
Rapidmind

Background on GPGPU

GPU Tutorial

• Goal: 3-D image -> 2-D image

• 2 main stages:
– Convert 3-D coordinates to 2-D windows

• Vertex processing

– Fill in 2-D windows
• Fragment processing

GPU Hardware Pipeline

GPUCPU

ApplicationApplication Transform
& Light

Transform
& Light RasterizeRasterize ShadeShade Video

Memory
(Textures)

Video
Memory

(Textures)

Xfo rm
ed, Li t V er tice s

(2D
)

Graphics State

Render-to-texture

Assemble
Primitives
Assemble
Primitives

Ve rti ces (3D)

Sc reen space t ria ng les
(2D

)

Frag m
en ts (p r e- pix els)

Final Pixels (Color,
D

epth)

Fragment
Processor
Fragment
Processor

Vertex
Processor

Vertex
Processor

GPU Parallelism

• Parallelism @ vertex and fragment
calculations

vp

fp fp fp fp fp fp fp fp

vp vp vp vp vp

Rasterizer

fp fp fp fp fp fp fp fp

Frame buffer

Vertex
processors

Fragment
processors

GPU Programmability

• Vertex and fragment processors can be
programmed

• Shader = programs written for vertex and
fragment calculations

• Vertex shaders = transformation, lighting

• Fragment shaders = texture, color, fog

GPU SIMD
• Vertex processors all run SAME shader

program

• Fragment processor all run SAME shader
program

vp

fp fp fp fp fp fp fp fp

vp vp vp vp vp

Rasterizer

fp fp fp fp fp fp fp fp

Frame buffer

Vertex
processors

Fragment
processors

GPU Drawbacks

• No integer data operands

• No integer operations
– e.g. bit shift, AND, OR, XOR, NOT

• No double precision arithmetic

• Unusual programming model

GPU Improvement

• NVIDIA GeForce G80 – unified pipeline
and shader

• CUDA – Computer Unified Device
Architecture

• Unified stream processors
– Vertices, pixels, geometry, physics
– General purpose floating point processors
– Scalar processor rather than vector processor

NVIDIA GeForce 8800

Facts and Motivations

Why Are GPUs So Fast?

• GPU originally specialized for math-intensive, highly
parallel computation

• So, more transistors can be devoted to data processing
rather than data caching and flow control

Problem: GPGPU

• OLD: GPGPU – trick the GPU into general-purpose
computing by casting problem as graphics
– Turn data into images (“texture maps”)
– Turn algorithms into image synthesis (“rendering passes”)

• Promising results, but:
– Tough learning curve, particularly for non-graphics experts
– Potentially high overhead of graphics API
– Highly constrained memory layout & access model
– Need for many passes drives up bandwidth consumption

• New GPGPU: Many high level tools are available for use
– Rapidmind, Peakstream(now acquired by google), CUDA …

Platform overview and
Programming model

Platform overview

• RapidMind is a development and
runtime platform that enables
single threaded, manageable
applications to fully access multi-
core processors.

• With RapidMind, developers
continue to write code in standard
C++ and use their existing skills,
tools and processes.

• The RapidMind platform then
parallelizes the application across
multiple cores and manages its
execution.

Platform overview

• API
– Intuitive, integrates with existing C++ compilers, and requires no

new tools or workflow
• Platform

– Code Optimizer analyzes and optimizes computations to remove
overhead

– Load Balancer plans and synchronizes work to keep all cores fully
utilized

– Data Manager reduces data bottlenecks
– Logging/Diagnostics detects and reports performance bottlenecks

• Processor Support Modules
– x86 processors from AMD and Intel
– ATI/AMD and NVIDIA GPUs
– Cell Blade, Cell Accelerator Board, PS3

SIMD (Single Instruction Multiple
Data)

• All parallel execution units are synchronized
– they respond to a single instruction from single

program counter

• Operates on Vectors of data all of the same type
– member elements of vector must have same meaning

for parallelism to be useful

• Achieves data level parallelism

SPMD (Single Program Multiple
Data)

• A subcategory of MIMD (Multiple Instruction
Multiple Data)

• Tasks are split up and run simultaneously on
different processors with different input data

• Processors run program at independent points as
opposed to the lockstep execution of SIMD

• Usually refers to message passing vs shared
memory

GPU SIMD/SPMD
• The processors all share the same program counter and pipeline.

