1. Consider the grammar

\[
A ::= B A x \mid x \\
B ::= A y A \mid x
\]

where \{A, B\} is the set of nonterminal symbols, A is the start symbol, and \{x, y\} is the set of terminal symbols. Give an LL(1) grammar which generates the same language as the one above, show the FIRST and FOLLOW sets for each nonterminal symbol in the LL(1) grammar, and the show predictive parsing table for the LL(1) grammar. Argue that the grammar is LL(1).

2. Consider the grammar

\[
A ::= x B \mid C y \\
B ::= A z C \\
C ::= z B \mid \epsilon
\]

where \{A, B, C\} is the set of nonterminal symbols, A is the start symbol, \{x, y, z\} is the set of terminal symbols, and \epsilon denotes the empty string. Is the grammar LL(1)? Justify your answer. As part of your answer, show the FIRST and FOLLOW sets for each nonterminal symbol.

3. Consider the grammar

\[
A ::= x B C \\
B ::= x \mid y \\
C ::= y B C \mid \epsilon
\]

where \{A, B, C\} is the set of nonterminal symbols, A is the start symbol, and \{x, y\} is the set of terminal symbols. The grammar is LL(1). Sketch Java code in reasonable detail for a recursive-descent parser based on the grammar.