
its are tested by existing regression tests and that refactoring
mistakes might go unnoticed [5], [39].

Because REFDISTILLER uses a static analysis approach
and focuses on the location of refactoring edits, it finds
184 additional anomalies not found by existing regression

6. JMeter http://jmeter.apache.org/
XMLSecurity http://jmeter.apache.org/
JMock http://www.jmock.org/

7. https://github.com/jmock-developers/jmock-library/commits

tests (Table 6). This number is found through manual in-
spection performed by the first author and later validated
by the other authors independently. We cannot measure
recall because we do not know the total number of all
correct refactoring anomalies in these versions. Therefore,
we measure the improvement by dividing the total number
of REFDISTILLER’s correct anomalies by the total number of
anomalies found by testing. The overall improvement was
47 times, providing evidence that REFDISTILLER may effec-
tively complement a testing-based approach for refactoring
validation.

In a comparative analysis, Table 7 shows that, out of
the 188 anomalies detected by REFDISTILLER, only 4 are
identified by testing, and all four anomalies found by testing
are also found by REFDISTILLER. Moreover, testing does not
find any new anomaly. On the other hand, REFDISTILLER

identifies 184 new anomalies neglected by testing.
Figure 5 exemplifies missing and extra edits detected

by REFDISTILLER in XMLSecurity. In Figure 5(b), a de-
veloper extracted lines between 2 and 5 to the new
method canonicalizeTree and made a mistake at line
13 by calling cano.engineCanonicalizeTree(node)
instead of cano.engineCanonicalize(node). MEDE-
TECTOR detects this potential missing edit at line 13 due to
a missed method reference binding to engineCanonical-
ize(node). EEDETECTOR also finds potential extra edits at
the same location at Line 13, because cano.engineCanon-
icalizeTree(node) is not part of the original method
body extracted from Lines 3 to 5. REFDISTILLER shows
the pure refactoring version in Figure 5(c) may help the
developer when inspecting the refactoring.

False Positives. We manually inspect the results to inves-
tigate our false positive rate. As REFDISTILLER searches for
refactoring deviations of a correct refactoring, we consider
every code edition that is not related to a refactoring as a
true anomaly. We did not contact the systems’ developers
to confirm whether those extra edits are in fact intended.
Thus, our true positive rate might mask those scenarios. We
discuss this threat to validity in Section 6.

After manual inspection, we observe a low false positive
rate. In a few cases, false positives are caused by the combi-
nation of missing edits and extra edits at the same method
location. For example, REFDISTILLER identified two extract
method edits in the same method body. To obtain the pure
refactoring version, EEDETECTOR subsequently applied two
extract method refactorings to two different edit positions.
However, the refactoring application to the first edit position
affected the second refactoring edits, changing the second
edit position. Applying multiple refactorings in the same
method could prevent REFDISTILLER from locating extra
edits correctly.

The results of both studies (with a seeded data set
and with open source projects) help us to answer our first
research question (RQ1). In both studies, REFDISTILLER de-
tects several refactoring anomalies not detected by testing,
the baseline error detection technique. Moreover, our study
shows the analysis applied by REFDISTILLER does not take
considerable time, and that it could be easily incorporated
into a developer’s daily routine without much overhead.

http://jmeter.apache.org/
http://jmeter.apache.org/
http://www.jmock.org/
https://github.com/jmock-developers/jmock-library/commits

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2679742, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. -, NO. -, AUGUST 2016 10

TABLE 6
Results on open source projects: total correct anomalies found by REFDISTILLER is 188, total correct anomalies found by existing regression tests

is 4, REDISTILLER precision is 94% (188/200), and REFDISTILLER’s improvement is 47 times (188/4) (P1: XMLSecurity, P2: JMeter, P3: JMock,
RE: refactoring edits, ME: missing edits, EE: extra edits, FP: false positives, and TM: time (sec))

REFDISTILLER
TestingRE ME EE FP TM

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3
R1 2 4 1 3 0 1 32 17 2 0 0 0 47 141 21 0 0 1
R2 2 2 4 9 3 2 5 12 0 10 2 0 43 127 32 0 0 1
R3 2 1 - 2 0 - 45 0 - 0 0 - 36 250 - 2 0 -
R4 1 1 - 0 0 - 1 8 - 0 0 - 39 235 - 0 0 -
R5 1 1 - 1 2 - 2 53 - 0 0 - 42 272 - 0 0 -

Total 22 200 12 Ave. 107 4

TABLE 7
A comparative analysis: the number of anomalies detected by each or

combined REFDISTILLER and testing techniques. R is the set of
anomalies detected by REFDISTILLER and T the set of anomalies

detected by Testing. R - T denotes detection results only by
REFDISTILLER (184), T - R detection results only by Testing (0), R ∩ T
detection results reported by both REFDISTILLER and Testing (4), and

R ∪ T the number of anomalies reported by the combination of
REFDISTILLER and Testing (188).

R - T T - R R ∩ T R ∪ T
P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

R1 35 17 2 0 0 0 0 0 1 35 17 3
R2 4 13 1 0 0 0 0 0 1 4 13 2
R3 45 0 - 0 0 - 2 0 - 47 0 -
R4 1 8 - 0 0 - 0 0 - 1 8 -
R5 3 55 - 0 0 - 0 0 - 3 55 -

Total 184 0 4 188

TABLE 8
Existing regression test suites and their coverage (TS: the average

number of test cases).

TS Coverage Rate

Statement Method

XML-Security 86.6 29.7% 26.6%
JMeter 14.6 3.0% 3.1%
JMock 186 89.2% 89.9%

4.3 Detailed Comparison of REFDISTILLER to Related
Approaches
A few related approaches aim to detect refactoring anoma-
lies by going beyond running existing regression tests.
GhostFactor [20] checks correctness of manual refactoring,
similar to MEDETECTOR, while Ge et al. [21] describes the
concept of a refactoring-aware code inspection. SafeRefac-
tor [42] validates automatic refactorings by generating ran-
dom tests using Randoop and running the tests the versions
before and after refactoring. However, we are unable to
conduct direct comparison for practical reasons, such as
language differences, or lack of tool availability.

Regarding Ghostfactor, its focus is on detecting missing
edits only—extra edits are not addressed. The tool supports
three refactoring types (extract method, inline method and
change method signature). Two of them are dealt with by
REFDISTILLER, while REFDISTILLER handles four refactoring
types not supported by Ghostfactor (move method, rename
method, push down method, push up method). We cannot
directly compare REFDISTILLER with Ghostfactor, as it is a

1 byte[] canonicalize(Node node) throws
CanonicalizeException {

2 if (node == null){
3 Log.error("Canonicalize a null node");
4 }
5 return cano.engineCanonicalize(node);
6 }

(a) The original code.

1 byte[] canonicalize(Node node) throws
CanonicalizeException {

2 - if (node == null){
3 - Log.error("Canonicalize a null node");
4 - }
5 - return cano.engineCanonicalize(node);
6 + return canonicalizeTree(node);
7 }
8

9 + byte[] canonicalizeTree(Node node) throws
CanonicalizeException {

10 + if (node == null){
11 + Log.error("Canonicalize a null node");
12 + }
13 + return cano.engineCanonicalizeTree(node); // it

should be ’return cano.engineCanonicalize(node);’
instead.

