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ABSTRACT

Side-channels have traditionally been exploited as a means of un-
covering sensitive information such as cryptographic keys from
a computing device. In particular, past work has shown that elec-
tromagnetic (EM) radiation from a device’s processor and memory
during the execution of code and data can be used by attackers
to extract private information. In contrast, instead of considering
side-channels and electromagnetic radiation as vulnerabilities, we
see them as opportunities for wireless communication on resource-
limited IoT devices. We present SideComm, a side-channel-based
communication system that leverages processors’ EM side-channels
to enable resource-limited IoT devices to wirelessly send their data
without having any radios. The main advantage of this approach
is completely eliminating the need for a conventional radio and
antenna, which offers energy savings, simplicity, and flexibility for
IoT devices. Our evaluation demonstrates SideComm’s ability to
achieve a communication range of more than 10m (enabling ≥3
dB SNR at 15m) and to work in non-line-of-sight scenarios, such
as around corners and through walls. We believe SideComm can
enable increased connectivity for many resource-constrained IoT
devices in smart environments.

CCS CONCEPTS

• Computer systems organization → Embedded software;
Embedded hardware; • Networks → Cross-layer protocols.
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Figure 1: Instead of using a conventional physical antenna

and a transmitter, SideComm uses software-controlled unin-

tentional RF radiation from the circuit to create controlled

RF packets and does not need an antenna.
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1 INTRODUCTION

Often an unwanted artifact of any computation is an unintentional
digital and/or analog signal created by the computing device. These
signals, referred to as side-channel signals, convey information
about the code and data being executed on the hardware. An impor-
tant class of analog side-channel signals is electromagnetic (EM)
emanations, which create unintentional RF radiation from the pro-
cessor’s board at various frequency ranges and can be received
from some distance using conventional RF receivers.

Traditionally, side-channels are largely considered a vulnerabil-
ity and have been exploited to infer sensitive attributes of the device,
such as cryptographic keys [9, 40, 57]. However, the fundamental
relationship between the actual instructions being executed in soft-
ware and the created side-channels suggests that these unwanted
RF radiations could be potentially used for useful purposes.

In this paper, we propose using EM side-channels for useful
communication. Our key idea is to leverage the unintentional RF
emissions created by the switching activities of a microprocessor in
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order to create a specific communication modulation and protocol
and hence enabling data transmission. These unintentional RF radi-
ations (or as we call them in this paper, EM side-channels), are an
artifact of computing different instructions — i.e., executing various
instructions on the microprocessor results in creating a different
RF pattern (both amplitude and frequency) which can be observed
and collected at some distance from the device. This approach is
different from existing work that uses DRAM memory accesses to
create the modulation [8, 41], an approach that is only applicable
to resourceful devices, such as PCs, servers, and mobile computing
systems, and not low-end IoT devices. Our work, instead, focuses
on low-power IoT devices and generates and modulates the desired
RF signal (e.g., based on a specific communication protocol) by
carefully crafting a series of software activities. This novel method
to transmit data has multiple advantages:
(1) Simplicity and Low-Overhead. Our approach is very sim-

ple and low-cost. In particular, by turning a processor into a
radio, we eliminate the need for antennas, RF radios, and base-
band processors. Most IoT sensors are already equipped with a
processor (or a microcontroller), and our solution reuses it to
transmit data directly from it to the air.

(2) No Need for DRAM and Applicable to IoTs. Unlike state-of-
the-art [8, 41] which only works with devices with DRAM, our
method works on resource-constrained bare-metal IoTs (e.g.,
Arduino, MSP430, etc.).

(3) Flexibility. Our RF signal is directly generated by a processor
and purely controlled by software. Therefore, changing the
configurations to support different rates or protocols (beyond
the modulation shown in this paper) is as simple as changing
a function in a program to match the requirements. This is
in contrast to conventional radios, which require firmware or
hardware changes to support a new protocol or standard.

Building a side-channel radio that only relies on a processor is
non-trivial and requires addressing multiple challenges. The fun-
damental challenge is that EM side-channels generated solely by
the processor are often much weaker than the other types of side-
channels [7]. To tackle this, we propose creating a modulation
technique based on Chirp Spread Spectrum (CSS) technology to
boost signal strength. In particular, by executing a specific sequence
of instructions in software, we create CSS and show how it enables
a LoRa-based communication protocol. Note that our solution is
purely based on software and enables a microprocessor to directly
send data to a receiver without using any radios or antenna. More-
over, our method is applicable to commercial-off-the-shelf (COTS)
microcontrollers without any modification to them.

Figure 1 shows the overview of a conventional communication
system in comparison to our design (called Side-Channel Commu-
nication or SideComm). As shown in Figure 1a, in a conventional
communication system, a microprocessor is connected to an RF
module (e.g., BLE, WiFi, LoRa) to send data packets1. Alternatively,
as shown in Figure 1b, we propose leveraging the unintentional
RF radiation created by the microprocessor as a means for sending
RF packets. To follow a specific protocol (e.g., LoRa), a piece of
specialized software needs to be executed on the microprocessor

1The processing and RF module could be integrated into the same circuit (i.e., an SoC)
or they could be two separate boards

(§4). Our design eliminates the need for conventional radios and
antennas. In particular, the wires and transistors on the processor
and the board collectively act as an antenna and radio. Further,
the RF signals created are the direct result of the computation and
no additional RF front-end or baseband processor is needed. Thus,
SideComm can provide a flexible and easily implementable solution
for IoT communication.

We envision that our proposed communication method is used
in scenarios where low-rate and close-by (<10 m) data transmission
is needed, while the node is severely resource-constrained. These
constraints could be in the form of power consumption, cost, form
factor, and computational power. Our vision is that our system could
be an excellent candidate for “smart” environments (e.g., smart
homes, smart factories, hospitals, etc.) where a collection of various
low-power IoT devices with different designs and applications are
deployed in proximity (e.g., 10-15m) or within adjacent rooms or
hallways. Using our method enables connectivity for these IoT
devices and allows them to transmit their sensing data to a gateway
or an access point.

We implement our method on two different microcontrollers: a TI
MSP430 and Arduino Uno. For the receiving device, we implement
a LoRa receiver that uses a low-cost antenna and a software-defined
radio (SDR). We evaluate our system under different conditions
including various distances, non-line-of-sight, and through-the-
wall measurements (§5).
Contributions. While the idea of leveraging unintentional RF
radiations, i.e., analog side-channels, has been extensively explored
in the past as a security vulnerability to launch covert and side-
channel attacks [17, 18, 41], our new contribution is to utilize

side-channels purely from the processor itself as a means to

enable low-power, low-cost and flexible communication. Our
solution enables a simple microprocessor to communicate directly
with a receiver without using any radio (i.e., eliminating antennas,
RF front-end, baseband processors, etc).

Specifically, the contributions in this work are:

• We propose a new method that leverages side-channel RF radia-
tions from the processor to enable low-overhead communication
for IoT devices without complex memory systems.

• We propose a new modulation technique purely controlled by
software based on the CSS protocol for our side-channel commu-
nication. Our solution does not need any additional RF modules.

