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Abstract—In applications where signal frequencies are high, but
information bandwidths are low, analog-to-information converters
(AICs) have been proposed as a potential solution to overcome the
resolution and performance limitations of high-speed analog-to-
digital converters (ADCs). However, the hardware implementation
of such systems has yet to be evaluated. This paper aims to fill
this gap, by evaluating the impact of circuit impairments on per-
formance limitations and energy cost of AICs. We point out that
although the AIC architecture facilitates slower ADCs, the signal
encoding, typically realized with a mixer-like circuit, still occurs at
the Nyquist frequency of the input to avoid aliasing. We illustrate
that the jitter and aperture of this mixing stage limit the achiev-
able AIC resolution. In order to do so, we designed an end-to-end
system evaluation framework for examining these limitations, as
well as the relative energy-efficiency of AICs versus high-speed
ADCs across the resolution, receiver gain and signal sparsity. The
evaluation shows that the currently proposed AICs have no per-
formance benefits over high-speed ADCs. However, AICs enable
2–10X in energy savings in low to moderate resolution (ENOB),
low gain applications.

Index Terms—Analog-to-digital converter (ADC), analog-to-in-
formation converter (AIC), compressed sensing (CS).

I. INTRODUCTION

E FFICIENT, high-speed samplers are essential for building
modern electronic systems. One such system is cognitive

radio, which has been proposed as an intelligent wireless com-
munication protocol for improving the utilization of un-used
bandwidth in the radio spectrum [1]. To implement this pro-
tocol, the entire radio spectrum has to be simultaneously ob-
served in order to determine the location of used channels. A
straightforward approach is to utilize a wideband, Nyquist rate
high speed analog-to-digital converter (ADC), however, a se-
vere drawback is that ADCs operating at multi-Giga samples
per second (GS/s) require high power and have limited bit reso-
lution [2], [3]. An alternative approach is to utilize an analog-to-
information converter (AIC) based on compressed sensing (CS)
techniques [4]–[12]. AICs can be used for any type of signals,
which are sparse in some domain. CS is a method for recov-
ering sparse signals from samples taken at sub-Nyquist rates
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[13], [14]. Consequently, AICs can relax the frequency require-
ments of ADCs, potentially enabling higher resolution and/or
lower power receiver front-ends.
The aim of this work is to compare the energy/performance

design space of AICs to that of the high-speed ADCs, in the
presence of the same circuit impairments that limit the high-
speed ADC performance. We explore how jitter and aperture
impairments, which commonly limit ADC performance at high
sampling frequencies, also impact AIC performance. Building
on the AIC jitter models used in [8], we also include aperture
effects. We illustrate, from a performance standpoint, that AICs
do not enable higher effective number of bits (ENOB), as com-
pared to a baseline high-speed ADC system. However, theymay
consume less power, depending on the nature of the input signal
such as signal sparsity, and some other factors such as the re-
quired receiver gain. We also illustrate that counter-intuitively,
using sparse sampling matrices does not help mitigate jitter ef-
fects, when compared to dense sampling matrices. We illustrate
these insights using a cognitive radio example, with 1000 chan-
nels that span the 500 MHz–20 GHz frequency spectrum. This
evaluation methodology can be extended in a fairly straightfor-
ward manner to other sparse signal applications.
The remainder of the paper is organized as follows. Section II

begins with a brief introduction to high-speed sampler lim-
itations and describes a currently proposed AIC system. In
Section III, we describe the system evaluation framework
which incorporates signal and noise models, and CS recon-
struction. Section IV discusses the impact of jitter noise
and aperture on both high-speed ADC and AIC system and
describes the potential benefit of using sparse versus dense
sampling matrices. Energy evaluation results and power models
for an implementation of AIC and high-speed ADC systems
are provided in Section V.

II. BACKGROUND

A. Limitations in High-Speed Sampling

To date, high-speed samplers are used in most modern elec-
tronic systems [2]. These systems, which work on a variety of
signals such as speech, medical imaging, radar, and telecom-
munications, require high-speed samplers such as high-speed
ADCs, to have high bandwidth and significant resolution while
working at high frequencies (10’s of GS/s). Unfortunately, with
the current technology, designing high resolution ADCs is quite
challenging at such high frequencies. This is mainly due to the
fact that these samplers are required to sample at the Nyquist
rate (i.e., at least twice the highest frequency component in the
signal) to be able to recover the original signal without any loss.

1549-8328 © 2013 IEEE
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Fig. 1. Ideal and non-ideal sampler, including jitter and aperture effects.

Ideally, each sampling event should result in the signal value at
the specific sampling instant. However, in practice, there are two
main factors that limit the ADC performance: i) uncertainty in
the sampling instant, i.e., jitter, and ii) the finite sampling band-
width, manifested as a weighted integration over a small time
interval around the sampling instant, i.e., aperture [15], [16].
As Fig. 1 shows, the sampling process consists of multi-

plying the input signal with some sampling signal, and then
low pass filtering. The ideal sampling signal would be a delta
train with impulses evenly spaced apart at sampling intervals
. The non-idealities of the sampling signal, e.g., jitter, are

manifested through uneven spacing of sampling impulses. The
th sampling error is given by the difference of two signal
values, respectively taken at times and , where
is a random variable that represents the th jitter value.

The jitter effect becomes more serious at higher input signal
frequencies, as the signal slew-rate (i.e., rate of change of a
signal) is proportional to the signal frequency. Thus, a small
jitter can cause a significant error in high-speed sampling [3].
We go on to allow the non-ideal sampler signal to further
incorporate aperture effects (in addition to the previously
described jitter effects). This is also illustrated in Fig. 1. We
model the aperture effect by replacing the delta impulses in
the sampler signal with triangle pulses, where the area under
the triangle is unity. In reality, the aperture in the sampler is
caused by two circuit non-idealities: i) low-pass filtering of the
sampler (i.e., limited sampler bandwidth in the signal path), and
ii) non-negligible rise/fall time of the clock signal (sampling
signal). These non-idealities make the sampler band-limited
and cause significant error at high frequencies [17].