14 + }

(b) The manual refactoring version.

1 byte[] canonicalize(Node node) throws
CanonicalizeException {

2 - if (node == null){
3 - Log.error("Canonicalize a null node");
4 - }
5 - return cano.engineCanonicalize(node);
6 + return canonicalizeTree(node);
7 }
8

9 + byte[] canonicalizeTree(Node node) throws
CanonicalizeException {

10 + if (node == null){
11 + Log.error("Canonicalize a null node");
12 + }
13 + return cano.engineCanonicalize(node);
14 + }

(c) The pure refactoring version.

Fig. 5. The missing and extra edits detected by REFDISTILLER from
versions of XMLSecurity. (a) The original code from XMLSecurity. (b)
Code after an Extract Method edit in which REFDISTILLER detects a
binding problem related to calling method engineCanonicalize. (c)
Pure refactoring version generated by REFDISTILLER. It detects the
underlined statement as an extra edit by comparing the pure refactoring
version with the manual refactoring version.

Visual Studio plug-in that works only for C#. As our data
set consists of Java programs, to use GhostFactor, we would
need to translate these programs from Java to C#. This task

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2679742, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. -, NO. -, AUGUST 2016 11

is feasible yet problematic because our seeded anomalies are
collected from prior work [9], [42] that are based on common
errors found in Java refactoring tools.

Nevertheless, we perform a hypothetical study by man-
ually applying the rules described in the Ghostfactor pa-
per [20] to our data set of seeded missing edit anomalies
(50). In our data set, there are ten missing edits related to
either extract or inline method, refactoring types that can be
handled by both GhostFactor and REFDISTILLER. GhostFac-
tor would be able to detect five missing edits—three extract
method and two inline method anomalies, while REFDIS-
TILLER reveals nine missing edits—four extract method and
five inline method anomalies. From the five anomalies de-
tected by Ghostfactor, three are extract method, and two
are inline method. For extract method, one is also missed
by REFDISTILLER. However, REFDISTILLER detects an extra
extract method anomaly missed by Ghostfactor. For inline
method, REFDISTILLER detects all anomalies detected by
Ghostfactor plus two extra cases that are missed by Ghost-
factor. The anomalies missed by Ghostfactor are mainly
related to statements not transferred, and/or references to
methods/variables that are changed after refactoring (e.g.,
breaking or adding a overriding/overloading constraint).
These properties are not checked by Ghostfactor.

REFDISTILLER goes further by pinpointing the location
and cause of anomaly, such as “Detected problematic binding
in the reference getStorageData(value), which may have
affected the method Store.updateExpiration() - line 9”.
The value of this new information was tested during our
user study to be detailed in Section 5. Professional devel-
opers stated that REFDISTILLER in fact improves and makes
easier to detect and locate refactoring anomalies.

Regarding Ge et al.’s approach, a short paper describes
the concept of a refactoring-aware code inspection [21].
However, to the best of our knowledge, no available im-
plementation was found. It is important to note that Ge
et al.’s approach would only detect extra edit anomalies,
while REFDISTILLER is designed to detect both missing and
extra edit anomalies. Like REFDISTILLER, Ge and Murphy-
Hill leverage Eclipse refactoring APIs to separate pure
refactorings. REFDISTILLER goes a step further by extending
Eclipse refactoring APIs to prevent unsafe refactoring by
checking bug conditions. This allows REFDISTILLER to apply
automated refactoring in a safe manner, when isolating pure
refactoring.

Finally, SafeRefactor validates automatic refactorings by
generating random tests using Randoop and running the
tests the versions before and after refactoring [42]. Therefore,
it can be adapted for checking manual refactoring errors.
Although we did not apply SafeRefactor as an alternative
to REFDISTILLER, in our first study, we used randomly gen-
erated tests produced by Randoop [37], which essentially
replicates the SafeRefactor implementation. We thus believe
that our first study already compares against SafeRefactor.

5 USER STUDIES

The previous two studies focus on evaluating REFDIS-
TILLER’s capacity of detecting refactoring anomalies. How-
ever, REFDISTILLER is designed not only for detecting refac-
toring anomalies but also for helping developers inspect

refactorings. During maintenance tasks, developers must go
beyond detection; they need to understand and locate prob-
lems in the codebase. In order to investigate both aspects
and assess the practical benefits of using REFDISTILLER, we
conduct a user study with professional developers. This
study aims to evaluate REFDISTILLER’s capacity of helping
developers detect and locate refactoring problems. As a side
goal, we evaluate REFDISTILLER’s usefulness and its pros
and cons compared to regression testing.

Participants Demographics. We recruit 15 active developers
(14 male and 1 female) from different software companies
(small and medium size), including roles as software de-
velopers, quality engineers, and project managers. Figure 6
summarizes the participants’ background information. Most
participants have experience with Java programming and
the Eclipse IDE for at least three years. Most perform refac-
torings at least once a week or daily and, on average, have
previous knowledge of 6.7 refactoring types from a given
list of the 16 well-known refactoring types: add parameter,
extract method, move method, push down method, decom-
pose conditional, inline class, pull up field, rename method,
encapsulate field, inline method, pull up method, replace
parameter with a method, extract class, move field, push
down field and substitute algorithm. 67% of the participants
perform most of their refactorings manually.

Study Procedure. Prior to the study session, we asked the
participants to answer a pre-study survey describing their
demographic and background (Figure 6). After that, we
held a seminar to go over the required background on the
refactorings to be used during the study, and introduced
REFDISTILLER’s features and warning messages. This pre-
sentation included a fifteen-minute live demo on how to
use REFDISTILLER built in the Eclipse IDE as a plug-in.
Moreover, during the seminar, we clearly pointed out that
REFDISTILLER could report possible false positives and/or
false negatives. Therefore, we encouraged them to perform
their own manual validation further.

Next, each participant received four pairs of versions of
XMLSecurity’s code. Each pair consists of a transformation
with a refactoring-related anomaly, in which there was
a single behavioral difference due to either a missing or
extra edit. Then we asked the participants to inspect the
refactorings by using two different approaches: regression
testing (2 pairs), and REFDISTILLER (2 pairs). Both the task
order and the tool assignment were randomly assigned
for counterbalancing. It is important to highlight that all
injected anomalies are detectable by both RefDistiller and
testing, not particularly favoring any approach. The seeded
anomalies are similar to the anomalies in our first study.

When inspecting each refactoring, the participants were
asked whether the refactoring was problematic. If anomalies
are detected, the participants should inspect the code and
locate the anomaly by using the information given by one of
the two methods: REFDISTILLER or testing. Each participant
had 40 minutes to perform all four refactoring inspection
tasks. During the study session, we encouraged them to
verbalize their thoughts while performing the tasks. All
study sessions and screen movements were recorded for
further analysis. Finally, each participant completed a post-
study survey to evaluate his or her experience. This survey

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2679742, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. -, NO. -, AUGUST 2016 12

Fig. 6. Study participants’ background information.

asked the participants to rate each refactoring inspection
strategy on the difficulty level and usefulness for detecting
and locating refactoring anomalies. Moreover, the survey
included subjective questions in which the participants
should list the pros and cons of each strategy. Pre- and post-
study survey questionnaires and inspection task sheets are
available on our website8.

