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ABSTRACT

We introduce a passive Radio Frequency IDentification (RFID) based

system to detect finger gesture input for Human-Computer Inter-

action applications. The device is simple, inexpensive and does

not require calibration to accommodate changes in the device lo-

cation or the Radio Frequency (RF) environment. This is achieved

by connecting the chips of two RFID tags together using a strip

transmission line. The key observation is that touching different

positions along the transmission line changes the impedance match-

ing between each chip and its antenna, changing Received Signal

Strength (RSS) values for each tag. When a finger slides in different

directions between key positions along the transmission line, there

are relative RSS patterns and trends that are robust to changes in

the device location and the RF environment. We implemented and

evaluated an detection algorithm and system using a commercial

RFID reader and two commercial RFID chips. Results show that

precision and recall are greater than 95% and 94% when detecting

10 finger gesture inputs across 48 different device locations.

CCS CONCEPTS

• Computer systems organization→ Sensor networks.

KEYWORDS

Finger Input, Gesture, RFID, Transmission Line

ACM Reference Format:

JuWang
1
, Jianyan Li

1
, MohammadHosseinMazaheri

1
, and Keiko Katsuragawa

1,2
,

Daniel Vogel
1
, and Omid Abari

3
. 2020. Sensing Finger Input Using An RFID

Transmission Line. In The 18th ACM Conference on Embedded Networked Sen-
sor Systems (SenSys ’20), November 16–19, 2020, Virtual Event, Japan. ACM,

New York, NY, USA, 13 pages. https://doi.org/10.1145/3384419.3430712

1 INTRODUCTION

With an increasing number of smart devices, such as smart televi-

sions, thermostats, and light bulbs, there is significant interest in

finding new user input methods to control them. Using a smart-

phone or voice assistant is not always practical, convenient, or
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Figure 1: The touch input sensing device is created by con-

necting the chips of two RFID tags together with copper

strips to form a transmission line. When a finger is sliding

in different directions between key known positions, e.g. (a)

a-to-b or (b) d-to-b, relative RSS patterns for each chip can

be used for gesture detection independent of changes to de-

vice location or RF environment.

comfortable for issuing commands in this setting. Smartphone apps

can be hard to configure, they are not easily shared among room-

mates or co-workers, and they take time to open and navigate.

Speaking to a voice assistant can feel socially uncomfortable, and

relatively simple operations, like setting the brightness of a specific

light, are surprisingly verbose. For these and other reasons, other

general purpose user input methods have been proposed to sense

finger input gestures, primarily based on computer vision [15, 21],

mmWave [18], Wi-Fi [7], and RFID [16] technologies. Of these ap-

proaches, a system based on RFID is particularly attractive since it

is wireless, battery-free, lightweight, and very low cost [14, 17, 20].

RFID tags can be embedded into common objects, like cups and

doorknobs, to enable sensing and interaction.

However, a general purpose RFID-based finger input sensing

device for these kinds of applications has two challenges. The device

should detect multiple gesture inputs to be useful as a kind of remote

control for smart devices, and it should be robust to changes in

device position and the surrounding RF environment (e.g. people

moving nearby) since many smart device applications are used in a

more mobile setting. Accomplishing both of these without adding

more and more RFID tags, or requiring frequent calibration and

training, has not been achieved before.

For example, PaperID [16] uses an RFID tag as a binary sensor

to detect when a finger is touching, so it requires many tags to

detect multiple finger inputs. RIO [20] can detect multiple inputs

on a single tag using the phase of the RFID signal, but this is not

robust to changes in the tag location or RF environment without

frequent device re-calibration and retraining. These limitations

https://doi.org/10.1145/3384419.3430712
https://doi.org/10.1145/3384419.3430712
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are because absolute phase or RSS is used for detection. Previous

systems rely on how touching different positions along an RFID

tag antenna changes the impedance matching between the RFID

chip and its antenna, which changes the RSS or phase of the tag

response signal [16, 17, 20]. The problem is that changes in the

tag location or RF environment also significantly alter the RSS and

phase [24]. This is why past systems are not robust to such changes,

and they require re-calibration and re-training.

Our approach attaches two RFID chips to a substrate and con-

nects themwith two thin strips of copper to form a transmission line
(see Fig. 1 and demo video [28]). This enables our system to exploit

the trend of RSS and relative RSS values in each of the connected

RFID chips. When a finger slides between different positions along

the transmission line, the finger movement changes the impedance

matching between each RFID chip and its antenna continuously,

and thus the momentary trend of RSS will increase or decrease

continuously, no matter where the tag is located and the RF en-

vironment is changed or not. By defining a set of 10 short finger

sliding gestures
1
that connect (or cross) key positions along the

transmission line, we show that a novel algorithm can detect these

gestures using features based on relative changes and trends in RSS.

This means the detection method is independent of tag location

and RF environment, so the device does not require re-calibration

or re-training. This enables user input for many smart device appli-

cations. For example, our device can be used like a remote control

or integrated into household items such as a pillow, book, or chair,

enabling the remote adjustment of smart device properties like light

intensity, room temperature, or TV volume, or in settings like a

lecture hall for an audience response system.

We provide the underlying theory and initial data gathering

experiments to explain how and why our approach works. We

also describe the prototype device we built with two commodity

RFID chips [6] and available materials like cardboard and copper

tape. Using a system with Impinj RFID readers [10], we evaluate

our prototype in two indoor settings: a laboratory area covered by

one reader antenna and a large classroom covered by four reader

antennas. Combined results spanning both environments show

precision and recall are greater than 95% and 94% when detecting

10 finger gesture inputs across 48 different device locations.

Our main contributions are:

• An RFID-based finger input sensing system which eliminates the

need for calibration and training using a transmission line.

• A set of finger input gestures with an associated detection algo-

rithm designed to be reliably differentiate gestures.

• The implementation and evaluation of a prototype system shown

to be robust to variations of device locations and RF environment.

2 RELATEDWORK

RFID tags have been used to sense user input before, but existing

methods have been limited by the input diversity or accuracy of the

input detection or the method is not robust when there are changes

in tag locations or the RF environment.

1
Adding even one more chip in a triangle configuration could expand the input space

to 30 gestures, we discuss this and other extensions in Section 8.

