8

Actors: A Model for Reasoning about Open
Distributed Systems

Gul A. Agha, Prasannaa Thati, Reza Ziaei

Open Systems Laboratory
Department of Computer Science,
Uniwversity of Illinois at Urbana-Champaign,
Urbana, Illinois, USA
Email: {agha,thati,ziaei}@cs.uiuc.edu, Web: http://www-osl.cs.uiuc.edu

8.1 Introduction

Open distributed systems are often subject to dynamic change of hardware
or software components, for example, in response to changing requirements,
hardware faults, software failures, or the need to upgrade some component.
In other words, open systems are reconfigurable and extensible: they may
allow components to be dynamically replaced or be connected with new
components while they are still executing. The Actor theory we describe
in this paper abstracts some fundamental aspects of open systems. Actors
provide a natural generalization for objects — encapsulating both data and
procedures. However, actors differ from sequential objects in that they are
also units of concurrency: each actor executes asynchronously and its op-
eration may overlap with other actors. This unification of data abstraction
and concurrency is in contrast to language models, such as Java, where an
explicit and independent notion of thread is used to provide concurrency.
By integrating objects and concurrency, actors free the programmer from
having to write explicit synchronization code to prevent harmful concurrent
access to data within an object.

There are several fundamental differences between actors and other for-
mal models of concurrency. First, an actor has a unique and persistent
identity, although its behavior may change over time. Second, communica-
tion between actors is asynchronous and fair (messages sent are eventually
received). Third, an actor’s name may be freely given out — without, for
example, enabling other actors to adopt the same name. Finally, new actors
may be created with their own unique and persistent names. These char-
acteristics provide reasonable abstraction for open distributed systems. In
fact, actors provide a realistic model for a number of practical implementa-
tions, including those of software agents [AJ99].

2 G. Agha, et al.

The outline of the paper is as follows. The next section relates actors to
other models of concurrency. Section 3 presents an introduction to actors.
Section 4 presents the syntax and semantics of a simple actor language. Sec-
tion 5 completes the discussion of the language semantics, along with a brief
description of a notion of equivalence. Section 6 describes an example which
shows how actor theory can be used to reason about open systems. The
final section outlines current research directions and provides some perspec-
tive. The treatment in this paper is of necessity rather high-level. Interested
readers should refer to the citations for technical details of the work as well
as secondary references to the literature.

8.2 Related Work

A number of formal models have been proposed to formalize fundamental
concepts of concurrent computation involving interaction and mobility. We
relate actors to the most prominent of these: namely, the 7-calculus [Mil93,
Mil99] and its variants [HT91, Bou92].

The m-calculus evolved out of an earlier formal model of concurrency called
the Calculus of Communicating Systems (CCS) [Mil89]. Processes in CCS
are interconnected by a static topology. In order to overcome the limitations
of CCS which did not model actor-like systems with their dynamic inter-
connection topology, the m-calculus was developed. The m-calculus enables
dynamic interconnection by allowing channel names to be communicated.

The Actor model and w-calculus are similar in the sense that both model
concurrent and asynchronous processes, communication of values, and syn-
chronization. However, the two formalisms make different ontological com-
mitments. We examine the most significant of these differences.

e The central difference between the w-calculus and the Actor model is
that names in the former identify stateless communication channels, while
names in the latter identify persistent agents. Representation of the object
paradigm in 7-calculus requires imposing a type system [San98, Wal95].
However, the usage of actor names embodies additional semantic prop-
erties not captured by these type systems. For instance, an actor has
a unique name, and it may not create new actors with names received
in a message. A typed m-calculus which also enforces these additional
constraints is presented in [Tha00].

e Actors provide buffered, asynchronous communication as a primitive while
communication in the m-calculus is synchronous. It is possible to simu-
late one in terms of the other, but such simulations insert a degree of

Actors 3

complication in reasoning, while at the same time such simulations only
approximate the abstractions. Although synchronous communication can
be useful for inferring pair-wise group knowledge — a necessary condi-
tion for joint action, it should be observed that process actions in both
models are asynchronous, thus the synchronous communication in the 7-
calculus is not useful for any notion of joint action. The Actor model
is closer to real distributed systems; one consequence of this proximity of
asynchronous communication and distributed systems is that synchronous
communication is not as efficient as a default communication mechanism

in distributed systems (see [Agh86, Kim97, VA98]).

e Message delivery in the Actor model is fair, which allows greater modular-
ity in reasoning (see Section 8.4.2). It is possible to add different notions
of fairness in m-calculus and its variants, but there is no standard notion
of fairness in these models.

Programming languages that have been developed based on w-calculus,
such as the Nomadic m-calculus [SWP99], generally adopt key aspects of
the Actor model. The Nomadic m-calculus was conceived primarily to study
communication primitives for interaction between mobile agents. An agent
in a Nomadic m-calculus is essentially a process with a unique name which
communicates with other agents via asynchronous messages. The reader
may note the similarity with the Actor model.

The Nomadic w-calculus model does have other aspects which are not
shared with the Actor model. The model extends the basic ideas in 7-
calculus with notions of sites and migrating agents. Every agent is associated
with a current host site, and agents may migrate between sites during their
execution. The calculus identifies two kinds of communication primitives:
location dependent primitives which require the knowledge of the current
location of the target agent, and location independent primitives which do
not.

