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We describe a new algorithm for fast global register allocation called linear scan. This algorithm
is not based on graph coloring, but allocates registers to variables in a single linear-time scan of
the variables’ live ranges. The linear scan algorithm is considerably faster than algorithms based
on graph coloring, is simple to implement, and results in code that is almost as efficient as that
obtained using more complex and time-consuming register allocators based on graph coloring.
The algorithm is of interest in applications where compile time is a concern, such as dynamic
compilation systems, “just-in-time” compilers, and interactive development environments.
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1. INTRODUCTION

Register allocation is an important optimization affecting the performance of com-
piled code. For example, good register allocation can improve the performance
of several SPEC benchmarks by an order of magnitude relative to when they are
compiled with poor or no register allocation. Unfortunately, most aggressive global
register allocation algorithms are computationally expensive due to their use of the
graph coloring framework [Chaitin et al. 1981], in which the interference graph can
have a worst-case size that is quadratic in the number of live ranges.

We describe a global register allocation algorithm, called linear scan, that is not
based on graph coloring. Rather, given the live ranges of variables in a function, the
algorithm scans all the live ranges in a single pass, allocating registers to variables
in a greedy fashion. The algorithm is simple, efficient, and produces relatively
good code. It is useful in situations where both compile time and code quality
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are important, such as dynamic compilation systems, just-in-time compilers, and
interactive development environments.

We evaluate both the compile-time performance of the linear scan algorithm
and the run-time performance of its resulting code. To evaluate the compile-time
speed of the algorithm, we compare it to a fast graph coloring allocator used in the
tcc dynamic compiler [Poletto et al. 1997]. To further evaluate the quality of the
generated code, we implemented the algorithm in the Machine SUIF compiler back-
end [Smith 1996; Amarasinghe et al. 1993], and compare the resulting code with the
code obtained from an aggressive graph coloring algorithm that performs iterated
register coalescing [George and Appel 1996]. In addition, we compare linear scan to
second-chance binpacking [Traub et al. 1998], a type of linear scan algorithm that
invests more work at compile time in order to produce better code.

The linear scan algorithm is up to several times faster than even a fast graph
coloring register allocator that performs no coalescing. Nonetheless, the resulting
code is quite efficient: on the benchmarks we studied, it is within 12% as fast as code
generated by an aggressive graph coloring algorithm for all but two benchmarks.
By comparison, other simple and comparably fast register allocation schemes, such
as allocating the k available registers to the k most frequently used variables, result
in code that is several times slower.

The rest of the article is organized as follows. Section 2 summarizes related
work on global register allocation, while Section 3 outlines the program model
and representation assumed in this work. The details of the register allocation
algorithm appear in Section 4. Section 5 presents measurements of the algorithm’s
performance. Finally, Section 6 discusses some extensions to the algorithm and
directions for future work, and Section 7 summarizes the main results of this work.

2. RELATED WORK

Global register allocation has been studied extensively in the literature. The pre-
dominant approach, first proposed by Chaitin et al. [1981], is to abstract the register
allocation problem as a graph coloring problem. Nodes in the graph represent live
ranges (variables, temporaries, virtual/symbolic registers) that are candidates for
register allocation. Edges connect live ranges that interfere, i.e., live ranges that are
simultaneously live at at least one program point. Register allocation then reduces
to the graph coloring problem in which colors (registers) are assigned to the nodes
such that two nodes connected by an edge do not receive the same color. If the
graph is not colorable, some nodes are deleted from the graph until the reduced
graph becomes colorable. The deleted nodes are said to be spilled because they are
not assigned to registers. The basic goal of register allocation by graph coloring
is to find a legal coloring after deleting the minimum number of nodes (or more
precisely, after deleting a set of nodes with minimum total spill cost).

Chaitin’s algorithm also features coalescing, a technique that can be used to
eliminate redundant moves. When the source and destination of a move instruction
do not share an edge in the interference graph, the corresponding nodes can be
coalesced into one, and the move eliminated. Unfortunately, aggressive coalescing
can lead to uncolorable graphs, in which additional live ranges need to be spilled
to memory. More recent work on graph coloring [Briggs et al. 1994; George and
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 5, September 1999.
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Appel 1996] has focused on removing unnecessary moves in a conservative manner
so as to avoid introducing spills.

Some simpler heuristic solutions also exist for the global register allocation prob-
lem. For example, lcc [Fraser and Hanson 1995] allocates registers to the variables
with the highest estimated usage counts, places all others on the stack, and allocates
temporary registers within an expression by doing a tree walk.