One set of techniques enable user input by tracking coarse move-

ments of one or more tags attached to a hand or a finger. For ex-

ample, Bainbridge et al. [2] use WISP RFID tags and 3-axis ac-

celerometers attached to fingers for gesture recognition. However,

the method also requires a powered RFID reader and antenna to

be mounted on the arm and hand, limiting real-world applications.

RF-IDraw [29] tracks the path of an RFID tag attached to the user’s

finger with 9.7 cm precision, and D-Watch [30] tracks a fist location

with 5.8 cm precision using RFID tags placed in the surrounding en-

vironment. Given the very course level of tracking, neither method

is well suited for the more fine-grained finger input.

IDSense [17] focuses on detecting a small set of discrete actions

for input related to objects. The method attaches RFID tags to

objects and usesmultiple signal features (i.e., phase, RSS and reading

rate) to detect four tag states with 95.7% accuracy: tag is moving,

tag is covered by a hand, tag has been swiped by a finger, or none

of the above. However, detection only works if the objects do not

move after a calibration, which limits its applications.

Other papers have significantly expanded the touch input space

beyond the single swipe gesture demonstrated by IDSense. For ex-

ample, RIO [20] detects a finger touch and a swipe on RFID tags by

tracking changes in phase values. Due to the fine-grained phase

information, RIO can even locate finger touch positions with a 3mm

accuracy in a controlled environment and a fixed tag location. How-

ever, phase values can vary as large as 𝜋 rad with minor changes

in the tag’s location (e.g. 10 cm) [24]. Without re-calibration after

the tag is moved, the input detection becomes unreliable, making it

unsuitable for many real-world deployments.

PaperID [16] uses a simpler approach where a half-antenna de-

sign together with an RFID chip acts like a binary sensor capable

of detecting when a finger is touching. Specifically, when their cus-

tomized RFID tag is touched, the finger acts as another half-antenna,

allowing the tag to harvest enough power for operation so that the

RFID reader can hear the touched tag. The approach is robust to

tag location changes. To increase input diversity, however, multiple

tags must be used in a large array. The difficulty is that adjacent

tags must be more than a half-wavelength apart to avoid a coupling

effect [22, 23]. With the 915 MHz RFID signal, this translates to

spacing at least 16.4 cm, which would create very large devices to

support even a few different inputs. Second, for many handheld

interactions, the size of input devices should be small. Tip-Tap [14]

uses the connection and disconnection among multiple RFID chips

for finger inputs. But the system requires 6 RFID chips to enable 9

finger inputs.

Compared to previous work, our system has two advantages.

First, it requires only two RFID tags to detect 10 finger input ges-

tures. Second, ourmethod enables robust input detection evenwhen

tag location changes.

3 PASSIVE RFID BACKGROUND

A passive RFID system consists of a reader and one or more tags

(Fig. 2). Each tag has an RFID chip, and a dipole antenna com-

monly composed of two identical conductive elements, such as

metal wires [3]. ‘Passive’ means the tag has no battery. To power

and activate the chip, the tag harvests energy from a reader trans-

mitting high power signals. Once activated, the tag communicates
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Figure 2: Illustration of a passive RFID system.

with the reader by reflecting or not reflecting the reader’s signal.

For example, a reflection represents a ‘1’ bit and a not reflecting

means a ‘0’ bit.

3.1 RSS And Antenna Impedance

When an RFID reader receives a tag’s reflection signal, the reader

not only retrieves the tag’s ID information, but also estimates RF

characteristics like phase and RSS [24, 25]. The RSS is the power of

a tag’s backscatter signal received by an RFID reader, which can be

expressed in dBm as [9]:

𝑅𝑆𝑆 = 10 log |
𝑃𝑡𝐺

2

𝑡 𝜆
2𝜎

(4𝜋)3𝑑4
· 𝜂 |, (1)

where, 𝑃𝑡 is the reader’s transmission power, 𝐺𝑡 is the gain of a

reader’s antenna, 𝜆 is the wavelength of RFID signal, 𝜎 is the radar

cross section of the tag, 𝑑 is the distance between the reader’s

antenna and the tag, and 𝜂 is the impedance matching efficiency

between a tag’s chip and its antenna.

For the best impedancematchingwhen𝜂 = 1, all electromagnetic

waves absorbed by the tag’s antenna are transferred to the chip,

and the tag’s RSS value reaches the maximum. In practice, the RSS

value is less than the theoretical maximum due to various factors in

the tag design. The matching efficiency 𝜂 is related to the reflection

coefficient Γ as follows:

𝜂 = 1 − |Γ |, (2)

where |Γ | ≤ 1. The reflection coefficient Γ is related to the impedance

of the tag’s antenna and the antenna’s load. For an unmodified or

conventional tag, this load is the impedance of an RFID chip. Fig. 3

shows an equivalent circuit of an RFID tag, where 𝑍𝑎 and 𝑍𝑐 are

impedance of the antenna and the chip. Then, the reflection coeffi-

cient Γ can be expressed as [32]:

Γ =
𝑍𝑐 − 𝑍𝑎

𝑍𝑐 + 𝑍𝑎
. (3)

When 𝑍𝑐 = 𝑍𝑎 , then Γ = 0, implying no reflected signal, so maxi-

mum power is delivered to the chip By Eqn. (2), the best impedance

matching is achieved since 𝜂 = 1, and the RSS reaches the maximum

value by Eqn. (1).

3.2 Input Impedance of A Transmission Line

A transmission line connects a pair of conductors to guide an electro-

magnetic wave from one end to the other, typically with minimum

propagation loss into space and substrate. At high radio frequencies,

the behaviour of signals in a transmission line is very different from

that of ordinary wires carrying low-frequency signals. This is espe-

cially true when the physical dimension of a circuit is comparable

Figure 3: An equivalent circuit of an RFID tag.

Figure 4: A lossless transmission line, length 𝑙 , terminated

with a load 𝑍𝐿 . Δ𝐿 and Δ𝐶 are the parasitic capacitance and

inductance per unit distance.

to the wavelength of the radio signal. This is because passive para-

sitics, like inductance, capacitance, and resistance, are distributed

along the length of the transmission line. Thus, the impedance of a

transmission line become non-negligible for high frequency signals.