In contrast, actors are not associated with a host. Moreover, to use the
terminology in [Nee89| actor names are pure: they do not contain any infor-
mation about the creation or location of an actor. However, variants of the
Actor model exist in which actor names contain both creation and current
location information. The agent definition based on actors explicitly models
location [AJ99], and location information have been added to actor names
to provide universal naming for the World Wide Computer model [Var00].

4 G. Agha, et al.

Interface N
Thread
State \

Procedure
/ - 4

Messages

Thread
State \
\

Procedure /"‘
/

Interface

Fig. 8.1. Actors encapsulate a thread and state. The interface is comprised of
public methods which operate on the state.

8.3 Actors

The Actor model provides an effective method for representing computation
in real-world systems. Actors extend the concept of objects to concurrent
computation [Agh86]. Recall that objects encapsulate a state and a set of
procedures that manipulate the state; actors extend this by also encapsu-
lating a thread of control (see Figure 8.1). Each actor potentially executes
in parallel with other actors. It may know the addresses of other actors and
can send messages to such actors. Actor addresses may be communicated
in messages, allowing dynamic reconfiguration and name mobility. Finally,
new actors may be created; such actors have their own unique addresses.

A concrete way to think of actors is that they represent an abstraction
over concurrent architectures. An actor runtime system provides an abstract
program interface (APT) for services such as global addressing, memory man-
agement, fair scheduling, and communication. It turns out that the actor
API can be efficiently implemented, thus raising the level of abstraction
while reducing the size and complexity of code on concurrent architectures
[KA95].

Note that the Actor model is, like the m-calculus, general and inherently
parallel. Asynchronous communication in actors directly preserves the avail-
able potential for parallel activity: an actor sending a message does not have

Actors 5

to necessarily wait for the recipient to be ready to receive (or process) a
message. Of course, it is possible to define actor-like buffered, asynchronous
communication in terms of synchronous communication, provided dynamic
actor (or process) creation is allowed. On the other hand, more complex
communication patterns, such as remote procedure calls, can also be ex-
pressed as a sequence of asynchronous messages [Agh90]. Higher level actor
languages often provide a number of communication abstractions.

8.4 A Simple Actor Language

It is possible to extend any sequential language with actor constructs. We
use the call-by-value A-calculus for this purpose. Here we will present a
variant of the language presented in [AMST96] together with its formal
syntax and semantics.

8.4.1 Syntax

We assume countably infinite sets X(variables) and At (atoms). At contains
t and nil for booleans, as well as constants for natural numbers, N. We
assume a countably infinite set of actor addresses. To simplify notation we
identify this set with X, and call the variables used in this way, i.e. the free
variables in an actor configuration (see Section 8.4.2) as actor names. We
also assume a set of (possibly empty) sets of n-ary operations, F,, on At for
eachn € N, and F = J,,cy Fr. F contains arithmetic operations, recognizers
isatom for atoms, isnat for numbers, ispair for pairs, branching br, pair-
ing pr, 1%, 274, and the following actor primitives: actor primitives send,
newactor, and ready.

send(a, v) creates a new message:
e with receiver a, and
e contents v
newactor(b) creates a new actor:
e with behavior b, and
e returns its address
ready(b) captures local state change:
e replaces the behavior of the executing actor with b
e frees the actor to accept another message.

The sets of value expressions V, and expressions E are defined inductively
as follows:

6 G. Agha, et al.

Definition 1
V=AUXUIXEU pr(V,V)
E = At UXUAX.E U app(E, E) UF, (E,)

We let x, y, z range over X, v range over V, and e range over E. To simplify
the presentation of examples we use several abbreviations. The function br
is a strict conditional, and the usual conditional construct if can be defined
as the following abbreviation:

if(ep,e1,e2) abbreviates app(br(ep, Az.e1,Az.€2),nil) for z fresh

Similarly, 1let, seq, and rec are the usual syntactic sugar: let is used
for creating local bindings, seq is used as a sequencing primitive, and rec
is the Y combinator used for recursion in call-by-value A-calculus. Finally,
letactor is a convenient abbreviation used for actor creations.

letactor{z := e}¢’ abbreviates let{z :=newactor(e)}e

Actor behaviors are represented as lambda abstractions. Delivery of a
message m is simply the application of actor’s behavior b to m, denoted
by app(b,m). The motivation behind the actor constructs is to provide the
minimal extension that is necessary to lift a sequential language to a con-
current one supporting object-style encapsulation (of state and procedures)
and coordination.

In Section 8.3.2, we provide an operational semantics for our language in
terms of a transition relation on actor configurations.

Example

We provide a few examples to illustrate the Actor model. Since we are not
concerned with the structure of messages, we represent messages abstractly
by assuming functions to create messages, and to test or extract their con-
tents. For example, we assume that mkget(c) creates a ‘get’ message with
content ¢ and get?(m) returns true if m is a ‘get’ message.

Sink. The first example is the behavior of an actor that ignores every
message that it receives and becomes itself:

Bgink = rec(Ab.Am.ready(b))

Cell. The second example is an actor that models the behavior of a variable
store as used in imperative programming. We call this actor a cell and it
responds to two sorts of messages. A get message contains the address of
an actor requesting the value of the cell, and a set message which contains

Actors 7

a new value to replace cell’s old value. The following code specifies the
behavior of a cell actor.

Been = rec(Ab.Ac.Am.
if(get?(m),
seq(send(cust(m), c), ready(b(c)))
if(set?(m),
ready(b(contents(m))),
ready(b(c)))))

Evaluating

letactor{a := B(0)}
seq(send(a, mkset(3)), send(a,mkset(4)), send(a, mkget(b)))

will result in the actor b receiving a message containing either 0, 3, or 4,
depending on the arrival order of messages sent to cell a.

