Interactive and Automated Debugging for Big Data Analytics

Miryung Kim
University of California, Los Angeles
2. FAULTTRACER IMPLEMENTATION

FaultTracer is implemented as a toolkit, which includes the front-end plug-in, and the back-end library. The following subsections present the details of the toolkit.

2.1 FaultTracer Plug-in

The front-end of FaultTracer is implemented as an Eclipse IDE plugin. The plugin takes two program versions as input and extracts atomic program changes from the two versions based on the abstract syntax tree (AST) analysis provided by the Eclipse JDT toolkit. It traverses the ASTs of two versions to compare fields and methods by their fully qualified names to find atomic changes. For each pair of compared methods, FaultTracer filters out all comments and white-spaces before comparison. FaultTracer also finds call and access dependencies between atomic changes by tracing the definition and reference of each used method and field.

The FaultTracer plugin also includes three views to visualize internal and final outputs of FaultTracer (Figure 2):

- **Atomic-change view**: is implemented using the Eclipse Zest Visualization Toolkit. It visualizes all atomic changes between program versions and their dependencies, and supports various user interaction (details shown in Appendix). Note that this view depends on the data produced by Step 1 in Figure 1.

- **Extended-call-graph view**: is also implemented using the Eclipse Zest Visualization Toolkit. It visualizes the extended call graphs for individual tests. This view can help the user to better understand the behaviors of individual tests. This view depends on the data produced by Step 2 in Figure 1.

- **Testing-debugging view**: lists the affected tests between two compared versions, the affecting changes for each affected test, and the ranked list of affecting changes for each failed test. This view visualizes all the final outputs of FaultTracer. When the user double-clicks a node in the view, the view immediately displays the affecting changes for the selected test. The view would also display the ranked list of affecting changes for the test along with their suspiciousness scores computed based on program spectra. When the user double-clicks any affecting change in the view, FaultTracer extracts corresponding changed code fragments in the Java Editor to facilitate manual inspection of relevant code. Note that this view uses the data produced by Steps 3, 4, and 5 respectively.

2.2 FaultTracer Library

The back-end of FaultTracer is implemented as Ant tasks, which fully automate the process of constructing extended call graphs, selecting affected tests, determining affecting changes, and ranking affecting changes for failed tests. The back-end performs the ECG construction task on-the-fly through byte code instrumentation. It dynamically instruments classes loaded into the JVM through a Java agent without any modification of the target program. For instrumentation, FaultTracer uses the ASM bytecode manipulation and analysis framework. We extend visitor classes in ASM and override visit methods to trace method invocation relations, field access relations, and associated attributes (e.g., receiver object types, static target methods for virtual method invocations, and types of field accesses).

The back-end of FaultTracer also performs all the core analysis tasks: selection of affected tests, determination of affecting changes, and spectrum-based ranking of affecting changes. The final results are then visualized by the front-end plugin.

3. DEMONSTRATION

This section illustrates how to configure FaultTracer and how to perform the five key steps for regression test execution.
Data Science *elevating* Software Engineering

Software Refactoring
- Refactoring Field Study
- Quantifying Refactoring Cost and Benefits
- Impact on Regression Testing
- Role of API Refactoring

API Evolution
- Role of API Refactoring
- API Stability

Empirical Studies of Software Changes

Code Redundancy
- Clone genealogy
- Copy and paste practices
- Long lived clones
- Software forking and code porting

Software Patches
- Supplementary patches
- Omission errors
Data Science *elevating* Software Engineering

Empirical Studies of Software Changes
- Code Redundancy
- Clone genealogy
- Copy and paste practices
- Long lived clones
- Software forking and code porting

Software Refactoring
- Refactoring Field Study
- Quantifying Refactoring Cost and Benefits
- Impact on Regression Testing
- Role of API Refactoring

API Evolution
- Role of API Refactoring
- API Stability

Automated and Interactive Software Dev Tools
- Logical Program Differencing
 - LSdiff
 - Vdiff for VHDL
- Refactoring Reconstruction
 - Reffinder
- API Usage Adaptation
 - LibSync6
 - AURA
 - API Matching
- Interactive Code Review
 - Critics
- Transplantation and Test Reuse
 - Grafter
- Clone Removal Refactoring
 - RASE
Data Science *elevating* Software Engineering