The input impedance of a transmission line is calculated as fol-

lows. Consider a lossless transmission line with length 𝑙 , terminated

with a load 𝑍𝐿 , as shown in Fig. 4. Due to capacitance and induc-

tance per unit distance (Δ𝐿 and Δ𝐶), the input impedance 𝑍𝑖𝑛 is

not equal to the load 𝑍𝐿 . Instead, the input impedance 𝑍𝑖𝑛 of a

transmission line is [4]:

𝑍𝑖𝑛 = 𝑍0 ·
𝑍𝐿 + 𝑗𝑍0 tan(𝛽𝑙)
𝑍0 + 𝑗𝑍𝐿 tan(𝛽𝑙)

, (4)

where, 𝑍0 is the characteristic impedance, which is a constant for

a given transmission line, and 𝛽 = 2𝜋
𝜆
, where 𝜆 is the signal wave-

length.

We return to these equations in Section 4.3 to explain why RSS

changes in a predicable way when a finger touches on the trans-

mission line between two tags.

4 TRANSMISSION LINE AS SENSORS

This section explains how an RFID transmission line can be used as

a finger input sensor. We first motivate the need for our approach by

giving inherent challenges if one use only an RFID tag as a sensor.

Then, we provide the details of our prototype RFID transmission

line device and show experimental results of RSS patterns when

a finger touches different positions along the transmission line.

Finally, using theoretical analysis we introduce an analytical model

describing how our device works, and show that model simulations

produce the same RSS pattern as the experiment.

4.1 Design Challenge

Earlier, we described previous systems using phase or RSS to detect

finger touches on RFID tags [16, 17, 20]. To illustrate the limitations

of these approaches, we perform a benchmark experiment using the

setup shown in Fig. 5a, which is similar to RIO [20]. There are 12

test locations for an RFID tag (i.e., an Alien Squiggle RFID tag [5])

in a 2.5 × 2.5 m
2
area, where the distance between two adjacent

tag locations is ∼0.6 m. For each tag location, we measure RSS and
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(a) Experiment setup to test reliability of using RSS or phase to detect finger

touches on an RFID tag.

(b) RSS and phase of finger touches on an RFID tag when the tag is located

across 12 different locations.

RSS of 12
tag locations

(c) The increase trend of RSS over 12 different tag locations when a finger

swipes from position ‘0’ to ‘6’.

Figure 5: Comparing robustness of the absolute phase/RSS

values and the increase/decrease trend of RSS values across

different tag locations.

phase when a finger touches 6 positions, which are separated by

1 cm, along a half antenna
2
of the tag.

The results are shown in Fig. 5b, where the 𝑥-axis shows 6 touch

positions and a baseline case when there is no finger touch, and

the 𝑦-axis shows the RSS or phase values. Each error bar shows

the error ‘whiskers’ at 95% of the RSS or phase values measured

at each finger touch position across 12 locations. Each box shows

median and standard deviation of these measured values. As we

can see, there are significant RSS and phase variations across tag

2
Due to symmetry, the same phase/RSS pattern will occur on the other half antenna.

locations at any given finger touch position. This is because RSS

and phase are a function of not only a finger touch, but also the tag

location with respect to the reader [20, 24, 26].

The results show that the absolute phase can not be used to detect

finger touches across different tag locations because all phase values

of touching overlap the baseline phase of no-touch, as shown in

Fig. 5(b). Similarly, the absolute RSS can not be used to reliably

determine touch positions along tag because RSS values of adjacent

touch positions overlap, as shown in Fig. 5(b). In fact, the absolute

RSS can only be used detect a single touch gesture robustly, and only

on a certain area of the tag. For example, one could use a threshold of

∼49 dBm (i.e., the minimum baseline RSS value) to reliably detect a

touche (one gesture) on the tag area between position 0 and position

2. Another option is to use finger sliding movements on the tag

to enable a robust trinary touch detection given the ascending or

descending pattern. Fig. 5c shows RSS values of a tag when a finger

slide over its antenna. Each colour line shows the sliding RSS at

one of the 12 tag locations. As we can see, all RSS values increase

as the finger moves from position 0 to position 6, regardless of the

tag location. Although this approach enable robust input detection

even when tag location changes, but its inputs are very limited

(1 or 2 finger gestures per tag). Unfortunately, because tags must

be spaced half-wavelength apart (i.e., 16.4 cm for 915 MHz RFID

signals) to avoid a coupling effect [22, 23], placing multiple tags on

an input device is not an option. For example, one needs a 64 cm

wide device to enable 10 inputs, using this approach.

To make a reasonably compact input device that can detect mul-

tiple finger inputs in a way that is robust to device location changes,

we adapt the sliding finger gesture idea to an RFID transmission

line structure introduced later.

4.2 Prototype Device Design

We introduce an RFID-based system capable of detecting finger

gestures in a way that is robust to changes in device location or

environment. Our key idea is that touching different positions along

the transmission line changes the impedance matching between

each chip and its antenna, changing the RSS for each chip. There-

fore, by looking at relative RSS differences and the pattern of RSS

changes, we can sense different sliding finger gestures while it is

robust to location and environment change.

To validate this idea, we first constructed a prototype input

device shown in Fig. 6. It has two RFID tags mounted on a thin

carboard substrate so they are spaced 16 cm apart. Each tag includes

a commodity RFID chip [6] and a simple dipole antenna built by

two 8.2 cm copper wires. To create a transmission line, the two

RFID chips are connected together by two 1.6 mm wide copper

strips. Note that we use different chips as the one used in the RFID

tag tested in the last section. This is because the tag’s chip is too

small to solder a transmission line. Therefore, we use RFID chips

with larger footprints. But we believe the RFID manufacturers can

easily build our input device by using any RFID chips and adding

a printable transmission line, just like they add a printable tag

antenna to RFID chips.

Next, we conduct a benchmark experiment in a laboratory en-

vironment with one reader antenna mounted on the ceiling, and

the device held by a user. The distance between the antenna and
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Figure 6: Prototype device for sensingfinger input: twoRFID

chips with dipole antennas are mounted 16 cm apart on a

cardboard substrate, the chips are connected by copper tape

to form a transmission line.

the input device is 1.2 m. We label 17 touch positions along the

transmission line on the device, spaced by 1 cm apart, as shown in

Fig. 6. We then measure RSS values when a finger touches at each

of these positions.

