Phil Russell
Alex Liber
Micah Wendell




What It Is

Formally called F--,
Small set of semantic extensions to Fortran 95
Simple syntactic extension to Fortran 95

Single Program Multiple Data, SPMD, parallel
processing




What It Is

Robust, efficient parallel language.
Requires learning only a few new rules.
Rules handle two fundamental issues:
Work distribution
Data distribution.




Work Distribution

A single program is replicated a fixed number of
times

Each replication has its own set of data objects.
Each replication of the program is called an image.
Each image executes asynchronously




Work Distribution

The normal rules of Fortran apply

The execution path may differ from image to image.
The programmer determines the actual path for the
image with

A unique image index

Normal Fortran control constructs
Explicit synchronizations.




Work Distribution

Code between synchronizations

The compiler is free to use all its normal
optimization techniques, as if only one image is
present




Data Distribution

Specify the data relationships

One new object, the co-array, is added to the
language

An example...




Data Distribution

REAL, DIMENSION(N)[*] :: X,Y
X(:) = Y()IQ]

The above statement declares that each image has
two real arrays of size N. If Q has the same value on
each image, the effect of the assignment statement
is that each image copies the array Y from image Q
and makes a local copy in array X.




Data Distribution

(index) follow the normal Fortran rules within one
memory image.

[index] provide access to objects across images and
follow similar rules.

[bounds] in co-array declarations follow the rules of
assumed-size arrays since co-arrays are always
spread over all the images.




Data Distribution

The programmer uses co-array syntax only where it
IS needed

A co-array reference with no square brackets is a
reference to the object in the local memory

Co-array syntax should appear only in isolated parts
of the code

If not, too much communication among images?
Flags compiler to avoid latency
Flags programmer to rethink




in

ended Fortran
Syntax

A way of expressing remote memory operations. Here
are some simple examples:

X = Y[PE]
Y[PE] =
Y[] = X
Y[LIST] =

Z(:) = Y[]
S = MINVAL(Y]])
B(1:M)[1:N] =

array of

rray

get from Y[PE]
put into Y[PE]
broadcast X

broadcast X over subset of PE's
array LIST

collect all Y
min (reduce) all Y

S scalar, promoted to
shape (1:M,1:N)




Input/Output

Input/output problem with SPMD programming
models
Fortran 1/0O assumes dedicated single-process
access to an open file

Often violated when it is assumed that I/O from
each image is completely independent.




Input/Output

Co-Array Fortran includes only minor extensions to
Fortran 95 1/0,

All the inconsistencies of earlier programming
models have been avoided

There is explicit support for parallel 1/O.

/0O is compatible with both process-based and
thread-based implementations.




er Fortran 95 additions:

Several Intrinsics

NUM_IMAGES() returns the number of images,

THIS_IMAGE() returns this image's index between 1
and NUM_IMAGES()

SYNC_ALL() is a global barrier

To only wait for the relevant images to arrive.
SYNC_ALL(WAIT=LIST)




More Intrinsics

SYNC_TEAM(TEAM=TEAM)
SYNC_TEAM(TEAM=TEAM,WAIT=LIST)
START_CRITICAL and END_CRITICAL




Addlng Synch Functionality

SYNC_MEMORY()

This routine forces the local image to both complete
any outstanding co-array writes into ~ global” memory
and refresh from global memory any local copies of co-
array data it might be holding (in registers for example).

Image synchronization implies co-array
synchronization.

A call to SYNC_MEMORY/() is rarely required

Implicitly called before and after virtually all
procedure calls including Co-Array's built in image
synchronization intrinsics.




Image and co-array synchronization

= Example: exchanging an array with your
north and south neighbors:

COMMON/XCTILB4/ B(N,4)["]
SAVE /XCTILB4/

CALL SYNC_ALL(
WAIT=(/IMG_S,IMG_N/) )

B(:,3) = B(;,1)[IMG_S]

B(:,4) = B(;,2)[IMG_N]

CALL SYNC_ALL(
WAIT=(/IMG_S,IMG_NY/) )




ray Exchange

Synchronization Explained

The first SYNC_ALL waits until the remote B(:,1:2) is
ready to be copied

The second waits until it is safe to overwrite the local
B(:,1:2).
Only nearest neighbors are involved in the sync.

It is always safe to replace SYNC_ALL(WAIT=LIST)
calls with global SYNC_ALL() calls

Often is significantly slower.

Either the preceding or succeeding
synchronization may be avoidable.




Synch Optimization

The majority of remote co-array access optimization
IS minimizing the synchronization

Frequency of synchronization

Cover the minimum number of images

On machines without global memory hardware, array
syntax (rather than DO loops) should always be
used for remote memory operations

Copying co-array's into local temporary buffers
before they are required might be appropriate




Data Parallel Cumulative Sum

In data parallel programs, each image is either performing
the same operation or is idle.

