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ABSTRACT 
We describe the design and implementation of a system for 
very fast points-to analysis. On code bases of about a million 
lines of unpreprocessed C code, our system performs field- 
based Andersen-style points-to analysis in less than a second 
and uses less than 10MB of memory. Our two main contri- 
butions are a database-centric analysis architecture called 
compile-link-analyze (CLA), and a new algorithm for imple- 
menting dynamic transitive closure. Our points-to analysis 
system is built into a forward data-dependence analysis tool 
that  is deployed within Lucent to help with consistent type 
modifications to large legacy C code bases. 

1. INTRODUCTION 
The motivation for our work is the following software main- 
tenance/development problem: given a million+ lines of C 
code, and a proposed change of the form "change the type 
of this object (e.g. a variable or struct field) from typel  to 
type2", find all other objects whose type may need to be 
changed to ensure the "type consistency" of the code base. 
In particular, we wish to avoid data  loss through implicit 
narrowing conversions. To solve this problem, we need a 
global data-dependence analysis that  in effect performs a 
forward data-dependence analysis (Section 2 describes this 
analysis, and how it differs from other more standard de- 
pendence analyses in the literature.). A critical part  of this 
dependence analysis is an adequate treatment of pointers: 
for assignments such as *p = x we need to determine what 
objects p could point to. This kind of aliasing analysis is 
commonly called points-to analysis in the literature [4]. The 
scalability of points-to analysis has been a subject of inten- 
sive s tudy over the last few years [5, 8, 21, 11, 23]. However 
the feasibility of building interactive tools that  employ some 
form of "sufficiently-accurate" pointer analysis on million 
line code-bases is still an open question. 

The paper has two main contributions. The first is an archi- 

1This is a substantially revised version of [16]. 
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tecture for analysis systems that  utilizes ideas from indexed 
databases. We call this architecture compile-link-analyze 
(CLA), in analogy with the standard compilation process. 
This architecture provides a substrate on which we can build 
a variety of analyses (we use it to implement a number of 
different algorithms for Andersen-style points~to analysis, 
dependence analysis and a unification-style points-to anal- 
ysis, all using a common database format for representing 
programs). It  scales to large code bases and supports sepa- 
rate and/or  parallel compilation of collections of source files. 
Also, its indexing structures support  rapid dynamic loading 
of just those components of object files that  are needed for 
a specific analysis, and moreover after reading a component 
we have the choice of keeping it in memory or discarding it 
and re-reading it if we even need it again (this is used to 
reduce the memory footprint of an analysis). We describe 
CLA in detail in Section 4, and discuss how it differs from 
other approaches in the literature, such as methods where 
sepaxate files are locally analyzed in isolation and then the 
individual results are combined to analyze an entire code- 
base. 

The second contribution is a new algorithm for implement- 
ing dynamic transitive closure (DTC). Previous algorithms 
in the literature for Andersen's analysis are based on a tran- 
sitively closed constraint graph e.g. [4, 10, 11, 21, 23, 22]. 
In contrast, our algorithm is based on a pre-transitive graph 
i.e. we maintain the graph in a form tha t  is not  transitively 
closed. When information about a node is requested, we 
must perform a graph reachability computat ion (as opposed 
to just  looking up the information at the node itself in the 
case of a transitively closed constraint graph). A direct im- 
plementation of the pre-transitive graph idea is impractical. 
We show how two optimizations - caching of teachability 
computations, and cycle elimination - yield aa  efficient al- 
gorithm. Cycle elimination has previously been employed 
in the context of transitively closed graph and shown to re- 
sult in significant improvement [11], however in that  work 
the cost of finding cycles is non-trivial and so completeness 
of cycle detection is sacrificed in order to contain its cost. 
However, in the pre-transitive setting, cycle detection is es- 
sentially free during graph teachability. We describe our 
algorithm in detail in Section 5. 

Section 6 presents various measurements of the performance 
of our system. For the Lucent code bases for which our sys- 
tem is targeted, runtimes are typically less than a second 
(800MHz Pentium) and space utilization is about 10MB. 
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These code bases are in excess of a million lines of code (un- 
commented non-blank lines of source, before pre-processing). 
On gimp (a publicly available code base of about  440K 
lines), our system performs field-based Andersen-style points- 
to analysis in about  a second (800MHz Pentium) and uses 
about  12MB. We also present da t a  to illustrate the space 
advantages of CLA. 

2. MOTIVATING APPLICATION- DEPEN- 
DENCE ANALYSIS 

Our points-to analysis system is built  into a forward data- 
dependence analysis tool tha t  is deployed within Lucent to 
help with consistent type modifications to large legacy C 
code bases. The basic problem is as follows: suppose that  
the  range of values to be stored in a variable must  be in- 
creased to support  addit ional system functionality. This 
may  require changing the type of a variable, for example 
from s h o r t  to i n t .  To avoid da ta  loss through implicit  nar- 
rowing conversions, any objects tha t  take values from the 
changed variable must  also have their  types appropriately 
altered. Consider the  following program fragment. 

short x, y, 
y = x; 
z = y+l; 
p = ~v; 
*p = Z; 
w = 1; 

Z, *pp V~ W; 

If  the type  of x is changed from s h o r t  to i n t ,  then we may 
also have to change the types of y, z, v and probably p, but 
we do not need to change the type of w. 

Given an object  whose type  must be changed (the target), 
we wish to find all other objects tha t  can be assigned val- 
ues from the specified object. This is a forward dependence 
problem, as opposed to backwards dependence used for ex- 
ample in program slicing [25]. Moreover it only involves 
data-dependencies,  as opposed to both data-dependencies 
and control-dependencies which are needed in program slic- 
ing. Our analysis refines forward data-dependence analysis 
to reflect the importance of a dependency for the  purposes 
of consistent type  changes. The most important  dependen- 
cies are those involving assignments such as x = y and z = 
y+l .  On the other  hand, an assignment such as z l  = !y 
can be ignored, since changing the type of y has no effect 
on the range of values of z l ,  and so the type of z l  does not 
need to be changed. Assignments involving operations such 
as division and multiplication are less clear. We discuss this 
later  in the  section. 

An impor tant  issue for the  dependence analysis is how to 
t reat  s t r u c t s .  Consider the program fragment involving 
structs  in Figure 1. If the  target  is the variable t a r g e t ,  
then u, w and s .  x are all dependent objects. If the  type 
of t a r g e t  is changed from sho r t  to in t ,  then the types of 
u, w and s . x  should also be changed. To effect this change 
to the type  of s .  x, we can either change the type  of the x 
field of the s truct  S, or we can introduce a new struct  type  
especially for s. The advantage of the former case is that  we 
make minimal changes to the program. The disadvantage is 
t ha t  we also change the type of t .  x, and this may not be 

T a b l e  1: C l a s s i f i c a t i o n  o f  o p e r a t i o n s .  
Operations Argument 1 Argument 2 
+, - ,  l, gq ^ 
* 

~ >>, << 

unary: + , -  

Strong Strong 
Weak Weak 
Weak None 

Strong n / a  
None None 
None n / a  

strictly necessary. However, in practice it is likely tha t  if 
we have to change the type of the x field of s, then we will 
have to change the type of the x field of t .  As a result, it  
is desirable to t rea t  objects that  refer to the  same field in 
a uniform way. By "same field", we mean not  just  tha t  the 
fields have the same name, but  tha t  they are the same field 
of the same struct type. 