Fig. 2. Block diagram of an AIC system.

CS has enabled alternative solutions to high-speed ADCs. A
well-known example is the AIC. It has been claimed that these
AIC architectures enable high resolution at high frequencies
while only using low frequency, sub-Nyquist ADCs [4]–[12].
In this work, we investigate whether or not AIC systems can in-
deed resolve both jitter and aperture issues in high-speed sam-
plers, by examining their performance in the presence of these
non-idealities.

B. Analog-to-Information Converter (AIC)

While there have been many theoretical discussions on AIC
systems in the literature [4]–[12], to our knowledge, an actual
hardware implementation of an AIC system working for wide
signal bandwidth (10’s of GHz), is yet to be seen. Hence, it is
difficult to make a fair hardware-to-hardware comparison with
other already implemented high-speed ADCs. Although, there
are many examples of AICs [4]–[12], [18]–[20], in this work,
the generic AIC circuit architecture shown in Fig. 2 is consid-
ered to be compared with a baseline high-speed ADC. In this ar-
chitecture, the input signal is amplified by using number
of amplifiers. Each signal branch is then individually multiplied
with a different pseudorandom number (PN) waveform to
perform CS-type “random” sampling. The multiplication with
the PN waveform is at Nyquist rate to avoid aliasing in this
stage, which we call the mixing stage. At each branch, the mixer
output is then integrated over a window of sampling periods
. Finally, the integrator outputs are sampled and quantized

to form the measurements which are then used to reconstruct
the original input signal . Note that because we now sample
at the rate (see Fig. 2), this AIC architecture employs
sub-Nyquist rate ADCs, which are less affected by jitter noise
and aperture. The actual advantage over standard ADCs is re-
ally unclear until experimentally justified. Also, it is important
to point out that the mixing stage still works at the Nyquist fre-
quency, and circuit non-idealities such as jitter and aperture can
still be a potential problem in the mixing stage in a manner sim-
ilar to the sampling circuit in high-speed ADCs. In the following
section we present our framework for investigating the impacts
of mixer jitter and aperture on AIC performance.

III. EVALUATION FRAMEWORK

Fig. 3(a) shows the block diagram of the AIC system indi-
cating the location of injected noise due to the jitter and aperture.
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Fig. 3. Jitter effects in sampling: block diagram of (a) an AIC system, and (b)
a high-speed ADC system both with same functionality in the cognitive radio
setting.

Fig. 4. Ideal and jittered PN waveforms.

Fig. 5. Aperture error caused by non-ideal PN waveform.

Fig. 3(b) shows the same functionality of the AIC system imple-
mented simply using an amplifier and an ADC operating at the

Nyquist-rate ( times that of Fig. 3(a)). This is the system re-
ferred to as the high-speedADC system, which also suffers from
jitter and aperture effects, as illustrated in Fig. 3(b). The poten-
tial advantages of using AICs stem from having a different sen-
sitivity to sources of aperture error and jitter introduced by dif-
ferent control signals in the AIC system. In the AIC system, the
jitter error from sampling clocks on the slower ADCs, denoted

, is negligible, whereas the main source of error, denoted
, comes from the mixer aperture and the jitter in the PN

waveform mixed with the input signal at the Nyquist frequency.
On the other hand, in the high-speed ADC system, the main
source of error is due to the sampling jitter in the high-speed
clock. In this section, we provide signal and noise models used
to evaluate the performance of these two systems.

A. Signal Model

The signal model

(1)

consists of transmitted coefficients, , riding on the carriers
with frequencies (chosen from available channel fre-
quencies in the range of 500 MHz–20 GHz). This model emu-
lates sparse narrowband or banded orthogonal frequency-divi-
sion multiplexing communication channels [21]. Our sparsity
assumption states that only out of coefficients are
non-zero, i.e., only users are “active” at any one time.

B. Mixer Clocking Jitter

Fig. 4 shows our jitter noise model where the noise is multi-
plied by the input signal and filtered in the integrator block. The
th PN waveform satisfies

(2)

where is the th PN element, and is a unit height
pulse supported on— to . Denoting the jittered PN
waveform as , then: . Here,
is the jitter noise affecting , described as

(3)

where the th jitter width is with equal to
the jitter root-mean-square (rms), and is a unit ampli-
tude pulse supported over the interval .
To verify (3), consider the first transition in the th PNwaveform

in Fig. 4, where and are and 1, respectively.
As it is shown, the jitter value at that transition happens to be
positive (i.e., PN waveform is shifted to the right due to jitter).
Hence, by using (3), the jitter noise at that transition is a
pulse with a width of and an amplitude of minus two located
at .
As a side comment, note that in our model for , we as-

sumed that the same phase-locked loop (PLL) is used across all
signal paths, resulting in the exact same jitter sequence for all
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Fig. 6. Compressed sensing (CS) framework.

jittered PN waveforms . This model can be
extended to include the effect of a longer clock tree distribution,
by adding an uncorrelated (or partially correlated) component to
each branch, i.e., we would then have a different jitter sequence
for each PN waveforms .

C. Aperture Models

In the AIC system, the aperture is caused by two circuit non-
idealities: i) mixers do not operate instantaneously, and ii) the
PN waveforms are not ideal. Fig. 5 illustrates our aperture error
model, whereby the aperture effects are captured by the lim-
ited rise and fall times in the PN waveform. The aperture error,

, corresponding to the th non-ideal PN waveform ,
is taken with respect to the th jittered PN waveform , i.e.,

. We emphasize that the reference point
for the aperture error is the jittered PN waveform, not the ideal
waveform (as was for the jitter noise ). The formula for
the th aperture error is given as

(4)

where is the th PN element, and can be described
as

(5)

where is the parameter that dictates the rise/fall time of the
PNwaveform. Similar to the jitter noise, the aperture error
is also multiplied by the input signal and filtered in the integrator
block.