Linear scan can be viewed as a global extension of a special class of local register
allocation algorithms that have been considered in the literature [Freiburghouse
1974; Hsu et al. 1989; Fraser and Hanson 1995; Motwani et al. 1995], which in
turn take their inspiration from an optimal off-line replacement algorithm that was
studied for virtual memory [Belady 1966].

Since our original description of the linear scan algorithm in Poletto et al. [1997],
Traub et al. have proposed a more complex linear scan algorithm, which they call
second-chance binpacking [Traub et al. 1998]. This algorithm is an evolution and
refinement of binpacking, a technique used for several years in the DEC GEM op-
timizing compiler [Blickstein et al. 1992]. At a high level, the binpacking schemes
are similar to linear scan, but they invest more time in compilation in an attempt
to generate better code. The second-chance binpacking algorithm both makes al-
location decisions and rewrites code in one pass. The algorithm allows a variable’s
lifetime to be split multiple times, so that the variable resides in a register in some
parts of the program and in memory in other parts. It takes a lazy approach to
spilling, and never emits a store if a variable is not live at that particular point or
if the register and memory values of the variable are consistent. At every program
point, if a register must be used to hold the value of a variable v1, but v1 is not
currently in a register and all registers have been allocated to other variables, the
algorithm evicts a variable v2 that is allocated to a register. It tries to find a v2

that is not currently live (to avoid a store of v2), and that will not be live before
the end of v1’s live range (to avoid evicting another variable when both v1 and v2

become live).
Binpacking can emit better code than linear scan, but it does more work at

compile time. Unlike linear scan, binpacking keeps track of the “lifetime holes”
of variables and registers (intervals when a variable maintains no useful value, or
when a register can be used to store a value), and maintains information about the
consistency of the memory and register values of a reloaded variable. The algorithm
analyzes all this information whenever it makes allocation or spilling decisions.
Furthermore, unlike linear scan, it must perform an additional “resolution” pass to
resolve any conflicts between the nonlinear structure of the control flow graph and
the assumptions made during the linear register allocation pass. Section 5 compares
the performance of the two algorithms and of the code that they generate.

3. PROGRAM MODEL

Throughout the article, we assume a program intermediate representation that con-
sists of RTL-like quads or pseudo-instructions. Register candidates (live ranges) are
represented by an unbounded set of variable names or “virtual registers.” Arith-
metic operations are performed directly on these virtual registers; no load/store
instructions are necessary for accessing virtual registers. By convention, variables
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are not live on entry to the start node in the flow graph; the initialization of pro-
cedure parameters is captured by explicit assignments within the start node.

No variable renaming or live range splitting is performed by our linear scan
algorithm. It may be beneficial to perform a renaming phase (such as renaming
into “webs” [Muchnick 1997] or computing the “right number of names” [Auslander
and Hopkins 1982]) as an optional prepass to our linear scan algorithm. Further
study is required to determine the extent to which the compile-time overhead of an
extra renaming phase is justified by its accompanying run-time improvement.

The linear scan algorithm assumes that the intermediate representation pseudo-
instructions are numbered according to some order. One possible ordering is that in
which the pseudo-instructions appear in the intermediate representation. Another
is depth-first ordering, the reverse of the order in which nodes are last visited in a
preorder traversal of the flow graph [Aho et al. 1986]. Throughout the rest of this
article we use depth-first order. The choice of instruction ordering does not affect
the correctness of the algorithm, but it may affect the quality of allocation. We
discuss alternative orderings in Section 6.

Central to the linear scan algorithm is the notion of a live interval. Given some
numbering of the intermediate representation, [i, j] is said to be a live interval for
variable v if there is no instruction with number j′ > j such that v is live at j′, and
there is no instruction with number i′ < i such that v is live at i′. This information
is a conservative approximation of live ranges: there may be subranges of [i, j] in
which v is not live, but they are ignored. The “trivial” live interval for any vari-
able v is [1, N ], where N is the number of pseudo-instructions in the intermediate
representation: this live interval is correct and takes no time to compute, but it
also yields no information. All other live intervals lie on the spectrum between the
trivial live interval and accurate live interval information. The order chosen for
numbering pseudo-instructions influences the extent and accuracy of live intervals,
and hence the quality of register allocation, but the definition of live intervals does
not rely on or make assumptions about a particular numbering.