Fig. 7 shows the result of this experiment. The RSS values of each

tag vary when a finger touches different positions. Interestingly,

RSS values of each tag increase to a peak at a specific position (e.g.,

position 5 for tag 1) and then decreases after that.

Our hypothesis is that when placing a finger on the transmission

line, the finger acts as a capacitor [13] and loads the transmission

line. However, touching different positions of the transmission line

creates different impedance to each RFID chip, resulting in changes

of the matching efficiency in Eqn. (1). The added extra impedance is

a function of the distance from the finger touch position to the chip.

RSS reaches the maximum value when the added impedance helps

the RFID chip to be matched to its antenna. To test this hypothesis,

we theoretically analyze our design in the next section.

4.3 Theoretical Analysis And Model

We show through theoretical analysis why and how finger touches

change the RSS of two tags on our input device. To do so, we con-

sider a setup, where the following parameters are fixed or constants:

the transmission power of the reader (𝑃𝑡 ), the distance between

the reader and the input device (𝑑), the signal wavelength (𝜆), the

antenna gain 𝐺𝑡 , and radar cross section 𝜎 . In this setup, Eqn. (1)

can be simplified as:

𝑅𝑆𝑆 = 10 log(1 − |Γ |) +𝐶, (5)

where, 𝐶 is a constant and Γ is the reflection coefficient, related

to the matching between the antenna and the loaded RFID chip.

This equation implies that, for a given setup and hardware imple-

mentation, RSS is only a function of Γ. Thus, since our experiment

shows that finger touches change the RSS, we hypothesis that finger

touches change Γ, resulting in changes of RSS values.

To validate this hypothesis, we model the reflection coefficient Γ
when a finger touches different positions of the input device. Fig. 8

shows an equivalent circuit of the device, where 𝑍𝑎 , 𝑍𝑐 and 𝑍 𝑓

are impedance of the tag’s antenna, the chip and the finger. The 𝑙1
and 𝑙2 are distances of chip-1 and chip-2 from the finger position.

Figure 7: RSSmeasured using the prototype device, by finger

touch position along the transmission line.

Figure 8: An equivalent circuit of our input device.

Therefore, the distance between two chips is 𝐿=𝑙1 + 𝑙2. We only

model the reflection coefficient Γ for tag 1. However, due to the

symmetry of our device design, one can simply model Γ for tag 2.

We define 𝑍12 as the impedance seen looking from left into port-

12 (labeled as 1 and 2 in Fig. 8). Therefore, the chip’s impedance𝑍𝑐 is

in parallel with 𝑍12 (symbolized as 𝑍𝑐 | |𝑍12) and then in series with

the antenna’s impedance 𝑍𝑎 . Followed by Eqn. (3), the reflection

coefficient Γ of tag 1 can be expressed as:

Γ =
𝑍𝑐 | |𝑍12 − 𝑍𝑎

𝑍𝑐 | |𝑍12 + 𝑍𝑎
=

𝑍𝑐𝑍12

𝑍𝑐+𝑍12

− 𝑍𝑎

𝑍𝑐𝑍12

𝑍𝑐+𝑍12

+ 𝑍𝑎
. (6)

As we can see, the reflection coefficient Γ is only a function of

𝑍12, since 𝑍𝑐 and 𝑍𝑎 are constants.

Next, we analyze the relationship between 𝑍12 and finger touch

positions. Based on the transmission line theory explained in Sec-

tion 3.2, the impedance 𝑍12 can be expressed as:

𝑍12 = 𝑍0
𝑍𝐿 + 𝑗𝑍0 tan(𝛽𝑙1)
𝑍0 + 𝑗𝑍𝐿 tan(𝛽𝑙1)

, (7)

where, 𝑍0 is the characteristic impedance, which is a constant for

a given transmission line, 𝛽 = 2𝜋
𝜆
, 𝑙1 is the distance of the finger

from chip-1, and 𝑍𝐿 can be expressed as:

𝑍𝐿 =
𝑍 𝑓 𝑍34

𝑍 𝑓 + 𝑍34
, (8)

where, 𝑍 𝑓 is the impedance of the finger, and 𝑍34 is the impedance

seen looking into port-34 and can be expressed as:

𝑍34 = 𝑍0
𝑍 ′
𝐿
+ 𝑗𝑍0 tan[𝛽 (𝐿 − 𝑙1)]

𝑍0 + 𝑗𝑍 ′
𝐿
tan[𝛽 (𝐿 − 𝑙1)]

, (9)

where 𝐿 is the length of the transmission line and 𝑍 ′
𝐿
can be ex-

pressed as:
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Figure 9: RSS simulated by ourmodel of the device, by finger

touch position along the transmission line.

𝑍 ′
𝐿 =

𝑍𝑐𝑍𝑎

𝑍𝑐 + 𝑍𝑎
. (10)

By combining Eqn.(6)–(10), one can show that Γ is only function

of the finger touch position, i.e., Γ = 𝑓 (𝑙1). Further, using Eqn. (5),
we can show that RSS is a function of the finger touch position, i.e.,

𝑅𝑆𝑆 = 𝑔(𝑙1), which validates our hypothesis.

4.3.1 Model Simulation. We run a simulation based our analysis

to see how RSS changes for different finger touch positions (𝑙1).

Fig. 9 shows the result of this simulation. The pattern of RSS values

follow the same pattern as our device experiment measurements,

shown in Fig. 7. This consistency between the simulation and the

real-world behaviour validates our model analysis, and provides

the reason why and how a transmission line can be used for finger

touch input in this way.

4.3.2 Transmission Line Length. The model and theoretical anal-

ysis also explains why we use a 16 cm long transmission line for

our device. In Eqn. (7) and Eqn. (10), the parameter 𝑙1 relating to

the transmission line length 𝐿 (𝑙1 ≤ 𝐿), form an argument to the

periodic tan(·) function. This means 𝑍12 and 𝑍34 will be periodic,

and so will the resulting RSS. A periodic RSS response over the

length of a transmission line would prevent reliable detection.