Since our ul t imate use of dependence analysis is to help iden- 
tify objects whose type  must  be changed, we are not jus t  in- 
terested in the set of dependent objects. Rather,  we need to 
give a user information about  why one object is dependent on 
another. To this end, we computes the dependence chains, 
which identify paths  of dependence between one object  and 
another. In general there are many dependence paths  be- 
tween a pair of objects. Moreover, some paths are more 
important  than others. Dependencies arising from direct 
assignments such as x=y are usually the  most important;  de- 
pendencies involving ari thmetic operations x=y+l, x=y>>3, 
x=42Xy, x=l<<y are increasingly less important .  Our metric 
of importance is biased towards operations that  are likely 
to preserve the shape and size of input  data.  Table 1 out- 
lines a simple s t rong/weak/none classification that  we have 
employed. Our analysis computes the most impor tant  path,  
and if there are several paths  of the same importance,  we 
compute the shortest path.  

Large code bases often generate many dependent objects - 
typically in the range 1K-100K. To help users sift through 
these dependent objects and determine if they are objects 
whose type must be changed, we prioritize them according 
to the importance of their underlying dependence chain. We 
also provide a collection of graphic user interface tools for 
browsing the tree of chains and inspecting the corresponding 
source code locations. In practice, there are often too many 
chains to inspect - a common scenario is tha t  a central ob- 
ject  that  is not relevant to a code change becomes dependent 
(often due the context- or flow-insensitivity of the underly- 
ing analysis), and then everything tha t  is dependent  on this 
central object also becomes dependent.  We address this is- 
sue with some addit ional domain knowledge: we allow the 
user to specify "non-targets",  which are objects tha t  the 
user knows are certainly not dependent  on the target  ob- 
ject.  This has proven to be a very effective mechanism for 
focusing on the impor tant  dependencies. 

3. ANDERSEN'S POINTS-TO ANALYSIS 
We review Andersen's  points-to analysis and introduce some 
definitions used in the rest of the paper. In the literature, 
there are two core approaches to points-to analysis, ignoring 
context-sensitivity and flow-sensitivity. The first approach is 
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i. short target; 
2. struct S { short x; 
3. short u, *v, w; 
4. struct S s, t; 
5.  v = ~w; 
6.  u = target; 
7.  *v = u ;  
8. S.X = ~; 

short y ;  ) ;  

w/short <eg1.c:3> --3- u/short <egl.c:7> --~ target/short <egl.c:6> where target/short <egl.c:l> 

target/short <egl.c:l> 

u/short <egl.c:3> -+ target/short <egl.c:6> where target/short <egl.c:1> 

S.x/short <egl.c:2> -- w/short <egl.c:8> -+ u/short <egl.c:7> ~ target/short <egl.c:6> ... 

F i g u r e  1: A p r o g r a m  f r a g m e n t  i n v o l v i n g  s t r u c t s  a n d  i t s  d e p e n d e n c e  r e s u l t s  ( t h e  t a r g e t  is t a r g e t ) .  

unification-based [24]: an assignment such as x = y invokes 
a unification of the node for x and the node for y in the 
points-to graph. The algori thms for the  unification-based 
approach typical ly involve union/f ind and have essentially 
l inear-t ime complexity. The second approach is based on 
subset relationships: an assignment such as x = y gives rise 
to a subset constraint  x D y between the nodes x and y in 
the points-to graph [4]. The algori thms for the subset-based 
approach utilize some form of subtyping system, subset  con- 
s traints  or a form of dynamic  t ransi t ive closure, and have 
cubic-t ime complexity. 

The unification-based approach is faster and less accurate 
[22]. There has been considerable work on improving the 
performance of the subset-based approach [11, 23, 21], al- 
though the performance gap is still sizable (c.f. [23, 21] and 
[8]). As Das very recently observed "In spite of these efforts, 
Andersen 's  a lgori thm does not  ye t  scale to programs beyond 
500KLOC." [8] There has also been work on improving the 
accuracy of the  unification-based approach by incorporat-  
ing some of the  directional features of the  subset-based ap- 
proach to produce a hybr id  unification-based algori thm [8]: 
for a small  increase in analysis t ime (and quadrat ic  worst- 
case complexity) ,  much of the  addit ional  accuracy of the 
subset-based approach can be recovered. 

A D e d u c t i v e  Reachab i l i ty  F o r m u l a t i o n  
We use a context-insensitive, flow-insensitive version of the 
subset-based approach tha t  is essentially the  analysis due 
to Andersen [4]. One reason for this choice is the bet ter  
accuracy of the  subset-based approach over the  unification- 
based approach.  Another  reason is tha t  users of our depen- 
dence analysis system must  be able to inspect the  depen- 
dence chains produced by our system (Section 2), and un- 
ders tand why they  were produced.  Subset-based approaches 
generate easier to unders tand  results; unificat ion-based ap- 
proaches often introduce hard  to unders tand "backwards" 
flows of information due to the  use of equalities. 

Previous presentat ions of Andersen 's  algori thm have used 
some form of non-s tandard  type  system. Our presentat ion 
uses a simple deduct ive reachabil i ty system. This  style of 
analyses presentat ion was developed by McAllester [20]. It 
has also been used to describe control-flow analysis [18]. To 
simplify our presentat ion,  we consider a t iny language con- 
sisting of jus t  the  operat ions , and &. Expressions e have 

x > &y 
(if , x  = e in P) 

y >e 
x ---~ &y  

(if e = , x  in P) 
e------+y 

(if el = e2 in P) 
e l  ~ 62 

el ~ e2 e2 ) e3 

el --- '~ e3 

F i g u r e  2: D e d u c t i o n  r u l e s  for  a l i a s i n g  a n a l y s i s .  

(STAre 1) 

(STAR-2)  

(ASSIGN) 

(TRANS) 

the form: 

e ::= x I *~ I &x 

We shall assume tha t  nested uses o f ,  and  & are removed 
by a preprocessing phase. Programs are sequences of assign- 
ments  of the  form el = e2 where el  cannot  be &x. 