For example here is a data parallel fixed order cumulative
sum:

REAL SUM["]
CALL SYNC_ALL( WAIT=1)

DO IMG= 2,NUM_IMAGES()
IF (IMG==THIS_IMAGE()) THEN
SUM = SUM + SUM[IMG-1]
ENDIF
CALL SYNC_ALL( WAIT=IMG )

ENDDO




a Parallel Performance
Critique

SYNC_ALL waiting on just the active image
improves performance

still NUM_IMAGES() global sync




An Alternative to Data Parallel

= A better alternative may be to minimize synchronization
by avoiding the data parallel overhead entirely:

REAL SUM[*]
ME = THIS_IMAGE()
IF (ME.GT.1) THEN
CALL SYNC_TEAM( TEAM=(/ME-1,ME/) )
SUM = SUM + SUM[ME-1]
ENDIF
IF (ME.LT.NUM_IMAGES()) THEN
CALL SYNC_TEAM( TEAM=(/ME,ME+1/) )
ENDIF




ernative Performance
Analysis

Now each image is involved in at most two sync's:
the images just before and just after it in image order.

The first SYNC_TEAM call on one image is matched
by the second SYNC_TEAM call on the previous
image.




Benefits (or: In Summary)

The Co-Array Fortran synchronization intrinsics can :

Improve the performance of data parallel
algorithms

Provide implicit program execution control as
an alternative to the data parallel approach.




“Amusement -

' .deps/DeclarationfinalysisPass.Po’ tmpdepfile='.deps/DeclarationAnalysis
. A
depmode=gcc3 /bin/sh ../../depcomp \
g++ -DPACKAGE_MNAME=\"Ricey Co-array\ Fortrany Compiler\” -DPACKAGE_TARNAME=\"ric
e-co-array-fortran-compilery\” -DPACKAGE_VERSION=%"0.9\" -DPACKAGE_STRING=\"Rice)\
Co-arrayy Fortran\ Compilery 0.9\" -DPACKAGE_BUGREPORT=\"\" -DPACKAGE=\"rice-co
-array-fortran-compiler\” -DUERSION=\"0.9\" -DSTDC_HEADERS=1 -DHAVE_SYS_TYPES_H=
1 -DHAUE_SYS_STAT_H=1 -DHAVE_STDLIB_H=1 -DHAUVE_STRING_H=1 -DHAUE_MEMORY_H=1 -DHA
UE_STRINGS_H=1 -DHAVE_INTTYPES_H=1 -DHAUVE_STDINT_H=1 -DHAUVE_UNISTD_H=1 -DHAVE_LI
MITS_H=1 -DHAUE_STDLIB_H=1 -DHAUE_STRING_H=1 -DHAUE_STRINGS_H=1 -DHAUE_UNISTD_H=
1 -DHAUE__BOOL=1 -DHAVE_STDBOOL_H=1 -DHAUE_BZER0=1 -DHAUE_MEMCHR=1 -DHAUE_STRCAS
ECMP=1 -I. -I. -I../../src -I../../src/cafc -I../.. /src/cafc/codegen -I../..
c/analyzer -I../../src/common -I../. . /sre/doc -1../.. /src/flogical-infe -I../../s
rc/placeholders -I../../src/placeholders/ARMCI_PH -I../../src/placeholders/gener
ic -I../../srcfutilities -I../../src/utilities/annotation -I../../src/utilities/
ast -I../../src/utilities/iterators -I../../src/utilities/mdS -I/project/cafc/0p
en6Y/ospreyl .0/include -I/project/cafc/Opentd/ospreyl . 0/common/com -I/project/ca
fe/0pen6d/ospreyl .8/common/util -I/project/cafc/Openéld/ospreyl .0/common/com/ia6y
-D_BSD_SOURCE -LANG:std -g -c -o DeclarationfinalysisPass.o test -f "../../s
rc/cafc/DeclarationfAnalysisPass.cc’ || echo *./' ../../src/cafc/DeclarationAnaly
sisPass.cc
../../src/cafc/DeclarationAnalysisPass.cc: In member function ‘void
DeclarationfnalysisPass: :analyzeCoArrayDeclarations(ST_TABx,
PUAnalysisResultsx) ' :
../../src/cafc/DeclarationAnalysisPass.cc:149: "Set_ST_is_deleted’ undeclared
(first use this function)
../../sre/cafc/DeclarationAnalysisPass.cc:149: (Each undeclared identifier is
reported only once for each function it appears in.)
: xxx [DeclarationAnalysisPass.o] Error 1
: Leaving directory " /project/cafc/cafc/build/cafc’
: xxx [all-recursive] Error 1
: Leaving directory " /project/cafc/cafc/build’
: xxx [all-recursive] Error 1
-bash-2.05b$