To avoid this, we need to limit the length of the transmission

line. Consider the tan(𝛽𝑙1) term in Eqn. (7). Since 𝛽 = 2𝜋
𝜆
, the

argument to tan(·) can be written in terms of wavelength 𝜆, so
2𝜋
𝜆
𝑙1 ∈ (−𝜋

2
, 𝜋
2
) and therefore 𝑙1 ∈ (−𝜆

4
, 𝜆
4
). This means 𝑙1 should

less than
𝜆
2
, half a wavelength, to avoid periodicity. For the 915 MHz

RFID signal, therefore, the maximum length for 𝑙1 and the trans-

mission line 𝐿 is 16.4 cm.

5 FINGER INPUT DETECTION

This section describes a versatile finger input vocabulary composed

of ten sliding gestures enabled by a heuristics-based detection algo-

rithm designed to be robust to changes in device location.

5.1 Gesture Definition

To motivate the use of increasing and decreasing patterns in RSS

when a finger slides along the transmission line, we log RSS data

RSS of 22
locations

RSS of 22
locations

Figure 10: RSS measurements of finger touches when our in-

put device is located across 22 different locations.

produced by our input device at different device locations. In a

laboratory environment with a ceiling mounted antenna, a user

holds the device and touches all 17 positions along the transmission

line, one by one, as shown in Fig 6. At each position, the finger is

held for 5 seconds. From the resulting 400 RSS samples per position,

the average RSS is calculated as a data point. Importantly, this

process is repeated at 22 different locations distributed across a

2.5 m × 2.5 m area, such that the distance between two adjacent

locations is ∼0.6 m.

Fig. 10 shows the results for each tag separately for clarity. There

are 22 colour lines, each shows the pattern of RSS for all 17 touch

positions for one device location. We make two observations:

• There is an increasing or decreasing pattern of RSS across finger
positions that is independent of device location. For example, when

a finger moves from the 5 cm position to the 11 cm position, all

RSS values of tag 1 decrease, and all RSS values of tag 2 increase.

• The touch position where the RSS peaks is independent of device
location. In particular, the maximum RSS of tag 1 is always at the

5 cm touch position, and the maximum RSS of tag 2 is always at

the 11 cm touch position.

5.1.1 Ten Sliding Gestures. Motivated by these observations, we

define three sections along the transmission line, segmented by the

5 cm and 11 cm peak positions. For notational convenience, we

label the boundary positions of the three sections as a, b, c, and d.

Using these labels and sections, we define 10 different finger sliding

gestures, where each is done by sliding a finger along a specific

section of the transmission line. Fig. 11a illustrates the transmission

line sections, boundary labels, and the sliding gestures as directional

labelled arrows.
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Table 1: Signal features for the sliding finger gestures.

Gesture

Peaks Offset Relative Trend

𝑁1 𝑁2 𝑂1 𝑂2 Δ𝑅 𝑇1 𝑇2

AB 1 1 0 0 > 0 ↗ ↗
BA 1 1 0 0 > 0 ↘ ↘
BC 2 2 0 0 n/a ↘ ↗
CB 2 2 0 0 n/a ↗ ↘
CD 1 1 0 0 < 0 ↘ ↘
DC 1 1 0 0 < 0 ↗ ↗
ABC 1 1 1 0 n/a ↗↘ ↗
CBA 1 1 1 0 n/a ↗↘ ↘
BCD 1 1 0 1 n/a ↘ ↗↘
DCB 1 1 0 1 n/a ↗ ↗↘

For example, when a finger slides from a to b, we define it as

the input gesture ab. Similarly, when a finger slides from a to b

and continues to c, we define it as the input gesture abc. When

convenient, we also refer to pairs of gestures sharing section bound-

aries that are differentiated only by sliding direction with /, such as

ab/ba for the related gestures a to b and b to a.

5.2 Gesture Signal Features

We introduce signal features which can be used to robustly detect

the 10 gesture inputs, even if the device location changes. To do so,

we first investigate how RSS of different gesture inputs look like.

The top and bottom sub-figures of Fig. 11(b-k) show RSS and RSS

derivative
3
of two tags for each gesture input, respectively. In each

plot, the first 0.5 s shows the baseline RSS values, when there is

no touch event. Then, a finger slides on the input device, changing

the RSS values. Motivated by these measurements, we define four

signal features (as shown in Table 1) which are robust to location

changes of the input device and use them to recognize the 10 finger

gesture inputs.

Feature 1: Peaks (𝑁1, 𝑁2). As we can see in Fig. 11, when a

finger touches or releases the position b or c, the RSS changes very

rapidly. This is because the RSS value when a finger touches the

two positions is at its peak. These sudden changes create spikes

in the derivatives of the RSS measurements, as shown in Fig. 11.

Therefore, by counting the spikes in the derivatives of RSS, we can

detect if the gesture has started or ended at position b or c. As

we can see in Fig. 11, the derivatives of RSS for gestures ab/ba,

cd/dc, abc/cba, and bcd/dcb have one spike, while the gestures

bc/cb have two spikes. Hence, the first feature that we use in our

detection algorithm is the number of peaks in the derivatives of

RSS measurements. Table 1 summarizes the number of peak in

derivatives of RSS values for different gestures, where 𝑁1 and 𝑁2

are the number of peaks for tag 1 and tag 2.

Feature 2: Offset (𝑂1, 𝑂2). As we can see in Fig. 13, for some

gestures, such as ab/ba, bc/cb, and cd/dc, the maximum RSS and

the spike of the RSS derivative occur at the same time. On the other

hand, for some other gestures, such as abc/cba and bcd/dcb, there

3
Let an RSS sequence be 𝑅 = {𝑟1, · · · , 𝑟𝑖 , · · · , 𝑟𝑁 }, then the RSS derivative sequence

is 𝑦𝑖 = 𝑟𝑖+1 − 𝑟𝑖 , 1 < 𝑖 < 𝑁 − 1.

is an offset between when the maximum RSS is reached and the

spike of the RSS derivative is registered. Using the input abc as

an example, the derivative of RSS of tag 1 spikes when a finger

releases position c, while the maximum RSS happens when the

finger is passing position b. We use this offset as the second feature.