Tree Product. Our third example is a divide and conquer problem which
illustrates how synchronization primitives can be modeled using actors. Sup-
pose we want to determine the product of the leaves of a tree. We assume
that every internal node of the tree has exactly two children, and that the
leaves are integers. A divide and conquer strategy is to calculate the product
of the leaves of each subtrees and then multiply the results. The sequen-
tial implementation of this algorithm can be represented by the following
recursive function:

treeprod = rec(Af.Airee.
if(isnat(tree),
tree,
f(left(tree)) * f(right(tree)))

However, the same strategy can be used to obtain a parallel algorithm that
concurrently evaluates products of subtrees. To synchronize the calculation
of subtree products, we use join continuation actors which guarantee that
several concurrent sub-computations are complete before beginning a com-
putation that depends on the results of the sub-computations. The behavior
Btreeproa below implements a concurrent evaluation of tree products.

Btreeprod =
rec(A\b.Aself .Am.
if(notvalidtree(tree(m)),
seq(send(cust(m), error),

ready(b(self))),

8 G. Agha, et al.

if(isnat(tree(m)),
seq(send(cust(m), tree(m)),
ready(b(self))),
letactor{jc := Bjoincont (cust(m),0,nil)}
seq(send(self ,mkprd(left(tree(m)),jc)),
seq(send(self ,mkprd(right(tree(m)),jc))
ready(b(self)))))))

The behavior of the join continuation actor is specified as:

Bjoincont =
rec(Ab.Acust. Anargs. Afirstnum.Anum
if(eq(narygs,0),
ready(b(cust, 1, num)),
seq(send(cust, firstnum % num),

ready(Bsink))))

Note that an actor with behavior Bireeproa Can evaluate multiple tree
product requests concurrently. Specifically, the evaluation of a new tree
product request can begin even before the evaluation of any previous re-
quests is complete. The structure of many parallel computations, such as
parallel search, is very similar.

8.4.2 Reduction Semantics for Actor Configurations

Instantaneous snapshots of actor systems are called configurations. The op-
erational semantics of our language is defined by a transition relation on
configurations. The notion of open systems is captured by defining a dy-
namic interface to a configuration, i.e. by explicitly representing a set of
receptionists which may receive messages from actors outside the configu-
ration and a set of actors external to the configuration which may receive
messages from the actors within.

An actor configuration with actor map «, multi-set of messages p, recep-
tionists p, and external actors y, is written

(a| pw)

where p and x are finite sets of actor addresses, « maps a finite set of
addresses to their behavior, p is a finite multi-set of (pending) messages. A
message m contains the address of the actor it is targeted to and the message
contents, a <v. We restrict the contents to be any values constructed from

Actors 9

(beta-v) R[app(Az.e, v)] A Rle[z := v]]
(delta) R[6(vi,...,vn)] & R[V]

where § € F,,, v1,...,v, € At"™, and 6(vy,... ,v,) = V.
x| R[] ifw = € At
O) R (I S S P,

Fig. 8.2. Relation A on A expressions.

atoms and actor addresses using the pairing constructor pr. We call these
values as communicable values and let cv range over them.

Let (« ‘ w)y be a configuration, and if A = Dom(«) (domain of) then
the following properties must hold:

(0) pCAand ANy =0,

(1) if a € A, then FV(a(a)) C AUy, where FV(«a(a)) represents the free
variables of «(a); and if vy < v; is a message with content v; to actor
address vy, then FV(v;) C AU x for i < 2.

To describe local transitions at an actor, we decompose uniquely a non-
value expression into a reduction context filled with a redex. A redex identi-
fies the next sub-expression that is to be evaluated according to the reduction
strategy (which in our case is left-first, call-by-value) [FF86]. Redexes are
of two kinds: purely functional and actor redexes. The actor redexes are
send(a,v), newactor(b) and ready(b). Reduction rules for the functional

case are defined by a relation 2 on E as shown in Figure 8.2.

The transition relation i.e. — on actor configurations is defined by the
rules shown in Figure 8.3. The rules are all labeled to indicate the kind
of reduction and any additional parameters. The notation [e], denotes the
(singleton) actor map which maps the name a to expression e.

The <fun:a> rule simply says that an actor’s internal computation is
defined by the semantics of the sequential language its behavior is written
in. The <new:a,a’> rule says that a new actor with fresh name o’ (no
external actor or an actor already in the configuration can have the same
name) is created and ready to receive messages. The new actor’s name, a’ is
returned to the creating actor as the result of the newactor operation. The
<send:a, m> rule defines the asynchronous semantics of message send. The
new message is put in the message pool and the sending actor can continue

10 G. Agha, et al.

<fun:a>

A

erre = (a,lels | u)f (o, [T |)
<new:a,a’>

(o, [R[newactor(v)]1, | u)f = (o, [R[d']1,, [ready(v)]s | p)? a fresh
<send:a,m>

(a, [R[send(vo, v1)[1a | p)§ = (o, [R[nil]1, | p, m)% m=up<du
<rcv:a,cv>

(a, [R[ready(v)[1a | a<co,pu)f — (o, lapp(v, cv)la | p)f
<out:m>

(o | om) s (a | g

ifm=ua<cv, a€ x,and p' =pU (FV(cv) N Dom(a))

<in:m>

(a [)3 = (o | mm) Evien—Dom(a))

if m=a<cv, a€ pand FV(cv) N Dom(a) C p

Fig. 8.3. Actor transitions.

its execution. The <rcv:a, cv> rule says that an actor can receive a message
only when it is ready. In fact, execution of the ready operation blocks the
actor’s thread until the delivery of a message. The delivery is performed by
applying the new behavior to the message. The last two rules, <out :m> and
<in:m>, capture the openness of the configurations by allowing exchange of
messages between the configuration and its environment. Note the dynamic
nature of the interface and that the exchange of messages is restricted by
the interface.