D. Reconstruction of Frequency Sparse Signal

In this section, for the sake of readers unfamiliar with CS
techniques, we first provide a brief background discussion, and
then we frame the reconstruction problem for the CS-based AIC
system.
Signals are represented with varying levels of sparsity in dif-

ferent domains. For example, a single tone sine wave is ei-
ther represented by a single frequency coefficient, or an infinite

number of time-domain samples. Consider signals f represented
as follows

(6)

where is the coefficient vector for , which is expanded in
the basis . We say the signal is sparse when most
of the corresponding coefficients are zero, or they are small
enough to be ignored without much perceptual loss. Also is
called -sparse when only of the coefficients have signif-
icant values.
The CS framework is shown in Fig. 6, where an dimen-

sional input signal is compressed to measurements , by
taking linear random projections, i.e.,

(7)

where , and is a noise vector.
Note that and respectively appear as the number of signal
branches, and the integration length, in the AIC architecture in
Fig. 2. In the case that the system is undetermined,
which means there are infinite number of solutions for . How-
ever, if the signal is known a-priori to be sparse, under certain
conditions, the sparsest signal representation satisfying (7) can
be shown to be unique.
Furthermore, solving the following convex program

(8)

can be shown to produce a good approximation for the original
signal [13], [14], where accommodates for the noise in (7).
Using the described CS framework, we now frame the re-

construction problem for the AIC. As Fig. 3(a) shows, each
measurement is computed by integrating the noise,

, and the product of the signal and
the PN waveform , as follows

(9)

Substituting the signal model from (1), the measurements can
be shown to satisfy , where PN matrix has
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Fig. 7. Jitter noise and aperture error for a single tone sine wave.

entries and

(10)

where . Here, the noise is merely
the projection of by the th jitter noise pulse process
and th aperture error pulse (see Figs. 4 & 5). Fig. 7 de-
picts the jitter noise and aperture error for a single tone sine
wave input signal.
The jitter and aperture noise in (10) is signal-dependent

and possibly far from Gaussian, but in reconstruction (8) we
favor -norm constraints for simplicity. We use the Lasso-mod-
ified LARS algorithm [23] to solve (8). Appendix I gives more
details on the exact reconstruction method used. In the next sec-
tion, we use our noise model and reconstruction framework to
compare the performance of AIC versus high-speed ADC sys-
tems.

IV. EVALUATION RESULTS

For our signal , refer to model (1), we assume 1000 pos-
sible subcarriers (i.e., ). We test our system using

a randomly generated signal , where non-zero values are
drawn from a uniform random distribution over [0, 1] to assign
the information coefficients , and integer values are drawn
from a uniform random distribution over to assign sub-
carrier (channel location) of active users.
To compare the performance of the high-speed ADC and the

AIC systems, we adopt the same ENOB metric from the ADC
literature, which is defined as [22]

(11)

where is the full-scale input voltage range of the ADCs
and is the rms signal distortion (use in place of
for the high-speed ADC system in Fig. 3(b)). Note that is
the reconstructed signal at the output of the AIC system and
is the quantized signal at the output of the high-speed ADC

system. The actual evaluation code is now available at [24]. In
order to illustrate the relative impact of jitter and aperture, we
first ignore aperture effects, and limit our evaluation results to
only jitter limited systems. We later add aperture effects to the
jitter noise, and observe the differences.

A. Jitter-Limited ENOB

The jitter-limited ENOB for both systems is plotted in Fig. 8,
parameterized by the sparsity of the signal. As the number of
non-zero components of increases, we see that the AIC
performance worsens while the high-speed ADC performance
improves. The reasons for this are as follows. In the receiver,
the input signal peaks are always normalized to , the
full-scale voltage range of the ADC.When increases, this nor-
malization causes the coefficient values to get smaller with
respect to . In the high-speed ADC system, the jitter-error

is dominated by the coefficient corresponding to
the highest input frequency and the error drops if the coefficient
value drops. Hence, ENOB increases since
increases with see (11). On the other hand, the AIC system
has a different behavior. As increases, the reconstruction per-
forms worse and as a result AIC distortion gets worse,
resulting in poorer ENOB performance.
As shown in Fig. 8, when we consider only the impact of

jitter, the AIC system can improve the ENOB by 1 and 0.25
bits for of 1 and 2, respectively. For signals with higher ,
the high-speed ADC performs better than the AIC system. As a
point of reference, the standard Walden curve [3] is also plotted
in Fig. 8, which depicts the ADC performance with input signal
at Nyquist frequency. We see that compared to the Walden
curve, the high-speed ADC can actually achieve a better res-
olution (i.e., the Walden curve is a pessimistic estimate). This
is due to the fact that the input signal, , does not always
have all its spectra concentrated at the Nyquist frequency, and
therefore, in the real-use case, the performance of high-speed
ADC is much better than the worst-case prediction of the
Walden curve.