Inspection Tasks. We provided four inspection tasks.
Each task covers a different refactoring edit: move
method, extract method, rename method, and pull up
method. An inspection task consisted of two versions
of XMLSecurity’s code, P and P ′, in which P ′ is P
with an injected refactoring anomaly that changes P ’s
behavior. They simulate anomalies that a developer might
introduce when performing manual refactoring [8], [10],
[20], [22], [43]. Figure 7 exemplifies one of the injected
anomalies due to a binding problem. When moving
method engineCanonicalizeXPathNodeSet from
Canonicalizer20010315Excl to Canonicalizer,
it breaks an existing overriding constraint
(class CanonicalizerBase has a method
engineCanonicalizeXPathNodeSet as well). As
no compilation error is found, this anomaly might be
hard to detect and locate. To inspect this refactoring, a
developer needs to go through several classes, and carefully
understand the system’s class hierarchy and possible impact
that this Move Method edit causes. To fix this anomaly,
the developer would need to go through all callers of
engineCanonicalizeXPathNodeSet and double-check
whether the method reference is correct after the method is
moved.

We asked the participants to inspect all four refactorings.
No information was provided on whether the refactorings

8. https://sites.google.com/site/refdistiller/userstudy

were safe or not. For each inspection task, we required
the participant to use a designated inspection strategy (i.e.,
testing or REFDISTILLER) and provided an inspection sheet
that included information regarding: (i) the two versions
of XMLSecurity, before and after the refactoring (e.g., 7(a)
and (b)); (ii) a description of the performed refactoring; and
(iii) questions to be answered after the inspection was done.
Table 9 shows the inspection sheet for the task described
above. When using a testing method, developers were given
XMLSecurity’s existing test suite. This suite was collected
from XMLSecurity’s repository and comprises 103 JUnit test
cases. Table 10 presents details about the test suite used
in our study and the test coverage for the classes where
anomalies appear.

Research Questions. To assess REFDISTILLER’s capacity of
helping developers to inspect refactorings, and to guide our
investigation, we defined six research questions:

• RQ1: Does REFDISTILLER improve the detection of
refactoring anomalies over regression testing?

• RQ2: Does REFDISTILLER improve the localization of
refactoring anomalies over regression testing?

• RQ3: Is REFDISTILLER more useful for inspecting
refactorings than regression testing?

• RQ4: Is REFDISTILLER more useful for locating refac-
toring anomalies than regression testing?

• RQ5: Does REFDISTILLER make refactoring inspection
easier over regression testing?

• RQ6: Can developers save time in inspecting refac-
torings when using REFDISTILLER vs. regression test-
ing?

Analysis on Improvement. From a total of 60 anomalies to
be found (15 participants with 4 injected faults), half were
inspected by using testing and the rest with REFDISTILLER.
Only 70% of the faults were detected by the participants

https://sites.google.com/site/refdistiller/userstudy

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2679742, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. -, NO. -, AUGUST 2016 13

TABLE 9
The description of a refactoring task and its corresponding questions for refactoring inspection.

Versions Type Description

350608.1 - 350608.2 Move Method
Method engineCanonicalizeXPathNodeSet(Set) was moved from
org.apache.security.c14.implementations.Canonicalizer20010315Excl
to org.apache.security.c14.Canonicalizer.

Q1. Was the refactoring edit semantics preserving, meaning the same inputs generate the same outputs before and after refactoring? (Yes/No)

Q2. If you have answered NO in Q1, try to locate the bug and describe it.

1 public class Canonicalizer20010315Excl extends
CanonicalizerBase {

2 public byte[] engineCanonicalizeXPathNodeSet(Set
xpathNodeSet)

3 throws CanonicalizationException {
4 return this.engineCanonicalizeXPathNodeSet(

xpathNodeSet, "");
5 }
6 }
7 public class CanonicalizerBase ...{
8 public byte[] engineCanonicalizeXPathNodeSet(Set

xpathNodeSet)
9 throws CanonicalizationException {...}

10 }
11 public class Canonicalizer {...}

(a) The original code.

1 public class Canonicalizer20010315Excl extends
CanonicalizerBase {

2 - public byte[] engineCanonicalizeXPathNodeSet(Set
xpathNodeSet)

3 - throws CanonicalizationException {
4 - return this.engineCanonicalizeXPathNodeSet(

xpathNodeSet, "");
5 - }
6 }
7 public class CanonicalizerBase ...{
8 public byte[] engineCanonicalizeXPathNodeSet(Set

xpathNodeSet)
9 throws CanonicalizationException {...}

10 }
11 public class Canonicalizer {
12 + public byte[] engineCanonicalizeXPathNodeSet(Set

xpathNodeSet)
13 + throws CanonicalizationException {
14 + return this.engineCanonicalizeXPathNodeSet(

xpathNodeSet, "");
15 + }
16 }

(b) Code with an injected refactoring anomaly.

Fig. 7. Example of injected missed edit anomaly used in our user
study. When moving engineCanonicalizeXPathNodeSet from
Canonicalizer20010315Excl to Canonicalizer, we break an
overriding constraint, since CanonicalizerBase has a method
engineCanonicalizeXPathNodeSet as well.

using regression testing. On the other hand, all 30 were de-
tected by REFDISTILLER. Participants were asked to localize
the anomalies. They correctly pinpointed the location of the
anomaly by using REFDISTILLER in 90% of the cases, while
by using testing this rate dropped to only 13%. Figure 8
presents a comparative view of these data. We performed
a Chi-Squared proportion test to verify whether the found
differences between the rates of fault detection and localiza-
tion are statistically significant. Table 11 shows the proposed
null hypothesis and the alternative hypothesis in both tests,
and the corresponding X-squared and p-values. With 95%
confidence, the tests found significant differences in both
analyses, i.e., we rejected both null hypotheses. Thus, we
can answer RQ1 and RQ2 as there is evidence that using

TABLE 10
Information about the test suite provided to the participants and the

coverage levels of the classes where the faults were injected per
inspection task.

XML-Security

Number of
test cases

Statement
coverage

Method
coverage

Inspection
tasks

Coverage of
edited class
(statement
coverage)

103 31.6% 30% task 1 79.5%
task 2 44.6%
task 3 48.8%
task 4 32.1%

REFDISTILLER, developers detected and located more refactoring
anomalies than by using tests.

To investigate whether our results were biased by the
participants’ experience with programming or refactoring,
we related the cases where the anomalies were detected/lo-
cated to participants’ level of experience and how often they
perform refactorings. Figure 9 shows a few histograms. As
can be seen, when using testing, the rates of both anomaly
detection and localization seem to increase as the partici-
pants’ experience level is higher. Inspecting a refactoring
with tests only seems to be hard. Inexperienced developers
tend not to have a deep understanding of what the pitfalls
are and the possible impact of a specific refactoring. More
experienced developers might have used their previous
knowledge to better understand the test suite’s execution
messages and to search the right code elements when locat-
ing the problems. On the other hand, REFDISTILLER’s results
seem to be consistent, regardless of developer’s experience
level. For instance, less experienced developers in our study
(participants who stated that they have never performed
refactorings) were able to detect and locate both anomalies
with REFDISTILLER but none using testing. The following
quote was collected from a participant while using REFDIS-
TILLER:
“RefDistiller enabled me to find the problems that would not
be easily found by naked eye or by testing, even for an expert
developer.”