Empirical Studies of Software Changes

- Code Redundancy
 - Clone genealogy
 - Copy and paste practices
 - Long lived clones
 - Software forking and code porting

- Software Patches
 - Supplementary patches
 - Omission errors

- Logical Program Differencing
 - LSdiff
 - Vdiff for VHDL

- Refactoring Reconstruction
 - Reffinder

- API Usage Adaptation
 - LibSync6
 - AURA
 - API Matching

- Interactive Code Review
 - Critics

- Transplantation and Test Reuse
 - Grafter

Recommendation Systems

- Program Transformation from Examples
 - Sydit
 - LASE
 - Cookbook

- Bug Finding
 - Refactoring Bugs
 - Cloning Inconsistencies
 - Fault Tracer
 - Modularity Violations
 - Prioritizing Tests for Refactoring

Automated and Interactive Software Dev Tools

- Automated and Interactive Software Dev Tools

- Software Refactoring
 - Refactoring Field Study
 - Quantifying Refactoring Cost and Benefits
 - Impact on Regression Testing
 - Role of API Refactoring

- API Evolution
 - Role of API Refactoring
 - API Stability
Current Research Focus: Software Engineering *elevating* Data Science

Data Scientists in Software Teams
- Background
- Work Activities
- Challenges
- Best Practices
- Quality Assurance

SE Tools for Big Data Analytics
- Interactive Debugger
- Data Provenance
- Automated Debugging
The Emerging Roles of Data Scientists on Software Teams [ICSE 2016]

We are at a **tipping point** where there are large scale telemetry, machine, process and quality data.

Data scientists are emerging roles in SW teams due to an increasing demand for **experimenting with real users** and reporting results with statistical rigor.

We have conducted **the first in-depth interview study** and **the largest scale survey** of **professional data scientists** to characterize working styles.
Methodology for Studying “Data Scientists”

In-Depth Interviews [ICSE 2016]

16 data scientists
• 5 women and 11 men from eight different Microsoft organizations

Snowball sampling
• data-driven engineering meet-ups and technical community meetings
• word of mouth

Coding with Atlas.TI
Clustering of participants

Survey [TSE & ICSE 2018 Journal First]

793 responses
• full-time data scientists
• employees with interest in data science

Questions about
• demographics
• skills and tool usage
• self-perception
• working styles
• time spent
• challenges and best practices
Background of Data Scientists

Most CS, many **interdisciplinary** backgrounds

Many have **higher education** degrees

Survey: 41% have master’s degrees, and 22% have PhDs

PhD training contributes to working style

“Doing data science is kind of like doing research. It looks like a good problem and looks like a good idea. You think you may have an approach, but then maybe you end up with a dead end.” [P5]
Time Spent on Activities

Hours spent on certain activities (self reported, survey, N=532)
Time Spent on Activities

Cluster analysis on relative time spent (k-means)

532 data scientists at Microsoft
9 Distinct Categories of Data Scientists based on Work Activities