– When processor 1 is at instruction 23, all the processors are at instruction
23.

• The limited support for control flow:
– Each processor has it's own execution mask that can conditionally be

executed for one instruction.
– Thus if you have a loop starting at instruction 10 and ending with a

conditional branch on instruction 23 then; if just one processor has to
continue looping but all 127 other processors are ready to leave the loop
they (the 127) will be masked off from executing until the single processor
has finally exited the loop.

More powerful than regular SIMD, but not have overhead on control flow.

GPU SIMD cont

• Sub grouping reduces this impact as each subgroup has it's
own program counter, set of masks and processors. If the
loop scenario occurs then only the processors in the group
are affected - thus say in a sub group of 32 processors, 1
loops and the other 31 are masked off. The remaining
processors in the other subgroups are not affected.

• Note, it is believed that it is a feature of G80 to make it more suitable
for GPGPU. Not very clear that GLSL can make use of that or not.

Rapidmind SPMD

• Allows control flow in the kernel program
• More powerful than SIMD
• Example code:

Program p;
p = RM_BEGIN {
In<Value3f> a, b;
Out<Value3f> c;

Value3f d = f(a, b);
 RM_IF (all(a > 2.0f)) {

c = d + a * 2.0f;
} RM_ELSE {

c = d - a * 2.0f;
} RM_ENDIF;

} RM_END;

• The control flow can be converted to corresponding control flows in
GLSL, but the overhead on control flow (due to hardware) still exists

Just in time compilation

• Converting program definition into
OpenGL codes at runtime

• Program algebra : operations on the
programs (discussed later)

• Two modes : retained mode / intermediate
mode

Just in time compilation

• First, it decides which "backend" should be responsible for
the program executions.
– Backends form the connection between the RapidMind platform and a

particular piece of target hardware, E.g Cell BE, OpenGL-based
GPUs, and a fallback backend.

• Once a suitable backend has been chosen (a process that is
generally instantaneous), it is asked to execute the program
under the given conditions.
– The first time this is done generally causes the program object to be

compiled for that particular backend, similar to the way a JIT
environment behaves. Once a program has been compiled, it is not
recompiled.

– This runtime compilation mechanism is powerful, as the generated
code is optimized for the exact conditions it is being run under.

Retained mode and intermediate mode
• Every operation has two implementations. In immediate mode, when you ask for two

numbers to be added, the computation is performed and the result returned at that time.
• At retained mode, all the operations switch from performing a computation to recording a

computation.
– All the operations you specify in a particular instance of retained mode are collected together into

a sequence of operations forming a program.
– In retained mode it looks like you are writing operations in C++, but those operations are really

compiled at runtime into a program by the compiler portion of Rapidmind that targets several
GPU and CPU backends.

• The true power comes into play when immediate mode and retained mode are mixed.
– Variables with Rapidmind types declared inside a retained mode program belong to that program.

Variables declared outside (i.e. in immediate mode) belong to the host application.
– If you use a host variable from a program, it becomes a uniform parameter of that program.
– In other shading languages you would have to explicitly manage the relationship between host

variables and program variables, incurring lots of inconvenient glue code (which can sometimes
be as long as the shaders you are writing). In Rapidmind, updating a uniform variable becomes as
easy as assigning to it in C++. In essence the C++ scope rules are being used to manage the
relationships between host code and shader code. This powerful idea extends to all other forms of
C++ abstraction, enabling you to completely use functions, classes, namespaces and other forms
of C++ modularity.

– Note: these is from the discussion on libSh, but we believe that Rapidmind share the same feature.