4. THE LINEAR SCAN ALGORITHM

Given live variable information (obtained, for example, via data-flow analysis [Aho
et al. 1986]), live intervals can be computed easily with one pass through the inter-
mediate representation. Interference among live intervals is captured by whether
or not they overlap. Given R available registers and a list of live intervals, the
linear scan algorithm must allocate registers to as many intervals as possible, but
such that no two overlapping live intervals are allocated to the same register. If
n > R live intervals overlap at any point, then at least n− R of them must reside
in memory.

4.1 Details

The number of overlapping intervals changes only at the start and end points of an
interval. Live intervals are stored in a list that is sorted in order of increasing start
point. Hence, the algorithm can quickly scan forward through the live intervals by
skipping from one start point to the next.

At each step, the algorithm maintains a list, active, of live intervals that overlap
the current point and have been placed in registers. The active list is kept sorted
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 5, September 1999.
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LinearScanRegisterAllocation

active ← {}
foreach live interval i, in order of increasing start point

ExpireOldIntervals(i)
if length(active) = R then

SpillAtInterval(i)
else

register[i] ← a register removed from pool of free registers
add i to active, sorted by increasing end point

ExpireOldIntervals(i)
foreach interval j in active, in order of increasing end point

if endpoint[j] ≥ startpoint[i] then
return

remove j from active
add register[j] to pool of free registers

SpillAtInterval(i)
spill ← last interval in active
if endpoint[spill] > endpoint[i] then

register[i] ← register[spill]
location[spill] ← new stack location
remove spill from active
add i to active, sorted by increasing end point

else
location[i] ← new stack location

Fig. 1. Linear scan register allocation. Indentation denotes nesting level. We assume that live
intervals (including startpoint and endpoint information) have been computed by a prior liveness
analysis phase.

in order of increasing end point. For each new interval, the algorithm scans active
from beginning to end. It removes any “expired” intervals—those intervals that no
longer overlap the new interval because their end point precedes the new interval’s
start point—and makes the corresponding register available for allocation. Since
active is sorted by increasing end point, the scan needs to touch exactly those
elements that need to be removed, plus at most one: it can halt as soon as it
reaches the end of active (in which case active remains empty) or encounters an
interval whose end point follows the new interval’s start point.

The length of the active list is at most R. The worst case scenario is that active
has length R at the start of a new interval and no intervals from active are expired.
In this situation, one of the current live intervals (from active or the new interval)
must be spilled. There are several possible heuristics for selecting a live interval
to spill. The heuristic described in this paper is based on the remaining length
of live intervals. Our algorithm spills the interval that ends last, furthest away
from the current point. We can find this interval quickly because active is sorted
by increasing end point: the interval to be spilled is either the new interval or
the last interval in active, whichever ends later. In straight-line code, and when
each live interval consists of exactly one definition followed by one use, this heuristic
produces code with the minimal possible number of spilled live ranges [Belady 1966;
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Fig. 2. An example set of live intervals. Letters on the left are variable names; the corresponding
live intervals appear to the right. Numbers in italics refer to steps in the linear scan algorithm
described in the text.

Motwani et al. 1995]. Although in our case a live interval may cover arbitrarily many
definitions and uses spread over different basic blocks, the heuristic still appears to
work well. Figure 1 contains the pseudocode for the linear scan algorithm with this
heuristic. All results in Section 5 are also based on this heuristic.

4.2 An Example

Consider, for example, the live intervals in Figure 2 for the case when the number
of available registers is R = 2. The algorithm performs allocation decisions 5 times,
once per live interval, as denoted by the italicized numbers at the bottom of the
figure. By the end of step 2, active = 〈A,B〉 and both A and B are therefore in
registers. At step 3, three live intervals overlap, so one variable must be spilled.
The algorithm therefore spills C, the one whose interval ends furthest away from
the current point, and does not change active. As a result, at step 4, A is expired
from active, making a register available for D, and at step 5, B is expired, making
a register available for E. Thus, in the end, C is the only variable not allocated to
a register. Had the algorithm not spilled the longest interval, C, at step 3, both
one of A and B and one of D and E would have been spilled to memory.

4.3 Complexity

Let V be the number of variables (live intervals) that are candidates for register
allocation, and R be the number of registers available for allocation. As can be
seen from the pseudocode in Figure 1, the length of active is bounded by R, so the
linear scan algorithm takes O(V ) time if R is assumed to be a constant.