1normalized sampling rate is defined as , where is the nyquist
sampling rate, and is equal to (number of parallel path) times
(ADCs’ sampling rate in the AIC system). In our evaluations, GHz,

and MHz.
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Fig. 8. Jitter (rms) versus ENOB for (a) & 2 (i.e., sparsity of 0.1%
and 0.2%, respectively), and (b) & 12 (i.e., sparsity of 0.5%, 1% and
1.2%, respectively). and normalized sampling rate are 1000, 100 and 0.1,
respectively, for all .1

B. Effect of Aperture

So far, we assumed that both the mixer and the ADC have un-
limited bandwidth, i.e., we ignore the aperture effects. However,
in practice, they are indeed band-limited, and this non-ideality
may significantly impact their performance at high frequencies.
Fig. 9(a) shows the effect of aperture on the performance of both
the AIC and the high-speed ADC when . The high-speed
ADC system performance is shown for value of 5 and 10
ps, where stands for the integration period in the ADCs (i.e.,
width of the triangle in the sampler signal, see Fig. 1). We chose
these values for , as they are equivalent to ADCswith 64GHz
signal bandwidth (i.e., about three times of highest input signal
frequency) and 128 GHz signal bandwidth. As Fig. 9 shows,
aperture can worsen the performance of the high-speed ADC
system when the jitter is really small. However, as the jitter be-
comes bigger, it becomes the dominant source of error, dimin-
ishing the aperture effect. For comparison, the AIC performance
is shown in the same figure for of 5 and 10 ps, where here
is the rise/fall time in PN sequence waveform, see Fig. 5.

The rise time of 5–10 ps is consistent with the performance of
a state-of-the-art PN sequence generator [25], [26]. As Fig. 9

Fig. 9. Performance of the AIC system versus the high-speed ADC system
including aperture and jitter effects for (a) , and (b)

.

shows, aperture in the mixer stage can also significantly worsen
the performance of the AIC system. For example, even for the
extremely optimistic circuit scenario with ps and jitter

s, the aperture caused the AIC performance
(ENOB) to drop from 11 bits to 6 bits. Finally, we perform the
same evaluation for higher number of nonzero signal compo-
nents, , as shown in Fig. 9(b). Similar jitter and aperture
limitations are also observed at the higher value. However, as
increases, the performance of the AIC system worsens due to

reconstruction limitations [27].
These aperture effects can be somewhat compensated by uti-

lizing various adaptation or calibration techniques, for example
forward calibration scheme or direct training [28], [29]. How-
ever, in reality, the compensation effect is limited by the accu-
racy of the estimates corrupted by jitter and AWGN noise. This
effect is illustrated in Fig. 10, where we show that using direct
training to deal with circuit’s non idealities does not improve the
performance all the way back to that of the system with ideal
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Fig. 10. Performance improvement of the AIC system by using calibration al-
gorithms. ‘O’ and ‘X’ symbols show the results before and after calibration,
respectively.

Fig. 11. Dense sampling waveform versus sparse sampling (the latter has
roughly 60% less transitions).

aperture (i.e., without aperture error). The extent of the residual
error depends on the AWGN and jitter accumulated during the
training.

C. Sparse Sampling Matrix

Dense sampling matrices (that mix the input signal) are com-
monly used for CS-based signal-acquisition systems. However,
sparse matrices are also a viable option [30], [31], whereby
using sparse matrices can potentially relax memory require-
ments. Another potential benefit of sparse matrices is that the in-
jected jitter noise at the mixer stage becomes smaller and it may
potentially improveAIC performance. This is due to the fact that
jitter occurs only when a transition occurs in the sampling wave-
form, and waveforms made from sparse matrices have fewer
transitions. Fig. 11 shows sampling waveforms generated from
dense and sparse matrices.
In this section, we examine whether or not sparse matrices

can really allow the AIC system to be more jitter-tolerant. Using

Fig. 12. Power spectral densities of both dense and sparse sampling wave-
forms.

a sparse sampling matrix , we generated similar figures to 8
and 9 as in Subsection IV-B. We find that empirical results did
not improve at all. This is due to the fact that even though the
sparse waveforms made the noise smaller, they also made mea-
surements smaller, and as a result the measurement SNR is
not improved at all and AIC performance stays the same. Intu-
itively this makes sense. Consider a high frequency, pure tone
input, and some sampling waveform. In the frequency domain,
the spectrum of the sampling waveform convolves with that of
the single tone (at high frequency), and a shifted version of the
sampling waveform spectrum will be created. The integration
block attenuates high frequency and only passes the spectrum
of the (shifted) sampling waveform that is located near DC.
Now the frequency content of the (shifted) sampling waveform
near DC is simply the frequency content of the non-shifted sam-
pling waveform at some high frequency. Hence, only if the orig-
inal (non-shifted) waveform had large frequency components at
that high frequency, then bigger measurements will be seen at
the output of the integrator. However, observe Fig. 12, which
plots the power spectrum densities of both sparse and dense
sampling waveforms (both waveforms normalized to have the
same energy). Notice that at high frequencies, sparse sampling
waveforms have lower power than dense sampling waveforms.
Hence, the sparse sampling waveforms will generate smaller
measurements. In summary, sparse sampling matrices will si-
multaneously degrade both signal and noise and as a result do
not improve the AIC performance.

D. Performance Evaluation Summary

In conclusion, both AIC and high-speed ADC systems suffer
from jitter and aperture non-idealities. For the high-speed ADC
system, these non-idealities appear in the sampling stage, while
for the AIC system, they appear in the mixing stage. Both jitter
and aperture are frequency dependent, and since the mixer stage
is still required to work at the Nyquist frequency this stage limits
AIC performance in high bandwidth applications. To make mat-
ters worse, the AIC system performance degrades when the
number of signal components, increases. This contrasts with
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high-speed ADC performance, where at a higher the perfor-
mance improves (recall that this is due to a different scaling up
to ). Finally, we also investigated sparse sampling ma-
trices, where we found that while intuition may suggest the op-
posite, sparse sampling waveforms are still as susceptible to
jitter and aperture, as compared to dense sampling matrices.