Sometimes, although there were failing tests, some par-
ticipants reported no anomalies. This fact shows that devel-
opers often do not trust test results, since they cannot assess
with confidence the quality of a test suite. This fact was also
raised by prior research [39].

Analysis on Usefulness. To assess developers’ perspective
regarding the usefulness of REFDISTILLER versus testing
for inspecting refactorings, we asked them to rate both
strategies among one of the five options: not useful,little
useful, neutral, useful or very useful. Figure 10(a) presents

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2679742, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. -, NO. -, AUGUST 2016 14

Fig. 8. Rates of anomaly detection and localization.

TABLE 11
Null and alternative hypothesis regard the proportion tests. D is the rate of detected anomalies and L is the rate of located anomalies.

H0 H1 X-Squared p-value
Dtesting = DRefDistiller Dtesting 6= DRefDistiller 8.366 0.003823
Ltesting = LRefDistiller Ltesting 6= LRefDistiller 32.3026 1.319e-08

the histograms corresponding to this analysis. While most
participants found testing to be little useful for inspecting
refactorings, most found REFDISTILLER useful or very
useful. In a similar analysis, we asked them to rate both
strategies on their usefulness regarding providing helpful
information to locate the anomalies (Figure 10(b)). Most
participants found testing information not useful for
locating the refactoring problems, while most participants
found REFDISTILLER’s messages useful or very useful for
locating the problems. The following quotes were collected
from participants of our study:

“Junit tests help finding bugs but do not give much help on
locating them. REFDISTILLER’s way of displaying bugs is more
informative and very intuitive.”
“Failing test cases and their messages do not give me the needed
background for understanding the reason of the bug nor to locate
it.”
“The combination of missing and extra edits seems to be a
powerful way of expressing refactoring bugs.”
“I see the extra edits view as a useful tool because it can show a
possible way for fixing the found refactoring bug.”

Thus, we can answer RQ3 and RQ4 by saying that, for
the context of our study, developers find REFDISTILLER useful
for inspecting refactorings and that it provides more help in
locating refactoring problems than regression testing.

Analysis on Difficulty. We asked participants to rate each
strategy regarding the difficulty level of inspecting refactor-
ings by using testing or REFDISTILLER. Figure 11 presents the
histogram of this analysis. While most participants rate the
difficulty level of inspecting refactorings with REFDISTILLER

as easy or very easy, they rate the difficulty level of using
testing for the same task as hard or medium. A developer
stated:
“Inspect a refactoring is really hard, unless there is a very effective
test suite to help. However, the help that REFDISTILLER brings to
locate the bugs makes this task way easier.”
Thus, we can answer R5 and state that it is easier to inspect
refactorings using REFDISTILLER than with testing.

Analysis of time improvement. From the recordings of
participants’ inspection sessions, we measured the time
participants spent when performing the tasks. On average,
developers spent 7.16 minutes for inspecting a refactoring
with testing, while they spent 5.9 minutes with REFDIS-
TILLER. Thus, we can answer RQ6 and say that REFDISTILLER

helped developers to save, on average, 17% of time over testing.
Although this rate might not be very impressive, when
we relate the time spent when using each strategy with
the number of detected and located anomalies, we can see
that the time spent when using REFDISTILLER was more
productive (100% anomalies detected and 90% anomalies
located). It is important to highlight that the time computed
for each task includes REFDISTILLER’s running time. As
REFDISTILLER applies a static analysis, its running time
is often higher than running XMLSecurity’s test suite. To
emphasize our conclusions, here are some quotes collected
regarding time:
“REFDISTILLER would definitely save me time when inspecting
my refactored code. Sometimes we spend a long time trying to
find small mistakes that can easily pass unnoticed.”
“There is a practical need for tools like REFDISTILLER (that
accelerate the process of detecting and finding bugs during
software development) because nowadays there is an urge for
faster software releases, which often lead to buggy software.”

Subjective Analysis and Discussion. Finally, through post
survey questions, we asked developers to evaluate both
testing and REFDISTILLER. They listed the pros and cons
of each inspection strategy and described their general
perception of using REFDISTILLER in comparison with
testing. In general, the participants found testing a valid
strategy for detecting refactoring problems but not useful
when the goal is to locate the cause of the problem. Testing
messages are reported as not informative and not useful for
neither bug understanding or localization. However, one
participant stated:
“A single problem might lead to several failing test cases. This
redundant data might be an interesting source of information
when tracking a bug.”

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2679742, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. -, NO. -, AUGUST 2016 15

Fig. 9. Detection and localization rates by participants’ experience with programming and frequency of refactoring levels.

Fig. 10. Analysis regarding participants’ perception on (a) usefulness of testing and REFDISTILLER for inspecting refactorings and (b) its help on
locating refactoring anomalies.

Although that is an interesting point of view, other
participants complained about the number of failing test
cases. For instance:
“Most of the time I got confused when locating the bugs with
testing. Several test cases failed and pointed to different parts of
the code, which made debugging harder.”

Participants listed several practical benefits of using
REFDISTILLER, such as productivity improvements and cut-
back of inspection time. They found REFDISTILLER more in-

formative and effective for inspecting refactorings. Most of
them found REFDISTILLER’s output messages clear and help-
ful. The way REFDISTILLER helps fault localization was a
widely positive point. They emphasize that, by pinpointing
the location where the refactoring problem might be, and a
possible reason, REFDISTILLER made the inspection process
easier to perform. Moreover, participants highly appreciate
the extra edits view. By showing a pure-refactoring version,
developers can better visualize their mistakes and come up
with possible ways of fixing the mistakes. The following are

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2679742, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. -, NO. -, AUGUST 2016 16

Fig. 11. Analysis regarding rate on difficulty level of inspecting refactor-
ings by using testing or REFDISTILLER.

quotes about the extra edits view:
“The extra edits view seems to be very helpful for creating
patches.”
“The extra edits found are a great source of refactoring bad
smells.”

Participants also listed some usability issues and pro-
vided suggestions for improving REFDISTILLER. For in-
stance, a participant mentioned that some warning mes-
sages in the missing edits view could be improved.
“The missing edits warning messages were too vague, which took
me a long time to relate the reported problem with my code.”
He suggested more specific messages and a more fine-
grained class of anomalies. Another participant suggested
the introduction of a merge option in the extra edits view.
This option would take the manual and the pure-refactoring
versions, merge them, and suggest a fixing patch. One
developer found the time waiting for REFDISTILLER to run
too long. However, several other participants emphasized
REFDISTILLER’s benefits in time saving. All these sugges-
tions will be considered in the future evolution of REFDIS-
TILLER.