Since R can be large in some current or future processors, it is worthwhile under-
standing how the complexity depends on R. Recall that the live intervals in active
are sorted in order of increasing endpoint. The worst-case execution time complex-
ity of the linear scan algorithm is dictated by the time taken to insert a new interval
into active. If a balanced binary tree is used to search for the insertion point, then
the insertion takes O(logR) time and the entire algorithm takes O(V × logR) time.
An alternative is to do a linear search for the insertion point, which takes O(R)
time, thus leading to a worst case complexity of O(V × R) time. This is asymp-
totically slower than the previous result, but may be faster for moderate values of
R because the data structures involved are much simpler. The implementations
evaluated in Section 5 use a linear search.
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5. EVALUATION

This section evaluates linear scan register allocation in terms of both compile-time
performance and the quality of the resulting code.

5.1 Methodology

We use two different infrastructures, one primarily to measure compile-time per-
formance, and one primarily to measure the run-time performance of the generated
code.

5.1.1 The icode Infrastructure. A convincing benchmark of compile-time per-
formance requires that the algorithm be implemented as part of a compiler that
is already well-tuned for efficient compile times. As a result, we implemented the
algorithm in icode, a runtime system of the tcc dynamic compiler [Poletto et al.
1999]. tcc is an implementation of ‘C, an extension to ANSI C that enables dy-
namic code generation. icode is an optimizing dynamic code generation system
that produces good quality code with low compile-time overhead (approximately
600 cycles per generated instruction).

We use two sets of benchmarks to evaluate our icode implementation. The first
is the same as that used in previous experimental studies with icode: it consists
of several dynamic code kernels, such as numerical methods, matrix multiplication,
sorting, etc. For each of these benchmarks, we compare linear scan register allo-
cation against (1) a well-tuned graph coloring algorithm and (2) a simple “usage
count” register allocation scheme. The graph coloring algorithm tries to be fast
without overly penalizing code quality: it does not do coalescing, but takes refer-
ence counts into consideration when removing nodes from the interference graph.
The “usage count” algorithm allocates the k available registers to the k variables
and compiler-generated temporaries with the highest estimated usage counts, and
places all others on the stack.

The second set of benchmarks consists of pathological programs that perform
no useful computation but have huge numbers of simultaneously live variables that
make register allocation difficult. We use these benchmarks to compare the per-
formance of graph coloring and linear scan as the size of the allocation problem
increases.

All experiments were made on an unloaded Sun Ultra 2 Model 2170 workstation
with 384MB of main memory and a 168MHz UltraSPARC-I CPU. Times were the
sum of system and user times reported by the UNIX getrusage system call. Values
for each benchmark were obtained by taking the mean of ten trials. The standard
deviation for each set of trials was negligible. The value for each trial was computed
by timing a large number of runs (so as to provide several seconds of granularity),
and dividing the result by the number of runs.

5.1.2 The SUIF Infrastructure. Since the ‘C benchmarks discussed above are
all relatively small, their run-time performance is similar for all the register alloca-
tion algorithms. In order to measure the effect of linear scan on the performance of
larger programs, we implemented it in Machine SUIF [Smith 1996], an optimizing
scalar back end infrastructure for SUIF [Amarasinghe et al. 1993]. We used this
implementation to compile various SPEC benchmarks (from both the SPEC92 and
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Fig. 3. Register allocation overhead for dynamic code (‘C) kernels. U denotes a simple algorithm
based on usage counts. L denotes linear scan. C denotes graph coloring.

SPEC95 suites) and two UNIX utilities. As before, we compare linear scan register
allocation against a graph coloring algorithm and the simple algorithm based on
usage counts. We also compare it against second-chance binpacking [Traub et al.
1998]. The graph coloring allocator is an implementation of iterated register coa-
lescing [George and Appel 1996] developed at Harvard. For completeness, we also
report the compile-time performance of the SUIF implementation of binpacking
and linear scan in Section 5.2.2, even though the underlying SUIF infrastructure
has not been designed for efficient compile times.

All benchmarks were compiled with SUIF and Machine SUIF. Measurements are
the user time from the best of ten runs on an unloaded DEC Alpha workstation
with a 500MHz Alpha 21164 processor and 128MB of RAM.

5.2 Compile-Time Performance

5.2.1 icode Implementation. Figure 3 illustrates the overhead of register allo-
cation for the dynamic code kernels described in Section 5.1.1. The vertical axis
measures compilation overhead, in cycles per generated instruction. Larger values
indicate larger overhead. The horizontal axis of the figure denotes different bench-
marks written in ‘C. For each benchmark, there are three bars: U refers to the
usage count algorithm; L refers to linear scan register allocation; C refers to graph
coloring.