Given some program P ,  we construct  deduct ion rules as 
specified in Figure 2. In the  first rule, the side condition 
"if *x : e in P"  indicates tha t  there is an instance of this 
rule for each occurrence of an assignment of the  form *x = e 
in P .  The side conditions in the  other rules are similarly 
interpreted.  Intuitively, an edge el ~ e2 indicates  tha t  any 
object  pointer  tha t  we can derive from e2 is also derivable 
from ex. The  first rule deals with expressions of the  form 
*x on the left-hand-sides of assignments:  i t  s ta tes  tha t  if 
there is a t rans i t ion  from x to &y, then  add a t ransi t ion 
from y to e, where e is the left-hand-side of the  assignment.  
The second rule deals with expressions of the  form *x on 
the r ight-hand-sides  of assignments: i t  s ta tes  t ha t  if there  
is a t ransi t ion from x to  &y, then add  a t ransi t ion from e 
to y where e is the r ight-hand-side of the  assignment.  The 
th i rd  rule adds  a t ransi t ion from el to e2 for all assignments 
el  = e2 in the  program, and finally, the  fourth rule is just  
t ransi t ive closure. The  core of our points- to  analysis can 
now be s ta ted  as follows: x can point to y if we can derive 
x ~ &y. Figure  3 contains an example program and shows 
how y ~ &x can be derived. 

Analys i s  o f  Ful l  C 
Extending this  core analysis to  full C presents a number  of 
choices. Adding  values such as integers is s traightforward.  
I t  is also easy to deal with nested uses of * and & through 
the addi t ion of new tempora ry  variables (we remark  tha t  
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i n t  x, *y; 
int **Z; Z --> ~y (ASSIGN) 
Z =. 86y; *Z ~ ~X (ASSIGN) 
*z = &X; Y ~ ~x (from STAR-l) 

F i g u r e  3: E x a m p l e  p r o g r a m  a n d  app l i ca t ion  o f  de- 
d u c t i o n  ru les  t o  show y ~ ax. 

considerable implementation effort is required to avoid in- 
troducing too many temporary variables). However, treat- 
ing s t r u c t s  and unions is more complex. One possibility 
is, in effect, to ignore them: each declaration of a variable 
of s t r u c t  or union type is treated as an unstructured mem- 
ory location and any assignment to a field is viewed as an 
assignment to the entire chunk e . g . x . f  is viewed as an as- 
signment to x and the field component f is ignored. We 
call this the field-independent approach and examples in- 
clude [10, 11, 22]. Another approach is to use a field-based 
treatment of structs such as that  taken by Andersen [4]. In 
essence, the field-based approach collects information with 
each field of each struct, and so an assignment to x. f  is 
viewed as an assignment to f and the base object x is ig- 
nored. (Note that  two fields of different structs that  happen 
to have the same name are treated as separate entities.) The 
following code illustrates the distinction between field-based 
and field-independent. 

s t ruct  s ~ i n t  *x; i n t  *y; ]- A, B; 
int  z; 
main ( )  'C 

i n t  *p, *q,  *r ,  * s ;  
A.x = ~z; /* field-based: assigns to "x" 

* field-independent: assigns ~o "A" */ 
p = A.x; /* p gets ~z in both approaches */ 
q = A.y; /* field-independent: q gets Ez */ 
r = B.x; /* field-based: r gets ~z */ 
s = B.y; /* in neither approach does s get ~z */ 

} 

In the field-independent approach, the analysis determines 
tha t  only p and q can point to ~zz. In the field-based ap- 
proach, only p and r can point to ~z .  Hence, neither of 
these approaches strictly dominates the other in terms of ac- 
curacy. We note tha t  while the works [10, 11, 22] are based 
on Andersen's algorithm [4], they in fact differ in their treat- 
ment of structs: they are field-independent whereas Ander- 
sen's algorithm is field-based ~. In Section 6, we show this 
choice has significant implications in practice, especially for 
large code bases. Our aliasing analysis uses the field-based 
approach, in large part  because our dependence analysis is 
also field-based. 

4. COMPILE-LINK-ANALYZE 
A fundamental problem in program analysis is modular- 
ity: how do we analyze large code bases consisting of many 
source files? The simple approach of concatenating all of the 
source files into one file does not scale beyond a few thou- 
sand lines of code. Moreover, if we are to build interactive 

1Strictly speaking, while Andersen's core algorithm is field- 
based, he assumes that a pre-processiug phase has dupli- 
cated and renamed struct definitions so that  structs whose 
values cannot flow together have distinct names (see Section 
2.3.3 and 4.3.1 of [4]). 

tools based on an analysis, then it is important to avoid re- 
parsing/reprocessing the entire'code base when changes are 
made to one or two files. 

The most basic approach to this problem is to parse compila- 
tion units down to an intermediate representation, and then 
defer analysis to a hybrid link-analyze phase. For example, 
at the highest level of optimization, DEC's MIPS compiler 
treats the internal ucode files produced by the frontend as 
"object files", and then invokes a hybrid linker (uld) on the 
ucode files [9]. The uld "linker" simply concatenates the 
ucode files together into a single big ucode file and then 
performs analysis, optimization and code generation on this 
file. The advantage of this approach is it modularizes the 
parsing problem - we don't  have to parse the entire program 
as one unit. Also, we can avoid re-parsing of the entire code 
base if one source file changes. However, it does not mod- 
ularize the analysis problem - the analysis proceeds as if 
presented with the whole program in one file. 

One common way to modularize the analysis problem is to 
analyze program components (at the level of functions or 
source files), and compute summary information that  cap- 
tures the results of these local analyses. Such summaries 
are then combined/linked together in a subsequent "global- 
analysis" phase to generate results for the entire program. 
This idea is analogous to the construction of principle types 
in type inference systems. For example, assigning 'ca ~ o?' 
to the identity function in a simply typed language is essen- 
tially a way of analyzing the identity function in a modular 
way. Uses of the identity function in other code fragments 
can utilize oz -4 ~ as a summary of the behavior of the 
identity function, thus avoiding inspection of the original 
function. (Of course, full polymorphic typing goes well be- 
yond simply analyzing code in a modular way, since it allows 
different type instantiations for different uses of a function 
- akin to context-sensitive analysis - which is beyond the 
scope of the present discussion.) 

This modular approach to analysis has a long history. Ac- 
cording to folklore, one version of the MIPS compiler em- 
ployed local analysis of separate files and then combined the 
local analysis results during a "linking" phase. The idea is 
also implicit in Aiken et. al.'s set-constraint type systems 
[3], and is much more explicit in Flanagan and Felleisen's 
componential analysis for set-based analysis [12]. Recently, 
the idea has also been applied to points-to analysis. Das [8] 
describes a hybrid unification-based points-to analysis with 
the following steps. First, each source file is parsed, and 
the assignment statements therein are used to construct a 
points-to graph with flow edges, which is simplified using a 
propagation step. The points-to graph so computed is then 
"serialized" and written to disk, along with a table that 
associates symbols and functions with nodes in the graph. 
The second phase reads in all of these (object) files, unifies 
nodes corresponding to the same symbol or function from 
different object files, and reapplies the propagation step to 
obtain global points-to information. In other words, the 
analysis algorithm is first applied to individual files and the 
internal state of the algorithm (which in this case is a points- 
to graph, and symbol information) is frozen and written to 
a file. Then, all of these files are thawed, linked and the 
algorithm re-applied. 
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This means that  the object files used are specific not just to 
a particular class of analysis (points-to analysis), but  to a 
particular analysis algorithm (hybrid unification-based anal- 
ysis), and arguably even to a particular implementation of 
that  algorithm. The object files are designed with specific 
knowledge of the internal data-structures of an implemen- 
tation in such a way that  the object file captures sufficient 
information about  the internal state of the implementation 
that  this state can be reconstructed at a later stage. 