One participant rated REFDISTILLER as not very useful.
This participant is used to performing refactoring inspection
with a different code diff tool. As we asked him to inspect
using only the designed strategy (REFDISTILLER or testing)
he ended up spending more time in the beginning, since
he was prevented from using the diff tool he is familiar
with. However, the same participant pointed out the ben-
efits of REFDISTILLER’s new features, especially providing
the location of the detected refactoring problem. He also
mentioned that he would easily incorporate REFDISTILLER

into his current tool set.
Some participants provided an interesting practical sce-

nario for using REFDISTILLER. They indicated that testing
lacks useful information for locating refactoring bugs; how-
ever, they still trust tests as not presenting false positives.
Thus, these participants mentioned that, in practice, they
would combine testing and REFDISTILLER. They would
first run their test suite and collect problems, then run
REFDISTILLER to detect problems that might have passed
unnoticed by the testing validation. Finally, they would use
REFDISTILLER to locate all bugs found by both strategies and
fix them. We believe this is a good usage scenario of our

tool and reinforces our idea that REFDISTILLER complements
testing.

6 THREATS TO VALIDITY

Regarding studies on detection, in terms of construct va-
lidity, the accuracy of RefFinder’s refactoring reconstruc-
tion directly affects REFDISTILLER’s capability in detect-
ing refactoring faults. We refer to Prete et al. for further
evaluation data on how varying its similarity threshold
affects RefFinder’s accuracy [38]. When multiple interfer-
ing refactorings are seeded in the same version together,
REFDISTILLER may find false positives or negatives. For
example, when we seed the Extract Method and Inline
Method refactorings in the same location, which partially
cancels each other, REFDISTILLER finds two separate faults
that should not be found—one related to the Extract Method
and the other related to the Inline Method. Moreover, as
discussed in the False Positives subsection, EEDETECTOR’s
false positive rate tends to be higher. However, we believe
that any extra edits in the refactoring inspection should
be confirmed, since those extra edits might interfere with
software’s original behavior. Professional developers stated
the same concern [25], [48].

Since REFDISTILLER applies a static analysis, it is cur-
rently unable to detect runtime object types precisely and
cannot capture control flow changes in the exception han-
dling logic precisely.

REFDISTILLER takes the old and new version snapshots
as input and does not leverage edit history during program-
ming sessions (e.g., a sequence of edit operations recorded
in Eclipse). Extending and applying REFDISTILLER to edit
histories or other richer refactoring data [33], [45] remains
as future work.

In terms of internal validity, we detect refactoring
anomalies in which behavioral changes occur. Not all iden-
tified issues are indeed anomalies and could be intentional.
Nevertheless, we believe that paying attention to behavior
changes occurred during refactoring is worthwhile.

In terms of external validity, our results do not general-
ize beyond our data set and the three subject programs. In
our evaluation, REFDISTILLER was able to detect anomalies
not found by either existing test suites or an automated
test generation tool, Randoop. However, a test suite’s refac-
toring validation power is relative to several factors that
might influence its effectiveness, such as coverage level, or
variability of data. In the empirical study, we evaluated
REFDISTILLER with real regression test suites, but some of
the test suites may be inadequate for evaluating REFDIS-
TILLER. For example, JMeter includes only 14.6 test cases
with 3% code coverage on average. Despite its low coverage
rate, our results empirically showed the benefits of static
analysis and the challenges of testing for validating refactor-
ing edits in practice. Therefore, the potential gain of using
REFDISTILLER, instead of testing, might be relative; however,
we believe that the combination of both strategies—testing
and REFDISTILLER—is likely to allow developers to better
inspect refactorings.

Finally, the injected anomalies do not cover all possible
refactoring-related bugs. However, these faults were col-
lected from previous studies that identified problems in

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2679742, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. -, NO. -, AUGUST 2016 17

automated refactoring tools and/or inspired by real scenar-
ios the authors experienced when performing/inspecting
refactorings. Regarding possible subjectivity bias, the results
of both studies were collected by the first author and later
inspected by two other authors in an independent manner.

Regarding the user study, we discuss the following
threats to validity.

In terms of construct validity, we used multiple-choice
questions aspects such as usefulness and help for detect-
ing/locating problems. Objective measures, such as time
spent browsing through classes irrelevant to refactoring
problems, could be used to measure the same aspects.
However, our goal was to see the practical impact that
each inspection strategy has on developers’ opinions. In
addition, our study comprises different refactoring types
and anomalies, and we counterbalanced the order and task
assignment to mitigate the learning effects.

In terms of external validity, we selected participants
from different projects, with different roles and levels of
experience. However, besides the time spent in our study,
they did not have any familiarity with XMLSecurity’s code.
Thus, one may argue that our study’s conclusions may not
generalize to professional developers who have familiarity
with their codebase. However, we do not believe this is a
significant limitation. XMLSecurity is a medium size Java
project that can be a representative subject for a Java appli-
cation. Thus, although they may not have been familiar with
XMLSecurity’s code specifics, we believe developers were
familiar with the the general aspects of a Java application.
Moreover, the refactorings applied, the injected anomalies
and their impacts were similar to common scenarios when
refactoring/inspecting any Java program.

Another threat is that the tasks we selected included
anomalies that REFDISTILLER can detect. Other refactoring
anomalies might lead to different conclusions. However,
we believe that our tool is still useful as the refactoring
problems detected by REFDISTILLER are shown to be fre-
quent [19], [42].

Finally, we used only XMLSecurity’s test suite, and thus
we cannot generalize the results to all regression test suites.
However, XMLSecurity’s suite was extracted from an open
source project. Moreover, versions of the XMLSecurity’s
suite have been used in other testing-related empirical stud-
ies (e.g. [6], [13], [49]). Therefore, by using real systems, by
encouraging the need for inspection, by using the actual test
suites available, and by considering only kinds of anomalies
reported by other authors, we believe the study resembles a
realistic setting.

To mitigate internal validity, before the participants
started the inspection tasks, we introduced them to REFDIS-
TILLER and its features through a presentation and tool
demo. Moreover, the first author was available to help par-
ticipants with any usability issue during all study sessions.

Another threat is a possible social desirability bias. Par-
ticipants’ perceptions could have been more positive to-
wards REFDISTILLER because they knew the authors created
it. Although this threat is hard to mitigate, we tried to
avoid positive bias by mentioning during the pre-session
seminar that REFDISTILLER could report false positives or
negatives. In fact, we noticed that some participants spent

a considerable amount of time deciding whether to trust
REFDISTILLER and double-checking its outputs.

7 RELATED WORK

Opdyke and Johnson [34] create the term refactoring and
formally define refactorings as (1) generalizing an inher-
itance hierarchy, (2) specializing an inheritance hierarchy,
and (3) using aggregations to model the relationships
among classes. Fowler creates a catalog of different refac-
toring types and defines steps to proceed with the required
edits in terms of mechanical descriptions [17].

Popular IDEs such as Eclipse, IntelliJ, NetBeans, and
Visual Studio include support for automated refactoring.
Those tools check pre- and post-conditions to prevent refac-
toring anomalies. However, recent studies show that auto-
mated refactoring is underused in practice. Murphy et al.
find that 90% of the refactoring edits are done manually [31].
Negara et al. find that developers perform manual refactor-
ing more often than automated refactoring [32]. Kim et al.
find that 51% of developers perform 100% of their refactor-
ing manually [25]. Other studies reflect on reasons for this
underuse, such as usability issues [30], unawareness [46],
and a lack of trust [10], [28], [42], [46].