• We implemented our design in commercial-off-the-shelf (COTS)
resource-constrained embedded/IoT devices such as the Arduino
Uno and MSP430 series without any modification to them.

The remainder of this paper is organized as follows. In §2, we
review important topics in side-channels and LoRa communication.
In §3, we describe the need for our design as well as the fundamen-
tal relationship between software activity and the corresponding
side-channel signals. We present our transmitter design and our
microbenchmark for creating the desired side-channel activities in
§4. The receiver design is also explained in this section. Our setup
and results are presented in §5. Related work is reviewed in §6. The
paper is concluded in §7.
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2 BACKGROUND

Side-Channels. Computing devices create digital and/or analog
signals that are often unwanted artifacts of the computation. Known
as side-channel signals, these signals convey information about the
code and data being executed on the hardware.

Side-channels are largely considered vulnerabilities, as devices
can leak sensitive information such as cryptographic keys via side-
channels. However, more recently, there has been a growing interest
in utilizing side-channels for useful purposes, such as debugging,
malware detection, and Trojan detection [19, 21, 56].

There are various types of side-channels, including timing, mi-
croarchitectural, power, and electromagnetic (EM). Among those,
EM is particularly interesting in the context of communication
and this work, since EM side-channels can be received from a dis-
tance similar to other types of radio frequency (RF) signals. EM
side-channels are created due to the switching activities of the tran-
sistors and other components in a circuit and can be measured in
various ranges from a few centimeters to meters or even tens of
meters away using custom-designed receivers [9, 37].

Studies have shown that EM side-channels exist in various fre-
quency ranges, however, the strongest ones are typically created
by three main sources: the power management unit (PMU), the
processor’s clock circuitry, and the memory clock [7]. These three
sources are particularly powerful since (i) the majority of the de-
vice’s power consumption is dissipated in these activities, and (ii)

they are very deterministic and hence create strong periodic signals.
This is specifically helpful when frequency analysis is used, where
these electromagnetic side-channels appear as “spikes” at the fre-
quency, 𝑓𝑐 = 1/𝑡𝑝𝑒𝑟𝑖𝑜𝑑 , and multiple harmonics of this fundamental
spike, i.e., ±2𝑓𝑐 ,±3𝑓𝑐 , etc. We will use this fundamental observation
to create our communication protocol as described in §3.
LoRa Communication. Long-range (LoRa) communication is a
wireless technology that utilizes a chirp spread spectrum (CSS)
to enable applications that need extended range [14, 33]. Typical
wireless technologies such as WiFi have poor receiving sensitivity
at longer distances. LoRa enables long-range applications because
the signal is spread over frequency and time, allowing for greater
robustness on the receiver side and resistance to attenuation.

Since we will use the LoRa protocol in this work, there are a
few fundamental LoRa terms that need to be defined. A symbol
sent in LoRa is a chirp. A LoRa chirp linearly sweeps a predefined
bandwidth (𝐵𝑊 ) and represents a sent value [27, 48]. The spreading
Factor (𝑆𝐹 ) defines the possible values and thus the number of bits
that can be sent per chirp. There are 𝑆𝐹 bits contained within a chirp,
with 2𝑆𝐹 possible values [3, 14]. A chirp is made up of 2𝑆𝐹 chips [3],
which are smaller subsections of the linearly swept frequency. The
chip rate is equivalent to the bandwidth [42]. The base chirp math-
ematically is represented as 𝐶ℎ𝑖𝑟𝑝 (𝑡) = 𝑒 𝑗2𝜋𝑡 (𝑓0+

𝐵𝑊
2𝑇 𝑡 ) , where 𝑇

represents the chirp duration and 𝑡 is the current timestamp. 𝑓0 is
the base frequency [41].

To send a particular value, one applies a cyclic time shift to the
base chirp that allows for the encoding of different bits [14, 27],
essentially a shift in the initial frequency [48]. To cyclically time
shift the chirp, we multiply the base chirp equation by an additional
term based on the desired time shift Δ𝑇 .

𝐶ℎ𝑖𝑟𝑝 (𝑡) = 𝑒 𝑗2𝜋𝑡 (𝑓0+
𝐵𝑊
2𝑇 𝑡+(1− Δ𝑇

𝑇
)𝐵𝑊 ) , 0 ≤ 𝑡 < Δ𝑇 . (1)

Figure 2: LoRa packet structure: 1) Preamble. 2) Sync Word

and Synchronization Chirps. 3) Payload.

𝐶ℎ𝑖𝑟𝑝 (𝑡) = 𝑒 𝑗2𝜋𝑡 (𝑓0+
𝐵𝑊
2𝑇 𝑡−( Δ𝑇

𝑇
)𝐵𝑊 ) , Δ𝑇 ≤ 𝑡 < 𝑇 . (2)

For a cyclic shift of 𝑇
4 , the chirp starts at 𝐵𝑊

4 and linearly in-
creases to 𝐵𝑊 /2, from 0 ≤ t < 𝑇

4 . Then, at 𝑡 = 𝑇
4 , the chirp wraps

around to 𝑓0 (−𝐵𝑊 /2) and linearly increases back to 𝐵𝑊
4 from 𝑇

4
≤ t < T.

To demodulate a LoRa chirp, the receiver multiplies the re-
ceived chirp by the conjugate of the base chirp (essentially the
base downchirp) in the time domain [3, 27], as shown in Equation
3. Multiplication in the time domain is equivalent to convolution in
the frequency domain. By taking the FFT of this product, we will
obtain a spike correlating with the chirp value sent.

𝑉𝑎𝑙𝑢𝑒 = 𝐶ℎ𝑖𝑟𝑝 (𝑡) ∗ 𝐵𝑎𝑠𝑒𝐶ℎ𝑖𝑟𝑝 (𝑡). (3)
LoRa follows a particular packet structure, as shown in Figure 2.

First, the LoRa transmitter sends a preamble of known bits such that
the receiver can synchronize and correct for carrier frequency offset
(see ➊) [14]. Next, the LoRa transmitter sends two upchirps, two
downchirps, and one-quarter downchirp (see ➋). The two upchirps
are used to convey the network identifier called the sync word,
whereas the two-and-a-quarter downchirps are used for frequency
synchronization, also called the start frame delimiter [27]. Finally,
the LoRa transmitter sends the payload (see ➌), which is the actual
data being delivered.

In the next two sections, we first describe how and why side-
channels can create a chirp modulation, and then in §4, we present
the details of our LoRa protocol.

3 OVERVIEW

3.1 The Need For a New Design

To motivate the need for a new method of communication, we first
highlight the main differences between our proposed method and
state-of-the-art.

For communication in resource-constrained IoT devices, conven-
tional transmitter modules (e.g., WiFi and BLE) are standard. These
transmitter modules are typically an additional expense in terms
of hardware, monetary value, flexibility, and energy. Our proposed
method, on the other hand, eliminates the need for having an ad-
ditional communication module and reuses the existing circuitry
and computation for transmitting messages. This is beneficial in
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RF Transmission EMLoRa SideComm (our work)

Laptop

LoRa

IoT 
Device

CSS

Cellphone

Any 
modulation

SideComm: 
- No additional transmitter
- No complex memory
- Software-Only

Figure 3: Comparison of communication via RF transmitter, memory accesses, and processor code. SideComm doesn’t need an

additional transmitter module or a complex memory system and creates CSS via simple code that AM modulates the clock.

