Lecture 7
Empirical Studies of Software Evolution: Change Types
Adaptive, Corrective, and Perfective Changes
Agenda

- Presentation on Kemerer and Slaughter’s paper
- Discussion on Kemerer and Slaughter’s paper
Change Types

- Adaptive changes: add new functionality to a system
- Corrective changes: fix faults in the software
- Perfective changes: improve developer’s ability to maintain the software without altering functionality or fixing faults
Today’s Presenter

- Arasi Aravindhan
Problem Definition

- Identify and understand the phases of software evolution
What are the differences between [Eick et al, TSE 2001] and [Kemerer and Slaughter 1999]

- Kemerer’s paper focused more on justifying & choosing an approach
- Building models that help us understand software evolution
- Data sets: abundant, detail data, unique rich data produced by following rigorous process.
- Quantitative -- statistics, math focused, qualitative
Kemerer and Slaughter [TSE, 2001]

- It is an *empirical study paper*
- No concrete hypotheses. In fact, the goal of this type of research is to identify hypotheses, and to discover a theory of the process of software evolution.
- Often seen in grounded theory, ethnography, etc.
- It is also a survey paper of research methods in studying software evolution.
Sideway Discussion: How to write a good survey paper

1.1.6 Basili et al.

A relatively more recent study by Basili et al. examined 25 software releases of 10 different systems at NASA Goddard, including over 100 software systems totaling about 4.5 million LOC [8]. A focus of the study was to characterize the types of maintenance activities and examine both the total effort and the effort distributions across these maintenance projects. Data collection lasted 18 months. The study looked at the three Swanson maintenance change types (corrective, adaptive, perfective) and a set of maintenance activities for each. They found that error correction efforts, typically small changes, required significant isolation activity, while enhancements required more time on inspection and certification. Effort for design and coding and unit testing (CUT) were similar for the two types. Statistical analysis of these differences was necessarily limited. Pie charts on effort percentages by task type by system on Swanson typology are presented. Similar to earlier work in new development, this paper argues against small releases, presumably due to scale economies [6], [5], [7].

<table>
<thead>
<tr>
<th>Author</th>
<th>Publication</th>
<th>Methodology</th>
<th>Data</th>
<th>Dependent Variables</th>
<th>Statistical Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salay & Lehman (1976)</td>
<td>IBM Systems Journal</td>
<td>Field study</td>
<td>21 user-oriented releases</td>
<td>Release sequence numbers, system age, system size, number of system modules, complexity</td>
<td>Multivariate regression, Auto-correlation</td>
</tr>
<tr>
<td>Yuen & Lee (1995)</td>
<td>IEEE Conference on Software Maintenance</td>
<td>Field study</td>
<td>2,000 “components” over 19 months period, 3,000 KLOC</td>
<td>Priority class, originator’s reference, release affected, component affected, affected machine, affected category of error discovered, response time</td>
<td>Chi-square, Contingency coefficient, Time series, T-statistic, Auto and inverse correlations, Poisson distribution</td>
</tr>
<tr>
<td>Yuen (1987)</td>
<td>IEEE Conference on Software Maintenance</td>
<td>Secondary data analysis</td>
<td>Modules from OS/360, OMEGA, EXECUTIVE, B, BOS, COPP, CSS systems</td>
<td>Cumulative modules handled, handlers, fraction of modules handled, size, release interval, net growth</td>
<td>T-test, Turning points test, Phase length test</td>
</tr>
<tr>
<td>Yuen (1988)</td>
<td>IEEE Conference on Software Maintenance</td>
<td>Field study</td>
<td>“Notice” - information issued for the commercial users of the system using same data set as Yuen (1985)</td>
<td>Releasenumber and number of “notices” per week</td>
<td>T-test, Turning points test, Phase length test, Time series analysis/Statistical analysis techniques, Linear regression</td>
</tr>
<tr>
<td>Tamai & Toda (1995)</td>
<td>IEEE Conference on Software Maintenance</td>
<td>Survey</td>
<td>25 systems from various organizations reporting on work done in prior 5 years.</td>
<td>Average software life span, software size before and after replacement, application areas, replacement factors</td>
<td>Sample statistic, Correlation analysis</td>
</tr>
<tr>
<td>Cook and Rowach (1994)</td>
<td>Journal of Systems and Software</td>
<td>Field study</td>
<td>10 versions of real time German telephone switching software released over 18 months</td>
<td>Number of functions, number of functions changed, number of major changes</td>
<td>Correlations, exploratory factor analysis with varimax rotation</td>
</tr>
<tr>
<td>Seiden & Schneberger (1996)</td>
<td>IEEE Conference on Software Maintenance</td>
<td>Field study</td>
<td>25 months of Software Problem Reports (SPRs), 250 KLOC</td>
<td>Modification type (total number of SPRs, number of corrective SPRs, number of adaptive SPRs), number of new applications, number of modifications caused by previous modifications</td>
<td>Linear regression, Wilcoxon Matched-Pairs Signed-Ranks Test, Kolmogorov-Smirnov Goodness of Fit Test</td>
</tr>
<tr>
<td>Basili et al. (1994)</td>
<td>IEEE International Conference on Software Engineering (ICSE)</td>
<td>Field study</td>
<td>25 software releases of 10 different systems at NASA Goddard.</td>
<td>Effort and size for different types of maintenance activities/tasks.</td>
<td>Mann-Whitney U non-parametric test, OLS regression</td>
</tr>
<tr>
<td>Lehman, et al. (1997)</td>
<td>International Conference on Software Metrics Symposium</td>
<td>Field study</td>
<td>25 software releases of a financial package</td>
<td>Size of system in modules and number of modules changed</td>
<td>Least squares and inverse square regression model, mean absolute error</td>
</tr>
</tbody>
</table>