Each bar contains up to three different regions:

(1) Live variable analysis: refers to traditional iterative live variable analysis,
and hence does not appear in the U column.

(2) Allocation setup: refers to work necessary prior to register allocation. It does
not apply to U. In the case of L, it refers to the construction of live intervals
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Table I. Allocation Times for Linear Scan and Binpacking

File (Benchmark) Time in seconds Ratio
Linear scan Binpacking (Binpacking / linear scan)

swim.f (swim) 0.42 1.07 2.55
xllist.c (li) 0.31 0.60 1.94

xleval.c (li) 0.14 0.29 2.07
tomcatv.f (tomcatv) 0.19 0.48 2.53
compress.c (compress) 0.14 0.32 2.29
cvrin.c (espresso) 0.61 1.14 1.87
backprop.c (alvinn) 0.07 0.19 2.71
fpppp.f (fpppp) 3.35 4.26 1.27
twldrv.f (fpppp) 1.70 3.49 2.05

by coarsening live variable information obtained through live variable analysis.
In the case of C, it refers to construction of the interference graph.

(3) Register allocation: in the case of U, it involves sorting variables by usage
count, and allocating registers to the most used ones until none are left. In the
case of L, it refers to linear scan of the live intervals. In the case of C, it refers
to coloring the interference graph.

Liveness analysis and allocation setup for the U case are essentially null function
calls. Small positive values for these two phases, as well as small differences in the
live variable analysis overheads in the L and C cases, are due to slight variability
in the getrusage measurements. Times for individual compilation phases were
obtained by repeatedly interrupting compilation after the phase of interest, sub-
tracting the time required up to the previous phase, and dividing by the number
of (interrupted) compiles.

The figure indicates that linear scan allocation (L) can be considerably faster
than even a simple and fast graph coloring algorithm (C). In particular, although
creating live intervals from live variable information is roughly similar to building
an interference graph from live variable information, linear scan of live intervals is
always much faster than coloring the interference graph. The one benchmark in
which graph coloring is faster than linear scan is binary. In this case, the code uses
very few variables but consists of many basic blocks, so it is faster to build the small
interference graph than to extract live intervals from liveness information at each
basic block. However, note that even for binary the actual time spent on register
allocation is smaller for linear scan (L) than for graph coloring (C).

5.2.2 SUIF Implementation. Table I compares the compile-time performance of
the SUIF implementation of binpacking and linear scan on representative files from
the benchmark set. We do not present data for graph coloring: [Traub et al. 1998]
and Section 5.2.3 provide convincing evidence that both binpacking and linear scan
are much faster than graph coloring, especially as the number of register candidates
grows.

The times in Table I refer to only the core allocation routines: they include
neither setup activities such as CFG construction and liveness analysis, nor any
compilation phase after allocation. In most cases, linear scan is roughly two to
three times faster than binpacking.
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Fig. 4. Two types of pathological programs.

These results, however, underrepresent the difference between the two algorithms.
For simplicity, the linear scan implementation uses the binpacking routine for com-
puting “lifetime holes” [Traub et al. 1998]. However, linear scan does not need or
use full information on lifetime holes—it just considers the start and end of each
variable’s live interval. As a result, an aggressive linear scan implementation could
be considerably faster. For example, if one does not count lifetime hole computa-
tion, the compilation overhead for fpppp.f is 2.79s with binpacking and 1.88s with
linear scan, and that of twldrv.f is 2.28s with binpacking and 0.49s with linear scan.

5.2.3 Pathological Cases. We also employed the icode framework used in Sec-
tion 5.2.1 to compile pathological programs intended to stress register allocators.
We compiled programs with two different kinds of structure, as illustrated in Fig-
ure 4. One kind, labeled (a) in the figure, contains some number, n, of overlapping
live intervals (simultaneously live variables). The other kind, labeled (b), contains
k staggered “sets” of live intervals in which no more than m live intervals overlap.

Figure 5 illustrates the overhead of graph coloring and linear scan as a function
of the number n of overlapping live intervals in code of type (a). Both axes are
logarithmic. The horizontal axis indicates problem size; the vertical axis indicates
time. Although the costs of graph coloring and linear scan are comparable when the
number of overlapping live intervals is small, linear scan scales much more gracefully
to large problem sizes. With 512 simultaneously live variables, linear scan is over
600 times faster than graph coloring. Unlike linear scan, graph coloring appears to
suffer from the O(n2) time required to build and color the interference graph. Im-
portantly, the reported overhead is for the entire code generation process—not just
allocating registers, but also setting up the intermediate representation, computing
live variables, and generating code, so both algorithms share a common fixed cost
that reduces the relative performance gap between them. Furthermore, the code
generated by both allocators for this pathological case contains the same number
of spills.