Because our language is untyped, creation of actors with ill-formed behav-
iors (i.e. behaviors that are not A abstractions), and creation of messages
with ill-formed contents (i.e. contents that are not communicable values) is
possible. But the reduction system will prevent such ill-formed behaviors
and messages from being used.

Actors 11

Example

Consider the following actor behavior that creates new cell actors upon
request:

B maker =
rec(Ab. Aself Am.
letactor{newcell := Bee(0)}
seq(send(cust(m), newcell)),

ready(b(self))))

An initial actor configuration containing a cell maker actor is given below:

([ready(Bc-maker(Cm))] cm ‘ >$Cm}

Let’s say this actor configuration makes an input transition with the label
<in:cm <mkcell(a)>. The resulting configuration will be:

([ready(Bcmaker(cm))] em ‘ cm <mkcell(a))EZ’}”}

And after a <rcv:cm, cm <mkcell(a)>, a series of fun transitions, and a
<send:a,a < a'> transition, we reach the following configuration:

{em}

([ready(Bemaker(¢m))]em, [ready(Been(0))1y | a <a’ >{a}

And with a final <out:a < a’>, the following configuration will result:

{em,a'}
) a)

Following this transition, the actor name o’ will be known to the outside

([ready(Bc-maker(cm))] cm, [ready(Been(0))1w

world and further calls to ¢m will result in new cells being created.

8.4.3 Local Synchronization Constraints

Different actors carry out their operations asynchronously. This means that
the sender of a message may not know what the state of a recipient is at the
time it sends the message. Moreover, an actor may not be able to process
particular types of messages while in certain states. For example, a lock
that is currently owned by a process cannot accept any further requests to
acquire the lock until it is released by the current owner. In models relying on
synchronous messages, this is handled by guards on ports: different types of

12 G. Agha, et al.

ACTOR
e State
) Synchronization Dependence
Incoming Constraints
Messages Data
) and
Evaluate Schedule Method
Mail
Queue Controller

Pending Queue

Fig. 8.4. An actor with local synchronization constraints.

messages are received at different ports, and ports may be disabled /enabled
depending on the local process state and message contents, thereby blocking
a communication.

In actors, message send is asynchronous and non-blocking. Different ap-
proaches to selectively process external communications may be taken to
address the problem. One solution is to let an actor explicitly buffer the in-
coming communications that it is not ready to process (cf. insensitive actors
[Agh86]). In the Rosette actor language, Tomlinson and Singh [TKS*89]
proposed a mechanism which associates with each potential state of actor
an enabled set specifying the particular methods the recipient actor is will-
ing to invoke. The actor then processes the earliest received message in its
queue which invokes a method in its current enabled set. The effect is to
delay the processing of a message until such time that an actor is in a state
where it is able to process it.

In this paper, we use a variation of this concept called local synchronization
constraints. Local synchronization constraints are so called because their
scope of influence is a single actor [Fro96]. A local synchronization constraint
is a predicate that constrains the delivery of messages. Delivery of a message
to a constrained actor is delayed until the message satisfies the constraint
(see Figure 8.4). An actor’s synchronization constraint reflects the state of
the actor and therefore is updated every time an actor moves into its next
state by executing a ready operation.

To account for synchronization constraints we slightly modify the standard

Actors 13

<rev: a,cv>
(@, [R[ready(1,)] | a<co,u)? o (o, Lapp(v, ct)] o |)Y
if app(c, cv) =t

Fig. 8.5. Transitions for Actor Configurations with Local Synchronization Con-
straints.

language of actors as in Figure 8.3. In the new language, the ready primitive
is modified by adding a second argument: a synchronization constraint which
is a predicate over messages. Consequently, the rule rcv must be modified
to capture the intended semantics of synchronization constraints.

The new semantic rule is shown in Figure 8.5. All the other rules re-
main the same. Note that according to the side condition of the rule, if the
computation of app(c, a < cv) does not terminate, the condition will never
hold and therefore the delivery will not take place — which is what we intu-
itively expect. However, the operational semantics as given is loose — since
evaluating the constraint has no side-effects, an implementation could con-
currently test the constraint against several messages, but then accept only
one of the messages for which the constraint is satisfied (this is similar to the
semantics of Dijkstra’s guarded command). It should be noted that most
actor languages ensure termination of testing synchronization constraints by
disallowing recursion in constraints.

Finally, note that it is possible to translate the actors with local synchro-
nization constraints into actors obeying the primitive semantics ([AKP95]).
A proof that this translation is semantics preserving can be found in [M'T99].

Example

The example in this section demonstrates how synchronization constraints
can modularly control delivery of messages.

Consider the cell actor example again. Now, suppose we want to modify
the cell to turn it into a single element buffer. In other words, we want
to add the restriction that a put message be delivered only when the cell is
empty and a get message delivered only when the cell is not empty. Assume
the following abstract functions on messages: put?(m), get?(m).