=> (1) **Longitudinal** study of (2) rich data from actual, business systems in real organization is required.
Study Approach

- Data Collection & Data Transformation
- Identify Measurement Variables
- Analysis
 - Time Series Analysis
 - Sequence Analysis
 - Phase Mapping
Study Approach:
(1) Data Collection

- Some retailer system written in Cobol
- Stability of development & management teams
- 20 years of data collection
- 25000 change log events
 - module, author, function, date
 - English description of the change
Study Approach:
(2) Data Transformation

- Three independent coders manually coded change log data using content analytic approach
- To maximize inter-rater reliability,
 - A standard coding procedure was developed.
 - Several trial data coding processes were performed and Cohen’s K measure improved 0.42 to 0.78.
Study Approach: (3)-1 Time Series Analysis

- Identification of a quantified, continuous variable:
 - # of changes per time period
 - Per year => not sufficient number of time periods
 - Per week or day => not sufficient number of changes per time period
- ARIMA (autoregressive integrated moving average)
- Data were not stationary
- Data series occurred in a largely random fashion
Study Approach:
(3)-2 Sequence Analysis used in Social Science

• Identification sequences of acts or phases from a long series of categorical data

• Phase mapping
 • group by four consecutive events of the same type

• gamma sequence analysis -- Goodman-Kruskal score that assesses the proportion of phase order
Results from Sequence Analysis

Financial Sales System

Manifest Shipping System
Results from Sequence Analysis - 2

Gamma map for financial sales reporting system.

Gamma map for manifest shipping system.
Threats to Validity

- **External Validity:** Does this work generalize to other situations?

- **Construct Validity:** Was the manual labeling / categorization process reliable and reproducible? Did programmers follow a rigorous data collection procedure?

- **Conclusion Validity:** Would the authors get the same results by grouping events with \(n \) consecutive events instead of 4 and by using a different parameter for phase analysis?
Any surprising results?

- More than 60% were enhancement and perfective changes.
My general thoughts on Kemerer and Slaughter [TSE, 1999]

- A highly disciplined qualitative study approach
- Attempt to understand software evolution processes from bottom-up using qualitative methods
- Nice attempt to incorporate change types
- In-depth, longitudinal study of two systems
- Results are hard to understand --- It is difficult to find any meaningful conclusions from the phase maps and gamma tables