Figure 6 compares the overhead of graph coloring and linear scan for programs
with live interval patterns of type (b). As in the previous experiment, linear scan
in this case generates the same number of spills as graph coloring. Again, the axes
are logarithmic and the vertical axis indicates time. The horizontal axis denotes
the number of successive staggered sets of live intervals, k in Figure 4(b). Different
curves denotes different numbers of simultaneously live variables (m in Figure 4(b):
for example, “Linear Scan (m=24)” refers to linear scan allocation with m = 24.
With increasing k, the overhead of graph coloring grows more quickly than that
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 5, September 1999.
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Fig. 5. Overhead of graph coloring and linear scan as a function of the number of simultaneously
live variables for programs of type (a).
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Fig. 6. Overhead of graph coloring and linear scan as a function of program size for programs
of type (b). The horizontal axis denotes the number of staggered sets of intervals (k in Fig-
ure 4(b)). Different curves denote values for different numbers of simultaneously live variables (m
in Figure 4(b)).

of linear scan. Moreover, the vertical space between graph coloring curves for
increasing m grows more quickly than for the corresponding linear scan curves.
This data is consistent with the results in Figure 5: the performance of graph
coloring degrades as the number of simultaneously live variables increases.

5.3 Run-Time Performance
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5.3.1 icode Implementation. Figure 7 shows the run-time performance of code
compiled with the icode implementation (described in Section 5.1.1) of the algo-
rithms. As before, the horizontal axis denotes different benchmarks, and for each
benchmark the different bars denote different register allocation algorithms, labeled
as in Figure 3. The vertical axis is logarithmic, and indicates run time in seconds.
Unfortunately, these dynamic code kernels are small, and do not have enough regis-
ter pressure to illustrate the differences among the allocation algorithms. The three
algorithms generate code of similar quality for all benchmarks other than dfa and
heap. In these two cases, the code emitted by the simple allocator based on usage
count is considerably slower than that created by graph coloring or linear scan.

5.3.2 SUIF Implementation. Figure 8 presents the run time of several large
benchmarks compiled with the SUIF implementation of the algorithms. Once again,
the horizontal axis denotes different benchmarks, and the logarithmic vertical axis
measures run time in seconds. In addition to the three algorithms (U, L, and C)
measured so far, we also present data for second-chance binpacking [Traub et al.
1998], which we label B. Table II contains the same data, and also provides the ratio
of the run time of each benchmark compiled with each register allocation method
relative to the run time of that benchmark compiled with graph coloring.

The measurements in Figure 8 and Table II indicate that linear scan makes a
fair performance tradeoff. It is considerably simpler and faster than graph coloring
and binpacking, yet it usually generates code that runs within 10% of the speed of
that generated by the two more complicated algorithms, and several times faster
than that generated by the simple usage count allocator.
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Fig. 8. Run times of static C benchmarks compiled with different register allocation algorithms.
U, L, and C are as before. B denotes second-chance binpacking.

Table II. Run Times of Benchmarks, as a Function of the Register Allocation Algorithm Used
when Compiling Them

Benchmark Time in seconds (ratio to graph coloring)
Usage counts Linear scan Graph coloring Binpacking

espresso 21.3 (6.26) 4.0 (1.18) 3.4 (1.00) 4.0 (1.18)
compress 131.7 (3.42) 43.1 (1.12) 38.5 (1.00) 42.9 (1.11)
li 13.7 (2.80) 5.4 (1.10) 4.9 (1.00) 5.1 (1.04)
alvinn 26.8 (1.15) 24.8 (1.06) 23.3 (1.00) 24.8 (1.06)
tomcatv 263.9 (4.62) 60.5 (1.06) 57.1 (1.00) 59.7 (1.05)
swim 273.6 (6.66) 44.6 (1.09) 41.1 (1.00) 44.5 (1.08)
fpppp 1039.7 (11.64) 90.8 (1.02) 89.3 (1.00) 87.8 (0.98)
wc 18.7 (4.67) 5.7 (1.43) 4.0 (1.00) 4.3 (1.07)
sort 9.8 (2.97) 3.5 (1.06) 3.3 (1.00) 3.3 (1.00)

6. DISCUSSION

This section addresses various extensions and issues related to linear scan alloca-
tion. In particular, we describe a fast algorithm for conservative (approximate) live
interval analysis, discuss the effect of different flow graph numberings and spilling
heuristics, mention some architectural considerations, and outline possible future
refinements to linear scan allocation.