V. ENERGY COST OF HIGH-SPEED ADC AND AIC

In this section, we evaluate and compare the powers of both
the AIC and high-speed ADC systems. Recall that AIC systems
use slower-rate, sub-Nyquist ADCs, whereby the rate reduction
in ADCs will result in some power savings. However, do note
that the AIC architecture employs not one, but multiple ADCs,
and also requires other circuits such as the integrator and mixer.
Hence, it is not immediately clear if the AIC system is more
power-efficient than the high-speed ADC system. In addition
to the front-end, the AIC requires a reconstruction block. The
cost of this block varies based on the reconstruction algorithm
used. For example, in [32], we show that the energy-cost of rel-
atively simple Matching Pursuit (MP) algorithm is comparable
to the high-speed ADC energy-cost. The remaining question is
the comparison of the front-end costs, so in this paper, we focus
on the front-end power models. Here, we first provide power
models for both high-speed ADC and AIC systems and then
we use these models to analyze the relative energy efficiency of
both AIC and high-speed ADC systems, across important fac-
tors such as resolution, receiver gain and signal sparsity.
These power models and are first given

(derivation follows later) as follows

(12)

(13)

where is signal bandwidth, FOM is the ADC’s
figure-of-merit (i.e., measuring the power per sample per
effective number of quantization step) and defined as [2]

(14)

and are technology constants2, and is the amplifier
gain [33]. The tunable parameters for the AIC system are ,

2 , and , where
is thermal voltage, is Boltzmann constant, is absolute temperature, NEF is
noise efficiency factor of amplifier, is supply voltage, and fF
is capacitance at the dominant pole of integrator. is used which is
reasonably conservative [33].

ENOB, and the gain , while for the high-speed ADC system
they are only ENOB, and the gain . Note that the gain
is set differently for the AIC system (i.e., in (13)), as compared
to the high-speed ADC system (i.e., in (12)). In the high-speed
ADC system, the ADC directly samples the input signal, while
in the AIC system the ADCs sample the output of the integrator,
which is an accumulated signal (see Fig. 2). Since the accumu-
lated signal has larger range than the original signal, the required
amplifier gain to accommodate the ADC’s input range is po-
tentially much lower in the AIC system than in the high-speed
ADC system, for the same application. It should be noted that
the required gain depends on the application and the signal
of interest.
Beside difference in , the main difference between the

power of the AIC system, , and the high-speed ADC,
, is an extra factor of in the AIC’s ampli-

fier power and an extra factor of in the AIC’s ADCs
power. The reason for these extra factors is described later in this
section. It should also be noted that ADCs, utilized in the AIC
system, have much lower FOM than a high-speed ADC since
they work at much lower frequency. In our evaluation, FOMs
of 0.5, 1 and 5 pJ/conversion-step are used to represent a range
of possible efficiencies for state-of-the-art and future high-speed
ADC designs [34] while FOM of 100 fJ/conversion-step is used
for the AIC system, consistent with the general performance of
state-of-the-art moderate-rate ADCs [33].
We now proceed with the derivation of (12) and (13). To do

this, we build on our power models previously proposed in [33],
with more focus on the noise constraints, as well as emphasizing
detailed differences between the power models used in the AIC
and the high-speed ADC systems. We then use (12) and (13) to
evaluate and compare the energy costs of both systems.

A. High-Speed ADC System Power Model

The total power (12) of the high-speedADC system, is simply
the sum of the ADC power and the amplifier power.
For the ADC, the power can be expressed as:

(15)

where FOM is the ADC figure-of-merit, BW is signal band-
width, and ENOB equals the ADC’s resolution [33].
For the amplifier, the minimum required power is typically

determined by the input referred noise . Using another
figure-of-merit, NEF (known as the noise efficiency factor), in-
troduced in [35]:

(16)

where is the current drawn by the amplifier, the required
power for the amplifier in the high-speed ADC system can then
be described by

(17)

In addition, here the total output noise of the amplifier needs
to be less than the quantization noise of the ADC (see Fig. 3(b))
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Fig. 13. Circuit block diagram of an AIC branch taken from [33].

which results in the following constraint on the amplifier output
noise

(18)

where is the amplifier gain, ENOB is the resolution of ADC,
and the ADC’s input range is equal to .
Using (18) we can obtain a lower bound on the quantity

, which we substitute into (17) to obtain the
minimum power required by the amplifier as

(19)

Hence, using (15) and (19), the total power of the high-speed
ADC system, , equals (12).

B. AIC System Power Model

Fig. 13 shows a detailed block diagram of a single branch of
the AIC system (out of branches). The total power (13) of
the AIC system is simply the sum of the ADC power, integrator
power, and the amplifier power3.
For the ADCs power, we account for ADCs, each sam-

pling at

(20)

The integrator power and the power due to switching of the
integrator and Sample and Hold (S/H) circuits can be modeled
by

(21)

where is the integrating capacitor and is the total gate
capacitance of the switches where it is negligible compared to

(see Fig. 13). In addition, it is assumed that the common
mode reset is at and the voltage swing is .
As described in [33], the lower bound on the size of the inte-
grating capacitor to functionally act as an integrator can
be described by

(22)

3The power dissipation of pseudorandom generator is not included since there
are ways to significantly reduce the complexity of the matrix generator by using
the mixing of PN sequences [33], and in advance technologies; the energy-cost
of matrix generator would be negligible compare to other blocks.

where is the capacitance at the dominant pole. Combining
(21) and (22), the minimum power required by integrator can
be expressed as

(23)

For the operational transconductance amplifier (OTA) power
in the AIC system, the expression (19) needs to be modified to

(24)

where (24) differs from (19) in the appearance of the parameters
and , and missing a constant factor of 4. With array of

amplifiers in the AIC system

(25)

As we will explain later on, the constraint of the output noise
will now be

(26)

Finally, using (26) to get a lower bound on the quantity
, we substitute that lower bound in (25) to obtain

(24).
The AIC system requires the total integrated output noise to

be less than the quantization noise of the ADC (see Fig. 3(a)). In
the AIC system, we are integrating over samples modulated
by a pseudorandom binary sequence (PRBS) and hence the ac-
cumulated noise in the output of integrator increases by a factor
of . Since the total output noise must still be kept smaller
than the quantization noise, the input referred noise
needs to be adjusted by a factor of to keep the total output
noise smaller than the quantization noise. Finally, the reason for
an extra factor of 4 in (26) is because the input of the ADC is
differential in the AIC system (see Fig. 13). Therefore, the input
range of the ADC is differentially which accounts for the
additional factor of 4.
We next analyze the energy-efficiency of the two systems

using our power models (i.e., (12) and (13)).