Table 1: Comparision of SideComm compared to existing

works. SideComm works even for devices that do not have

DRAM.

Device EMLoRa [41] Noise-SDR [8] SideComm

Arduino Uno ✗ ✗ ✓

TI MSP430 ✗ ✗ ✓

Argon ✗ ✗ ✓

Feather M4 ✗ ✗ ✓

nRF5340 DK ✗ ✗ ✓

Omega2Pro ✗ ✗ ✓

Particle Boron ✗ ✗ ✓

STM 32 ✗ ✗ ✓

Beaglebone ✓ ✓ ✓

ESP32 ✓ ✓ ✓

Raspberry Pi ✓ ✓ ✓

situations where a device cannot support a transmitter module, or
we do not want to incur the added cost, especially for low-energy
low data-rate scenarios.

Apart from conventional RF transmitters, very recently a new
method based on leveraging EM emanations has been proposed [41].
This method, called EMLoRa, leverages RF radiations from the
DRAM and the memory clock to infer information (including using
it for covert communication). The major caveat of EMLoRa (and an-
other similar work called Noise-SDR [8]), is that these approaches
are only applicable for devices with DRAM, such as a laptop,
while not being applicable for low-end IoT devices. The reason is
the signal in EMLoRa and Noise-SDR is modulated via DRAM ac-
cesses. SideComm, however, removes the need for complex memory,
potentially enabling microcontrollers and embedded systems that
do not have complex memory systems, but rather simple memory
systems such as flash and SRAM, to communicate. The challenge
in SideComm, however, is to find a new technique that does not
rely on complex memory accesses to create robust signals for IoT
devices.

We summarize the key differences between our new method,
SideComm, and state-of-the-art in Figure 3, and emphasize that a
new design that is suitable for low-end resource-constrained

devices is needed to enable low-overhead and flexible communica-
tion for IoT devices. In Table 1, we also provide several common
IoT devices and describe whether or not EMLoRa [41], Noise-SDR
[8], or SideComm will work on those systems.

SideComm enables IoT nodes to communicate with an access
point without requiring any radios. In particular, IoT nodes use

their processor’s side-channel emissions (SideComm’s transmit-
ter) to send their data to the access point (SideComm’s receiver).
SideComm is based on two underlying phenomena. First, an AM
modulation happens due to the fundamental relation between peri-
odic software activities and the underlying hardware that creates
side-channels. Second, a side-channel chirp signal can be created
by an intentional software activity that continuously changes the
duration of periodic activities. Using these two phenomena, a LoRa
communication protocol can be implemented. In the following, we
will describe these two fundamental events in more detail. In §4,
we describe SideComm’s transmitter and receiver designs.
Step 1) Side-Channel AMModulation. In §2, we briefly described
that analog side-channel signals, e.g., electromagnetic emanations
(EM), are created due to changes in the current. More concretely,
instructions within a program can consume various amounts of
current, and hence a unique analog pattern is created when a piece
of software is executed. Such a pattern can then be received as an RF
signal through EM side-channel emanations. Since these patterns
are correlated with the code and data being executed, repetitive
execution of the same set of instructions would result in (very)
similar RF signals. Moreover, the clock activity of the device itself
also creates a very repetitive activity. Due to the periodic nature of
these two groups of activities, one can analyze the created signals
in the frequency domain, where each repetitive activity appears
as a “spike.” An example of these periodic activities can be seen in
Figure 4a and b. In each figure, the time-domain signal is shown on
the top. The corresponding frequency-domain signal is shown at
the bottom (shown as a spike).

Interestingly, an unintentional AM modulation is created when
repetitive software activities are combined with repetitive circuit
activities (i.e., the clock circuitry) [39]. Again, recall that various in-
structions consume different amounts of current/power. Moreover,
all instructions are synchronized with the clock. These combined
induce an AM modulation where the clock is the oscillator (carrier
signal) and is mixed with the periodic software activity (i.e., the
message). This is shown in Figure 4c. Both sidebands can be seen
in the figure, however, only one is highlighted for clarity.
Step 2) Creating Chirp Signals in Software. Building upon the
observation in Step 1, our key insight in this work is to leverage
these “spikes” created by repetitive software to make a controlled
chirp. The key idea is to use a nested loop, where the frequency of
the outer loop is essentially controlled by the number of iterations
of the inner loop. Connecting this to the AM modulation described
earlier, the outer loop is similar to what is shown in Figure 4b. The
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Figure 5: By changing the duration of a periodic activity (e.g.,

a for loop) a chirp can be created.

difference is that its duration is no longer fixed and is modulated
by the inner loop. Thus, changes in the inner loop count change
the frequency of the AM-modulated sideband signals.

This observation is shown in Figure 5. As can be seen, instead
of having one loop, a nested loop is created where the iterations
in the inner loop change by controlling a variable, 𝑦. For example,
in Figure 5 (see ➊) we show how by changing 𝑦 to three different
numbers, three different signals at 𝑓3, 𝑓2, and 𝑓1 can be created (we
assumed that 𝑦1 < 𝑦2 < 𝑦3). This roughly creates a chirp when
plotting the spectrogram (frequency over time, as shown in ➋).

3.2 Fundamental Techniques for SideComm

The important takeaway is that such a chirp is completely controlled
by software activity, and the resulting EM side-channel can be
received from some distance (details in §5). No RF circuitry (analog
or digital) is needed to create the desired modulation, which could
potentially save a lot of power. While encouraging, there are several
challenges to creating a reliable and low-power communication
protocol. In the next section, we describe how we carefully designed
a transmitter and a receiver that utilizes these phenomenons.

4 SYSTEM DESIGN

To create a side-channel-based communication system, a functional
transmitter and receiver need to be designed. In this section, we will
first discuss the transmitter, which consists of a device emanating

LoRa-style chirps by adjusting the frequency of a repeated segment
of code. Then, we will discuss the receiver. Lastly, we will discuss
how the transmitter and receiver communicate with each other.

4.1 SideComm’s Transmitter

As mentioned earlier, SideComm enables IoT nodes to reuse their
microprocessor as a transmitter without requiring any antenna, RF
front-end, or digital baseband. SideComm’s transmitter has several
components which are described in the following.
1) “For” Loop Code. As discussed in §3, repeated phases of the code
amplitude modulate the clock, resulting in activity in the sideband
of the clock. For instance, for a clock at frequency 𝑓𝑐 and code
repeating at a frequency of 𝑓𝑙 , spikes are seen in the frequency
spectrum at 𝑓𝑐 + 𝑓𝑙 · 𝑛 and 𝑓𝑐 − 𝑓𝑙 · 𝑛, where 𝑛 refers to the specific
harmonic. This property can be utilized in chirp emulation. Instead
of maintaining a static loop frequency, the loop frequency can be
adjusted to create a chirp.