<table>
<thead>
<tr>
<th>Clusters</th>
<th>Entire population</th>
<th>Cluster 1 Polymath</th>
<th>Cluster 2 Data Evangelist</th>
<th>Cluster 3 Data Preparer</th>
<th>Cluster 4 Data Shaper</th>
<th>Cluster 5 Data Analyzer</th>
<th>Cluster 6 Platform Builder</th>
<th>Clusters 7 Moonlighter 50%-63 people</th>
<th>Cluster 8 Moonlighter 10%-32 people</th>
<th>Cluster 9 Act on Insight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>532 people</td>
<td>12.9% 4.7h</td>
<td>10.4% 4.4h</td>
<td>6.8% 2.2h</td>
<td>24.5% 9.4h</td>
<td>5.6% 2.5h</td>
<td>9.9% 3.7h</td>
<td>12.5% 4.4h</td>
<td>7.3% 3.1h</td>
<td>2.9% 1.2h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.2% 2.9h</td>
<td>8.5% 3.6h</td>
<td>2.1% 1.0h</td>
<td>4.9% 1.9h</td>
<td>27.0% 11.5h</td>
<td>5.6% 2.4h</td>
<td>18.4% 7.1h</td>
<td>5.0% 2.2h</td>
<td>1.4% 0.6h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.7% 4.9h</td>
<td>11.5% 5.1h</td>
<td>6.7% 2.9h</td>
<td>10.0% 4.0h</td>
<td>25.7% 10.9h</td>
<td>2.4h 0.9h</td>
<td>2.2h 0.8h</td>
<td>2.1% 0.9h</td>
<td>1.8% 0.6h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.5% 5.2h</td>
<td>15.1% 5.1h</td>
<td>7.7% 3.6h</td>
<td>12.0% 4.5h</td>
<td>6.0% 2.6h</td>
<td>6.6% 2.2h</td>
<td>5.2% 2.1h</td>
<td>8.9% 3.3h</td>
<td>1.8% 0.6h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.8% 2.1h</td>
<td>9.1% 4.0h</td>
<td>7.0% 2.6h</td>
<td>9.0% 4.1h</td>
<td>8.9% 3.8h</td>
<td>2.7% 1.2h</td>
<td>6.6% 2.2h</td>
<td>7.6% 3.2h</td>
<td>4.2% 1.9h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.9% 3.0h</td>
<td>7.7% 3.6h</td>
<td>7.0% 2.6h</td>
<td>11.6% 4.5h</td>
<td>7.5% 3.2h</td>
<td>3.6% 1.9h</td>
<td>5.8% 2.4h</td>
<td>5.9% 2.4h</td>
<td>1.8% 1.1h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.5% 3.5h</td>
<td>7.4% 3.5h</td>
<td>4.5% 1.3h</td>
<td>8.8% 3.5h</td>
<td>7.5% 3.2h</td>
<td>1.9% 1.1h</td>
<td>5.8% 2.4h</td>
<td>5.9% 2.4h</td>
<td>1.8% 1.1h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.2% 3.8h</td>
<td>7.9% 3.6h</td>
<td>8.6% 1.3h</td>
<td>1.5% 0.7h</td>
<td>2.1% 1.0h</td>
<td>1.0% 0.7h</td>
<td>1.8% 1.1h</td>
<td>8.9% 3.3h</td>
<td>2.1% 1.0h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.4% 1.1h</td>
<td>3.2% 1.5h</td>
<td>3.7% 1.3h</td>
<td>9.5% 3.3h</td>
<td>2.5% 1.4h</td>
<td>1.0% 1.1h</td>
<td>3.3% 1.1h</td>
<td>1.5% 1.0h</td>
<td>1.1% 0.7h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.5% 2.1h</td>
<td>5.0% 2.1h</td>
<td>5.2% 1.3h</td>
<td>13.4% 6.0h</td>
<td>3.3% 1.2h</td>
<td>1.4% 1.1h</td>
<td>9.0% 3.3h</td>
<td>4.2% 1.6h</td>
<td>2.8% 1.3h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.1% 1.9h</td>
<td>5.2% 2.1h</td>
<td>1.5% 0.7h</td>
<td>13.4% 6.0h</td>
<td>2.5% 1.4h</td>
<td>1.0% 1.1h</td>
<td>1.8% 1.1h</td>
<td>1.5% 1.0h</td>
<td>1.1% 0.7h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.1% 6.7h</td>
<td>4.0% 2.1h</td>
<td>2.3% 1.2h</td>
<td>10.1% 4.5h</td>
<td>3.3% 1.2h</td>
<td>2.8% 1.4h</td>
<td>2.2% 1.1h</td>
<td>4.6% 1.2h</td>
<td>20.0h</td>
</tr>
</tbody>
</table>

Activities

- Query existing data
- Prepare data
- Analyze data
- Experiment
- Validate insight
- Disseminate insight
- Engage with others
- Operationalize insights
- Act on insight
- Other work related to DS
- Other work not related to DS
Category 1: Data Shaper

↑ PhD Degree: 54% vs. 21%
↑ Master’s Degree: 88% vs. 61%
↑ Algorithms: 71% vs. 46%
↑ Machine Learning: 92% vs. 49%
↑ Optimization: 42% vs. 19%
↓ Structured Data: 46% vs. 69%
↓ Front End Programming: 13% vs. 34%
↑ MATLAB: 30% vs. 5%
↑ Python: 48% vs. 22%
↑ TLC: 35% vs. 11% ↓ Excel: 57% vs. 84%
Category 2: Platform Builder

↑ Back End Programming: 70% vs. 36%
↑ Big and Distributed Data: 81% vs. 50%
↑ Front End Programming: 63% vs. 31%
↑ SQL: 89% vs. 68%