Refactoring is error prone. Dig et al. state that over
80% of the API changes that break existing applications are
refactorings [11]. Weißgerber and Diehl find a correlation
between refactoring edits and an increasing number of bug
reports [47]. Kim et al. report that there is an increase in the
number of bug fixes after API-level refactorings [24].

Formal verification is an alternative for avoiding refac-
toring anomalies [26]. Cornélio et al. propose rules for guar-
anteeing semantic preservation [9]. Similarly, Mens et al. use
graph rewriting for specifying refactorings [27]. Overbey
et al. present a collection of refactoring specifications for
Fortran 95 [35]. However, these approaches focus on im-
proving the correctness of automated refactoring through
formal specifications, as opposed to finding anomalies dur-
ing manual refactoring.

Daniel et al. propose a technique for testing refactoring
engines by automatically generating input programs [10].
Gligoric et al. apply refactoring edits systematically to
find bugs in Eclipse refactoring [22]. Overbey and Johnson
propose a differential conditional checker to be used by
refactoring engines for checking behavior preservation [36].
Schaeffer and Moor verify whether there is behavior preser-
vation by comparing data and control dependencies in
the original and refactored code [40]. These approaches
differ from REFDISTILLER by improving the correctness of
automated refactoring as opposed to finding errors during
manual refactoring.

Regression testing is the most used strategy for checking
refactoring correctness. However, Rachatasumrit and Kim
find that test suites are often inadequate and developers
may hesitate to initiate or perform refactoring tasks due
to inadequate test coverage [25], [39]. Soares et al. design
and implement SafeRefactor that uses randomly generated
test suites for detecting refactoring anomalies [43]. Mongiovi
et al. introduces SafeRefactorImpact [28]. SafeRefactorIm-
pact extends SafeRefactor by adding an impact analysis

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2679742, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. -, NO. -, AUGUST 2016 18

step. SafeRefactorImpact decomposes an edit into small-
grained transformations and analyzes the impact of each
one. Then, it uses Randoop to generate test cases for the
impacted methods. In our studies, we show that even tool-
generated tests can be inadequate. Using a SafeRefactor like
testing validation, we find that about 25% of the refactoring
anomalies are not identified by using generated test suites,
even with a long generation time limit (100 seconds). More-
over, SafeRefactorImpact impact rules and REFDISTILLER’s
refactoring templates have different goals and applications.
While SafeRefactorImpact identifies impacted elements that
are used for guiding a testing generation process, REFDIS-
TILLER aims to verify whether steps for a successful refac-
toring are indeed performed.

GhostFactor checks the correctness of manual refactor-
ing [20], similar to MEDETECTOR. However, unlike EEDE-
TECTOR, GhostFactor does not have any capability to iso-
late potential behavior changes from pure refactoring by
running an equivalent automated refactoring. GhostFactor
detects missing edits only, while REFDISTILLER detects both
missing and extra edits. Although we did not run GhostFac-
tor for comparison, according to GhostFactor’s algorithm,
it supports only three refactoring types and detects only
potential missing edits. Our analysis showed that Ghost-
Factor was able to detect only three missing edits from the
transformations collected from Soares work [42], as opposed
to 34 correct missing edits found by REFDISTILLER. More-
over, when applied to the open-source dataset, it found five
missing edits, while REFDISTILLERfound 24. It is important
to highlight GhostFactor finds only missing edits anomalies
and only for three refactoring types.

REFDISTILLER goes further than all tools listed above and
traditional testing validation by pinpointing the location
and cause of an anomaly, such as “Detected problematic
binding in the reference getStorageData(value), which
may have affected the method Store.updateExpiration()
- line 9”. The value of this new information was tested
during our user study. Professional developers stated that
REFDISTILLER in fact improves and makes it easier to detect
and locate refactoring anomalies.

Ge and Murphy-Hill propose a refactoring-aware code
review tool (a four-page workshop paper published in
Spring 2014 [21], with goals similar to REFDISTILLER). This
tool helps reviewers by identifying applied refactorings and
letting developers examine them in isolation. Like REFDIS-
TILLER, Ge and Murphy-Hill leverage Eclipse refactoring
APIs to separate pure refactorings. REFDISTILLER goes a
step further by extending Eclipse refactoring APIs to pre-
vent unsafe refactoring by checking bug conditions. This
allows REFDISTILLER to apply automated refactoring in a
safe manner when isolating pure refactoring. In addition,
REFDISTILLER also detects missing edits (incomplete refac-
torings) with concrete warning messages about how to
fix the anomalies. Some refactoring anomalies are hard to
detect, and an analysis that searches for both missing and
extra edits might provide a better understanding of the
problem.

Ge at al. perform a survey with professional developers
to investigate the role of refactoring-aware code review in
practice [48]. This survey highly motivates our work. It
shows that reviewing a refactoring is a real concern for

developers and that it requires much effort and dedication,
which are issues that we address in REFDISTILLER.

Tsantalis and Chatzigeorgiou propose an approach and
tool (JDeodorant) for identifying refactoring opportuni-
ties [15], [44]. They also introduce a set of rules regarding the
preservation of existing dependences. Different from MEDE-
TECTOR’s refactoring templates, JDeodorant’s rules are de-
signed to predict whether a possible future refactoring may
change the behavior. On the other hand, MEDETECTOR’s
templates check whether edits are performed according to
expected refactoring edits.

Ge and Murphy-Hill [19] and Foster et al. [16] detect
manual refactoring, remind a developer that automated
refactoring is available, and complete it automatically. While
these refactoring completions tools leverage Eclipse refac-
toring APIs, REFDISTILLER differs from these by finding
anomalies as opposed to auto-completing refactorings.

8 CONCLUSION

Developers often mix refactoring with other semantic
changes, and they do most refactoring manually. This man-
ual execution often leads to defect inclusion. During main-
tenance tasks, developers need to validate their refactorings
and, locate and fix it when a problem is found. We present
REFDISTILLER, a tool for detecting and locating anomalies in
manual refactoring. To detect missing edits, we use prede-
fined change rules for each refactoring type and match ex-
pected constituent edits with actual syntactic edits. To detect
extra edits that may change a program’s behavior, we extend
and leverage existing Eclipse refactoring APIs to separate
pure refactoring from behavior-modifying edits. While such
extra edits are not always errors and could be intentional,
we believe that isolating them can help developers focus on
their attention to semantic changes.

The evaluation shows that our static analysis approach
can effectively complement testing-based refactoring vali-
dation. REFDISTILLER finds anomalies that the existing test
suites falls short of finding. Our study with professional
developers shows that REFDISTILLER is effective and helps
developers to better inspect refactorings. To the best of our
knowledge, our work is the first to detect both missing edits
and extra edits that deviate from pure refactoring and to
provide useful information for fixing refactoring problems.
Its capability can help developers focus on their attention to
subtle behavior changes with no compilation errors.