Algorithm 1 displays the pseudocode for the side-channel LoRa
transmitter. The innermost for loop (Step 4, lines 4-6) is the code
that can be adjusted to emulate a chirp. We devise a set of frequency
iterations, 𝐹𝑟𝑒𝑞𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 , that can be swept in time to create a
chirp. For instance, increasing 𝐹𝑟𝑒𝑞𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 will increase the time
it takes for the for loop to complete, decreasing the frequency,
whereas decreasing 𝐹𝑟𝑒𝑞𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 will decrease the completion
time, increasing the frequency. For a given spreading factor, a range
of 𝐹𝑟𝑒𝑞𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 of an amount equal to 2𝑆𝐹 is defined, which
controls our chirp bandwidth.

To understand the observed chirp frequency from a given
𝐹𝑟𝑒𝑞𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 , we need to analyze the execution of compiled as-
sembly instructions and understand the number of instructions in a
single iteration of our for loop and the average cycle time elapsed
during these instructions. For example, in one setup, we use an
Arduino Uno which has 29 instructions in a single iteration of our
innermost for loop and an elapsed time of 52 cycles. Given this
information, we can obtain the frequency for a given 𝐹𝑟𝑒𝑞𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

as 𝐶𝑙𝑜𝑐𝑘𝐹𝑟𝑒𝑞

𝐿𝑜𝑜𝑝𝐶𝑦𝑐𝑙𝑒𝑠 ·𝐹𝑟𝑒𝑞𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 . This resulting frequency is a function
of the clock frequency 𝐶𝑙𝑜𝑐𝑘𝐹𝑟𝑒𝑞, the number of clock cycles ob-
served 𝐿𝑜𝑜𝑝𝐶𝑦𝑐𝑙𝑒𝑠 , and 𝐹𝑟𝑒𝑞𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 .
2) Chirp Emulation. Utilizing the frequency-shifting capability,
we can emulate LoRa chirps. In the classical LoRa standard, chirps
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consist of a linear change of frequency over time. Each chirp consists
of many chips. In our LoRa emulation, however, we are limited by
the frequency steps that can be created by our innermost for loop.
Thus we emulate a LoRa chirp by cycling through steps in frequency
that, when combined, emulate a chirp. These individual steps are
the chips of the chirp.

The number of steps is defined by the spreading factor chosen.
For instance, a spreading factor of 4 would result in 16 steps (2𝑆𝐹 ).
The resulting chirp bandwidth is defined by the frequency differ-
ences instilled by changes in 𝐹𝑟𝑒𝑞𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 . Given Equation 4, we
can derive the bandwidth given a min/max 𝐹𝑟𝑒𝑞𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 , where
a smaller 𝐹𝑟𝑒𝑞𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 gives a higher frequency.

𝐵𝑊 =
𝐶𝑙𝑜𝑐𝑘𝐹𝑟𝑒𝑞

𝐿𝑜𝑜𝑝𝐶𝑦𝑐𝑙𝑒𝑠
· ( 1

𝐹𝑟𝑒𝑞𝐼𝑡𝑒𝑟𝑀𝑖𝑛
− 1
𝐹𝑟𝑒𝑞𝐼𝑡𝑒𝑟𝑀𝑎𝑥

). (4)

Algorithm 1: Side-Channel Transmitter Code
Data: value to send: 𝑉𝑎𝑙
Result: chirp of desired value transmitted
// Step 1: set starting frequency to begin sweep

1 𝐹𝑟𝑒𝑞𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 𝐹𝑟𝑒𝑞𝐼𝑡𝑒𝑟𝑀𝑎𝑥 − 1·Val
// Step 2: Send each chip

2 for i=0 to NumChips do
// Step 3: Chip dwell time

3 while j < ChipDurationCount do
// Step 4: Chip frequency control

4 for k=0 to FreqIterations do
5 𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 1;
6 end

7 𝑗 = 𝑗 + 1;
8 end

// Step 5: Update to next FreqIteration

9 𝐹𝑟𝑒𝑞𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 𝑁𝑒𝑥𝑡𝐹𝑟𝑒𝑞𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛;
10 end

To send a chirp, we first need to be able to emulate a chip. To
create a chip, we maintain a given 𝐹𝑟𝑒𝑞𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 for a period
of time, the dwell time, equal to 1

𝐵𝑊
(encoded into the value of

𝐶ℎ𝑖𝑝𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑢𝑛𝑡 ). We repeat the innermost for loop until this
time has elapsed. This is the while loop in Algorithm 1 (Step 3,
starting at line 3). Finally, the outermost for loop in Algorithm 1
(Step 2, starting at line 2) iterates over the number of chips in
our chirp, 𝑁𝑢𝑚𝐶ℎ𝑖𝑝𝑠 . For instance, the outermost for loop will
cycle through 16 iterations, for 16 different 𝐹𝑟𝑒𝑞𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 , given a
spreading factor of 4. The starting value of 𝐹𝑟𝑒𝑞𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 is set in
Step 1, line 1, where we initialize 𝐹𝑟𝑒𝑞𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 to its initial value.
𝐹𝑟𝑒𝑞𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 is updated to the next value needed for the chirp in
Step 5, line 9. For a chosen set of parameters (e.g., 𝐹𝑟𝑒𝑞𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
from 135-150), and Equation 4, the guard band and chirp bandwidth
can be calculated.
3) Sending Packets. To send a packet, we need to send a stream of
chirps that follow the LoRa standard. In a LoRa packet, as shown
in §2 and Figure 2, we have a combination of various up chirps
and down chirps. The preamble is sent by sending a predetermined
amount of consecutive base chirps (in our case, 8 upchirps). The

sync word is sent by sending the correct values that represent the
given sync word. For instance, the sync word of 0x11 results in two
upchirps of value 8. Then, the start frame delimiter is sent, which
is two consecutive downchirps and a quarter downchirp. Finally,
the payload is sent, where upchirps of various values can be sent
to transmit the payload (data).

When not transmitting, our code executes an idle code. For a real-
world scenario, we can assume the code will transfer the control
back to the firmware and/or [main] function when the transmission
has been completed.
4) Challenges. An interesting challenge is the frequency jumps
observed in our LoRa emulation when changing 𝐹𝑟𝑒𝑞𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 . As
explained earlier, the smallest change in frequency is determined by
a single change in 𝐹𝑟𝑒𝑞𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 , as 𝐶𝑙𝑜𝑐𝑘𝐹𝑟𝑒𝑞 and 𝐿𝑜𝑜𝑝𝐶𝑦𝑐𝑙𝑒𝑠

are assumed constant during calculation.
We are also emulating a chip with a constant frequency step. This

means that frequency jumps exist per change in 𝐹𝑟𝑒𝑞𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 .
Large frequency jumps, or taller steps, are not desired as this will
increase the difficulty of demodulating the chirps. On the other
hand, a set of 𝐹𝑟𝑒𝑞𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 with a small frequency jump at each
step is desired. This increases the smoothness of the chirp as well as
the SNR. In fact, the executed code has slight variations in frequency
and time, resulting in an averaging that creates greater smoothing
within a chirp.