C. Relative Power Cost of AIC versus High-Speed ADC

The AIC system power, (13), is a function of the
ENOB, and amplifier gain . As mentioned earlier, the
gain needs to be set differently in both AIC and high-speed
ADC systems; needs to be set higher in the high-speed ADC
system, whereby the relative ratio between the gains depends
on application and the signal of interest. For example, in our
cognitive radio setup, the relative ratio between gains is
about 20. Fig. 14 plots the total power (12) and (13) versus
ENOB, for both high-speed ADC and AIC systems, and also
for different in our cognitive radio setup. In Fig. 14(a), we
compare system power for relatively small gain scenario (large
input signal) where is set to 40 and 2 for the high-speed
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Fig. 14. Power versus required ENOB for applications which require (a) low
amplifier gain ( in the high-speed ADC system and in the
AIC system), and (b) high amplifier gain ( in the high-speed ADC
system and in the AIC system).

ADC and the AIC system, respectively. In Fig. 14(b) we in-
vestigate a higher required gain scenario (small input signal)
where is set to 400 and 20, respectively. Note that although
the power costs are plotted over a wide range of ENOB, high
ENOB values are achievable only when jitter noise and aper-
ture error are very small. As to be expected, when the amplifier
gain is low, the AIC power flattens for ENOBs less than 5 since
the power is dominated by the integrator power (independent
of ENOB). For higher resolutions (i.e., higher ENOB), the am-
plifier power becomes dominant in the AIC system, since it de-
pends exponentially on ENOB. Themain takeaway from Fig. 14
is that at lower gain requirements and low to moderate resolu-
tions (4–6 ENOB, which are also achievable for practical jitter
and aperture values), AICs have the potential to be 2–10 more
power-efficient than high-speed ADCs. Fig. 14 also shows that
increasing increases the AIC power, as the number of compo-
nents scales upwards with increasing number of measurements.
However, increasing also improves the CS reconstruction,
which enables higher ENOB for larger in the AIC system. Fi-
nally, note that the grayed areas in the plots show impractical
regions due to chip thermal and power-density limits.

Fig. 15. Power for the required ENOB and different receiver gain require-
ments, and .

To get a sense of potential AIC advantages in other appli-
cations, we consider different gains (and also relative ratios be-
tween gains) for both AIC and high-speedADC systems. Fig. 15
shows the power of both systems versus ENOB for different
values of gain when . Note that both the systems
have different dependence on amplifier gain . For the AIC,
the power increases as increases, but on the other hand, the
high-speed ADC power changes very little since the power of
the single amplifier is not dominant. However, for a high-speed
ADC with a very low FOM, amplifier power becomes domi-
nant for high ENOB and as a result the high-speed ADC system
power increases with . In conclusion, the AIC system has
lower power/energy cost and enables roughly 2–10X reduction
in power for applications that require low amplifier gain and low
to moderate resolution.

VI. CONCLUSION

In this work, we compare both energy cost and performance
limitations of AIC and high-speed ADC systems, in the con-
text of cognitive radio applications where the input signal is
sparse in the frequency domain. Our findings report that jitter
and aperture effects in the mixing stage of AIC systems limit
their resolution and performance. Hence, this contests the pro-
posal that AICs can potentially overcome the resolution and per-
formance limitations of high-speed Nyquist ADCs. We show
that currently proposed AIC topologies are sensitive to jitter
and aperture errors. We also show that sparse matrices do not
improve the resolution performance of AIC. Finally, using real-
istic power models for both AIC and high-speed ADC systems,
we show that AICs have the potential to enable a 2–10X reduc-
tion in power for applications where low signal gain and low to
moderate resolution are acceptable.

APPENDIX I

A. Reconstruction Method.

While (8) is a common way to perform CS reconstruction, in
this paper we used a different algorithm known as least angle
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regression (LARS). This is because in our setting, the param-
eter in (8) is not easy to choose since the noise in (7) is
non-Gaussian (we cannot simply pick proportional to the stan-
dard deviation). The LARS algorithm, or more specifically its
least absolute shrinkage and selection operator (LASSO) mod-
ification, is easier to use because of the following. In each it-
eration, LARS-LASSO produces a LASSO fitted solution that
corresponds to some LASSO regularization value. All solutions
that it produces in all iterations are generated by the homotopy
rule. The LASSO solution in the current iteration is related to
the LASSO solution in the previous iteration. It is obtained by
slowly changing the previous regularization value until we get
a LASSO solution that differs in sparsity by 1. In summary, the
LARS algorithm generates all LASSO solutions that are “most
spaced-out by sparsity”.
So, LARS only requires us to pick which iteration’s solution

to use, as opposed to picking one value for (out of infinite set
of possible choices). For every CS reconstruction instance, we
pick the iteration using an oracle to be as optimistic for AIC
as possible. Since we know the actual signal, we simply pick
the iteration that gives the smallest error—this is the “best
LASSO solution”. This oracle uses extra information (the it-
eration that delivers the smallest error) not known in practice,
thus cannot be actually implemented. However, running our
experiments this way gives a “lower bound” on the reconstruc-
tion error of an actual AIC (one that does not know the signal).
Furthermore, this oracle is easy to implement and reproduce,
and avoids complicated arguments for tweaking regularization
parameters.