Language Syntax

Key Concepts

• Vocabulary for parallel programming
– Set of nouns (types) and verbs (operations)

– Added to existing standard language: ISO C++

• A language implemented as a C++ API
– For specifying data-parallel computation

• A data-parallel programming language
– Embedded inside C++

Nouns: Basic Types

Progra
m

Container for computations

ArrayContainer for variable-sized multidimensional data

ValueContainer for fixed-length data

TypePurpose

Values

int>Value<4,
float>Value<3,
double>Value<2,
half>Value<1,

Value4i

Value3f

Value2d

Value1h

Element
Type

Tuple
Size

Arrays

Array<3, Value2i>

Array<2, Value3f>

Array<1, Value4d>

Item
Type

Dimensionality

Verbs: Operators

• RapidMind provides all the same arithmetic
operations offered by C++.
– +, -, *, /, %, etc.

• Writemasking: a[0]=(b+c)[1]
– computes the sum of values b and c, extracts component 1

from the intermediate result, and writes it to component 0 of
a.

• Swizzling:
– v(3, 2, 1, 0)
– v(0, 0, 0, 0)
– v(2, 1, 2)

Verbs: Swizzling

• Swizzling refers to the extraction, rearrangement,
and possible duplication of elements of value
types.

– Value4f v

– v(3, 2, 1, 0)

– v(0, 0, 0, 0)

– v(2, 1, 2)

(Permute)

(Repeat)

(Change
Size)

Verbs: Functions

• Can declare functions in the usual way:
Value3f reflect (Value3f v, Value3f n) {

return Value3f(2.0*dot(n, v)*n – v);
}

• Standard Library
– Matrix and Geometric Operations:

cross product, dot, inner dot, normalize, etc.
– Trigonometry: sin, cos, tan, asin, acos, atan, etc.
– Exponential and Logarithms: exp, log, pow, etc.
– Interpolation: linear interpolation
– etc.

Programs

• Immediate mode
– Execute operations on RapidMind types on host
– Acts like a standard matrix-vector library

• Retained mode
– Enter retained mode with RM_BEGIN,

exit with RM_END
– Record operations on RapidMind types
– Store operations in Program object
– Compile captured operations for coprocessor

• Dynamic compilation

Program Definition
Program p;

p = RM_BEGIN {
In<Value3f> a, b;
Out<Value3f> c;

Value3f d = f(a, b);
c = d + a * 2.0f;

} RM_END;

Declaration

Interface

Definition

Computation

Control Flow

• Since C++ control structures always execute in
immediate mode, special constructs are required
for retained-mode control structures.

• RM_IF, RM_ELSE, RM_ENDIF

• RM_WHILE, RM_ENDWHILE

• RM_DO, RM_UNTIL

• RM_FOR, RM_ENDFOR

• RM_BREAK, RM_CONTINUE, RM_RETURN

Control Flow Example
Program p;
p = RM_BEGIN {

In<Value3f> a, b;
Out<Value3f> c;

Value3f d = f(a, b);
RM_IF (all(a > 2.0f)) {

c = d + a * 2.0f;
} RM_ELSE {

c = d - a * 2.0f;
} RM_ENDIF;

} RM_END;

Execute in
Retained Mode

//all: logical and of all componets

Conversion Steps
1. Replace types: developers replace

numerical types with the
equivalent RapidMind platform
types

2. Capture computations:
Application is captured, recorded,
and dynamically compiled to a
program object by RapidMind
platform during runtime.

3. Stram execution: RapidMind
platform manage parallel
execution of program objects on
the target hardware.

Conversion Example
#include <cmath>
float f;
float a[512][512][3];
float b[512][512][3];
float func(
 float r, float s
) {
 return (r + s) * f;
}
void func_arrays() {
 for (int x = 0; x<512; x++) {
 for (int y = 0; y<512; y++) {
 for (int k = 0; k<3; k++) {
 a[y][x][k] =
 func(a[y][x][k],b[y][x][k]);
 }
 }
 }
}

1. Replace Types
#include <cmath>
float f;
float a[512][512][3];
float b[512][512][3];
float func(
 float r, float s
) {
 return (r + s) * f;
}
void func_arrays() {
 for (int x = 0; x<512; x++) {
 for (int y = 0; y<512; y++) {
 for (int k = 0; k<3; k++) {
 a[y][x][k] =
 func(a[y][x][k],b[y][x][k]);
 }
 }
 }
}