Another interesting consideration is the dwell time. Generally
speaking, maintaining a constant frequency for longer will increase
the signal power. LoRa defines step time as 1

𝐵𝑊
, where 𝐵𝑊 is

defined by 𝐹𝑟𝑒𝑞𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 . We picked a set of 𝐹𝑟𝑒𝑞𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 where
the step time was long enough to see the relevant signal strength.

An additional challenge faced was the fact that chirps in near
proximity to the clock are less visible due to interference. This can
be fixed by increasing the guardband of the chirps by setting the
base frequency of the bandwidth to be higher. If this can be done
without sacrificing the smoothness and strength of the chirp, one
should do so. Additionally, one can measure the signals at higher
harmonics where the interference is minimal. We will discuss this
further in §4.2.

4.2 SideComm’s Receiver

SideComm enables devices’ microprocessors to directly send their
data to the air. For an access point to receive this data, we need to
design a receiver that can demodulate side-channel LoRa chirps.
We design and implement our receiver using a software-defined
radio (SDR). We utilize the GNU Radio package gr-lora-sdr [47]. We
modify the code where needed. The rest of this section discusses the
various components of the receiver and the modifications needed
to successfully demodulate. The block diagram of our receiver is
shown in Figure 6.
1) Finding the Frequency Band. The first step in the receiving
process is finding the correct frequency band. Since the transmitter
relies on the clock as the carrier, the transmission will be cen-
tered around the clock at frequencies 𝑓𝑐𝑙𝑘 ± 𝑓𝑐ℎ𝑖𝑟𝑝 . Interestingly, we
also observed that analog EM emanations create strong harmonics,
mainly due to the square shape of the carrier (clock) signal, as also
validated by prior work [7]. This means that the transmitted signal
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Frame Sync FFT DemodDownsampleLow-Pass Filter
Frequency 
Translation
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Figure 6: Block diagram of our side-channel receiver. i) USRP Source: obtain data from SDR. ii) Frequency Translation: center

the frequency on our chirps. iii) Low-Pass Filter: remove unwanted upper frequencies before downsampling. iv) Downsample:

reduce the sampling rate of the data. v) Frame Sync: controls preamble detection, sync word, and frequency correction. vi) FFT

Demod: demodulate the symbol.

also exists in multiple higher harmonics of the original signal, i.e.,
at𝑚× 𝑓𝑐𝑙𝑘 ± 𝑓𝑐ℎ𝑖𝑟𝑝 , where𝑚 is the mth harmonic of the base signal.

Based on the availability of strong higher harmonics, the receiver
has a degree of freedom to pick a channel (i.e., mth harmonic) to
maximize the performance. We observed that the receiving sig-
nal strength is a function of two parameters. (i) Channel occu-
pancy/interference and (ii) circuit frequency response. The first is
depending on the spatial and temporal features of the environ-
ment, similar to any other conventional communication system. As
a result, to maximize the performance considering only the first
parameter, it is best to pick a harmonic/channel with the lowest
interference. The receiver can dynamically sense the channel and
pick the best harmonic/channel. It is important to mention that
the transmitter does not need to change anything, nor does it need
to be aware of which channel is being used (the harmonics are
automatically and unintentionally generated).

The second parameter, however, is device-specific. The main rea-
son is that, unlike conventional RF systems with a well-designed
and optimized antenna, the antenna used in our setup is the circuit
itself - i.e., our design is antenna-less in the sense that the elec-
tronic components of the device collectively create the EM analog
side-channel signals. We further investigated this and found that
similar to any conventional antenna, depending on the material,
layout, and design of the circuit board, each board has a unique
frequency response. Figure 7 shows the frequency response of the
Arduino Uno board, a popular microcontroller device that is used
in our setup. The figure shows the signal-to-noise ratio (SNR) of
observed chirps, measured in dB using a magnetic probe placed
next to the device. We performed the measurement for different
channels swept from 112MHz to 656MHz2, with a higher density
of channels selected around 448MHz. We see that the SNR varies
depending on the given channel. For instance, the SNR at 304MHz
and 592MHz is quite low (7dB), whereas some channels, such as
400MHz and 448MHz, have a comparatively higher SNR of 27dB
and 25dB, respectively. The majority of the channels have an SNR
of around 15-20 dB.

Given these two parameters, the receiver picks a center fre-
quency and adjusts the filtering and other preprocessing functions,
which are described in the following. Again, no changes are needed
on the transmitter side.
2) Filtering and Downsampling. With the correct center fre-
quency, we now need to filter and downsample the signal for de-
modulation purposes. We first apply a low-pass filter in order to
reduce aliasing before we downsample. Then, we utilize rational
2We did not investigate ranges below 100 MHz to make the receiver’s antenna size
compact and manageable. Details of our setup are given in §5.1
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Figure 7: Chirp SNR created by the microprocessor side-

channel signal for various frequencies, swept from 112MHz

to 656MHz, using a magnetic probe. The SNR varies depend-

ing on the frequency.

resamplers to downsample our data from the base sampling rate
(e.g., 500 kHz) to four times our chirp bandwidth. The factor of four
is used to be able to properly demodulate each chirp and is a design
choice made by gr-lora-sdr [47].
3) Frame Sync and Demodulation. As in any LoRa receiver, we de-
tect packets via preambles and utilize the preamble to estimate and
correct for carrier frequency offset. We then demodulate the sync
word as the network identifier. If the network identifier matches,
we then process the two-and-a-half-quarter downchirps to syn-
chronize and discern the relationship between the sampling time
offset and the carrier frequency offset. Finally, we demodulate the
payload.

Similar to prior work [30], we can utilize a reduced rate mode to
increase robustness. For a spreading factor of 4 (16 values), we can
divide our chirps into four separate bins (15-2, 3-6, 7-10, 11-14) in
order to reduce the demodulation errors.
4) Challenges. The major challenge in our demodulation is the
frequency shifting phenomenon. As the transmitter device heats up,
the frequency of the clock will (slightly) shift. This small clock shift
will affect the AM modulation of the clock as well. Thus, we need
to adjust the center frequency dynamically on the receiver side to
compensate for this shift and be able to demodulate in the correct
region in the frequency spectrum.

To compute the shift on the receiver side, we take an FFT over
our signal (using the expected center frequency and range) and
find the index with the maximum value. This index should show us
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the new position of the clock. After converting this index into the
frequency, we can then use it, plus the given offset of our LoRa chirp
and bandwidth, to compute the new center frequency of our chirps.
For example, in our setup, we found that adding a maximum of 2.117
kHz to the real frequency of the clock is sufficient to find the center
of our chirps. This frequency correction happens periodically over
time (e.g., once every 10 seconds), hence the synchronization only
needs to happen rarely without interfering with too many packets.

5 EVALUATIONS

5.1 Experimental Setup

To evaluate the efficacy of SideComm, we design a range of ex-
periments using multiple different boards. Specifically, we use two
widely popular microcontroller boards, Arduino Uno [50] and TI
MSP430G2ET [34]. We make no changes to the hardware config-

uration. The hardware is used as-is out-of-the-box, and the signal
strength was not boosted or modified in any way. For Arduino, we
use a 16MHz clock and for MSP430, a 12.5MHz clock is used. As
described in §4, we measure both devices’ signals at higher harmon-
ics. For Arduino, we measure the signal at the 28th harmonic, i.e.,
448MHz. For MSP430, we measure at 400MHz, the 32nd harmonic.