REFERENCES

[1] J. Mitola, III, “Cognitive radio for flexible mobile multimedia commu-
nications,” in Proc. IEEE Int. Workshop Mobile Multimedia Commun.,
Nov. 15–17, 1999, pp. 3–10.

[2] B. Murmann, “A/D converter trends: Power dissipation, scaling and
digitally assisted architectures,” in Proc. CICC, 2008, vol. 1, pp.
105–112.

[3] R. H.Walden, “Analog-to-digital converter survey and analysis,” IEEE
J. Sel. Areas Commun., vol. 51, pp. 539–548, 1999.

[4] M. Mishali and Y. C. Eldar, “From theory to practice: Sub-Nyquist
sampling of sparse wideband analog signals,” IEEE J. Sel. Topics
Signal Process., vol. 4, no. 2, pp. 375–391, 2010.

[5] J. N. Laska, S. Kirolos, M. F. Duarte, T. S. Ragheb, R. G. Baraniuk, and
Y. Massoud, “Theory and implementation of an analog-to-information
converter using random demodulation,” in Proc. IEEE ISCAS, 2007,
pp. 1959–1962.

[6] S. Kirolos, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, T.
Ragheb, Y. Massoud, and R. G. Baraniuk, “Analog to information con-
version via random demodulation,” in Proc. IEEE Dallas/CAS Work-
shop Design, Applications, Integration and Software, Dallas, TX, Oct.
2006, pp. 71–74.

[7] J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R.
Baraniuk, “Beyond Nyquist: Efficient sampling of sparse bandlimited
signals,” IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 520–544,
2010.

[8] X. Chen, Z. Yu, S. Hoyos, B. M. Sadler, and J. Silva-Martinez, “A
sub-nyquist rate sampling receiver exploiting compressive sensing sig-
nals,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 3, pp.
507–520, 2011.

[9] J. N. Laska, S. Kirolos, Y. Massoud, R. G. Baraniuk, A. C. Gilbert, M.
Iwen, and M. J. Strauss, “Random sampling for analog-to-information
conversion of wideband signals,” in Proc. IEEE Dallas/CAS Workshop
Design, 2006, pp. 119–122.

[10] T. Ragheb, S. Kirolos, J. Laska, A. Gilbert, M. Strauss, R. Baraniuk,
and Y. Massoud, “Implementation models for analog to-information
conversion via random sampling,” in Proc. MWSCAS, 2007, pp.
325–328.

[11] M. Mishali, Y. C. Eldar, and J. A. Tropp, “Efficient sampling of sparse
wideband analog signals,” in Proc. IEEE 25th Convention, Dec. 2008,
pp. 290–294.

[12] J. Romberg, “Compressive sensing by random convolution,” SIAM J.
Imag. Sci., vol. 2, no. 4, pp. 1098–1128, 2009.

[13] E. Candes and T. Tao, “Decoding by linear programming,” IEEE Trans.
Inf. Theory, vol. 51, pp. 4203–4215, 2005.

[14] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol.
52, no. 4, pp. 1289–1306, 2006.

[15] M. Jeeradit, J. Kim, B. S. Leibowitz, P. Nikaeen, V. Wang,
B. Garlepp, and C. Werner, “Characterizing sampling aperture of
clocked comparators,” in Proc. IEEE Symp. VLSI Circuits, Jun.
2008, pp. 68–69.

[16] M. Shinagawa, Y. Akazawa, and T.Wakimoto, “Jitter analysis of high-
speed sampling systems,” IEEE J. Solid-State Circuits, vol. 25, no. 2,
pp. 220–224, Feb. 1990.

[17] J. Kim, B. S. Leibowitz, and M. Jeeradit, “Impulse sensitivity func-
tion analysis of periodic circuits,” in Proc. ICCAD, Nov. 2008, pp.
386–391.

[18] M. Kurchuk, C. Weltin-Wu, D. Morche, and Y. Tsividis, “GHz-range
programmable continuous time digital FIR with power dissipation that
automatically adapts to signal activity,” in Proc. IEEE Int. Solid-State
Circuits Conf., Feb. 2011, pp. 232–233.

[19] R. Agarwal and R. Sonkusale, “Input-feature correlated asynchronous
analog to information converter for ECG monitoring,” IEEE Trans.
Biomed. Circuits Syst., vol. 5, pp. 459–467, 2011.

[20] O. Taheri and S. A. Vorobyov, “Segmented compressed sampling
for analog-to-information conversion: Method and performance
analysis,” IEEE Trans. Signal Process., vol. 59, pp. 554–572,
2011.

[21] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communi-
cations. Norwood, MA, USA: Artech House, 2000.

[22] IEEE Standard for Terminology and Test Methods for Analog-to-Dig-
ital Converters, IEEE Standard 1241-2000.

[23] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle re-
gression,” Annals Stat., vol. 32, no. 2, pp. 407–499, 2004.

[24] Compressed Sensing Evaluation Framework. [Online]. Available:
https://sites.google.com/site/mitisgcs/

[25] J. K. Kim, J. Kim, and D. Jeong, “A 20-Gb/s full-rate
PRBS generator integrated with 20-GHz PLL in 0.13-um CMOS,”
in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2008, pp.
221–224.

[26] T. O. Dickson, E. Laskin, I. Khalid, R. Beerkens, X. Jingqiong, B.
Karajica, and S. P. Voinigescu, “An 80-Gb/s pseudorandom bi-
nary sequence generator in SiGe BiCMOS technology,” IEEE J. Solid-
State Circuits, vol. 40, no. 12, pp. 2735–2745, Dec. 2005.