The CLA Model 
Our approach, which we call compile-link-analyze (CLA), 
also consists of a local computation, a linking and a global 
analysis phase. However, it represents a different set of 
tradeoffs from previous approaches, and redraws the bound- 
aries of what kind of work is done in each phase. A key 
difference is tha t  the first phase simply parses source files 
and extracts assignment statements - no actual analysis is 
performed - and the linking phase just links together the 
assignment statements. One advantage of the CLA architec- 
ture is that  the first two phases remains unchanged for many 
different implementations of points-to armlysis and even dif- 
ferent kinds of analysis (we return to this point later). A 
follow-on advantage is that  we can justify investing resources 
into optimizing the representation of the collections of as- 
signments, because we can reuse this work in a number of 
different analysis implementations. In particular, we have 
developed a database-inspired representation of assignments 
and function definitions/calls/returns. This representation 
is compact and heavily indexed. The indexing allows rel- 
evant assignments for a specific variable to be identified in 
just one lookup step, and more generally, it supports a mode 
where the assignments needed to solve a particular analysis 
problem can be dynamically loaded from the database on 
demand. 

More concretely, CLA consists of three phases. The compile 
phase parses source files, extracts assignments and function 
calls/returns/definitions (in what  follows we just  call these 
"assignments"), and writes an object file that  is basically an 
indexed database structure of these basic program compo- 
nents. No analysis is performed yet. Complex assignments 
are broken down into primitive ones by introducing tempo- 
rary variables. The elements of the database, which we call 
primitive assignments, involve variables and (typically) at 
most one operation. 

The link phase merges all of the database files into one 
database, using the linking information present in the ob- 
ject files to link global symbols (the same global symbol 
may be referenced in many files). During this process we 
must recompute indexing information. The "executable" file 
produced has the same format as the object files, although 
its linking information is typically obsolete (and could be 
stripped). 

The analyze phase performs the actual analysis: the linked 
object file is dynamically loaded on demand into the running 
analysis. Importantly,  only those parts of the object file 
that  are required are loaded. An additional benefit of the 
indexing structure of the object file is that  when we have 
read information from the object file we can simply discard 
it and re-load it later if necessary (memory-mapped I /O  

is used to support  efficient reading and re-reading of the 
object file). We use this feature in our implementation_ of 
Andersen's analysis to greatly reduce the memory footprint 
of the analysis. It allows us to maintain only a very small 
portion of the object file in memory. 

An example source file and a partial sketch of its object file 
representation is given in Figure 4. These object files consist 
of a header section which provides an index to the remaining 
sections, followed by sections containing linking information, 
primitive assignments (including information about  function 
calls/returns/definitions) and string information, as well as 
indexing information tbr identifying targets for the depen- 
dence analysis. The primitive assignments are contained in 
the dynamic section; it consists of a list of blocks, one for 
each object in the source program. Each block consists of 
information about the object (its name, type, source code 
location and other attributes), followed by a list of prim- 
itive assignments where this object is the source. For ex- 
ample, the block for z contains two primitive assigmnents, 
corresponding to the second and third assignments in the 
program (a very rough intuition is that  whenever z changes, 
the primitive assignments in the block for z tell us what we 
must recompute). 

As mentioned before, one of the goals of our work is to build 
infrastructure that  can be used for a variety of different anal- 
ysis implementations as well as different kinds of analysis. 
We have used our CLA infrastructure for a number of differ- 
ent subset-based points-to analysis implementations (includ- 
ing an implementation based on bit-vectors, as well as many 
variations of the graph-based points-to algorithm described 
later in this paper), and field-independent and field-based 
points-to analysis. The key point is tha t  our object files 
do not depend on the internals of our implementation and 
so we can freely change the implementation details without 
changing the object file format. We have also used CLA 
infrastructure for implementing unification-based points-to 
analysis, and for the dependence analysis described in Sec- 
tion 2. Finally, we note that  we can write pre-analysis op- 
timizers as database to database transformers. In fact, we 
have experimented with context-sensitive analysis by writ- 
ing a transformation that  reads in databases and simulates 
context-sensitivity by controlled duplication of primitive as- 
signments in the database - this requires no changes to code 
in the compile, link or analyze components of our system. 

We now briefly sketch how the dependence and points-to 
analyses use object files. Returning to Figure 4, consider 
performing points-to analysis. The starting point for points- 
to analysis is primitive assignments such as q = ~y in the 
static section. Such an assignment says that  y should be 
added to the points-to set for q. This means tha t  the points- 
to set for q is now non-empty, and so we must load all prim- 
itive assignments where q is the source. In this case, we 
load p = q, which imposes the constraint p D q. This is 
all we need to load for points-to analysis in this case. Now 
consider a dependence analysis. Suppose that  the target of 
the dependence analysis is the variable z. We first look up 
"z" in the hashtable in the target section to find all vari- 
ables in the object file whose name is "z" (strictly speaking, 
we find the object file offsets of all such variables). In this 
case we find just one variable. We build a data-structure to 

258 



file a.c: 
int  x, y, z, 
x = y ;  
x=z; 

*p= z; 
p=q; 

q= ~y; 

x = *p; 

*p, *q; 

header  sect ion:  segment offsets and sizes 
global  section:  linking information 
s ta t ic  sect ion:  address-of operations; always loaded for points-to analysis 

q =  ~y 
s t r ing section:  common strings 
t a rge t  section:  hashtable for finding targets 
dynamic  section:  elements are loaded on demand, organized by object 

x @ a.c:l 
none 

y @ a.c:l 
x = y @ a.c:2 

~ a.c:l 
x : z @ a.c:3 
*p =z ~ a.c:4 

p @ a.c:l 
x = *p ~ a.c:7 

q Q a.c:1 
p = q ~ a.c:5 

F i g u r e  4: E x a m p l e  p r o g r a m  a n d  s k e t c h  o f  i t s  o b j e c t  f i le 

say that  this variable is a target  of the dependence analysis. 
We then load the block for z, which contains the primitive 
assignments x = z and *p = z. Using the first assignment, 
we build a data-s t ructure  for x and then we load the block 
for x, which is empty. Using the second assignment, we find 
from the points-to analysis that  p can point to g~y, and so 
we build a data-s t ructure  for y and load the block for y, etc. 
In the  end, we find that  both  x and y depend on z. 

