
27.4 A 0.75-Million-Point Fourier-Transform Chip for
Frequency-Sparse Signals

Omid Abari, Ezz Hamed, Haitham Hassanieh, Abhinav Agarwal,
Dina Katabi, Anantha P Chandrakasan, Vladimir Stojanovic

Massachusetts Institute of Technology, Cambridge, MA

Applications like spectrum sensing, radar signal processing, and pattern
matching by convolving a signal with a long code, as in GPS, require large FFT
sizes. ASIC implementations of such FFTs are challenging due to their large
silicon area and high power consumption. However, the signals in these
applications are sparse, i.e., the energy at the output of the FFT/IFFT is
concentrated at a limited number of frequencies and with zero/negligible energy
at most frequencies. Recent advances in signal processing have shown that,
for such sparse signals, a new algorithm called the sparse FFT (sFFT) can
compute the Fourier transform more efficiently than traditional FFTs [1].

This paper presents a VLSI implementation of the sFFT algorithm. The chip
implements a 746,496-point sFFT, in 0.6mm2 of silicon area. At 0.66V, it
consumes 0.4pJ/sample and has an effective throughput of 36GS/s. The
effective throughput is computed over all frequencies but frequencies with
negligible magnitudes are not produced. The chip works for signals that occupy
up to 0.1% of the transform frequency range (0.1% sparse). It can be used to
detect a signal that is frequency hopping in a wideband, to perform pattern
matching against a long code, or to detect a blocker location with very high
frequency resolution. For example, it can detect and recover a signal that
occupies 18MHz randomly scattered anywhere in an 18GHz band with a
frequency resolution of ~24kHz.

The sFFT algorithm has three steps: bucketization, estimation, and collision
resolution. Bucketization: The algorithm starts by mapping the spectrum into
buckets as shown in Fig. 27.4.1. This is done by sub-sampling the signal and
then performing an FFT. Sub-sampling in time causes aliasing in frequency.
Since the spectrum is sparsely occupied, most buckets will be either empty or
have a single active frequency, and only few buckets will have a collision of
multiple active frequencies. Empty buckets are discarded and non-empty
buckets are passed to the estimation step.

Estimation: This step estimates the value and frequency number (i.e. location in
the spectrum) of each active frequency. In the absence of a collision, the value
of an active frequency is the value of its bucket. To find the frequency number,
the algorithm repeats the bucketization on the original signal after shifting it by 1
sample. A shift in time causes a phase change in the frequency domain of
2πfτ/N, where 𝑓 is the frequency number, 𝜏 is the time shift, and 𝑁 is the sFFT
size. Thus, the phase change can be used to compute the frequency number.

Collision resolution: The algorithm detects collisions as follows: If a bucket
contains a collision then repeating the bucketization with a time shift causes the
bucket’s magnitude to change since the colliding frequencies rotate by different
phases. In contrast, the magnitude does not change if the bucket has a single
active frequency. After detecting collisions, the algorithm resolves them by
using bucketization multiple times with co-prime sampling rates (FFTs with co-
prime sizes). Two numbers are co-prime if their greatest common divisor is one.
The use of co-prime sampling rates guarantees that any two frequencies that
collide in one bucketization do not collide in other bucketizations, as shown in
Fig. 27.4.1.

The block diagram of the sFFT chip is shown in Fig. 27.4.2. A 12b 746,496-
point (210×36-point) sFFT is implemented. Two types of FFTs (210 and 36-point)
are used for bucketization. The input to the 210-point FFT is the signal sub-
sampled by 36, while the input to the 36-point FFT is the signal sub-sampled by
210. FFTs of sizes 210 and 36 were chosen since they are co-prime and can be
implemented with simple low-radix FFTs. Three FFTs of each size are used
with inputs shifted by 0, 1 or 32 time samples, as shown in Fig. 27.4.2. In
principle, shifts of 0 and 1 are sufficient. However, the third shift is used to
increase the estimation accuracy. One 1024-word and one 729-word SRAMs
are used for three 210-point and three 36-point FFTs, respectively. SRAMs are
triplicated to enable pipelined operation of the I/O interface, bucketization and
reconstruction blocks. Thus, 3 sFFT frames exist in the pipeline.

The micro-architecture of the 210-point FFT is shown in Fig. 27.4.3. Each 210-
point FFT uses one radix-4 butterfly to perform an in-place FFT, which is
optimized to reduce area and power consumption as follows: First, the FFT
block performs read and write operations at even and odd clock cycles,
respectively, which enables the use of single port SRAMs. A single read
operation provides three complex values, one for each radix-4 butterfly. The
complex multiplication is computed over two clock cycles using two multipliers
for each butterfly. Second, a twiddle factor (TWF) control unit is shared
between the three butterflies. Third, the block floating point (BFP) technique is
used to minimize the quantization error [2]. BFP is implemented using a single
exponent shared between FFTs, and scaling is done by shifting in case of
overflow. Round-half-away-from-zero is implemented by initializing the
accumulator registers with 0.5LSB and truncating the results. The 36-point FFTs
are similar, but use radix-3 butterflies.