The local synchronization constraints over a cell cell can be represented
as predicate functions over messages as follows.

14 G. Agha, et al.

Cran =)\m.get?(m)
Cempty = Am.put?(m)

These constraints must be set by the actor when a ready operation is
performed. Now, a single element buffer can be implemented as follows.

Bgingle-buffer = rec(Ab.A(v, sc).Am.
if(get?(m),
seq(send(cust(m),v),
readY(b(U7 Cempty)a Cempty)),

if(set?(m),
ready(b(contents(m), Cru), Cran)),
ready(b(c, sc), sc))) ; bad message

In the rest of this paper we assume that ready(b) abbreviates
ready (b, \m.true).

8.5 Theory

In this section we describe a theory of Actor computation. The basis of
this theory was introduced in [AMST96]. Here we summarize the main
elements of the theory and then introduce a proof technique based on i/o-
path correspondence developed in [MT99].

8.5.1 Computation Trees and Paths

The behavior of an actor system will be represented by computation trees

and paths. We write kg —l> k1 if kg — K1 according to the rule labeled by
! in Figure 8.3.

Definition 2 The computation tree for a configuration k, written as
T(k), is defined to be the set of all finite sequences of labeled transitions of
the form [k; N Ki+1 | © < n] for some n € N, with k = kg. We call such
sequences computation sequences and let v range over them.

Definition 3 The sequences of a computation tree are partially ordered by
the initial segment relation. A computation path from a configuration k
is a mazimal linearly ordered set of computation sequences in T (k). Note
that a path can also be regarded as a (possibly infinite) sequence of labeled
transitions.

Actors 15

We use T°°(k) to denote the set of all paths from «, and let m range over
computation paths. When thinking of a path as a possibly infinite sequence

we write [k; N Kit1 | i < <] where > € N Uw is the length of the sequence.

Since the result of a transition is uniquely determined by the starting con-
figuration and the transition label, computation sequences and paths can
also be represented by their initial configuration and the sequence of tran-
sition labels. The sequence of configurations can be computed by induction
on the index of occurrence. We assume this representation of computation
paths in the rest of this paper.

8.5.2 Fairness

The model we have developed provides fairness, namely that any enabled
transition eventually fires. Under this assumption, not all paths are consid-
ered to be admissible. Fairness is an important requirement for reasoning
about eventuality properties. It is particularly relevant in supporting mod-
ular reasoning.

There are two important consequences of fairness which illustrate its use-
fulness. The first of these is that each actor makes progress independent
of how busy other actors are. Therefore, if we compose one configuration
with another which has an actor with a nonterminating computation, com-
putation in the first configuration may nevertheless proceed as before, for
example, if actors in the two configurations do not interact. A second con-
sequence is that messages are eventually delivered. This allows reasoning
based on composition with some contexts to be carried forward: thus, if
upon composition with a richer context, other requests may be sent to a
particular server actor, previous requests sent to that server will still be
received (provided the server itself does not “fail”).

We now formally define fairness in our model. We say a label [is enabled

. . . . !
in configuration « if there is some x' such that kK — «'.

Definition 4 A path m = [k; by Kit1 | 1 <] in T>°(k) is fair if each
enabled transition eventually happens or becomes permanently disabled. That
is, if [is enabled in k; and is not of the form <in:m>, then k; BN Kjty1 for
some j > 1, orl has the form <rcv: a,cv> and for some j > 1, a is busy
and never again becomes ready to accept a message. For a configuration k
we define F(k) to be the subset of T°(k) that contains only fair paths.

Note that every finite computation path is fair since, by maximality, all
of the enabled transitions must have happened.

16 G. Agha, et al.

8.5.3 Interaction Paths and Path Correspondence

In this section, we introduce a notion of equivalence based on the idea of
interaction paths [Tal96].

Definition 5 An interaction-path ip is a subsequence of a computation
path @, containing all and only the transitions labels in w that are of form:
<out:m> and <in:m>. We say that ip is the observable projection (or just
the projection) of m.

In other words, an interaction-path is a computation path with all internal
transitions removed. From now on, we will follow the convention of using #
to range over interaction paths, and 79, 71, ... to range over their transition
labels. We also use the list notation [1g, 71, ...] to represent (both finite and
infinite) interaction paths.

The notion of fairness on computation paths naturally induces a similar
notion on interaction paths.

Definition 6 An interaction path is observably fair if it is the projection of
a fair computation path.

Note that an observably fair (just fair from now on) interaction path could
be the projection of both fair and an unfair computation paths, hence the
name observational fairness.

A strong motivation for a semantics based on interaction paths is to focus
on the observable behavior of systems as the only criteria for investigating
their equivalence and defining their meaning. Any method that makes some
part of internal behavior explicit in the model, will undesirably distinguish
systems which are otherwise equivalent from an external observer’s view.

Now we define our notion of equivalence on configurations based on their
set of interaction-paths.

Definition 7 For a configuration k, its set of interaction paths Z(k) is the
set of observable projections of each computation path in F(k).

Definition 8 We say two actor configurations C1 and Co are equivalent
under path correspondence, if they have the same set of recipients and
external actors (same “interface”) and their set of interaction paths are
equal.