↑ C/C++/C#: 70% vs. 45%
↓ Classic Statistics: 30% vs. 50%
Category 3: Data Analyzer

<table>
<thead>
<tr>
<th>Skill</th>
<th>Entire Population</th>
<th>Cluster 5 Data Analyzer - 24 people</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population “Data Science Employees”</td>
<td>12.0% 4.7h</td>
<td>9.9% 3.7h</td>
</tr>
<tr>
<td>Master’s degree</td>
<td>7.2% 2.9h</td>
<td>0.9% 0.3h</td>
</tr>
<tr>
<td>Professional Experience</td>
<td>11.7% 4.9h</td>
<td>5.8% 2.4h</td>
</tr>
<tr>
<td>Years at Microsoft</td>
<td>12.5% 5.2h</td>
<td>49.1% 18.4h</td>
</tr>
<tr>
<td>Bayesian Monte Carlo Stat</td>
<td>4.8% 2.1h</td>
<td>4.6% 2.2h</td>
</tr>
<tr>
<td>Classical Stats</td>
<td>6.9% 3.0h</td>
<td>6.6% 2.7h</td>
</tr>
<tr>
<td>Data Manipulation</td>
<td>8.5% 3.5h</td>
<td>5.2% 2.2h</td>
</tr>
<tr>
<td>Front End Programming</td>
<td>9.2% 3.8h</td>
<td>5.8% 2.4h</td>
</tr>
<tr>
<td>Math</td>
<td>2.4% 1.1h</td>
<td>1.8% 0.9h</td>
</tr>
<tr>
<td>Product Development</td>
<td>5.5% 2.1h</td>
<td>4.2% 1.6h</td>
</tr>
<tr>
<td>R</td>
<td>4.1% 1.9h</td>
<td>2.8% 1.3h</td>
</tr>
<tr>
<td>Office BI</td>
<td>15.1% 6.7h</td>
<td>3.2% 1.3h</td>
</tr>
</tbody>
</table>

- ↑ Population “Data Science Employees”
- ↑ Master’s degree: 82% vs. 61%
- ↓ Professional Experience: 8.4 yr vs. 14.3 yr
- ↓ Years at Microsoft: 3.7 yr vs. 7.4 yr
- ↑ Bayesian Monte Carlo Stat: 42% vs. 15%
- ↑ Classical Stats: 76% vs. 47%
- ↑ Data Manipulation: 82% vs. 54%
- ↓ Front End Programming: 12% vs. 34%
- ↑ Math: 66% vs. 47%
- ↓ Product Development: 27% vs. 46%
- ↑ R: 64% vs. 38%
- ↓ Office BI: 15% vs. 37%
Challenges in Ensuring “Correctness”

Validation is a major challenge.

“Honestly, we don’t have a good method for this.” [P457]
“Just because the math is right, doesn’t mean that the answer is right.” [P307]

Explainability is important. Participants warned about overreliance on aggregate metrics— “to gain insights, you must go one level deeper.”

Develop locally → Hope it works → Run in cloud → Bug!

Guesswork
Software Engineering for Data Science

Data Scientists in Software Teams
- Background
- Work Activities
- Challenges
- Best Practices
- Quality Assurance

SE Tools for Big Data Analytics
- Interactive Debugger [ICSE ’16]
- Data Provenance [VLDB ’16]
- Automated Debugging [SoCC ’17]
BigDebug: Debugging Primitives for Interactive Big Data Processing in Spark

Muhammad Ali Gulzar, Matteo Interlandi, Seunghyun Yoo, Sai Deep Tetali, Tyson Condie, Todd Millstein, Miryung Kim

[ICSE 2016, FSE Tool Demo 2016, SIGMOD Tool Demo 2017]
A user submits a job

A job is distributed to workers in cluster

Each worker performs pipelined transformations on a partition with millions of records

Running a Map Reduce Job on Cluster
Motivating Scenario: Election Record Analysis

- Alice writes a Spark program that runs correctly on local machine (100MB data) but crashes on cluster (1TB)
- Alice cannot see the crash-inducing intermediate result.
- Alice cannot identify which input from 1TB causing crash.
- When crash occurs, all intermediate results are thrown away.

```
voterID  candidate  state  time
9213  Sanders  TX  1440023087
```

```
1  val log = "s3n://poll.log"
2  val text_file = spark.textFile(log)
3  val count = text_file
4    .filter( line => line.split()[3].toInt > 1440012701)
5    .map(line => (line.split()[1], 1))
6    .reduceByKey(_ + _).collect()
```

Task 31 failed 3 times; aborting job
ERROR Executor: Exception in task 31 in stage 0 (TID 31)
java.lang.NumberFormatException
Why Traditional Debug Primitives Do Not Work for Apache Spark?

