
Phil Russell
Alex Liber

Micah Wendell

What It Is
� Formally called F--,
� Small set of semantic extensions to Fortran 95
� Simple syntactic extension to Fortran 95
� Single Program Multiple Data, SPMD, parallel

processing

What It Is
� Robust, efficient parallel language.
� Requires learning only a few new rules.
� Rules handle two fundamental issues:

Work distribution
Data distribution.

Work Distribution
� A single program is replicated a fixed number of

times
� Each replication has its own set of data objects.
� Each replication of the program is called an image.
� Each image executes asynchronously

Work Distribution
� The normal rules of Fortran apply
� The execution path may differ from image to image.
� The programmer determines the actual path for the

image with
A unique image index
Normal Fortran control constructs
Explicit synchronizations.

Work Distribution
� Code between synchronizations

The compiler is free to use all its normal
optimization techniques, as if only one image is
present

Data Distribution
� Specify the data relationships
� One new object, the co-array, is added to the

language
� An example…

Data Distribution
REAL, DIMENSION(N)[*] :: X,Y
 X(:) = Y(:)[Q]

The above statement declares that each image has
two real arrays of size N. If Q has the same value on
each image, the effect of the assignment statement
is that each image copies the array Y from image Q
and makes a local copy in array X.

Data Distribution
� (index) follow the normal Fortran rules within one

memory image.
� [index] provide access to objects across images and

follow similar rules.
� [bounds] in co-array declarations follow the rules of

assumed-size arrays since co-arrays are always
spread over all the images.

Data Distribution
� The programmer uses co-array syntax only where it

is needed
� A co-array reference with no square brackets is a

reference to the object in the local memory
� Co-array syntax should appear only in isolated parts

of the code
� If not, too much communication among images?

Flags compiler to avoid latency
Flags programmer to rethink

Extended Fortran 90 Array
Syntax
� A way of expressing remote memory operations. Here

are some simple examples:

� X = Y[PE] get from Y[PE]
� Y[PE] = X put into Y[PE]
� Y[:] = X broadcast X
� Y[LIST] = X broadcast X over subset of PE's

in array LIST
� Z(:) = Y[:] collect all Y
� S = MINVAL(Y[:]) min (reduce) all Y
� B(1:M)[1:N] = S S scalar, promoted to

array of shape (1:M,1:N)

Input/Output
� Input/output problem with SPMD programming

models
� Fortran I/O assumes dedicated single-process

access to an open file
Often violated when it is assumed that I/O from

each image is completely independent.

Input/Output
� Co-Array Fortran includes only minor extensions to

Fortran 95 I/O,
� All the inconsistencies of earlier programming

models have been avoided
� There is explicit support for parallel I/O.
� I/O is compatible with both process-based and

thread-based implementations.

Other Fortran 95 additions:
Several Intrinsics
� NUM_IMAGES() returns the number of images,
� THIS_IMAGE() returns this image's index between 1

and NUM_IMAGES()
� SYNC_ALL() is a global barrier
� To only wait for the relevant images to arrive.

SYNC_ALL(WAIT=LIST)

More Intrinsics
� SYNC_TEAM(TEAM=TEAM)
� SYNC_TEAM(TEAM=TEAM,WAIT=LIST)
� START_CRITICAL and END_CRITICAL

Adding Synch Functionality
� SYNC_MEMORY().

This routine forces the local image to both complete
any outstanding co-array writes into ``global'' memory
and refresh from global memory any local copies of co-
array data it might be holding (in registers for example).

Image synchronization implies co-array
synchronization.

� A call to SYNC_MEMORY() is rarely required
Implicitly called before and after virtually all

procedure calls including Co-Array's built in image
synchronization intrinsics.

Image and co-array synchronization

 Example: exchanging an array with your
north and south neighbors:

 COMMON/XCTILB4/ B(N,4)[*]
 SAVE /XCTILB4/

 CALL SYNC_ALL(
WAIT=(/IMG_S,IMG_N/))
 B(:,3) = B(:,1)[IMG_S]
 B(:,4) = B(:,2)[IMG_N]
 CALL SYNC_ALL(
WAIT=(/IMG_S,IMG_N/))

Array Exchange
Synchronization Explained
� The first SYNC_ALL waits until the remote B(:,1:2) is

ready to be copied
� The second waits until it is safe to overwrite the local

B(:,1:2).
� Only nearest neighbors are involved in the sync.
� It is always safe to replace SYNC_ALL(WAIT=LIST)

calls with global SYNC_ALL() calls
Often is significantly slower.
Either the preceding or succeeding

synchronization may be avoidable.

Synch Optimization
� The majority of remote co-array access optimization

is minimizing the synchronization
Frequency of synchronization
Cover the minimum number of images

� On machines without global memory hardware, array
syntax (rather than DO loops) should always be
used for remote memory operations

� Copying co-array's into local temporary buffers
before they are required might be appropriate

Data Parallel Cumulative Sum

 In data parallel programs, each image is either performing
the same operation or is idle.

 For example here is a data parallel fixed order cumulative
sum:

 REAL SUM[*]
 CALL SYNC_ALL(WAIT=1)

 DO IMG= 2,NUM_IMAGES()
 IF (IMG==THIS_IMAGE()) THEN

 SUM = SUM + SUM[IMG-1]
 ENDIF
 CALL SYNC_ALL(WAIT=IMG)

 ENDDO

Data Parallel Performance
Critique

� SYNC_ALL waiting on just the active image
improves performance

� still NUM_IMAGES() global sync

An Alternative to Data Parallel

 A better alternative may be to minimize synchronization
by avoiding the data parallel overhead entirely:

 REAL SUM[*]
 ME = THIS_IMAGE()
 IF (ME.GT.1) THEN
 CALL SYNC_TEAM(TEAM=(/ME-1,ME/))
 SUM = SUM + SUM[ME-1]
 ENDIF
 IF (ME.LT.NUM_IMAGES()) THEN

 CALL SYNC_TEAM(TEAM=(/ME,ME+1/))
 ENDIF

Alternative Performance
Analysis
� Now each image is involved in at most two sync's:

the images just before and just after it in image order.
� The first SYNC_TEAM call on one image is matched

by the second SYNC_TEAM call on the previous
image.

Benefits (or: In Summary)
� The Co-Array Fortran synchronization intrinsics can :

Improve the performance of data parallel
algorithms

Provide implicit program execution control as
an alternative to the data parallel approach.

Amusement