Alternately, we can define the set of all finite prefixes of paths in Z(k)
as the meaning of configuration k. In [AMST96] equivalence relations were
introduced based on the notion of testing. An observable 0-ary event was

Actors 17

added to the transitions, and configurations were tested by composing them
with observation contexts (configurations). Two actor configurations were
equivalent if their behaviors were the “same” in all observation contexts.
Three notions of equivalences were defined. Two configurations are must
equivalent provided some computation paths in one of them do not exhibit
the observable event iff some computation paths in the other do not. Two
configurations are may equivalent provided some paths in one of them exhibit
the observable event iff some paths in the other do. Finally, two configura-
tions are conver equivalent if they are both may and must equivalent. It was
shown that under the fairness assumption the three equivalences collapse to
just two, with the convex and must equivalences being identical. It is known
that the notion of equivalence based on sets of finite prefixes of interaction
paths is identical to the may equivalence, and the equivalence in Definition
7 is at least as strong as the must equivalence.

8.6 An Example Proof of Path Correspondence

In this section we show by an example how the theory of actors can help us
verify, in a rather rigorous way, the correctness of systems modeled as actor
configurations. We will use the tree product example from Section 8.4.1
and we will show the equivalence of two actor configurations: one based
on the sequential implementation and the other based on the concurrent
implementation of tree product.

We first need to define an actor behavior based on the sequential definition
of treeprod given in Section 8.4.1:

Bseqtp =
rec(Ab.Aself Am.
if(notvalidtree(tree(m)),
seq(send(cust(m), error),
ready(b(self))),
seq(send(cust(m), treeprod(tree(m))),

ready(b(self))))

The following configuration contains an actor with behavior Bgeqtp and is
called Cseq:

Cseq = ([ready(Bseqtp)]tp ‘ >(§)tp}

We will verify the correctness of the following configuration by showing
its path correspondence to Cgeq:

18 G. Agha, et al.

Ceonc = < [readY(Btreeprod)]tP ‘ >étp}

The proof idea is to show that the sets of interaction paths of both configu-
rations are the same. Although we can prove that the two configurations are
equivalent in any environment, to simplify matters, we assume that all mes-
sages targeted to tp are well-formed, that is, they consist of a pair of an actor
name and a finite binary tree with leaves containing integers. Moreover, the
external customers always send external actors as the customer name. This
way we don’t have to worry about requests with ¢p in the customer field.

We also assume that the function treeprod is correct in the sense that it
terminates and returns the product of the numbers at the leaves of the tree.
These can be proved by simple induction.

Definition 9 Let ¢ be an actor name and t be a binary tree with integers at
its leaves. We say an input transition label 7,, = <in:tp < mkprd(c,t)> has
a matching output transition label Touy = <out:c < p> if p is the product of
the leaves of t.

Definition 10 We say a (possibly finite) path m = [11,7T2,...] is a tree-
product path if it satisfies the following properties:

P1 : Every input transition label 7; has the form <in:tp<mkprd(cust,tree)>
where cust is an actor name different from tp, and tree is a finite
binary tree with integers as its leaves. And every output transition
label 7; has the form <out:cust <4 p>, where cust is an actor name
different from tp and p is an integer.

P2 : Let

I = {i| 7 is an input transition label}

= {j | 7j is an output transition label}

There exists a bijection fr : I — J such that for alli € N fr(i) >
and that Ty ;) is a matching output for ;.

Lemma 1 Every path w of Cseq is a tree-product path.

PROOF: We need to prove that any path m = [71,72,...] of Cseq has prop-
erties P1 and P2.

According to the <in: > rule, only messages targeted to actors in the
reception set can enter a configuration. Therefore, only messages sent to tp
can enter Cseq. We also assumed that all messages are pairs of a customer

Actors 19

actor and a tree. It is also immediate from the code that the only kind of
message sent out of the configuration is of the form cust < p for some actor
name cust, which is never tp, and some integer p. Therefore, property P1
holds.

To prove P2, let 7, = <in:tp<mkprd(cust,tree)> be some input transition
which will put the message mkprd(cust, tree) in the configuration. Fairness
assumption implies that this message will eventually be delivered to tp.
From fairness assumption again, we know that ¢p’s computation can always
proceed. And as the behavior of tp is terminating, a message of the form
cust < p, with p being the tree product of tree, will finally be sent out. This
message in turn triggers a transition of the form 7; = <out:cust < p> with
j > 1. We can form a map f by mapping all such 4’s to their corresponding
4’s. This map will be a bijection as ¢p’s behavior can not generate more than
one message per each request and there is no pending outgoing messages in
the original configuration.

Definition 11 For configurations C,C’, we say C = C' if C = C’ or for
some sequence of configurations C', ..., C", and transition labels l1,... ,l,

that are neither input nor output labels, n > 0, we have Cseq o1 by

seq

LONYG/ Further, for an input or output transition label T we say C ==

seq’

C'" if for some configurations Cy,Cy, we have C = C1 — Cy => C".

Thus, if C = C’ then configuration C' can evolve into C’ without inter-
acting with its environment, and if C == C' then C can evolve into C' by
performing a single (input or output) interaction with its environment.

Lemma 2 Let m# = [11,72,...] be a (possibly finite) interaction path that
satisfies properties P1 and P2. Let’s pick fp to be some bijection as re-
ferred to in P2. There exists a sequence of configurations Cgeq, Cieq, ... with
CcY,, = Cseq, such that for every n >0, CY,, has the following properties:

seq seq

S1 The actor tp is in ready state in Cg,.
S2 For every input transition 7; = <in:tp Amkprd(cust,tree)>, the mes-
sage instance tp < mkprd(cust,tree) corresponding to transition 7; is

undelivered in Cy,, if and only if fz(i) > n.
S8 Cnl = on

seq seq

PrROOF: We prove this by constructing a recursive function g that maps
an interaction path 7 to a sequence of configurations satisfying the three
properties stated in the lemma.