Enabling interactive debugging requires us to **re-think the features of traditional debugger** such as GDB

- Pausing the entire computation on the cloud could reduce throughput
- It is clearly infeasible for a user to inspect billion of records through a regular watchpoint
- Even launching remote JVM debuggers to individual worker nodes cannot scale for big data computing
1. Simulated Breakpoint

Simulated breakpoint replays computation from the latest materialization point where data is stored in memory.
1. Simulated Breakpoint – Realtime Code Fix

Allow a user to fix code after the breakpoint
2. On-Demand Guarded Watchpoint

Watchpoint captures individual data records matching a user-provided guard

\[
\text{state.equals("TX")} \lor \text{state.equals("CA")}
\]
3. Crash Culprit Remediation

A user can either correct the crashed record, skip the crash culprit, or supply a code fix to repair the crash culprit.
4. Backward and Forward Tracing

A user can also issue tracing queries on intermediate records at realtime.
Demo: BigDebug Interactive Debugger
[FSE 2016 Demo, SIGMOD 2017 Demo]
Q1 : How does BigDebug scale to massive data?

BigDebug retains scale up property of Spark. This property is critical for Big Data processing frameworks.
Q2 : What is the performance overhead of debugging primitives?

<table>
<thead>
<tr>
<th>Program</th>
<th>Dataset size (GB)</th>
<th>Max</th>
<th>Max w/o Latency Alert</th>
<th>Watchpoint</th>
<th>Crash Culprit</th>
<th>Tracing</th>
</tr>
</thead>
<tbody>
<tr>
<td>WordCount</td>
<td>0.5 - 1000</td>
<td>2.5X</td>
<td>1.34X</td>
<td>1.09X</td>
<td>1.18X</td>
<td>1.22X</td>
</tr>
<tr>
<td>Grep</td>
<td>20 - 90</td>
<td>1.76X</td>
<td>1.07X</td>
<td>1.05X</td>
<td>1.04X</td>
<td>1.05X</td>
</tr>
<tr>
<td>PigMix-L1</td>
<td>1 - 200</td>
<td>1.38X</td>
<td>1.29X</td>
<td>1.03X</td>
<td>1.19X</td>
<td>1.24X</td>
</tr>
</tbody>
</table>

Max : All the features of BigDebug are enabled

BigDebug poses at most 2.5X overhead with the maximum instrumentation setting.
Titian: Data Provenance Support in Spark

Matteo Interlandi, Kshitij Shah, Sai Deep Tetali, Muhammad Ali Gulzar, Seunghyun Yoo, Miryung Kim, Todd Millstein, Tyson Condie

[42nd Conference on Very Large Data Bases, VLDB 2016]
Data Provenance – Example in SQL

SELECT time, AVG(temp) FROM sensors GROUP BY time

<table>
<thead>
<tr>
<th>Result-ID</th>
<th>Time</th>
<th>AVG(temp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID-1</td>
<td>11AM</td>
<td>34.6</td>
</tr>
<tr>
<td>ID-2</td>
<td>12PM</td>
<td>56.6</td>
</tr>
<tr>
<td>ID-3</td>
<td>1PM</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuple-ID</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>T1</td>
</tr>
<tr>
<td>T2</td>
</tr>
<tr>
<td>T3</td>
</tr>
<tr>
<td>T4</td>
</tr>
<tr>
<td>T5</td>
</tr>
<tr>
<td>T6</td>
</tr>
<tr>
<td>T7</td>
</tr>
<tr>
<td>T8</td>
</tr>
<tr>
<td>T9</td>
</tr>
</tbody>
</table>

Outlier

Why ID-2 and ID-3 have those high values?
Step 1: Instrumented Workflow in Spark

Stage 1

- Hadoop LineageRDD with input ID: offset1, offset2, offset3 and output ID: id1, id2, id3

- Combiner LineageRDD with input ID: {id1, id3} and output ID: 400
- Input ID: {id2} and Output ID: 4

Stage 2

- Reducer LineageRDD with input ID: [p1, p2] and output ID: 400
- Input ID: [p1] and Output ID: 4