As future work for improving REFDISTILLER’s approach
and tool, we intend to: (i) create refactoring templates for
more refactoring types; (ii) make warning messages even
more specific and fine-grained; and (iii) implement a merge
operation in the extra edits view to propose a way of fixing
found problems based on the manual and pure-refactoring
versions.

9 ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation under grants CCF-1527923, CCF-1460325, CNS-
1239498, a Google Faculty Award, and by the National In-
stitute of Science and Technology for Software Engineering,
funded by CNPq/Brasil, grant 573964 /2008-4.

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2679742, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. -, NO. -, AUGUST 2016 19

REFERENCES

[1] A. F. Ackerman, L. S. Buchwald, and F. H. Lewski. Software
inspections: an effective verification process. IEEE software, (3):31–
36, 1989.

[2] A. F. Ackerman, P. J. Fowler, and R. G. Ebenau. Software in-
spections and the industrial production of software. In Proc.
of a symposium on Software validation: Inspection-testing-verification-
alternatives, pages 13–40. Elsevier North-Holland, Inc., 1984.

[3] E. Alves, M. Song, and M. Kim. Refdistiller: A refactoring aware
code review tool for inspecting manual refactoring edits. In Inter-
national Symposium on Foundations of Software Engineering, Research
Demonstration Track, page 4, 2014.

[4] E. L. Alves, P. D. Machado, T. Massoni, and M. Kim. Prioritizing
test cases for early detection of refactoring faults. Software Testing,
Verification and Reliability, 2016.

[5] E. L. Alves, T. Massoni, and P. D. de Lima Machado. Test coverage
of impacted code elements for detecting refactoring faults: An
exploratory study. Journal of Systems and Software, 2016.

[6] E. L. Alves, T. Massoni, and P. D. Machado. Test coverage and
impact analysis for detecting refactoring faults: a study on the
extract method refactoring. In Proceedings of the 30th Annual ACM
Symposium on Applied Computing, pages 1534–1540. ACM, 2015.

[7] E. L. Alves, M. Song, M. Kim, P. D. Machado, and T. Mas-
soni. Additional artifacts for ”refactoring inspection support for
manual refactoring edits”. Technical report, The University of
Texas at Austin, 2016. https://sites.google.com/site/refdistiller/
TechnicalReport.pdf.

[8] G. Bavota, B. De Carluccio, A. De Lucia, M. Di Penta, R. Oliveto,
and O. Strollo. When does a refactoring induce bugs? an empirical
study. In IEEE 12th International Working Conference on Source Code
Analysis and Manipulation (SCAM), pages 104–113. IEEE, 2012.

[9] M. Cornélio, A. Cavalcanti, and A. Sampaio. Sound refactorings.
Science of Computer Programming, 75(3):106–133, 2010.

[10] B. Daniel, D. Dig, K. Garcia, and D. Marinov. Automated testing
of refactoring engines. In Proceedings of the the 6th Joint meeting of
the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, pages 185–
194. ACM, 2007.

[11] D. Dig and R. Johnson. The role of refactorings in api evolution.
In Software Maintenance, 2005. ICSM’05. Proceedings of the 21st IEEE
International Conference on, pages 389–398. IEEE, 2005.

[12] H. Do, S. Elbaum, and G. Rothermel. Infrastructure support for
controlled experimentation with software testing and regression
testing techniques. In Empirical Software Engineering, 2004. IS-
ESE’04. Proceedings. 2004 International Symposium on, pages 60–70.
IEEE, 2004.

[13] H. Do, G. Rothermel, and A. Kinneer. Empirical studies of test case
prioritization in a junit testing environment. In 15th International
Symposium on Software Reliability Engineering, (ISSRE), pages 113–
124. IEEE, 2004.

[14] B. Fluri, M. Wursch, M. PInzger, and H. C. Gall. Change distilling:
Tree differencing for fine-grained source code change extraction.
Software Engineering, IEEE Transactions on, 33(11):725–743, 2007.

[15] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou. Iden-
tification and application of extract class refactorings in object-
oriented systems. Journal of Systems and Software, 85(10):2241–2260,
2012.

[16] S. R. Foster, W. G. Griswold, and S. Lerner. Witchdoctor: Ide sup-
port for real-time auto-completion of refactorings. In Proceedings
of the 2012 International Conference on Software Engineering, pages
222–232. IEEE Press, 2012.

[17] M. Fowler and K. Beck. Refactoring: improving the design of existing
code. Addison-Wesley Professional, 1999.

[18] G. Fraser and A. Arcuri. Evosuite: automatic test suite generation
for object-oriented software. In Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations
of software engineering, pages 416–419. ACM, 2011.

[19] X. Ge, Q. L. DuBose, and E. Murphy-Hill. Reconciling manual and
automatic refactoring. In 34th International Conference on Software
Engineering (ICSE), pages 211–221. IEEE, 2012.

[20] X. Ge and E. Murphy-Hill. Manual refactoring changes with
automated refactoring validation. In Software Engineering (ICSE
2014) 36th International Conference on. IEEE, 2014.

[21] X. Ge, S. Sarkar, and E. Murphy-Hill. Towards refactoring-aware
code review. In Proceedings of the 7th International Workshop on
Cooperative and Human Aspects of Software Engineering, pages 99–
102. ACM, 2014.

[22] M. Gligoric, F. Behrang, Y. Li, J. Overbey, M. Hafiz, and D. Mari-
nov. Systematic testing of refactoring engines on real software
projects. In ECOOP 2013 - Object-Oriented Programming, pages 629–
653. Springer, 2013.

[23] M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak, and
D. Marinov. Test generation through programming in udita.
In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 1, pages 225–234. ACM, 2010.

[24] M. Kim, D. Cai, and S. Kim. An empirical investigation into the
role of api-level refactorings during software evolution. In Pro-
ceedings of the 33rd International Conference on Software Engineering,
pages 151–160. ACM, 2011.

[25] M. Kim, T. Zimmermann, and N. Nagappan. A field study of
refactoring challenges and benefits. In Proceedings of the ACM SIG-
SOFT 20th International Symposium on the Foundations of Software
Engineering, page 50. ACM, 2012.

[26] T. Mens and T. Tourwé. A survey of software refactoring. IEEE
Transactions on Software Engineering, 30(2):126–139, 2004.

[27] T. Mens, N. Van Eetvelde, S. Demeyer, and D. Janssens. Formaliz-
ing refactorings with graph transformations. Journal of Software
Maintenance and Evolution: Research and Practice, 17(4):247–276,
2005.

[28] M. Mongiovi, R. Gheyi, G. Soares, L. Teixeira, and P. Borba. Mak-
ing refactoring safer through impact analysis. Science of Computer
Programming, 2013.

[29] G. C. Murphy, M. Kersten, and L. Findlater. How are java software
developers using the elipse IDE? Software, IEEE, 23(4):76–83, 2006.

[30] E. Murphy-Hill and A. P. Black. Breaking the barriers to successful
refactoring. In ICSE’08. ACM/IEEE 30th International Conference on
Software Engineering, pages 421–430. IEEE, 2008.

[31] E. Murphy-Hill, C. Parnin, and A. P. Black. How we refactor,
and how we know it. IEEE Transactions on Software Engineering,
38(1):5–18, 2012.