Since measuring the exact offset is challenging, we map them to a

binary: 0 for ‘no offset’ and 1 for ‘offset’. In particular, if the offset

is less than 20 samples (i.e., 100 ms), we consider it as ‘no offset’,

otherwise, we consider it as ‘offset’. Table 1 summarizes the offsets

for different gestures, where 𝑂1 and 𝑂2 represent the offset of tag

1 and tag 2, respectively.

Feature 3: Relative RSS (Δ𝑅). The third feature is the relative

RSS magnitude between two tags. This feature can particularly help

in differentiating between ab/ba and cd/dc. This is because most

RSS samples of tag 1 is larger than the RSS samples of tag 2 for

gesture ab/ba, and most RSS samples of tag 1 is smaller than the

RSS samples of tag 2 for gesture cd/dc, as shown in Fig. 11.

To compare the relative RSS relationship of two tags, we define

an averaged RSS change Δ𝑅 = 1

𝑁

∑𝑁
𝑖=1 (𝑟1,𝑖 − 𝑟2,𝑖 ), where 𝑟1,𝑖 and

𝑟2,𝑖 are RSS samples of tag 1 and tag 2, respectively. If Δ𝑅 > 0, it

implies that most RSS samples of tag 1 is larger than the RSS of tag

2; if Δ𝑅 < 0, it implies that most RSS samples of tag 2 is larger than

the RSS of tag 1. Table 1 summarizes values of Δ𝑅 for inputs ab/ba

and cd/dc.

Feature 4: Trend (𝑇1, 𝑇2). As shown in Fig. 11, during the time

that a finger is sliding on the transmission line, RSS of each tag is

either increasing or decreasing, depending on the gesture input.

For example, for the input ab, RSS values of both tags increase. For

the input bc, RSS values of tag 1 decreases while the RSS value of

tag 2 increases. Therefore, we use the increase or decrease trend of

RSS values as a feature for our gesture detection algorithm. Table 1

summaries the RSS trend for all gesture inputs, where 𝑇1 and 𝑇2
represent the RSS trend (‘↗’ for increase and ‘↘’ for decrease) of

tag 1 and tag 2, respectively.

5.3 Robustness in Multipath Environment

We have defined four features that are robust to changes in the

device location and RF environment. In this section, we examine

the impact of multipath effect on the robustness of the features.

In an indoor environment, RFID signals can travel from RFID tags

to the reader’s antenna by two or more paths created by reflectors

in the environment, such as walls and furniture. Since our device

deploys two tags 16 cm apart, each tag may experience different

multipath effects where RSS values vary for each tag differently

when the device moves or environment changes. Although, this will

not impact ‘Peak’, ‘Offset’, and ‘Trend’ features, it can change the

relative RSS (i.e., Feature 3). Hence, in multipath environments ‘rel-

ative RSS’ feature can not help in differentiating gestures between

ab/ba and cd/dc. To better understand the problem, Fig. 12a-b

shows RSS values of two tags for the same gesture cd when per-

formed at two different device locations with different amount of

multipath signals, i.e., Location 1 with few multipath and Location

2 with rich multipath. As we can see, the RSS of tag 1 is higher

than RSS of tag 2 at Location 1, which is true for the gesture cd.

But their relative RSS relationship is opposite for Location 2, and
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Figure 11: Example sequences of RSS values and numerical derivatives resulting from the ten sliding finger gesture inputs.

this opposite relative RSS matches with the gesture ba. The rea-

son is that tags experience different multipath effects in different

locations, resulting in different relative RSS values. This would in-

troduce recognition errors when differentiating between gestures

ab/ba and cd/dc in the multipath environment.

To solve this problem and enhance the robustness of ‘relative

RSS’ (Feature 3) in multipath environments, we measure baseline

RSS of each tag when there is no finger touch. Then we remove the

baseline from all RSS measurements before computing the relative

RSS values. This process helps to remove the impact of multipath

since multipath only adds a constant offset to RSS values. Fig. 12c

shows the RSS change values of two tags after removing their

baseline RSS for the same experiment as Fig. 12b. As we can see,

once we remove the baseline RSS, the RSS of tag 1 becomes higher

than tag 2, i.e., it matches with the ‘relative RSS’ feature in Fig. 12a.

This suggests that removing the baseline RSS helps in making

Feature 3 robust in multipath environment.
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Figure 12: RSS andRSS change for gesture cdwhen the input

device is located at different locations.

5.4 Gesture Detection Algorithm

So far, we have introduced four signal features which are robust to

location changes of the input device. Here, we introduce a decision

tree classifier which can detect and classify gestures using the four

features. The decision tree has four steps, as shown in Fig. 13:

• Step 1: In the first step, we use the feature ‘Peak’ to decide

whether the performed gesture is bc/cb or other possible gestures.

Recall that for gesture bc/cb, there are two peaks (i.e., 𝑁1 =

2, 𝑁2 = 2) in the derivatives of RSS, while for other gestures,

there is only one peak (i.e., 𝑁1 = 1, 𝑁2 = 1).

• Step 2:. Next, we use the feature ‘Offset’ to decide whether the

gesture is one of { ab/ba, cd/dc } or one of { abc/cba, bcd/dcb

}. As mentioned earlier, when a finger slides through position

b or c, there may be a time offset between the maximum RSS

and the spike in RSS derivatives. Specifically, if the gesture is

one of { abc/cba, bcd/dcb }, one of offsets will be non-zero (i.e.,

𝑂1+𝑂2 = 1). Otherwise, both offsets will be zero (i.e.,𝑂1+𝑂2 = 0).

• Step 3: This step has two sub-steps. First, we decide whether the

gesture is ab/ba or cd/dc. To do so, we use the feature ‘Relative

RSS’. As already explained in Table 1, this feature is positive

(i.e., Δ𝑅 > 0) when the gesture is ab/ba and it is negative (i.e.,

Δ𝑅 < 0) when the gesture is cd/dc. Second, we differentiate

between abc/cba and bcd/dcb. To do so, we use the feature

‘Offset’. As shown in Table 1, for gesture abc/cba, 𝑂1 = 1 and

𝑂2 = 0, while for gesture bcd/dcb, 𝑂1 = 0 and 𝑂2 = 1.