The  compilation phase we have implemented includes more 
information in object  files tha t  we have sketched here. Our 
object  files record information about  the strength of depen- 
dencies (see Section 2), and also information about any oper- 
at ions involved in assignments. For example, corresponding 
to a program assignment x = y + z, we obtain two prim- 
itive assignments x = y and x = z in the database. Each 
would reta in  information about the  "+" operation. Such 
information is critical for printing out informative depen- 
dence chains; i t  is also useful for other kinds of analysis tha t  
need to know about  the underlying operations. We include 
sections tha t  record information about  constants in the pro- 
gram. To support  advanced searches and experiment with 
context-sensitive analysis, we also include information for 
each local variable that  identifies the function in which it 
is defined. We conjecture that  our object file format can 
be used (or easily adapted)  for any flow-insensitive analysis 
t ha t  computes propert ies about the  values of variables i.e. 
any analysis tha t  focuses entirely on the assignments of the 
program, and ignores control constructs. Examples include 
points-to analysis, dependence analysis, constant propaga- 
tion, binding-time analysis and many variations of set-based 
analysis. One advantage of organizing object files using sec- 
tions (much like C O F F / E L F ) ,  is tha t  new sections can be 
t ransparent ly  added  to object  files in such a way tha t  exist- 
ing analysis systems do not need to  be rewritten. 

We conclude with a discussion of functions and function 
pointers. Function are handled by introducing s tandard-  
ized names for function arguments and returns. For exam- 
ple, corresponding to a function definition i n t  f ( x ,  y) { 
• . .  r e t u r n ( z ) } ,  we generate primitive assignments x = 
f l ,  y = f2, f~t  : z, where ffl, f2, f ~  are respectively the 
s tandardized variables for the two arguments of f and f ' s  
re turn  value. Similarly, corresponding to a call of the form 

w = f ( e l ,  e2), we generate primitive assignments f l  = el ,  
f2 = e2 and w : f~t .  These standardized names are t reated 
as global objects, and are linked together, like other global 
objects, by the linker. The t rea tment  of indirect function 
calls uses the same naming convention, however some of the 
linking of formal and actual parameters  happens at analysis 
time. Specifically, corresponding to a function definition for 
g, there is an object file entry (in the block for g) that  records 
the argument and return variables for 9. Corresponding to 
an indirect call (*f) (x,  y) ,  we mark f as a function pointer 
as well as adding the primitive assignments f l  -- x, f2 = y, 
etc. During analysis, if a function g is added to the points-to 
set for f (marked as a function pointer),  then we load the 
record of argument and return variables for both f and g. 
Using this information, we add new assignments gl  = f l ,  
g2 : f2 and fret = 9rct. 

5. A GRAPH-BASED ALGORITHM FOR AN- 
DERSEN'S ANALYSIS 

Scalability of Andersen's context-insensitive flow-insensitive 
points-to analysis has been a subject  of much research over 
the last five years. One problem with Andersen's analysis is 
the "join-point" effect of context-insensitive flow-insensitive 
analysis: results from different execution paths can be joined 
together and distr ibuted to the points-to sets of many vari- 
ables. As a result, the points-to sets computed by the  anal- 
ysis cam be of size O ( n )  where n is the  size of the program; 
such growth is commonly encountered in large benchmarks. 
This can spell scalability disaster if all points-to sets are 
explicitly enumerated. 

Aiken et. al. have addressed a variety of scaling issues for 
Andersen's  analysis in a series of papers. Their work has 
included techniques for elimination of cycles in the inclusion 
graph [11], and projection merging to reduce redundancies 
in the  inclusion graph [23]. All of these are in the context of 
a transitive-closure based algorithm, and their results show 
very substantial  improvements over their base algorithm - 
with all optimizations enabled, they report  analysis times of 
1500s for the  gimp benchmark on a SPARC Enterprise 5000 
with 2GB [23]. 

Alternatively, context- and flow-sensitivity can be used to 
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reduce the effect of join-points. However the cost of these ad- 
ditional mechanisms can be large, and without other break- 
throughs, they are unlikely to scale to millions of lines of 
code. Also, recent results suggest that  this approach may 
be of little benefit for Andersen's analysis [13]. 

In principle, ideas from sub-transitive control-flow analysis 
[18] could also be applied to avoid propagation of the in- 
formation from join-points. The basic idea of sub-transitive 
control-flow analysis is that  the usual dynamic transitive 
closure formulation of control-fiow analysis is redesigned so 
that  the dynamic edge-adding rules are de-coupled from the 
transitive closure rules. This approach can lead to linear- 
time algorithms. However, it is currently only effective on 
bounded-type programs, an unreasonable restriction for C. 

The main focus of our algorithm, much like that  of the sub- 
transitive approach, is on finding a way to avoid the cost of 
computing the full transitive closure of the inclusion graph. 
We begin by classifying the assignments used in the deduc- 
tive reachability system given in Section 3 into three classes: 
(a) simple assignments, which have the form x ---- y, (b) base 
assignments, which have the form x = &y, and (c) complex 
assignments, which have the form x = =~y or *x = y. For 
simplity, we omit treatment of *z = *y; it can be split into 
*x =- z and z -= ~yj where z is a new variable. In what 
follows we refer to items of the form &y as Ivals. 

The central data-structure of our algorithm is a graph Q, 
which initially contains all information about the simple as- 
signments and base assignments in the program. The nodes 
of G are constructed as follows: for each variable x in the 
program, we introduce nodes n~ and n,~ (strictly speaking, 
we only need a node n,~ if there is a complex assignment 
of the form y = *x). The initial edges of ~ are constructed 
as follows: corresponding to each simple assignment x = y, 
there is an edge n~ --+ n u from nz to nu. Corresponding to 
every node n in G, there is a set of base elements, defined 
as follows: 

baseElements(n~) = {y : x = &y appears in P} 

The complex assignments, which are not represented in G, 
are collected into a set C. The algorithm proceeds by it- 
erating through the complex assignments in C and adding 
edges to G based on the information currently in G. At any 
point in the algorithm, G represents what we explicitly know 
about the sets of lvals for each program variable. A major 
departure from previous work is that  ~ is maintained in pre- 
transitive form i.e. we do not transitively close the graph. 
As a result, whenever we need to determine the current lvals 
of a specific variable, we must perform graph reachability: 
to find the set of lvals for variable x, we find the set of nodes 
reachable from n~ in zero or more steps, and compute the 
union of the baseElements sets for all of these nodes. We use 
the function getLvals(n~) to denote this graph reachability 
computation for node n~. 

The process of iterating through the complex assignments in 
C and adding edges to ~ based on the information currently 
in Q is detailed in Figure 5. Note that  line 7 need only be 
executed once, rather than once for each iteration of the 
loop. 