- Stage LineageRDD with input ID: 400 and output ID: id1
- Input ID: 4 and Output ID: id2
Step 2: Example Backward Tracing

Hadoop

<table>
<thead>
<tr>
<th>Input ID</th>
<th>Output ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>offset1</td>
<td>id1</td>
</tr>
<tr>
<td>offset2</td>
<td>id2</td>
</tr>
<tr>
<td>offset3</td>
<td>id3</td>
</tr>
</tbody>
</table>

Combiner

<table>
<thead>
<tr>
<th>Input ID</th>
<th>Output ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ id1, id 3}</td>
<td>400</td>
</tr>
<tr>
<td>{ id2 }</td>
<td>4</td>
</tr>
</tbody>
</table>

Reducer

<table>
<thead>
<tr>
<th>Input ID</th>
<th>Output ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>[p1, p2]</td>
<td>400</td>
</tr>
<tr>
<td>[p1]</td>
<td>4</td>
</tr>
</tbody>
</table>

Stage

<table>
<thead>
<tr>
<th>Input ID</th>
<th>Output ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>id1</td>
</tr>
<tr>
<td>4</td>
<td>id2</td>
</tr>
</tbody>
</table>

Reducer.Output ID

Stage.Input ID
Step 2: Example Backward Tracing

Hadoop

<table>
<thead>
<tr>
<th>Input ID</th>
<th>Output ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>offset1</td>
<td>id1</td>
</tr>
<tr>
<td>offset2</td>
<td>id2</td>
</tr>
<tr>
<td>offset3</td>
<td>id3</td>
</tr>
</tbody>
</table>

Combiner

<table>
<thead>
<tr>
<th>Input ID</th>
<th>Output ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ id1, id 3}</td>
<td>400</td>
</tr>
<tr>
<td>{ id2 }</td>
<td>4</td>
</tr>
</tbody>
</table>

Input ID

<table>
<thead>
<tr>
<th>Input ID</th>
<th>Output ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>400</td>
</tr>
</tbody>
</table>
Step 2: Example Backward Tracing

Hadoop

<table>
<thead>
<tr>
<th>Input ID</th>
<th>Output ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>offset1</td>
<td>id1</td>
</tr>
<tr>
<td>offset2</td>
<td>id2</td>
</tr>
<tr>
<td>offset3</td>
<td>id3</td>
</tr>
</tbody>
</table>

Combiner

<table>
<thead>
<tr>
<th>Input ID</th>
<th>Output ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ id1, id 3}</td>
<td>400</td>
</tr>
<tr>
<td>{ id2 }</td>
<td>4</td>
</tr>
</tbody>
</table>

Hadoop.Output ID Combiner.Input ID

Hadoop

<table>
<thead>
<tr>
<th>Input ID</th>
<th>Output ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>offset1</td>
<td>id1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Combiner

<table>
<thead>
<tr>
<th>Input ID</th>
<th>Output ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ id1, ...}</td>
<td>400</td>
</tr>
</tbody>
</table>

Hadoop.Output ID Combiner.Input ID
Automated Debugging in Data Intensive Scalable Computing

Muhammad Ali Gulzar, Matteo Interlandi, Xueyuan Han, Mingda Li
Tyson Condie, Miryung Kim

[ACM Symposium on Cloud Computing, SoCC 2017]
Motivating Example

- Alice writes a Spark program that identifies, **for each state** in the US, the **delta between the minimum and the maximum** snowfall reading for **each day of any year** and **for any particular year**.

- An input data record that measures 1 foot of snowfall on January 1st of Year 1992, in the 99504 zip code (Anchorage, AK) area, appears as

 99504, 01/01/1992, 1ft
Problem Definition

- Using a test function, a user can specify incorrect results.

```
def test(key: String, delta: Float): Boolean = {
    delta < 6000
}
```

Given a test function, the goal is to identify a minimum subset of the input that is able to reproduce the same test failure.
Existing Approach 1: Data Provenance for Spark

TextFile → FlatMap → GroupByKey → Map → Output

99504, 01/01/1992, 1ft
99504, 03/01/1992, 0.1ft
99504, 01/01/1993, 70in
99504, 03/01/1993, 145mm
99504, 01/01/1994, 245mm
99504, 01/01/1993, 85mm
90031, 02/01/1991, 0mm