For the receiver, we use a COTS VHF/UHF indoor TV antenna [4]
connected to a USRP B205mini-i software-defined-radio [5]. We
explicitly chose a cheap antenna to highlight that we can achieve
decent results even when using such a setup. For all measurements,
we set the internal amplifier of the SDR to 15 dB. For the receiver, we
modify the gr-lora-sdr package [47] on GNU Radio. Unless indicated
otherwise, we use a 500kHz sampling rate with 500kHz bandwidth
to collect the RF side-channel signals in our measurements.

An example of our measurement setup, including the transmitter
device and the receiver setup, can be seen in Figure 9 (line-of-sight
measurement for distance equals 5m). If not specified, all mea-
surements are conducted indoors to emulate the potential target
scenario (i.e., smart homes, factories, hospitals, etc.). The measure-
ments are all conducted in a research lab and/or its surrounding
hallway, located in a metropolitan area with lots of interference.
We do not attempt to reduce or shield any outside signals.

Furthermore, to minimize interference, we observe that each
device has a unique clock frequency due to imperfections in the
manufacturing process. Thus, if multiple devices are in the same
room and are either 1) communicating via SideComm or 2) conduct-
ing normal operations, there should be enough separation in the
spectrum. However, if there is contention in the band, we change
the parameters of our modulation loop (such as 𝐹𝑟𝑒𝑞𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) to
separate our chirps in the band.

The TV antenna is attached to the side of a movable cart. The
test board is attached to a tripod that sits on a second movable cart.
This way we can rearrange the antenna and board for different test
scenarios. Additionally, the height of the tripod and the angle of
the board were adjusted to be reasonably aligned to the antenna
(note that this setup can be further fine-tuned to increase SNR. For
our tests, we provided a rough alignment).

To transmit bits, we use the code shown in Algorithm 1. We
implement the code for both boards using Arduino and Code Com-
poser Studio IDEs. For both boards, we hand-optimize the code

by implementing it on assembly. We further disable compiler opti-
mization to fully control the timing of chirps (we observed that the
compiler might optimize the code through loop unrolling and/or
other methods, which would result in an unwanted change to the
loop’s iteration time). After all optimizations, the implementation
of Algorithm 1 on Arduino results in 283 static instructions. For
MSP430, there are 91 static instructions.

5.2 Results

First, we will discuss various SNR measurements of SideComm in
different scenarios. Then, we will present the bit error rate and bit
rate results. Finally, the power and energy consumption of Side-
Comm and a comparison with other methods are reported.

An example of the received signals using our setup is shown in
Figure 8. We see the spectrogram with real chirps created by our
microcontroller (Arduino) measured by our software-defined radio
(in 2m distance). The value “8” is sent, then the value “0”, in the
spectrogram. We see the clock at the center of the spectrogram, at
0kHz offset. We see the central chirps at a frequency relative to the
center of -2kHz and 2kHz, a set of mirror images (for this example
we chose the offset to be 2kHz, however, this could be controlled
by the user). Then, at -4kHz and 4kHz, we see the second harmonic
(higher harmonics are not shown).

SNR is calculated by measuring the strength of the chirp signal
and the level of the noise floor over an extended period of time. In
this way, we can account for temporal variations seen in both the
emulated signal and the background noise by averaging.
1) Indoor, Line-of-Sight SNR. We see the results of SNR vs. Dis-
tance for an indoor line-of-sight scenario for Arduino and MSP430
in Figure 10. At a close range of 2m between our SideComm trans-
mitter and receiver, Arduino has an average SNR of 10dB while
MSP430 has an average SNR of 15 dB. At 5m, Arduino has an SNR of
8dB while MSP430 has an SNR of 14 dB. Finally, at 15m, Arduino has
an SNR of 3dB, while MSP430 has an SNR of 8 dB. We repeat these
measurements 5 times and report the error in the figure. Overall,
we observe that the EM emanations of MSP430 are consistently
stronger than those of Arduino. This demonstrates SideComm’s
ability to propagate over long distances, as we still measure ade-
quate SNR even at longer ranges. Additionally, LoRa is shown to
work when the signal is below the noise floor, further suggesting
the validity of the signal received.

We did not extensively explore the signal reception beyond 15m,
however, our initial investigation and the robustness of LoRa-based
receivers to noise suggest that the range could be extended even
further. However, we note that this assumption is anecdotal and
further experiments are needed to confirm it. One can also further
optimize the setup and directionality of the transmitter and receiver
to further boost the SNR. We did not explore this further, since our
primary goal was to show the feasibility of this approach in reason-
able distances without requiring fully optimizing the transmitter
and/or receiver and with minimal engineering work.

We see the SNR measured for the Arduino and MSP430 for these
two different NLOS scenarios in Figure 13. The point-to-point dis-
tance between the microprocessor and the antenna (receiver) is
roughly the same for both setups.
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Figure 8: Chirps viewed via a spectrogram. Values sent: 8, then 0. The clock is at a frequency offset of 0kHz. The central chirps

are at a frequency offset of -2kHz and 2kHz. The 2nd harmonic chirps are at a frequency offset of -4kHz and 4kHz. Higher

harmonics are not shown.
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Figure 9: Indoor, line-of-sight setup. The setup in this picture

has themicroprocessor (ArduinoUno) and the receiver (small

TV antenna and SDR) 5m apart.

For the “around the corner” scenario, the Arduino has an average
SNR of 3.5dB, whereas the MSP430 has an average SNR of 6.5 dB.
For the “through the wall” scenario, the Arduino has an SNR of
6dB, whereas the MSP430 has an SNR of 7 dB.

These results demonstrate SideComm’s robustness towards en-
vironmental factors and resilience to sources of attenuation. Side-
Comm can work in scenarios where the board is not lined up with
the antenna or even separated physically. In the first scenario, we
are able to receive the signal even when the board direction is per-
pendicular to the direction of the antenna and physically around the
hallway corner. In the second scenario, the signal is also still seen
despite the presence of an office wall between the board and the
receiver. Robustness to environmental factors also enables many
applications and boosts the adaptability of SideComm.
2) Indoor, Non-Line-of-Sight SNR. Beyond line-of-sight scenarios,
it is important to test non-line-of-sight (NLOS) scenarios to test
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Figure 10: SNR vs distance, indoors, line-of-sight. The SNR

was measured at 2m, 5m, 8m, and 15m. The MSP430 consis-

tently has a higher SNR than the Arduino.