Before discussing the ge tLva l s  0 fimction, we give some in- 
tuition on the computational  tradeoffs invotved in maintain- 
ing the constraint graph in pre-transitive form and comput- 
ing lvals on demand. First, during its execution, the algo- 
rithm only requires the computation of lvals for some subset 
of the nodes in the graph. Now, of course, at the end of' the 
algorithm, we may still have to compute all lvals for all graph 
nodes. However, in the presence of cycle-elimination (dis- 
cussed shortly), it is typicMly much cheaper to compute all 
lvals for all nodes when the algorithm terminates than it is 
to do so during execution of the algorithm. Second, the pre- 
transitive algorithm trades off traversal of edges versus flow 
of lvals along edges. More concretely, consider a complex 
assignment such as *x = y, and suppose t~hat the set of lvals 
for x includes &xl and &x2. As a result of this complex 
assignment, we add edges from xl to y and x2 to y. Now, 
in an algorithm based on transitive-closure, all lvals asso- 
ciated with y will flow back along the new edges inserted 
and from there back along any paths that  end with xl or 
x2. In the pre-transitive graph, the edges are added and 
there is no flow of lvals. Instead, Ivals are collected (when 
needed) by a traversal of edges. In the transitive closure 
case, there are O(n .E)  transitive closure steps, where n is 
the average number of distinct lvals that  flow along an edge, 
and E is the number of edges, versus O(E)  steps per reach- 
ability computation This tradeoff favors the pre-transitive 
graph approach when E is small and n is large. (We re- 
mark that  this is analysis is for intuition only; it is not  a 
formal analysis, since neither the transitive closure step nor 
the reachability step are O(1) operations.) 

We next describe g e t L v a l s 0 ,  which is the graph reachabil- 
ity component of the algorithm. A key part  of the graph 
reachability algorithm is the t reatment  of cycles. Not only 
is cycle detection important  for termination, but  it has fun- 
damental performance implications. The first argument of 
ge tLva ls  0 is a graph node and the second is a list of ele- 
ments that  define the path we are currently exploring; top- 
level calls have the form ge tLvals (n ,  nil).  Each node in 
has a one-bit field onPath. 

The function uni:fyNodes 0 merges two nodes. We imple- 
ment node merging by introducing an optional skip  field 
for each node. Two nodes nl  and n2 are then unified by 
setting skip(n1) to n2, and merging edge and baseElement 
information from nl into n2. Subsequently, whenever node 
nl  is accessed, we follow its skip pointer. We use an incre- 
mental algorithm for updat ing graph edges to skip-nodes to 
their de-skipped counter-parts. 

Cycle elimination was first used for points-to analysis by 
F/ihndrich et. al [11]. In their work, the cost of finding cy- 
cles was non-trivial and so completeness of cycle detection 
was sacrificed in order to contain its cost. In contrast, cy- 
cle detection is essentially free in our setting during graph 
teachability computations. Moreover, we find almost all cy- 
cles - more precisely, we find all cycles in the parts of the 
graphs we traverse during graph reachability. In essence, 
we find the costly cycles - those that  are not detected are 
in parts of the graph that  we ignore. In other words, one 
of the benefits of our algorithm is that  it finds more of the 
important  cycles and it does so more cheaply. 
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/* The Iteration Algorithm */ 
I. do { 
2. nochange = true; 

3. for each complex assignment *x = y in 
4. for each Rz in getLvals(nz) 
5. add an edge nz ~ ny to ~; 
6. for each complex assignment x = *y in 
7. add an edge n~ --~ n,y; 
8. for each &z in getLvals(ny) 
9. add an edge n~y -+ nz 
I0. } until nochange 

1. 
2. 
3. 
4. 
5. 
6. 
7. 

C 8. 
10. 
11, 
12, 
13. 
14. 
15. 

F i g u r e  5: T h e  P r e - T r a n s i t i v e  G r a p h  

getLvals(n, path) { 
±f(onPath(n)) < /* we have a cycle */ 

foreach n' in path, unifyNode(n', n); 
return(emptySet); 

} else { /* explore new node n */ 
onPath(n) = 1; 
Ivals = emptySet; 
path = cons(n, path); 

Ivals = union(ivals, baseElements(n); 
foreach n' such that there is an edge from n to n' 

Ivals = union(ivals, getLvals(n, path)); 
onPath(n) = O; 
return(ivals); 

} 

A l g o r i t h m  for P o i n t s - t o  A n a l y s i s  

This completes the basic description of our algorithm. We 
conclude with a number of enhancements to this basic al- 
gorithm. First,  and most important ,  is a caching of reach- 
abili ty computations.  Each call to getLvals 0 first checks to 
see if the Ivals have been computed for the node during the 
current i terat ion of the i teration algorithm; if so, then the 
previous lvals axe returned, and if not, then they are recom- 
puted (and stored in the node). Note tha t  this means we 
might use "stale" information; however if the information 
is indeed stale, the  nochange flag in the iteration algorithm 
will ensure we compute another i teration of the algorithm 
using fresh information. Second, the graph edges are main- 
ta ined in both a hash table and a per-node list so that  i t  is 
fast to determine whether an edge has been previously added 
and also to i terate  through all of the outgoing edges from a 
node. Third,  since many lval sets are identical, a mechanism 
is implemented to share common lvals set. Such sets axe im- 
plemented as ordered lists, mad are linked into a hash table, 
based on set size. When a new lval set is created, we check 
to see if it  has been previously created. This table is flushed 
at the beginning of each pass through the complex assign- 
ments. Fourth,  lines 4-5 and lines 8-9 of Figure 5 are changed 
so tha t  instead of i terat ing over all lvals in ge tLva l s  (n~), we 
i terate over all nodes in getLvalsNodes (n~). Conceptually, 
the function ge tLva lsNodes( )  returns all of the de-skipped 
nodes corresponding to the lvals computed by ge tLva l s  (); 
however it can be implemented more efficiently. 

From the viewpoint of performance, the two most signif- 
icant elements of our algorithm are cycle elimination and 
the caching of teachabil i ty computations. We have observed 
a slow down by a factor in excess of > 50K for gimp (45,000s 
c.f. 0.8s user t ime) when both of these components of the 
algorithm are turned off. 

6. RESULTS 
Our analysis system is implemented using a mix of ML and 
C. The compile phase is implemented in ML using the ckit 
frontend[6]. The  linker and the analyzer axe implemented in 
C. Our implementat ion deals with full C including structs,  
unions, arrays and function cal l / re turn (including indirect 
calls). Suppor t  for many of these features is based on simple 
syntactic transformations in the  compile phase. The field- 
based t rea tment  of structs is implemented as follows: we 
generate a new variable for each field f of a s truct  defini- 
tion, and then map each access of that  field to the variable. 
Our t rea tment  of axrays is index-independent (we essentially 
ignore the index component of sub expressions). The bench- 

marks we use are described in Table 2. The first six bench- 
marks were obtained from the authors of [21], and the lines 
of code reported for these are the  number of lines of non- 
blank, non-#  lines in each case. We do not currently have 
accurate source line counts for these benchmarks. The sev- 
enth benchmark was obtained from the authors of [23]. The 
last benchmark is the Lucent code base tha t  is the main tar- 
get of our system (for proprie tary reasons, we have not in- 
cluded M1 informations on this benchmark).  For each bench- 
mark, we also measure the size of the preprocessed code in 
bytes, the size of the object  files produced by the analy- 
sis (compiler + linker, also in bytes), and the number of 
primitive assignments in the object  files - the five kinds of 
assignments allowed in our intermediate language. 