AK, 01/01, 304.8
AK, 1992, 304.8
AK, 03/01, 30.5
AK, 1992, 30.5
AK, 01/01, 21336
AK, 1993, 21336
AK, 03/01, 145
AK, 1993, 145
AK, 01/01, 245
AK, 1994, 245

AK, 01/01, [304.8, 21336, 245, 85]
AK, 03/01, [30.5, 145]
AK, 1992, [304.8, 30.5]
AK, 1993, [21336, 145, 85]
AK, 1994, [245]
CA, 02/01, [0]
CA, 1991, [0]
AK, 01/01, 21251
AK, 03/01, 114.5
AK, 1992, 274.3
AK, 1993, 21251
AK, 1994, 0
CA, 02/01, 0
CA, 1991, 0

It over-approximates the scope of failure-inducing inputs i.e. records in the faulty key-group are all marked as faulty.
Existing Approach 2: Delta Debugging

- Delta Debugging performs a systematic binary search-like procedure on the input dataset using a test oracle function.

It does not prune input records known to be irrelevant because of the lack of semantic understanding of data-flow operators.
Existing Approach 2: Delta Debugging

- Delta Debugging performs a systematic binary search-like procedure on the input dataset using a test oracle function.

It does not prune input records known to be irrelevant because of the lack of semantic understanding of data-flow operators.
Existing Approach 2: Delta Debugging

- Delta Debugging performs a systematic binary search-like procedure on the input dataset using a test oracle function.

It does not prune input records known to be irrelevant because of the lack of semantic understanding of data-flow operators.
Existing Approach 2: Delta Debugging

- Delta Debugging performs a systematic binary search-like procedure on the input dataset using a test oracle function.

It does not prune input records known to be irrelevant because of the lack of semantic understanding of data-flow operators.
Existing Approach 2: Delta Debugging

- Delta Debugging performs a systematic binary search-like procedure on the input dataset using a test oracle function.

It does not prune input records known to be irrelevant because of the lack of semantic understanding of data-flow operators.
Existing Approach 2: Delta Debugging

- Delta Debugging performs a systematic binary search-like procedure on the input dataset using a test oracle function

It does not prune input records known to be irrelevant because of the lack of semantic understanding of data-flow operators
Existing Approach 2: Delta Debugging

- Delta Debugging performs a systematic binary search-like procedure on the input dataset using a test oracle function.

It does not prune input records known to be irrelevant because of the lack of semantic understanding of data-flow operators.
Existing Approach 2: Delta Debugging

- Delta Debugging performs a systematic binary search-like procedure on the input dataset using a test oracle function.

It does not prune input records known to be irrelevant because of the lack of semantic understanding of data-flow operators.
Existing Approach 2: Delta Debugging

- Delta Debugging performs a systematic binary search-like procedure on the input dataset using a test oracle function.

It does not prune input records known to be irrelevant because of the lack of semantic understanding of data-flow operators.
Automated Debugging in DISC with BigSift

Input: A Spark Program, A Test Function
Output: Minimum Fault-Inducing Input Records

Data Provenance + Delta Debugging

Test Predicate Pushdown → Prioritizing Backward Traces → Bitmap based Test Memoization
Optimization 1: Test Predicate Pushdown

- **Observation**: During backward tracing, data provenance traces through all the partitions even though only a few partitions are faulty.

If applicable, BigSift pushes down the test function to test the output of combiners in order to isolate the faulty partitions.
Optimization 2: Prioritizing Backward Traces

- **Observation:** The same faulty input record may contribute to multiple output records failing the test.

In case of multiple faulty outputs, BigSift overlaps two backward traces to minimize the scope of fault-inducing input records.
Optimization 3: Bitmap Based Test Memoization

- **Observation:** Delta debugging may try running a program on the same subset of input redundantly.
- BigSift leverages bitmap to compactly encode the offsets of original input to refer to an input subset.