SideComm’s ability to resist attenuation and environmental fac-
tors. We conduct two NLOS measurements, as shown in Figure 11
(around a corner) and Figure 12 (through a wall).
3) Outdoor, Line-of-Sight SNR. Beyond indoor measurements, we
also conducted an outdoor line-of-sight experiment for Arduino
and MSP430 to demonstrate robustness in outdoor settings. The
setup for our measurements is shown in Figure 14. The results are
shown in Figure 15. The results show that we are able to obtain a
similar SNR to the comparable line-of-sight indoor scenario. Like
our indoor measurements, the MSP430 still achieves a better SNR
than Arduino. This outdoor experiment demonstrates the potential
of using SideComm in various outdoor settings.
4) Bit Error Rate and Bit Rate. Beyond measuring the SNR of our
side-channel chirps in various scenarios, we also tested the bit error
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Figure 11: Indoor, non-line-of-sight setup: Around the corner.

2.5m from the microprocessor to the corner center, and 4m

from the corner center to the receiver.
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Figure 12: Indoor, non-line-of-sight setup: Through a wall.

The wall is 13.55cm thick. 2m separates the microprocessor

and the wall. 2m separates the wall and the receiver (an-

tenna/SDR).

rate (BER) and the achievable bit rate we could obtain from our
system using the receiver described in §4.2 and shown in Figure 6.

Similar to prior work [25], to test BER, we sent 30 packets, each
with a 40-bit payload. This results in a total of 1200 payload bits.
We then repeat this test in multiple trials and report the average
using the setup described in §5.1.

We investigated various configurations and found that our setup
can achieve up to 1kbps (to be exact, 997 bps for Arduino and 907
for MSP430) by reducing 𝐹𝑟𝑒𝑞𝐼𝑡𝑒𝑟 in line 4 of Algorithm 1. This
bit rate is sufficient for many IoT applications such as smart home
sensors. For the maximum bit rate, the BER varies between 10−2

and 10−1 depending on the scenario and the distance between the
node and the receiver. It is worth mentioning that this BER can
be improved by reducing the bit rate. In particular, we observed
that the bandwidth and length of the chips have an impact on the
SNR and accordingly BER. The main reason for this is that more
iterations in the inner for loop (see lines 4-6 in Algorithm 1), make
the emanations stronger due to the averaging effect of taking an
FFT. However, this comes with spending more time sending a bit,
which consequently reduces the bit rate. Finally, one may use an
error correction scheme to correct the errors and improve the BER.
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Figure 13: SNR for various non-line-of-sight scenarios. The

SNR was measured when the processor and receiver were

around a corner from each other, as well as when they were

separated by a wall. Each setup has roughly the same point-

to-point distance between the processor and receiver.

5) Power Consumption. We measure the power consumption
of SideComm’s transmitter and compare it with several different
systems and setups. Specifically, we compare our method with
standard BLE, Zigbee, WiFi, and LoRa methods. When needed, we
consider two possible scenarios: (S1) A network module (e.g., BLE)
is connected to a microcontroller (e.g., Arduino); (S2) An SoC with
a built-in microcontroller and network modules (e.g., TI CC2650
BLE chip [10]). Furthermore, we compare our method with state-
of-the-art backscattering techniques.

To measure the power in our setup, an Adafruit INA219 [23]
current sensor module is utilized. Each target board (e.g., MSP430) is
then connected in series with the sensor. By measuring the voltage
drop across a low resistance shunt, the INA219 module measures
the current of each of the corresponding setups. To transfer the
measurements to a PC, we use an Arduino connected to the INA219
module over I2C, and forward the current values to the computer
over UART, sampling the current at about 7250 Hz.

To limit the number of tests, for other setups, we use their re-
spective datasheet and/or publications to report the results. For
each method, to provide a fair comparison, in all cases we report
their minimum power consumption. This is achieved by set-
ting the lowest possible Tx power. We, however, acknowledge that
the comparison for distance is not a fair one as SideComm could
achieve around 10 meters while others could potentially achieve
much higher distances. Nonetheless, we emphasize that this is the
minimum power consumption for each method.

Moreover, for the sake of making it more favorable for other
works, in each work, we only take into account the power consump-
tion of the radio, not including the power consumption for the core,
power management unit, and peripherals. If these had been taken
into consideration, the actual power consumption would be higher.
It is worth noting that, for our setup, we consider the total power
consumption including core and non-core activities. The power
consumption in SideComm, however, is the entire power (i.e., core
and peripherals included). This means that we overestimate our
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Figure 14: Outdoor, line-of-sight setup. The setup in this pic-

ture has the microprocessor (Arduino Uno) and the receiver

(small TV antenna and SDR) 5m apart.

own method. This was specifically significant for Arduino as the
overall was about 45x higher than MSP430.

Results for power consumption are shown in Figure 16. To better
compare our method with others, the y-axis values are normalized
with respect to MSP430 power consumption.

Comparing to LoRa devices (setup 7: STM32WL55JC [44] and
setup 8: SemtechSX1262 [45]), MSP430 achieves about 20x lower
power consumption. It is important to mention that these LoRa mod-
ules can achieve a much higher range than our method, however, for
low/mid-range settings, our method offers a better power-distance
tradeoff.

Comparing SideComm with BLE and Zigbee devices (setups 2-
5) reveals that MSP430 has about 4x lower power consumption
on average. The difference is higher when compared with a WiFi
module (setup 6);

Putting it all together, SideComm achieves consistently lower
power consumption compared to other active candidate technolo-
gies while eliminating the need for an additional RF module or an
active transmitter module. It is important to emphasize that Side-
Comm is beneficial specifically for low data-rate scenarios

and is not effective for times where a high data rate is needed due
to its low bit-rate.
6) Comparison with State-of-the-Art. Lastly, we compare Side-
Comm with state-of-the-art in terms of applicability, distance, and
overall energy. We compare three configurations: 1) An IoT+BLE
where an MSP430 microcontroller is connected to a CC2650 BLE
module [10] – a representative of popular configuration for low
power communication in IoT market, 2) A Raspberry Pi with EM-
LoRa capability [41] as the latest side-channel based technology for
communication, and 3) SideComm implemented on MSP430. The
results are shown in Table 2.

We compare the three methods in five main categories. First, the
key advantage of SideComm over EMLoRa is that it is applicable to
low-end IoT devices while EMLoRa is only useful for systems with
DRAM capabilities. In terms of distance, however, both EMLoRa
and BLE outperform SideComm, indicating that our method is
useful for indoor use cases. Compared to BLE, the key advantage
of SideComm is that it does not need a dedicated radio, hence it
offers flexibility, simplicity, and low overhead.
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Figure 15: SNR vs distance, outdoors, line-of-sight. The SNR

was measured at 2m, 5m, 8m, and 15m. A comparable SNR

compared to indoors is seen.
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Figure 16: Power consumption for sending a packet in various

setups. Values are normalized w.r.t. MSP430.

We further compare the overall energy consumption of Side-
Comm with the state-of-the-art. For that, we assume a scenario
where each day at least 1KB of data is needed to be sent while
the device is in deep sleep mode (with some small leakage) when
not transmitting. We then normalize the values and report them
in Table 2. As can be seen, BLE has more than 218% larger energy
consumption while EMLoRa has several orders of magnitude

higher energy. SideComm has superior energy-per-bit consump-
tion in low-bit rate scenarios mainly because it completely elimi-
nates the need for additional RF circuitry and hence reduces the
leakage. Furthermore, the simple package structure of SideComm
greatly reduces the communication overhead in low-bit rate sce-
narios.