We remark tha t  line counts are only a very rough guide 
to program size. Source code is misleading for many rea- 
sons. For instance, macro expansion can considerably in- 
crease the amount of work tha t  must be performed by an 
analysis. Preprocessed code is misleading because many ex- 
traneous extern declarations axe included as the result of 
generic system include files. Moreover, these system include 
files can vary considerably in size from system to system. 
AST node counts of preprocessed code are a bet ter  mea- 
sure of complexity because they de-emphasize the effects of 
coding style; however there is no agreed upon notion of AST 
nodes, and AST nodes might still be inflated by unnecessary 
dedara t ions  generated by rampant  include files. Counts of 
primitive assignments may be a more robust measure. 

Results from these benchmarks are included in Table 3. 
These results measure analysis where (a) each stat ic oc- 
currence of a memory allocation primitive (malloc,  c a l l o c ,  
etc.) is t reated as a fresh location, and (b) we ignore con- 
stant  strings. This is the default setup we use for points-to 
and dependence analysis. The first column of Table 3 rep- 
resents the count of program objects (variables and fields) 
for which we compute non-empty pointer sets; it does not  
include any temporary  variables introduced by the analysis. 
The second column represents the  total  sizes of the points-to 
sets for all program objects. The third and fourth columns 
give wall-dock t ime and user t ime in seconds respectively, 
as reported b y / b i n / t i m e  using a single processor of a two 
processor Pentium 800MHz machine with 2GB of memory 
running Linux 2. The fifth column represents space utiliza- 

2Red Hat  Linux release 6.2 (Piglet) 
VA Linux release 6.2.3 07/28/00 bl .1 P2 
Kernel 2:2.14-VA.5.1smp on a 2-processor i686. 
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preproc, object 
size size 

nethack 
burlap 
vortex 
emacs 

povray 
gee 

gimp 
lucent 

LOC 
(source) 

440K 
1.3M 

LOC 
(preproc.) 

44.1K 
74.6K 

170.3K 
93.5K 

175.5K 
199.8K 

7486.7K 

1.4MB 
2.4MB 
7.7MB 

40.2MB 
68.1MB 
69.0MB 

201.6MB 

0.TMB 
1.4MB 
2.6MB 
2.6MB 
3.1MB 
4.4MB 

27.2MB 
20.1MB 

Tab le  2: 

program t assignm~lt s______r__r_ ___:__ ~ 
variables X = y x = &y ] *x = y I *x = ~ . . ~ _ 1 ~  

3856 9118 
6859 14202 

11395 24218 
12587 31345 
12570 29565 
18749 62556 

131552 303810 
96509 270148 

1115 30 34 
1049 1160 714 
7458 353 231 
3461 614 154 
4009 2431 1190 
3434 1673 585 

25578 5943 2397 
72355 1562 991 

1897 
1866 
1029 
3085 
1467 
6428 
3989_ 

B e n c h m a r k s  

tion in MB, obtained by summing static data and text sizes 
(reported by / b i n / s i z e ) ,  and dynamic allocation (as re- 
ported by ma l loc_s t a t sO) .  We note that  for the lucent 
benchmark - the target code base of our system - we see 
total wall-clock times of about half a second, and space uti- 
lization of under 10MB. 

The last three columns explain why the space utilizations 
are so low: these columns respectively show the number 
of primitive assignments maintained "in-core", the number 
loaded during the analysis, and the total number of primitive 
assignments in the object file. Note that  only primitive as- 
signments relevant to aliasing analysis are loaded (e.g. non- 
pointer arithmetic assignments are usually ignored). Recall 
that  once we have loaded a primitive assignment from an ob- 
ject file and used it, we can discard it, or keep it in memory 
for future use. Our discard strategy is: discard assignments 
x = y and x = &y, but maintain all others. These num- 
bers demonstrate the effectiveness of the load-on-demand 
and load-and-throw-away strategies supported by the CLA 
architecture. 

Table 4 studies the effect of changing the baseline system. 
The first group of columns represents the baseline and is 
just a repeat of information from Table 3. The second 
group shows the effect of changing the underlying treat- 
ment of structs from field-based to field-independent. We 
caution that  these results are very preliminary, and should 
not be interpreted as a conclusive comparison of field-based 
and field-independent. In particular, there are a number of 
opportunities of optimization that  appear to be especially 
important  in the field-independent case that  have not im- 
plemented in our current system. We expect tha t  these op- 
timizations could significantly close the time and space gap 
between the two approaches. However, it is clear that  the 
choice between field-based and field-independent has signifi- 
cant implications in practice. Most points-to systems in the 
literature use the field-independent approach. Our results 
suggest that  the field-based might in fact represent a better 
tradeoff. The question of the relative accuracy of the two 
approaches is open - even the metric for measuring their 
relative accuracy is open to debate. 

We conclude by briefly discussing empirical results from re- 
lated systems in the literature. Since early implementations 
of Andersen's analysis [22], much progress has been made 
[11, 23, 21]. Currently, the best results for Andersen's are 
analysis times of about 430 seconds for about 500K lines of 
code (using a single 195 MHz processor on a multi-processor 

SGI Origin machine with 1.5GB) [21]. The main limiting 
factor in these results is that  space utilization (as measured 
by the amount of live data  after GC) is 150MB and up - in 
fact the largest benchmark in [21] ran out of memory. Re- 
sults from [23] report analysis times of 1500s for gimp (on 
a SPARC Enterprise 5000 with 2GB). We note that  both 
of these implementations of Andersen's analysis employ a 
field-independent treatment of structs, and so these results 
are not directly comparable to ours (see the caveats above 
about the preliminary nature of  results in Table 4). 

Implementations of Steensgaard's algorithm are faster and 
use less memory. Das reports tha t  Word97 (about 2.2 mil- 
lion lines of code) runs in about  60s on a 450MHz Intel Xeon 
running Windows NT [8]. Das also reports tha t  modifica- 
tions to Steensgaard's algorithm to improve accuracy yield 
analysis times of about 130s, and memory usage of "less 
than 200MB" for the same benchmark. We again note tha t  
Das uses a field-independent t reatment  of structs. 