#include <rapidmind/platform.hpp>
using namespace rapidmind;
Value1f f;
Array<2, Value3f> a(512, 512);
Array<2, Value3f> b(512, 512);

Value3f func(
 Value3f r, Value3f s
) {
 return (r + s) * f;
}

2. Capture Computations
#include <cmath>
float f;
float a[512][512][3];
float b[512][512][3];
float func(
 float r, float s
) {
 return (r + s) * f;
}
void func_arrays() {
 for (int x = 0; x<512; x++) {
 for (int y = 0; y<512; y++) {
 for (int k = 0; k<3; k++) {
 a[y][x][k] =
 func(a[y][x][k],b[y][x][k]);
 }
 }
 }
}

#include <rapidmind/platform.hpp>
using namespace rapidmind;

Value1f f;
Array<2, Value3f> a(512, 512);
Array<2, Value3f> b(512, 512);

Value3f func(
 Value3f r, Value3f s
) {
 return (r + s) * f;
}

void func_arrays() {
 Program func_prog = RM_BEGIN {
 In<Value3f> r, s;
 Out<Value3f> q;
 q = func(r, s);
 } RM_END;
 . . .
}

3. Parallel Execution
#include <cmath>
float f;
float a[512][512][3];
float b[512][512][3];
float func(
 float r, float s
) {
 return (r + s) * f;
}
void func_arrays() {
 for (int x = 0; x<512; x++) {
 for (int y = 0; y<512; y++) {
 for (int k = 0; k<3; k++) {
 a[y][x][k] =
 func(a[y][x][k],b[y][x][k]);
 }
 }
 }
}

#include <rapidmind/platform.hpp>
using namespace rapidmind;

Value1f f;
Array<2, Value3f> a(512, 512);
Array<2, Value3f> b(512, 512);

Value3f func(
 Value3f r, Value3f s
) {
 return (r + s) * f;
}

void func_arrays() {
 Program func_prog = RM_BEGIN {
 In<Value3f> r, s;
 Out<Value3f> q;
 q = func(r, s);
 } RM_END;
 a = func_prog(a, b);
}

Usage Summary

• Usage
– Include platform header
– Link to runtime library

• Data
– Tuples
– Arrays
– Remote data abstraction

• Programs
– Defined dynamically
– Execute on coprocessors
– Remote procedure abstraction

More details
 on operators and functions

Operations on Values

• Modules
– Arithmetic Operations e.g + - sum product mad

– Trigonometric and Exponential Functions

– Interpolation and Approximation e.g lerp poly

– Geometry e.g cross dot

– Logical and Comparison Functions e.g < > any all

– Discontinuities e.g min max abs

– Miscellaneous Functions e.g cast join

Accessing Array Contents

• operator[] :non-normalized coordinates

• operator() : normalized coordinates

Arrays, Accessors and References

• There are three flavors of RapidMind arrays:
Array objects, ArrayAccessor objects and
ArrayRef objects.

• An Array object represents a "physical" array
containing user-defined or computed data.

• To refer to some portion of an array's data, the
ArrayAccessor class is provided.

• Sometimes it is useful to be able to refer to an
array whether it is an ArrayAccessor or an Array.
The ArrayRef class exists for this purpose

Accessors
• offset(A,n)

– Drop first n elements of A

• take(A,n)

– Drop all but first n elements of A

• slice(A,i,j)

– Extract subarray from i to j, inclusive

• stride(A,k)

– Extract every kth element

• shift(A,k)

– shift k element

Return instance of ArrayAccessor type

– References subarray “view”, does not copy

Accessors

Virtual Arrays

• grid
– Generate a grid

– Useful for providing parameters for the
program

– E.g grid(4,4) will generate a grid A with
A(i,j)=(i,j)

Collective operations
• A collective operation is any operation that acts on an entire array in

such a way that any element of the output can depend on any element
of the input.