[27] D. L. Donoho, A. Maleki, and A. Montanari, “Message passing algo-
rithms for compressed sensing,” Proc. Nat. Acad. Sci., vol. 106, pp.
18914–18919, 2009.

[28] Z. Yu and S. Hoyos, “Digitally assisted analog compressive sensing,”
in Proc. IEEE Dallas Circuits Syst. Workshop, 2009, pp. 1–4.

[29] Z. Yu, X. Chen, S. Hoyos, B. M. Sadler, J. Gong, and C. Qian,
“Mixedsignal parallel compressive spectrum sensing for cognitive
radios,” Int. J. Digit. Multimed. Broadcast., vol. 2010, p. 730 509,
2010, 10 pages.

[30] A. Gilbert and P. Indyk, “Sparse recovery using sparse matrices,”Proc.
IEEE, vol. 98, no. 6, pp. 937–947, 2010.

[31] R. Berinde and P. Indyk, “Sparse Recovery Using Sparse RandomMa-
trices,” MIT-CSAIL Tech. Rep., 2008.

[32] O. Abari, “Building Compressed Sensing Systems: Sensors and
Analog-to-Information Converters,” M.S. thesis, Mass. Inst. Technol.,
Cambridge, MA, USA, 2012.

[33] F. Chen, A. P. Chandrakasan, and V. Stojanović, “Design and analysis
of a hardware-efficient compressed sensing architecture for data com-
pression in wireless sensors,” IEEE J. Solid-State Circuits, vol. 47, no.
3, pp. 744–756, Mar. 2012.

[34] Y. M. Greshishchev, J. Aguirre, M. Besson, R. Gibbins, C. Falt, P.
Flemke, N. Ben-Hamida, D. Pollex, P. Schvan, and S.-C. Wang, “A 40
GS/s 6b ADC in 65 nm CMOS,” in IEEE Solid-State Circuits Conf.
(ISSCC), Feb. 2010, pp. 390–391.

[35] M. Steyaert, W. Sansen, and C. Zhongyuan, “A micropower low-noise
monolithic instrumentation amplifier for medical purposes,” IEEE J.
Solid-State Circuits, vol. 22, no. 6, pp. 1163–1168, Jun. 1987.



2284 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 60, NO. 9, SEPTEMBER 2013

Omid Abari (S’08) received the B.Sc. degree in
communications engineering (highest hons) from
Carleton University, Ottawa, ON, Canada, in 2010
and the M.S. degree in electrical engineering and
computer science from Massachusetts Institute of
Technology (MIT), Cambridge, MA, USA, in 2012,
where he is currently pursuing the Ph.D. degree in
electrical engineering and computer science.
His research interests include the design of low

power, energy-efficient circuits and systems for wire-
less communication applications.

Mr. Abari was the recipient of the Merrill Lynch fellowship in 2011, the
Natural Sciences and Engineering Research Council of Canada (NSERC) Post-
graduate scholarship, Ontario Professional Engineers Foundation for Education
Scholarship and SenateMedal for Outstanding Academic Achievement in 2010.

Fabian Lim (S’06, M’10) received the B.Eng. and
M.Eng. degrees from the National University of
Singapore, Singapore, in 2003 and 2006, respec-
tively, and the Ph.D. degree from the University of
Hawaii, Manoa, HI, USA, in 2010, all in electrical
engineering.
Currently, he is a post-doctoral fellow at the Mass-

achusetts Institute of Technology. He has held short-
term visiting research positions at Harvard Univer-
sity in 2004 and 2005. From Oct 2005 to May 2006,
he was a staff member in the Data Storage Institute

in Singapore. From May 2008 to July 2008, he was an intern at Hitachi Global
Storage Technologies, San Jose. In March 2009, he was a visitor at the Research
Center for Information Security, Japan. His research interests include error-con-
trol coding and signal processing, for both communication and storage applica-
tions.

FredChen (S’05) received the Ph.D. degree from the
Massachusetts Institute of Technology, Cambridge,
MA, USA, in 2011, the M.S. degree from the Univer-
sity of California, Berkeley, CA, USA, in 2000, and
the B.S. degree from the University of Illinois, Ur-
bana-Champaign, IL, USA, in 1997, all in electrical
engineering.
From 2000 to 2005 he was with Rambus Inc., Los

Altos, CA where he worked on the design of high-
speed I/O and equalization circuits. He has also pre-
viously held a design position at Motorola, Inc., Lib-

ertyville, IL, USA. His current research interests include energy-efficient cir-
cuits and systems, and circuit design in emerging technologies.
Dr. Chen was a recipient of the 2010 ISSCC Jack Raper Award for Out-

standing Technology Directions Paper.

Vladimir Stojanović received the Ph.D. degree
in electrical engineering from Stanford University,
Stanford, CA, USA, in 2005, and the Dipl. Ing.
degree from the University of Belgrade, Serbia, in
1998.
He is the Emanuel E. Landsman Associate Pro-

fessor of Electrical Engineering and Computer Sci-
ence at Massachusetts Institute of Technology (MIT),
Cambridge, MA, USA. He was with Rambus, Inc.,
Los Altos, CA, USA, from 2001 through 2004. His
research interests include design, modeling and opti-

mization of integrated systems, from CMOS-based VLSI blocks and interfaces
to system design with emerging devices like NEM relays and silicon-photonics.
He is also interested in design and implementation of energy-efficient electrical
and optical networks, and digital communication techniques in high-speed in-
terfaces and high-speed mixed-signal IC design.
Prof. Stojanović received the 2006 IBM Faculty Partnership Award, and the

2009 NSF CAREER Award as well as the 2008 ICCAD William J. McCalla,
2008 IEEE Transactions on Advanced Packaging, and 2010 ISSCC Jack Raper
best paper awards. He is an IEEE Solid-State Circuits Society Distinguished
Lecturer for the 2012–2013 term.