• Step 4: Finally, we distinguish the direction of two gestures that

share section boundaries using the ‘Trend’ feature. Consider

ab/ba as an example. The trend for tag 1 is upward (i.e., 𝑇1 =↗)

for the gesture ab, while it is downward for the gesture ba (i.e.,

𝑇2 =↘). As shown in Fig. 13, similar decisions can be made for

other pairs of related gestures.

6 IMPLEMENTATION

The design and fabrication of our finger input device was explained

in Section 4, here we describe other system details.

We use an Impinj Speedway R420 RFID reader [10] without

any hardware or firmware modification. The RFID reader has four

antenna ports and operates in a frequency range of 902.75–927.25

MHz. The default antennas used by the reader are directional, with

9 dBi gain and 70
◦
elevation and azimuth beam widths [1]. The

reader and RFID chips/tags are compatible with EPC Gen2 standard

protocol [11]. The multiple reader antennas work in a time-division

multiplexing mode. The time slot for each antenna is ∼200 𝜇𝑠 [10].
All data logging and detection algorithms are implemented in C#

and Python code running on a laptop (Intel i5-6200U 2.4GHz CPU,

8GB RAM). The laptop is connected to the RFID reader through an

Ethernet cable for communication. Backscatter packets for all tags

received by the reader are forwarded to the laptop for processing.

The size of an RFID backscatter packet is small since it only contains

the tag’s ID (12 bytes at most) [10].

7 EVALUATION

In this section, we evaluate the performance of our system when

differentiating between the 10 input gestures under different condi-

tions. We first report on a main experiment examining recognition

performance across different device locations in two different room

environments. After, we discuss focused follow-up experiments

examining the impact of other factors: reader antenna distance,

finger sliding speed, and changes in the RF environment caused by

nearby moving people.

The demo video is available on YouTube [28]. The source code

and sample data of our input gesture detection algorithm are avail-

able on GitHub [27].

7.1 Experiment 1: Device Location Changes

The performance of gesture detection when the location of the

device changes is a primary validation of our approach and system.

7.1.1 Method. The experiment is conducted in two environments,

a smaller space in a laboratory and a mid-sized classroom (see

Fig. 14). In the laboratory setup, one antenna is mounted on the

ceiling creating a coverage area of 2.5 × 2.5 m
2
. In the classroom,

four antennas are mounted under ceiling lights to cover 5 × 5 m
2
,

equivalent to 4 rows of tables, or 24 seats.
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Figure 13: Sliding finger gesture detection algorithm decision tree.
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Figure 14: Experiment settings: (a) one antenna in a labora-

tory area; (b) Four antennas in a classroom.

The protocol requires the user to perform all 10 input gestures,

each one 10 times, with the device held at 12 locations in the labo-

ratory and 36 locations in the classroom. Each location is chosen

pseudo-randomly such that it is within the coverage area and the

distance between adjacent test locations is approximately 0.5 m.

At any location, the distance from the device to the nearest reader

antenna is between 0.7 and 1.6 m.

In summary, for the laboratory there are 12 locations × 10 inputs

× 10 trials = 1,200 test samples, and for the classroom, there are 36

locations × 10 inputs × 10 trials = 3,600 test samples.

7.1.2 Results. We use a Confusion Matrix [8] to examine individual

accuracy for detecting each gesture input and Precision and recall
[8] for overall performance. A high recall means there are many

true positives with few false negatives, and high precision means

there are many true positives with few false positives.

Fig. 15 shows the recognition accuracy for each input gesture

across all device locations in each of the two environments. In

both environments, the system achieves at least 91% identification

accuracy, and in many cases much higher. For example, in the

classroom, 7 out of 10 gestures have an accuracy of 95% or more.

Overall performance is very good. Detection in the laboratory has

95.2% precision and 94.5% recall, and detection in the classroom

has 95.4% precision and recall 94.6%.

(a) Laboratory setting with 12 device locations.

(b) Classroom setting with 36 device locations.

Figure 15: Confusionmatrices showing the input gesture de-

tection accuracy across multiple locations.
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(a) RF environment from nearby people. (b) Reader antenna distance. (c) Finger sliding speed.

Figure 16: Results for Experiments 2, 3, and 4.

7.2 Experiment 2: RF Environment Variations

Variations in the RF environment can also affect RSS, which could

introduce detection errors. We test a common cause of RF environ-

ment changes, when people move nearby the experimental setup.

7.2.1 Method. Using the laboratory environment, we fix the lo-

cation of the user operating the input device beneath the antenna,

and ask other people to move nearby with a normal walking speed.

We do this with 0, 1, 2, and 3 people, forming a ‘people’ experimen-

tal factor. The distance between the moving people and the input

device is controlled to be within 0.2 m to 1.0 m, and the people

continue to move as the user interacts with the input device. For

each number of people, the user performs 10 trials of the 10 input

gestures. Note, although the line of sight path does not get block

with people since the reader antenna is mounted on the ceiling,

signals are still affected by changes in the RF environment resulting

from people moving near by. In summary, 4 levels of ‘people’ × 10

gestures × 10 trials = 400 test samples.

7.2.2 Results. Fig. 16a shows the precision and recall of detecting

all gesture inputs for each number of people moving nearby. Both

precision and recall are higher than 90%, even with three moving

people. This suggests that this source of RF environment variation

does not have a great impact on the reliability of our system.

7.3 Experiment 3: Reader Antenna Distance

A user will hold the device at different heights and locations, re-

sulting in changes in the distance from the input device to the

reader antenna. In this experiment, we evaluate this impact on

input detection accuracy.

7.3.1 Method. Using the laboratory environment with a ceiling

mounted antenna, the user with the device stands at the projec-

tion location of the reader antenna on the ground. We introduce

a ‘distance’ factor where the user holds the device such that it is

either 0.7 m, 1.2 m, 1.6 m, or 2 m away from the reader antenna. At

each distance, all 10 gestures are performed one by one, with each

gesture performed 10 times. In summary, for this experiment, there

are 4 levels of ‘distance’ × 10 gestures × 10 trials = 500 test samples.