Finally, we compare the bit rate for the three configurations. As
explained before, SideComm is the best option for scenarios where
a low data rate is sufficient. Compared to EMLoRa, SideComm
achieves three orders of magnitude higher bit rate while having
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Table 2: Comparison between RF transmission (BLE), EM-

LoRa [41], and SideComm. SideComm enables IoT commu-

nication without the presence of a transmitter module and

where complex memory systems are not present. The Energy

per bit and Bit rate entries are normalized with respect to

SideComm.

Approach IoT Radio Dist (m) Energy Bitrate

RF (BLE) [10] Y Y 50-400 2.18x ≈1000x
EMLoRa[41] N N 70-250 ≈1000x .0012x
SideComm Y N 5-20 1 1

more than five orders of magnitude lower energy, making it by far
the best option for communication in a low-overhead setting.

6 RELATEDWORK

Side-Channels for Adversarial Purposes. Side-channels have
been mainly considered a vulnerability and have been extensively
analyzed to improve the security of systems. Side-channels can be
created either digitally or physically. We mainly focus on physi-
cal side-channels since the digital side-channels (e.g., cache side-
channels [54]) can only be measured within the device (in the digital
domain) and hence are not relevant to the analog/RF domain.

Physical side-channels can be categorized into two main groups:
side-channel attacks (SCA) and covert channel communication.
The goal of an SCA is typically finding a secret value (typically a
cryptographic key) by analyzing the physical side-channels [13].
Such a secret is assumed otherwise undetectable. For a physical
covert channel, the goal is to extract a secret value from an air-
gapped system—i.e., using a physical signal that can be measured
externally, secret information can be extracted and communicated
to the outside world. Such a signal could be temperature, variation
in power, electromagnetic (EM) emanations, etc. In this work, we
mainly focused on EM and/or RF-related side-channels.

Much work has been done on using different modalities to create
long-range EM/RF covert channels. Zhan et al. [55] showed that by
creating specific memory access patterns, an EM covert channel can
be created that can penetrate a concrete wall. Covert channels in air-
gapped networks can also be realized via cellular frequencies [17]
and Wi-Fi signals [16].

Recently, Screaming Channels [9] have been developed to enable
the recovering of encryption keys at long distances by showing
that EM emanations can be accidentally leaked into the RF module
(e.g., WiFi). To enable this, however, an RF module (WiFi or BLE) is
required (i.e., the RF already exists, so there is no need for additional
side-channel radio anyway).

Also relevant to this work, NoiseSDR [8] was recently proposed.
Using a method similar to that of EMLoRa, NoiseSDR showed that
any arbitrary modulation (including LoRa) can be created using
EM side-channels. Similar to EMLoRa, the method only works
on high-power computing systems. Further, for creating chirps,
the method needs to rely on spread-spectrum clocking, which is
typically unavailable in tiny IoT systems.

To summarize, compared to existing physical covert channel
techniques, our method offers two main contributions. First, a covert
channel only focuses on creating a stealthy channel with low BER

and/or high bit rate. In our ecosystem, however, power consump-
tion and flexibility have also been considered. Second, none of the
existing methods showed success in achieving long-range on tiny
IoT systems, as opposed to ours.
Side-Channels for Beneficial Purposes. Recently, it has been
shown that side-channels could be used for good purposes too. For
instance, EM side-channels have been used to detect rowhammer
attacks, a popular attack on DRAM [56]. EM side-channels can also
be used to passively detect malware on existing devices [20, 38]. EM
side-channels can also be used to profile program execution [39].
Compared to these works, this is the first work to propose using
EM side-channels for communication. Specifically, we showed how
to create intentional signatures to boost the range and increase the
SNR, which is essential for long-range and reliable communication.
Low-Power Communication. Another area of relevance to our
system is methods for enabling low-power communication. For
instance, BLE has been shown to have comparatively greater energy
efficiency compared to Zigbee [43] and WiFi. In BLE2LoRa, the
authors developed a methodology to craft LoRa-style chirps in a
BLE packet to enable cross-technology communication [30]. In Wi-
le, a Wi-Fi compatible system was developed that has similar power
consumption to BLE [1]. WiChronos was a new communication
framework that improves energy efficiency [36].

Much work is being done to enable applications using LoRa.
For instance, Xie et al. [53] developed a system using LoRa to en-
able sensing of human respiration up to 50m. Additionally, LoRa
is being used in localization techniques in both indoor and out-
door scenarios [31]. Deep learning has been shown to increase
the SNR of LoRa decoding [28]. Work has been done to increase
efficiency and robustness in channels using LoRa such as reducing
LoRa packet collisions [49], increasing link robustness [48], and
developing carrier-sense multiple access [12]. Finally, a system that
dynamically adjusts LoRa parameters to increase energy efficiency
per environment has been developed [29].

Another emerging solution for reducing the communication
power is using backscattering technology. In Wi-Fi Backscatter,
the authors utilized the existing Wi-Fi infrastructure to support
backscatter [25]. In Backfi, the authors improved the prior work by
providing even greater range and throughput while maintaining
energy efficiency [6]. In WiTag, the authors improved the practi-
cality of backscatter by using properties of the MAC layer [2]. In
NetScatter, the authors improved the scalability of backscatter by
utilizing a distributed coding mechanism [22]. A symbiotic radio
was also developed to create passive IoTs [32]. Backscatter can be
used in low-power applications such as micro-implants in the hu-
man body [52]. Many papers detail the intersection of LoRa and
backscatter to create a low-power form of communication. LoRa
Backscatter was the first instance of wide-area backscatter that uses
LoRa [46]. Other papers introduced techniques such as modulating
an excitation signal into a chirp [35], on-off keying to reduce inter-
ference and reduce spectrum occupation [15] and parallel decoding
and long-range support [24].

Compared to existing backscattering methods [6, 15, 22, 25, 26,
35, 51], SideComm has the following advantages. First, backscatter
systems typically require to be placed close (within a meter) to
their active transmitter or receiver device in most scenarios such
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as NLOS [11]. Moreover, their tag typically requires a high-gain
antenna. In contrast, SideComm does not require any antenna nor
being placed close to the receiver.

7 CONCLUSIONS

SideComm is a system that utilizes electromagnetic side-channels
to enable low-power and >10m communication range for resource-
limited Internet-of-Things devices, without any additional hard-
ware or need for a complex memory system. While side-channels
have traditionally been used for adversarial purposes, this paper
uses side-channels for the beneficial purpose of creating connectiv-
ity for IoT devices. The key was to leverage software activities to
create LoRa-like packets. We demonstrated SideComm’s range via
SNR measurements at extended distances, as well as SideComm’s
resistance to attenuation via non-line-of-sight measurements. Fi-
nally, we demonstrated SideComm’s comparatively lower power
consumption compared to existing transmitter modules and tech-
nologies. SideComm provides a promising method of communica-
tion for many smart environments by turning a microprocessor
into a radio that is simple, low-power, and flexible.
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