• Build-in collective operations
– min max sum product…

• Customize your own collective operations
– reduce

Program Manipulation

• Combination:
– Program “algebra” to combine programs into new programs

– Can use to modify interfaces to existing programs

– Can use to specialize existing programs

• Partial evaluation:
– Can bind inputs one at a time

– Can convert inputs to non-local variables and vice versa

• Introspection:
– Can analyze program interface and performance at runtime

– Use for self-tuning libraries

Program Algebra

• Algebra:

– Set of objects

– Set of operators

– Closed

• Objects:

– Programs

• Operators:

– Functional composition:

p << q

– Concatenation:

combine(p,q)

Applications of the Program Algebra

• Interface adaptation
– Reordering

– Packing/unpacking

– Input or output type conversion

• Specialization
– Discard unneeded outputs

– Eliminates unnecessary computation

• Pipelining

– Combine producer/consumer programs into one:

A = (p << q << r)(B);
– Implement pipeline as single data-parallel task

Partial Evaluation
• Can bind only some inputs of a program, not all

• Binding gives a new program with fewer inputs
– If bind only 1 input of an n input program

– Get back program with n-1 inputs

• Partial evaluation provides
– Flexibility

– Interface adaptation

– Optimization opportunities

• Two kinds of binding:
– Tight: uses ()

– Loose: uses <<; is invertible using >>

Tight Binding

• Tight binding:

 Program q = p(A);

• Execution can be deferred

• When eventually executes:
– Uses value of A in effect at time of binding
– Compiler can use actual value of A to optimize
code

Loose Binding

• Loose binding:
Program q = p << A;

• Execution can be deferred
• When eventually executes:

– Uses value of A in effect at time of execution
– Value of A can be used to parameterize
execution

• A acts like a non-local variable
• Can do unbinding via >>

HelloWorld: Vector addition
#include <rapidmind/platform.hpp>

using namespace rapidmind;

int main()
{
 // General initialization of the platform
 rapidmind::init();
 // use_backend("glsl");
 Array< 1 , Value1f> input1(10000);
 Array< 1 , Value1f> input2(10000);
 Array< 1 , Value1f> output(10000);

 // Access the internal arrays where the data is
stored

 float * input_data1 = input1.write_data();
 float * input_data2 = input2.write_data();

 for (int i = 0 ; i < 10000 ; ++i)
 {
 input_data1[i] = i;
 input_data2[i] = i * 2;
 }

// 2. Performing computation
 // The stream program that will be executed on the data
 Program prg = RM_BEGIN {
 In<Value1f> a; // first input
 In<Value1f> b; // second input
 Out<Value1f> c; // output

 c = a + b; // operation on the data
 } RM_END;

 // Execute the stream program
 output = prg(input1, input2);

 // 3. Showing results
 const float* results = output.read_data();

 for (int i = 0; i < 10000 ; ++i)
 {
 std::cout << "output[" << i << "] = ("
 << results[i] << ")"
 << std::endl;
 }

}

Reduction

• Many collective operators are already built-in, e.g. sum,
product, min, max

• How reduction is implemented?

• An log(N) algorithm

Q: The values are tuples like Value3f,
why?
• A: Rapidmind starts from academic toolkit libsh, a

GPGPU programming environment. The Typedefs for up
to four elements of all basic types provided by the platform.
These are natural in GPU programming and basic OpenGL
concepts. OpenGL represents vertex coordinates, texture
coordinates, normal vectors, and colors generically as
tuples. Tuples can be thought of as 4-component vectors.

• Comments: Even on other architectures, the vector form
can help make use of SIMD instructions

• Note: NVIDIA G80 has a scalar architecture.

Q:Rapidmind Versus CUDA

• CUDA is NVIDIA G80 exclusive, and free

• Rapidmind is based on OpenGL, can support almost all
Graphics card, also has other backends, e.g cell, cc

• Performance: on G80 cards, CUDA will deliver better
performance, as the programmer can have control on the
small block of shared memory directly, also do not have
overhead to go through OpenGL

Q: How is the parallel program
scheduled to run?

• Single thread of control

• Data parallelism

• Race-free

• We can assume
– Each stream execution of the program object is using a

fork and join model, and a barrier is always put after
the evoking the stream execution (function call)

Demo

Q/A