We use a bitmap based test memoization technique to avoid redundant testing of the same input dataset.
RQ1: Performance Improvement over Delta Debugging

<table>
<thead>
<tr>
<th>Subject Program</th>
<th>Fault</th>
<th>Running Time (sec)</th>
<th>Debugging Time (sec)</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Original Job</td>
<td>DD</td>
<td>BigSift</td>
</tr>
<tr>
<td>Movie Histogram</td>
<td>Code</td>
<td>56.2</td>
<td>232.8</td>
<td>17.3</td>
</tr>
<tr>
<td>Inverted Index</td>
<td>Code</td>
<td>107.7</td>
<td>584.2</td>
<td>13.4</td>
</tr>
<tr>
<td>Rating Histogram</td>
<td>Code</td>
<td>40.3</td>
<td>263.4</td>
<td>16.6</td>
</tr>
<tr>
<td>Sequence Count</td>
<td>Code</td>
<td>356.0</td>
<td>13772.1</td>
<td>208.8</td>
</tr>
<tr>
<td>Rating Frequency</td>
<td>Code</td>
<td>77.5</td>
<td>437.9</td>
<td>14.9</td>
</tr>
<tr>
<td>College Student</td>
<td>Data</td>
<td>53.1</td>
<td>235.3</td>
<td>31.8</td>
</tr>
<tr>
<td>Weather Analysis</td>
<td>Data</td>
<td>238.5</td>
<td>999.1</td>
<td>89.9</td>
</tr>
<tr>
<td>Transit Analysis</td>
<td>Code</td>
<td>45.5</td>
<td>375.8</td>
<td>20.2</td>
</tr>
</tbody>
</table>

BigSift provides up to a 66X speed up in isolating the precise fault-inducing input records, in comparison to the baseline DD.
RQ2: Debugging Time vs. Original job time

<table>
<thead>
<tr>
<th>Subject Program</th>
<th>Fault</th>
<th>Running Time (sec)</th>
<th>Debugging Time (sec)</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Original Job</td>
<td>DD</td>
<td>BigSift</td>
</tr>
<tr>
<td>Movie Histogram</td>
<td>Code</td>
<td>56.2</td>
<td>232.8</td>
<td>17.3</td>
</tr>
<tr>
<td>Inverted Index</td>
<td>Code</td>
<td>107.7</td>
<td>584.2</td>
<td>13.4</td>
</tr>
<tr>
<td>Rating Histogram</td>
<td>Code</td>
<td>40.3</td>
<td>263.4</td>
<td>16.6</td>
</tr>
<tr>
<td>Sequence Count</td>
<td>Code</td>
<td>356.0</td>
<td>13772.1</td>
<td>208.8</td>
</tr>
<tr>
<td>Rating Frequency</td>
<td>Code</td>
<td>77.5</td>
<td>437.9</td>
<td>14.9</td>
</tr>
<tr>
<td>College Student</td>
<td>Data</td>
<td>53.1</td>
<td>235.3</td>
<td>31.8</td>
</tr>
<tr>
<td>Weather Analysis</td>
<td>Data</td>
<td>238.5</td>
<td>999.1</td>
<td>89.9</td>
</tr>
<tr>
<td>Transit Analysis</td>
<td>Code</td>
<td>45.5</td>
<td>375.8</td>
<td>20.2</td>
</tr>
</tbody>
</table>

On average, BigSift takes 62% less time to debug a single faulty output than the time taken for a single run on the entire data.
RQ2: Debugging Time

On average, BigSift takes 62% less time to debug a single faulty output than the time taken for a single run on the entire data.
RQ3: Fault Localizability over Data Provenance

BigSift leverages DD after DP to continue fault isolation, achieving several orders of magnitude 10^3 to 10^7 better precision.
Software Engineering *elevating* Data Science

Data Scientists in Software Teams
- [ICSE ‘16, TSE ‘18]
 - Background
 - Work Activities
 - Challenges
 - Best Practices
 - Quality Assurance

Debugging for Big Data Analytics
- Interactive Debugger [ICSE ‘16]
- Data Provenance [VLDB ‘16]
- Automated Debugging [SoCC ‘17]

Optimization for Iterative Development
- “How can we re-compute big data analytics in case of code changes?” [SoCC ‘16]

Automated Testing for Big Data Analytics
- “How do we help select (sample) data for local testing?”
- “How do we generate test data to achieve high code coverage?”

Data Summary and Explanation
- “How do we characterize data by inferring the underlying type and format?”

Late Stage Customization of Big Data System Stack
- “How do we customize Big Data runtime for the actual use of big data analytics?”
Big Data needs awesome software engineering tools

Diagnose
✓ Debugging
✓ Intelligent sampling and testing
✓ Root cause analysis

Fix
✓ Data cleaning

Optimize
✓ Performance analytics
✓ Code analytics