[32] S. Negara, N. Chen, M. Vakilian, R. E. Johnson, and D. Dig. A com-
parative study of manual and automated refactorings. In ECOOP
2013–Object-Oriented Programming, pages 552–576. Springer, 2013.

[33] S. Negara, M. Vakilian, N. Chen, R. Johnson, and D. Dig. Is it
dangerous to use version control histories to study source code
evolution? In J. Noble, editor, ECOOP 2012 Object-Oriented
Programming, volume 7313 of Lecture Notes in Computer Science,
pages 79–103. Springer, Berlin, Heidelberg, 2012.

[34] W. F. Opdyke. Refactoring: An aid in designing application
frameworks and evolving object-oriented systems. In Proc. 1990
Symposium on Object-Oriented Programming Emphasizing Practical
Applications (SOOPPA), 1990.

[35] J. L. Overbey, M. J. Fotzler, A. J. Kasza, and R. E. Johnson. A
collection of refactoring specifications for fortran 95. In ACM
SIGPLAN Fortran Forum, volume 29, pages 11–25. ACM, 2010.

[36] J. L. Overbey and R. E. Johnson. Differential precondition check-
ing: A lightweight, reusable analysis for refactoring tools. In 26th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pages 303–312. IEEE, 2011.

[37] C. Pacheco and M. Ernst. Randoop: feedback-directed random
testing for java. In Companion to the 22nd ACM SIGPLAN conference
on Object-Oriented Programming Systems and Applications, pages
815–816. ACM, 2007.

[38] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim. Template-
based reconstruction of complex refactorings. In IEEE International
Conference on Software Maintenance (ICSM), pages 1–10. IEEE, 2010.

[39] N. Rachatasumrit and M. Kim. An empirical investigation into
the impact of refactoring on regression testing. In 28th IEEE
International Conference on Software Maintenance (ICSM), pages 357–
366. IEEE, 2012.

[40] M. Schaefer and O. De Moor. Specifying and implementing
refactorings. In ACM Sigplan Notices, volume 45, pages 286–301.
ACM, 2010.

[41] G. Soares, B. Catao, C. Varjao, S. Aguiar, R. Gheyi, and T. Massoni.
Analyzing refactorings on software repositories. In Software Engi-
neering (SBES), 2011 25th Brazilian Symposium on, pages 164–173.
IEEE, 2011.

[42] G. Soares, R. Gheyi, and T. Massoni. Automated behavioral testing
of refactoring engines. IEEE Transactions on Software Engineering,
39(2):147–162, 2013.

[43] G. Soares, R. Gheyi, D. Serey, and T. Massoni. Making program
refactoring safer. Software, IEEE, 27(4):52–57, July 2010.

https://sites.google.com/site/refdistiller/TechnicalReport.pdf
https://sites.google.com/site/refdistiller/TechnicalReport.pdf

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2679742, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. -, NO. -, AUGUST 2016 20

[44] N. Tsantalis and A. Chatzigeorgiou. Identification of move method
refactoring opportunities. Software Engineering, IEEE Transactions
on, 35(3):347–367, 2009.

[45] M. Vakilian, N. Chen, S. Negara, B. Rajkumar, R. Zilouch-
ian Moghaddam, and R. Johnson. The need for richer refactoring
usage data. In Proceedings of the 3rd ACM SIGPLAN workshop on
Evaluation and usability of programming languages and tools, pages
31–38. ACM, 2011.

[46] M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, B. P. Bailey, and
R. E. Johnson. Use, disuse, and misuse of automated refactorings.
In Proceedings of the 34th International Conference on Software Engi-
neering, ICSE ’12, pages 233–243, 2012.

[47] P. Weißgerber and S. Diehl. Are refactorings less error-prone than
other changes? In Proceedings of the 2006 international Workshop on
Mining Software Repositories, pages 112–118. ACM, 2006.

[48] J. W. Xi Ge, Saurabh Sarkar and E. Murphy-Hill. Refactoring-
aware code review. Technical report, North Carolina State Univer-
sity, 2014. Paper under revision. Please contact the authors for a
copy.

[49] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid. An empirical
study of junit test-suite reduction. In IEEE 22nd International
Symposium on Software Reliability Engineering (ISSRE), pages 170–
179. IEEE, 2011.

Everton L. G. Alves is a doctoral candidate in the Computing and
Systems Department at Federal University of Campina Grande (UFCG),
Brazil. He received a Master degree in Computer Science from the
Federal University of Campina Grande, Brazil, in 2011 and a Bachelor
degree in Computer Science in 2009, from the same university. Between
2013/2014 he was a visiting student at the Department of Electrical and
Computer Engineering at the University of Texas at Austin under the
supervision of PdD Miryung Kim. His main interests include software
maintenance, regression testing, model-driven development and testing,
real-time systems and integration.

Myoungkyu Song is an assistant professor at the Computer Science
Department at the University of Nebraska at Omaha since 2015. Prior to
coming to UNO, he was a postdoc in the Center for Advanced Research
in Software Engineering (ARiSE) at the Department of Electrical and
Computer Engineering at the University of Texas at Austin. He received
his Ph.D. in Computer Science in May 2013 from Virginia Tech. One of
his chief research interests is programmer productivity, which spans the
spectrum from software engineering to program analysis, addressing
related issues to make it easier to develop, maintain, and evolve large
scale software systems.

Tiago Massoni is professor, working for the Computing and Systems
Department at the Federal University of Campina Grande. His research
interests include software design and verification. In addition to his
academic posts he also worked as a developer at IBM in California.
He holds a Doctoral degree in Computer Science from the Federal
University of Pernambuco, and is a member of the ACM.

Patrı́cia D. L. Machado is a Professor in the Computing and Systems
Department at Federal University of Campina Grande (UFCG), Brazil,
since 1995. She received her PhD Degree in Computer Science from
the University of Edinburgh, UK, in 2001, Master Degree in Computer
Science from the Federal University of Pernambuco, Brazil, in 1994 and
Bachelor Degree in Computer Science from the Federal University of
Paraiba, Brazil, in 1992. Her research interests include software testing,
formal methods, mobile computing, component based software devel-
opment and model-driven development. Since 1998, she has produced
a number of contributions in the area of software testing, including
research projects, publications, tools, supervising, national/international
cooperation and teaching.

Miryung Kim is an associate professor in the Department of Computer
Science at the University of California, Los Angeles. Her research fo-
cuses on software engineering, specifically on software evolution. She
received her B.S. in Computer Science from Korea Advanced Institute
of Science and Technology in 2001 and her M.S. and Ph.D. in Computer
Science and Engineering from the University of Washington under the
supervision of Dr. David Notkin in 2003 and 2008 respectively. She
received an NSF CAREER award in 2011, a Microsoft Software Engi-
neering Innovation Foundation Award in 2011, an IBM Jazz Innovation
Award in 2009, a Google Faculty Research Award in 2014, and an
Okawa Foundation Research Grant Award in 2015. Between January
2009 and August 2014, she was an assistant professor in the Depart-
ment of Electrical and Computer Engineering at the University of Texas
at Austin.