7.3.2 Results. Fig. 16b shows the results. When the distance is less

than 2 m, both precision and recall are higher than 97%. At 2 m,

precision and recall drop to 81% and 85%. This reduction in accuracy

is due to noisy RSS readings caused by the lower signal-to-noise

ratio (SNR) at this range. Note the working range of the comparable

RIO finger input system is less than 2mwith unmodified commodity

tags, and less than 1.5 m with customized tags [20]. In general, the

working range may be increased by using a higher quality RFID

chip that is more sensitive, designing a better tag antenna with

greater impedance matching, or optimizing reader transmission

power over multiple antennas [19, 31].

7.4 Experiment 4: Finger Sliding Speed

Different users may slide their fingers at different speeds along

the transmission line. In this experiment, we evaluate how sliding

speeds affects detection accuracy.

7.4.1 Method. Using the laboratory environment, with the user

standing at a fixed location under a ceiling mounted antenna, we

test three finger sliding speeds: ‘Fast’ which covers the 5 cm distance

of one segment gestures (e.g. ab) in less than 1 second; ‘Slow’ which

covers a 5 cm distance in more than 2 seconds; and ‘Medium’ in

which the sliding speed is between the fast and the slow. For each

sliding speed, the user performs 10 trials of all 10 gestures, resulting

in 300 test samples.

7.4.2 Results. Fig. 16c shows the results. Both precision and recall

are higher than 90% for all three sliding speeds, but the accuracy

decreases when the sliding speed is very fast. We believe this is

primarily a factor of reader reading rate, which could be increased.

The reading rate of our reader is ∼60 samples per tag per second.

However, the reading rate can be simply improved by using a faster

reader. For example, the reading rate of the LRU1002 reader is 241

samples per tag per second [12]. This reading rate enables our

system to reliably detect even fast gestures which are performed in

0.25 second or slower.

Finally, note that we assume the user does not significantly move

during sliding a finger on the input device. Although, slow move-

ment is fine, if the user moves quickly, while they are performing a

gesture, the RSS pattern will change because of both movement and

the gesture, and hence our system can not robustly detect the ges-

ture. However, since the time of each gesture is short, this problem

does not happen very often in practice. Furthermore, one can also

simply address this problem by designing an RFID reader which

has much higher reading rate.
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Figure 17: Results of Experiment 5: performance compar-

isons in LOS and NLOS.

7.5 Experiment 5: Non-Line-of-Sight Setting

The evaluation settings above assume line-of-sight (LOS) from

RFID tags to the reader antenna with few multipaths. When reader

antennas are placed in the ceiling, this assumption is reasonable

for many use cases. However, in this experiment we evaluate a

more extreme non-line-of-sight (NLOS) setting, when a large object

blocks the direct path between the device and the reader antenna.

7.5.1 Method. The blocking object is a large box (1.2 m × 1.0 m

× 0.3 m) covered in aluminum foil, which is placed in a 1.4 m

space between the user with the device and the reader antenna. In

this NLOS setting, the user performs all ten gestures one by one,

repeating each one 10 times. For comparison, this is repeated for a

LOS setting by removing the blocking box. In summary, 2 settings

(NLOS and LOS) × 10 gestures × 10 trials = 200 test samples.

7.5.2 Results. Fig. 17 shows that input detection accuracy decreases
slightly in the NLOS setting, but the detection accuracy remains

higher than 90% for all gestures. This suggests our approach is

robust even in the NLOS scenario. This is because our input gesture

detection algorithm uses the relative trend of RSS values, while

NLOS settings mostly impact absolute RSS values.

8 LIMITATIONS AND FUTUREWORK

There are limitations to our system and approach that suggest

further investigation and possible extensions:

Detecting more input gestures. Our current prototype device

detects only 10 different input gestures using two RFID chips. How-

ever, the system may be extended to detect more inputs using the

same basic technique in different configurations with mutliple chips

For example, one can place three RFID chips on vertices of a trian-

gle, and connect them using three transmission lines. This could

detect 10 input gestures per edge, enabling an input device capable

of detecting 30 gestures. Another possible configuration is a 2D grid

of transmission lines. We are currently exploring this approach,

noting it likely requires a new algorithm design applicable to a new

and greatly expanded gesture set.

Supportingmultiple input devices. Our device uses two com-

modity RFID chips. A typical RFID reader can read up to 240 tags

per second [12]. Thus, we can support up to 120 input devices si-

multaneously. This can be improved further by using faster readers.

System Cost. Our input device uses a transmission line and two

RFID chips which cost less than a dollar. For the RFID reader, we

use an Impinj R420 reader which costs ∼1500 USD. It is an industrial
RFID reader which can support up to 32 antennas, and provides

both RSS and phase measurements. However, since our system

requires only RSS readings and a single antenna, one can use a

less expensive reader. For example, the SR681 RFID reader is 199

USD, and has a range up to 8 m [33]. Designing low-cost, compact

RFID reader tailored to a smart device IoT setting using specialized

devices like our system is an interesting future research direction.

Robustness to different users. Although, our current design is

evaluated with one user, we believe it works also for different users

since it relies on the pattern of RSS changes instead of absolute RSS.

In particular, different users (with different height, sliding speed,

BMI, finger thickness) cause variations in the absolute RSS values

which will automatically be removed since our algorithm uses the

pattern of RSS changes. For example, in Section 7.3, we show our

system achieves high accuracy for different user heights when the

tag-reader distance is less than 2m. Furthermore, in Section 7.4 we

show our system is robust to different finger sliding speeds.

Impact of different substrate materials. Our prototype uses

cardboard as the device substrate, but other non-metal materials

such as plastics, wood, and glass can also work in our design. Any

non-metal material should not significantly alter the electromag-

netic field and RSS readings of RFID tags. Past work has empirically

shown that many insulator surface materials, such as a book or

wood, did not change the absolute RSS of unmodified RFID tags [24].

However, a metallic material or coating is likely problematic, since

it causes a large signal attenuation, reducing the operating range

of an RFID tag significantly.

9 CONCLUSION

This paper presents an RFID-based system to detect a diverse range

of sliding finger input gestures, while remaining robust to device

location changes and typical RF environment changes caused by

nearby people. The key idea we propose, analyze, and implement

is creating a transmission line as a touch sensor between two RFID

tags, and using the characteristics of RSS values over time for

heuristics-based recognition. The method and system presented in

this paper can easily be adopted by designers and researchers to

create simple, low-cost, and battery-free input solutions for a wide

range of smart devices and other real world applications.
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