7. CONCLUSION 
We have introduced CLA, a database-centric analysis archi- 
tecture, and described how we have utilized it to implement 
a variety of high-performance analysis systems for points- 
to analysis and dependence analysis. Central to the per- 
formance of these systems are CLA's  indexing schemes and 
support for demand-driven loading of database components. 
We have also described a new algorithm for implementing 
dynamic transitive closure tha t  is based on maintaining a 
pre-transitive graph, and computing teachability on demand 
using caching and cycle elimination techniques. 

The original motivation for this work was dependence anal- 
ysis to help identify potential narrowing bugs that  may be 
introduced during type modifications to large legacy C code 
bases. The points-to analysis system described in this paper 
has been built into a forward data-dependence analysis tool 
that  is deployed within Lucent. Our system has uncovered 
many serious new errors not found by code inspections and 
other tools. 

Future work includes exploration of context-sensitivity, and 
a more accurate t reatment  of structs tha t  goes beyond field- 
based and field-independent (e.g. modeling of the layout of 
C structs in memory[7], so tha t  an expression x . f  is treated 
as an offset "f" from some base object x) 

A c k n o w l e d g e m e n t s :  Thanks to Satish Chandra and Jeff 
Foster for access to their respective systems and bench- 
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] pointer  
variables 

1018 
3332 
4359 
8246 
6126 

11289 
45091 
22360 

7K I 0.03s 10.01s 
201K 0 .08s i0 .03s  
392K 0.15s 0.11s 

11232K 0.54s 0.51s 
141K i0.11s 0.09s 
123K 0.20s 0.17s 

15298K 1.05s 1.00s 
3865K 0.46s 0.38s 

poi  to ii tea loser 
relations time time 

5.2MB 
5.4MB 
5.7MB 
6.0MB 
5.7MB 
6.0MB 

12.1MB 
8.8MB 

T a b l e  3: R e s u l t s  

IJ assignments 
process i n  core 

size loaded in file 

114 5933 10402 
3201 12907 19022 
1792 15411 34126 
1560 28445 36603 
5886 27566 40280 
2732 53805 69715 
8377 144534 344156 
4281 101856 349045 

pointers 

1018 
3332 
4359 
8246 
6126 

11289 
45091 
22360 

nethack 
burlap 
vortex 
emacs 

povray 
gcc 

gimp 
lucent 

nethack 
burlap 
vortex 
emacs 

povray 
gcc 

gimp 
lucent 

field-based 
relations ut ime 

7K 0.01s 
201K 0.03s 
392K 0.11s 

1 1 2 3 2 K  0.51s 
141KI 0.09s 
123K 0.17s 

15298K 1.00s 
3865K 0.46s 

size I pointers 

5.2MB 1714 
5.4MB 2903 
5.7MB 4655 
6.0MB 8314 
5.7MB 5759 
6.0MB 10984 

12.1MB 39888 
8.8MB 26085 

field-independent i(Preliminary) 
pointers relations utime [ size 

97K 0.03s 5.2MB 
323K 
164K 

14643K 
1375K 
408K 

79603K 
19665K 

0.21s 5.9MB 
0.09s 5.7MB 
1.05s 6.7MB 
0.39s 6.6MB 
0.65s 8.8MB 

30.12s 18.1MB 
137.20s 59.0MB 

T a b l e  4: Ef fec t  o f  a f i e l d - i n d e p e n d e n t  t r e a t m e n t  o f  s t r u c t s .  

marks. 

8. REFERENCES 
[1] A. Aiken, M. F~hndrich, J. Poster, and Z. Su, "A Toolkit 

for Constructing Type- and Constraint-Based Program 
Analyses", TIC'98. 

[2] A. Aiken and E. Wimmers, "Solving Systems of Set 
Constraints", LICS, 1992. 

[3] A. Aiken and E. Wimmers, "Type Inclusion Constraints 
and Type Inference", ICFP, 1993. 

[4] L. Andersen, "Program Analysis and Specialization for 
the C Programming Language", PhD. thesis, DIKU 
report 94/19, 1994, 

[5] D. Atkinson and W. Griswold, "Effective Whole-Program 
Analysis in the Presence of Pointers", 1998 Symp. on the 
Foundations of Soft. Eng.. 

[6] S. Chandra, N. Heintze, D. MacQueen, D. Oliva and M. 
Sift, "ckit: an extensible C frontend in ML", to be 
released as an SML/NJ library. 

[7] S. Chandra and T. Reps, "Physical Type Checking for C" 
PASTE, 1999. 

[8] M. Das, "Unification-Based Pointer Analysis with 
Directional Assignments" PLDI, 2000. 

[9] "Appendix D: Optimizing Techniques (MIPS-Based C 
Compiler)", Programmer's Guide: Digital UNIX Version 
4.0, Digital Equipment Corporation, March 1996. 

[10] J. Foster, M. FShndrich and A. Aiken, "Flow-Insensitive 
Points-to Analysis with Term and Set Constraints" U. of 
California, Berkeley, UCB//CSD97964, 1997. 

[11] M. Fg.hndrich, J. Foster, Z. Su and A. Aiken, "Partial 
Online Cycle Elimination in Inclusion Constraint Graphs" 
PLDI, 1998. 

[12] C. Flanagan and M. Felleisen, "Componential Set-Based 
Analysis" PLDI, 1997. 

[13] J. Foster, M. F~hndrich and A. Aiken, "Polymorphic 
versus Monomorphic Flow-insensitive Points-to Analysis 
for C", SAS 2000. 

[14] N. Heintze, "Set Based Program Analysis", PhD thesis, 
Carnegie Mellon University, 1992. 

[15] N. Heintze, ,Set-Based Analysis of ML Programs", LFP, 
1994. 

[16] N. Heintze, "Analysis of Large Code Bases: The 
Compile-Link-Analyze Model" unpublished report, 
November 1999. 

[17] N. Heintze and J. Jaffar, "A decision procedure for a class 
of Herbrand set constraints" LICS, 1990. 

[18] N. Heintze and D. McAllester, "On the Cubic-Bottleneck 
of Subtyping and Flow Analysis" LICS, 1997. 

[19] "Programming Languages - C", ISO/IEC 9899:1990, 
Internation Standard, !990. 

[20] D. McAllester, "On the Complexity Analysis of Static 
Analysis", SAS, 1999. 

[21] A. Rountev and S. Chandra, "Off-line Variable 
Substitution for Scaling Points-to Analysis", PLDI, 2000. 

[22] M. Shapiro and S. Horwitz, "Fast and Accurate 
Flow-Insensitive Points-To Analysis", POPL, 1997. 

[23] Z. Su, M. F£hndrich, and A. Aiken, "Projection Merging: 
Reducing Redundancies in Inclusion Constraint Graphs", 
POPL, 2000. 

[24] B. Steensgaard, "Points-to Analysis in Almost Linear 
Time", POPL, 1996. 

[25] F. Tip, "Generation of Program Analysis Tools", Institute 
for Logic Language and Computation dissertation series, 
1995-5, 1995. 

263 