6.1 Fast Live Interval Analysis

Figure 3 shows that most of the overhead of linear scan register allocation is due to
live variable analysis and “allocation setup,” the coarsening of live variable infor-
mation into live intervals. As a result, we have experimented with an alternative
algorithm that trades accuracy for speed, and quickly builds a conservative approx-
imation of live intervals without requiring full iterative live variable analysis.
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Fig. 9. An acyclic flow graph. Nodes are labeled with their depth-first numbers.

We call this algorithm “SCC-based liveness analysis” because it is based on the
decomposition of the flow graph into strongly connected components. It relies on
two simple observations, which we present here without proof. First, consider an
acyclic flow graph in which nodes are numbered in depth-first order (also known
as “reverse postorder” [Aho et al. 1986]), as shown in the example in Figure 9.
Recall that this order is the reverse of the order in which nodes are last visited,
or “finished” [Cormen et al. 1990], in a preorder traversal of the graph. If the
assignment to a variable v with the smallest depth-first number (DFN) has DFN
i, and the use with the greatest DFN has DFN j, then [i, j] is a live interval of
v. For example, in Figure 9, a conservative live interval of v is [2, 7]. The second
observation pertains to cyclic flow graphs: when all the definitions and uses of a
variable v appear within a single strongly connected component, C, of the flow
graph, the live interval of v will span at most exactly C.

As a result, we can compute conservative live intervals as follows. (1) Compute
SCCs of the flow graph, and for each SCC, construct the set of variables used or
defined in it. Also obtain each SCC’s DFN in the (acyclic) SCC graph. (2) Traverse
the SCCs once, extending the live interval of each variable v to [i, j], where i and j
are, respectively, the smallest and largest DFNs of any SCCs that use or define v.

This algorithm is appealing because it is simple and it minimizes expensive bit-
vector operations common in live variable analysis. The improvements in compile-
time relative to linear scan are impressive, as illustrated in Figure 10.

Unfortunately, however, the quality of generated code suffers from this approxi-
mate analysis. The difference is minimal for the small ‘C benchmarks presented in
Section 5.1.1, but becomes prohibitive for large benchmarks. Table III compares
the run time of applications compiled with full live variable analysis to that of ap-
plications compiled with SCC-based liveness analysis. These results indicate that
SCC-based liveness analysis may be of interest for quickly compiling small func-
tions, but that it is not suitable as a replacement for full live variable analysis in
large programs.
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Table III. Run Time of Programs Compiled with Linear Scan Allocation, as a Function of Liveness
Analysis Technique

Benchmark Time in seconds (ratio to graph coloring)
SCC-based analysis Full liveness analysis

espresso 22.7 (6.68) 4.0 (1.18)
compress 134.4 (3.49) 43.1 (1.12)
li 14.2 (2.90) 5.4 (1.10)
alvinn 40.2 (1.73) 24.8 (1.06)
tomcatv 290.8 (5.09) 60.5 (1.06)
swim 303.5 (7.38) 44.6 (1.09)
fpppp 484.7 (5.43) 90.8 (1.02)
wc 23.2 (5.80) 5.7 (1.43)
sort 10.6 (3.21) 3.5 (1.06)

6.2 Numbering Heuristics

As mentioned in Section 3, the definition of live intervals used in linear scan alloca-
tion holds for any numbering of flow graph nodes, not just the depth-first numbering
discussed so far.

We have used depth-first order in the paper because it is the most natural, and
it supports SCC-based liveness analysis. Another reasonable alternative is linear,
or layout, order, i.e. the order in which the pseudo-instructions appear in the
intermediate representation. As shown in Table IV, linear and depth-first order
produce roughly similar code for our set of benchmarks.
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Table IV. Run Time of Programs Compiled with Linear Scan Allocation, as a Function of Flow
Graph Numbering

Benchmark Time in seconds
Depth-first Linear (layout)

espresso 4.0 4.0

compress 43.3 43.6
li 5.3 5.5
alvinn 24.9 25.0
tomcatv 60.9 60.4
swim 44.8 44.4
fpppp 90.8 91.1
wc 5.7 5.8
sort 3.5 3.6

Table V. Run Time of Programs Compiled with Linear Scan Allocation, as a Function of Spilling
Heuristic

Benchmark Time in seconds
Interval length Interval weight

espresso 4.0 4.0
compress 43.1 43.0
li 5.4 5.4
alvinn 24.8 24.8
tomcatv 60.5 60.2

swim 44.6 44.6
fpppp 90.8 198.6
wc 5.7 5.7
sort 3.5 3.5

6.3 Spilling Heuristics

The spilling heuristic presented in Section 4 uses interval length. We also considered
an alternative spilling heuristic based on interval weight, or estimated usage count.
In this case, the algorithm spills the interval with the least estimated usage count
among the new interval and the intervals in active.