20 G. Agha, et al.

Since fr is a bijection we have 1y = <in:tp<mkprd(cust,tree)> for some
cust and tree. Let g(1) = C’;eq where

Cieq = ([ready(Bseqtp)ltp ‘ tp < mkprd(cust, tree))étp}

From the transition rules in Figure 8.3 we can conclude that C? =

seq
Csleq. It is easy to verify that Cieq satisfies properties S1, S2; and S3.

Next we define g(7,) for n > 1. We distinguish two cases:

e 7, = <in:tp <mkprd(cust,tree)> (for some cust and tree): Let g(7,) =
Cgeq be the configuration obtained by adding the message tp < (cust, tree)

to the messages in C;‘;ll. Then C7.! % O

seq seq'

Cgeq satisfies properties S1, S2 and S3.
e 7, = <out:cust < p> (for some cust and p): Let i = f-!(n). Therefore,
7; = <in:tp <mkprd(cust,tree)> for some tree with p = treeprod(tree).
Assuming that C™;! = g(n — 1), we can state the rest of the proof in the

seq
following steps:

It is easy to verify that

(i) We know that in Cge:ll, the message corresponding to 7; has not
been delivered. This follows from S2 and the fact that f (i) > n—1.

(ii) From S1 we know that tp is ready in Cg;ll.

(iii) Cgeal can perform a <rcv:tp, tp <mkprd(cust, tree)>, followed by a
number of <fun:{p>, and finally a <send:tp,cust<ap>. This follows
from fairness and the assumption that ¢p’s behavior terminates and
returns the tree product of tree.

(iv) The resulting configuration after the send transition contains an
outgoing message of the form cust < p. So an output transition
with label 7, can be performed. Hence, Cg;il ST Cgeq-

(v) It remains to show that Cg,, satisfies S1, S2, and S3. From the
code it follows that tp becomes ready to receive next message after
sending the message. So S1 holds. S2 holds as the only message
delivered in this step was the one corresponding to 7;. And f (i) =
n. 33 follows from the previous step of the proof. So we can let
g9(n) = Cg,

seq”

The counstruction described above forces a certain scheduling order on
transitions. This order is fair since no enabled transition remains enabled
forever.

Lemma 3 FEvery tree-product path w can be observed from an execution of
Cseq-

Actors 21

PRrROOF: The lemma follows from lemma 2 and the observation that the com-
putation path constructed in the proof of lemma 2 is fair. The interaction
path 7 is just the observable projection of the computation path constructed
in lemma, 2.

Lemma 4 (correctness of Bireeproa) Applying Bireeproa t0 a message of
the form tp<(cust, tree) will eventually result in sending exactly one message
of the form cust <p where p is the tree product of tree.

PROOF: Proof is by induction on the height of the tree. From Bireeproa We
can easily see that when the tree is just a leaf, its value is returned to the
customer, hence validating the truth of the lemma for trees of height zero.

For n > 0, assuming that the lemma is true for trees of height smaller
than n, we prove that the lemma is true for trees of height n. Recall that
by our assumption every internal node, and hence the root, of the tree has
two children. Following the fairness assumption, The rest of the proof will
use the fact that actors’ internal computation can always make progress.

The code creates a join-continuation actor, initialized with the customer’s
name. From the code we can infer the following facts:

e Only one join-continuation actor is created per input message.

e Customer’s name is not used by Byreeproa in any other part of the code.

e A continuation actor sends exactly one message to its customer iff it re-
ceives two messages containing integers.

The actor tp sends two messages to itself with two parameters: the join-
continuation actor’s name as the customer, and the left (or right) subtree.
Both subtrees have a smaller height than the original tree, therefore accord-
ing to the induction hypothesis, the product of their leaves will eventually
be sent to the join-continuation actor.

As no one else is aware of the join-continuation actor’s name, these two
messages will be the only messages delivered to it. This conclusion plus the
three facts above imply that the join-continuation actor will eventually send
exactly one message to the original customer (from the fairness requirement,
this message will be delivered). The content of the message is the product
of the two numbers sent to the join-continuation actor, which in turn are
the tree-products of the left and right subtrees.

Lemma 5 Every path © of Cconc 95 a tree-product path.

PRrROOF: The proof is the same as that for Cseq except that in the argument
for P2, we use lemma 4 instead of correctness of treeprod. Note that in

22 G. Agha, et al.

the argument for P1 it is essential to show that ¢p is the only receptionist
at any time. This follows from the observation that every message sent by
tp and its join continuations to other than self contain just an integer. This
implies that names of internal actors are never sent to external actors.

Lemma 6 FEvery tree-product path w can be observed from an execution of
CCOYIC‘

PROOF: The same proof as for Cseq, except that lemma 4 is used instead of
correctness of treeprod.

Theorem 1 Cseq and Ceone are equivalent under path correspondence.

PROOF: Immediate from the lemmas 1, 3, 5 and 6, and the definition of
equivalence under path correspondence.

8.7 Discussion

We defined an equivalence notion based on interaction paths. Although
equivalence based on interaction paths appears to be intuitive, in fact it
distinguishes between more configurations than is reasonable. Consider a
configuration whose behavior is represented by a tree consisting of an in-
finite path and another configuration whose behavior is represented by a
tree consisting of all finite approximations to the path. These two trees
cannot be distinguished in any actor context but do not have the same in-
teraction paths. As briefly discussed earlier, an equivalence notion based on
observations in arbitrary contexts was introduced in [AMST96].