The micro-architecture of estimation and collision detection is shown in Fig.
27.4.4. Phase shift and phase detector units use the CORDIC algorithm. The
estimation block operates in two steps. First, time shifts of 1 and 32 samples
are used to compute the MSBs and LSBs of the phase change, respectively. A
3b overlap is used to fix errors due to concatenation. Since the 5 MSBs of
phase change are taken directly from the output of phase detectors, active
frequencies have to be ~30dB above the quantization noise to be detected
correctly. Frequencies below this level are considered negligible. The frequency
number is estimated from the phase change. This frequency number may have
errors in the LSBs due to quantization noise. The second step corrects any
such errors by using the bucket number to recover the LSBs of the frequency
number. This is possible because all frequencies in a bucket share the same
remainder B (B=f mod M, where f is the frequency number and M is the FFT
size), which is also the bucket number. Thus, in the frequency recovery block
associated with the 210-point FFTs, the bucket number gives the 10 LSBs of the
frequency number. However, in the frequency recovery for the 36-point FFTs,
the LSBs cannot be directly replaced by the bucket number since M=36 is not a
power of 2. Instead, the remainder of dividing the frequency number by 36 is
calculated and subtracted from the frequency number. The bucket number is
then added to the result of the subtraction. In our implementation, calculating
and subtracting the remainder is done indirectly by truncating the LSBs of the
phase change.

The collision detection block in Fig. 27.4.4 compares the values of the buckets
with and without time-shifts. It uses the estimated frequency to remove the
phase change in the time-shifted bucketizations and compares the three
complex values to detect collisions. In the case of no collision, the three values
are averaged to reduce noise. The result is used to update the output of the
sFFT in SRAMs.

The testchip is fabricated in IBM’s 45nm SOI technology. The sFFT core
occupies 0.6mm2 including SRAMs. At 1.18V supply, the chip operates at a
maximum frequency of 1.5GHz, resulting in an effective throughput of 109GS/s.
At this frequency, the measured energy efficiency is 1.2µJ per 746,496–point
Fourier transform. Reducing the clock frequency to 500MHz enables an energy
efficiency of 298nJ per Fourier transform at 0.66V supply. Energy and operating
frequency for a range of supply voltages are shown in Fig. 27.4.5.

Since no prior ASIC implementations of sFFT exist, we compare with recent
low-power implementations of the traditional FFT [3-5]. The measured energy is
normalized by the Fourier transform size to obtain the energy per sample (the
sFFT chip, however, outputs only active frequencies). Fig. 27.4.6 shows that
the implementations in [3-5] work for sparse and non-sparse signals while the
sFFT chip works for signal sparsity up to 0.1%. However, for such sparse
signals, the sFFT chip delivers ~40× lower energy per sample for a 36× larger
FFT size. Fig. 27.4.6 also shows that the 746,496-point sFFT chip achieves an
88× reduction in run-time compared to a C++ implementation running on an i7
CPU [6].

References:
[1] H. Hassanieh, et al., “Simple and Practical Algorithm for Sparse Fourier
Transform,” ACM Symp. Discrete Algorithms, 2012.
[2] G. Zhong, et al., “A Power-Scalable Reconfigurable FFT/IFFT IC Based on a
Multi-Processor Ring,” IEEE J. Solid-State Circuits, Feb. 2006.

 [3] M. Seok, et al., “A 0.27V 30MHz 17.7nJ/transform 1024-pt Complex FFT
Core with Super-Pipelining,” ISSCC Dig. Tech Papers, 2011.
[4] Y. Chen et al., “A 2.4-Gsample/s DVFS FFT Processor for MIMO OFDM
Communication Systems,” IEEE J. Solid-State Circuits, May 2008.
[5] C. Yang et al, “Power and Area Minimization of Reconfigurable FFT
Processors: A 3GPP-LTE Example,” IEEE J. Solid-State Circuits, Mar. 2012.
[6] sFFT C++ code. http://groups.csail.mit.edu/netmit/sFFT/code.html

Figure 27.4.1: The sFFT algorithm performs bucketization by sub-
sampling in the time domain then taking an FFT, which causes aliasing
in the frequency domain.

Figure 27.4.2: A block diagram of the 2^10x3^6-point sparse FFT and
input samples to the 6 FFTs.

Figure 27.4.3: The micro-architecture of the 210-point FFTs.

Figure 27.4.4: The micro-architecture of collision detection and
estimation. The complex values (r1, i1), (r2, i2) and (r3, i3) are the
output of bucketization for time-shifts 0, 1 and 32 samples.

Figure 27.4.5: Measured energy and operating frequency for a range of
voltage, and throughput versus energy per sample for computing a
746,496-point sparse Fourier transform.

Figure 27.4.6: Measured energy efficiency and performance of the sFFT
chip compared to published FFTs.

Figure 27.4.7: Die photo of the testchip.