Table V compares the run time of programs compiled using interval length and
interval weight spilling heuristics. In general, the results are similar; only in one
benchmark, fpppp, does the interval length heuristic significantly outperform inter-
val weight. Of course, the relative performance of the two heuristics depends en-
tirely on the structure of the program being compiled. The interval length heuristic
has the additional advantage that it is slightly simpler, since it does not require
maintaining usage count information.

6.4 Architectural Considerations

Many machines place restrictions on the use of registers: for instance, only certain
registers may be used to pass arguments or return results, or certain operations
must target specific registers.

Operations that target specific registers can be handled by pre-allocating the
register candidates that are targets of these instructions, and modifying the alloca-
tion algorithm to take the pre-allocation into account. In the case of linear scan,
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if the scan encounters a pre-allocated live interval, it must spill (or assign to a
different register) the interval in active, if any, that already uses the register of the
pre-allocated interval. However, because live intervals are so coarse, it is possible
that two intervals that both need to use a particular register overlap: in this case,
the best solution is to extend linear scan so that a variable may reside in different
locations throughout its lifetime, as in binpacking [Traub et al. 1998].

The issue of when to use caller-saved registers is solved elegantly by the bin-
packing algorithm, which extends the concept of lifetime holes to physical regis-
ters [Traub et al. 1998]. The lifetime hole of a register is any region in which that
register is available for allocation; the lifetime holes of caller-saved registers simply
do not include function calls. Linear scan does not use lifetime holes. The sim-
plest solution is to use all registers, and insert saves and restores where appropriate
around function calls after register allocation. Another solution is to actually intro-
duce the binpacking concept of register lifetime hole, and to allocate a live interval
to a register only if it fits entirely within the register’s lifetime hole. We use the
former solution in the icode implementation (Section 5.1.1), and the latter solution
in the SUIF implementation (Section 5.1.2).

6.5 Optimizations

Since it is so simple, linear scan allocation lends itself to several refinements and
optimizations. The most beneficial in terms of code quality is probably live interval
splitting. Splitting does not involve changes to linear scan itself, but only to the
definition of live intervals. With splitting, a variable has one live interval for each
region of the flow graph throughout which it is uninterruptedly live, rather than
one interval for the entire flow graph. This definition takes advantage of holes
in variable lifetimes, and is analogous to binpacking without the second-chance
technique [Traub et al. 1998]. Past work on renaming scalar variables, including
renaming into SSA form [Cytron et al. 1989], can be useful in subsuming much of
the splitting that might be useful for register allocation.

Another possible optimization is coalescing of register moves. If the live interval
of a variable v1 ends where the live interval of another variable, v2, begins, and
the program at that point contains a copy v2 ← v1, then v2 can be assigned v1’s
register, and if v2 is not subsequently spilled, the move can be eliminated after
register allocation. It is not difficult to extend the routine ExpireOldIntervals

in Figure 1 to enable this optimization. However, in order to be effective, move
coalescing depends on live interval splitting: without splitting, the opportunities
for coalescing are few and can occur only outside of loops.

We have considered these and other optimizations, but have not yet implemented
them. The key advantage of the linear scan algorithm is that it is fast and simple,
yet can produce relatively good code. Additions to linear scan would make it slower
and more complicated, and may not improve the generated code much. If one is
willing to sacrifice some compile-time performance to obtain better code, then the
second-chance binpacking algorithm might be a good solution.

7. CONCLUSION

The linear scan algorithm is a fast and simple technique for global register alloca-
tion. Rather than coloring an interference graph, the algorithm allocates registers
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by making a single pass over coarse live interval information.
Measurements indicate that the linear scan algorithm is significantly faster than

graph coloring algorithms, and that it generally emits code that runs within ap-
proximately 10% of the speed of that generated by an aggressive graph coloring
algorithm.

Linear scan register allocation is being used as part of the tcc dynamic compila-
tion system. It should also be well suited to other applications where compile time
and code quality are important, such as “just-in-time” compilers and interactive
development environments.
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