We also described a proof technique for establishing equivalence between
configurations based on interaction path correspondence. In earlier work, a
proof technique was developed for establishing equivalence in more concrete
terms, namely by establishing correspondence of the actual paths. A num-
ber of results were obtained in that work to show how reasoning could be
simplified. These results rely on the ability to exploit asynchrony to shuf-
fle transitions in a way that localizes differences in computations, and to
use the concept of holes to formalize the aspects of computations that are
independent of the local differences.

When compared to many other models of concurrency, the Actor model is
very powerful: it supports local procedural and data abstraction, and pro-
vides a simple interface which abstracts the underlying name space manage-
ment, scheduling, network, etc. The assumption of asynchrony often allows

Actors 23

only canonical message orders to be considered. The concept has been use-
ful in diverse areas such as building animation languages, simulations, and
enterprise integration systems.

On the other hand, the model is too low-level to allow us to easily reason
about complex distributed software systems. For the same reason, such
systems also remain very hard to specify and the software is often error-
prone. We have argued that part of the reason for this difficulty is the fact
that models of concurrency lack abstractions which represent the interaction
patterns in a modular fashion. For example, we described the notion of local
synchronization constraints which used to control the scheduling of messages
at an actor based on the actor’s state. More generally, such scheduling may
have to constrained based on the history of a computation in a number of
actors.

We have developed a number of such abstractions for specifying temporal
coordination between actors [FA93, Fro96], real-time systems [Ren97], dis-
tributed interactions [Stu96], and dynamic communication groups [AC93,
Cal94]. Such abstractions rely on a meta-architecture which allows dynamic
customization of schedulers, name servers, and communication interfaces
[AA98]. We believe that such architectures can promote more development
of distributed systems as well as simplify the task of reasoning about sys-
tems by making both more modular. Some preliminary work in this area
uses a two-level semantics [VT95]. However, the development of composi-
tional methods for reasoning, as well as new specification techniques (for
example, see [Smi98|, remains an active area of research.

Acknowledgements

The authors would like to thank Carolyn Talcott for her extensive and very
useful comments on a previous version of this paper. Of course, the authors
are solely responsible for any remaining errors. The research described here
has been supported in part by the National Science Foundation (NSF CCR
96-19522), and the Air Force Office of Scientific Research (AFOSR. contract
number F49620-97-1-03821).

Bibliography

[AA98] Mark Astley and Gul Agha. Customization and composition of distributed
objects: Middleware abstractions for policy management. Sizth International
Symposium on the Foundations of Software Engineering ACM SIGSOF'T,
23(6):1-9, November 1998.

24 G. Agha, et al.

[AC93] G. Agha and C.J. Callsen. ActorSpace: An open distributed programming
paradigm. In Principles and Practice of Parallel Programming ’93, 1993.

[Agh86] G. Agha. Actors: A Model of Concurrent Computation in Distributed
Systems. MIT Press, Cambridge, Mass., 1986.

[Agh90] Gul Agha. Concurrent Object-Oriented Programming. Communications
of the ACM, 33(9):125-141, September 1990.

[AJ99] G. Agha and N. Jamali. Concurrent programming for distributed artificial
intelligence. In Gerhard Weiss, editor, Multiagent Systems: A Modern
Approach to DAI. MIT Press, 1999.

[AKP95] G. Agha, W. Kim, and R. Panwar. Actor languages for specification of
parallel computations. In DIMACS Series in Discrete Mathematics and
Computer Science, volume 18, pages 239-258. American Mathematical
Society, 1995.

[AMST96] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for
actor computation. Journal of Functional Programming, 1996. to appear.

[Bou92] G. Boudol. Asynchrony and the pi-calculus. Technical Report 1702,
Department of Computer Science, Inria Univeristy, May 1992.

[Cal94] Christian J. Callsen. Open Heterogeneous Distributed Computing. PhD
thesis, Aalborg University, August 1994.

[FA93] Svend Frglund and Gul Agha. A language framework for multi-object
coordination. In Proceedings of ECOOP 1993. Springer Verlag, 1993. LNCS
707.

[FF86] M. Felleisen and D. Friedman. Control operators, the SECD-machine, and
the A-calculus. In M. Wirsing, editor, Formal Description of Programming
Concepts 111, pages 193-217. North-Holland, 1986.

[Fro96] S. Frolund. Coordinating Distributed Objects: An Actor-Based Approach
for Synchronization. MIT Press, November 1996.

[HT91] K. Honda and M. Tokoro. An object calculus for asynchronous
communication. In FCOOP’91, volume 512 of Lecture Notes in Computer
Science, pages 133-147. Springer-Verlag, 1991.

[KA95] W. Kim and G. Agha. Efficient Support of Location Transparency in
Concurrent Object-Oriented Programming Languages. In Supercomputing
"95. IEEE, 1995.

[Kim97] W. Kim. THAL: An Actor System for Efficient and Scalable Concurrent
Computing. PhD thesis, University of Illinois at Urbana-Champaign, May
1997. http://www-osl.cs.uiuc.edu/.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[Mil93] R. Milner. Elements of interaction turing award lecture. Communications
of the ACM, 36(1):78-89, January 1993. Turing Award Lecture.

[Mil99] R. Milner. Communicating and Mobile Systems: the m-calculus. Cambridge
University Press, 1999.

[MT99] I. A. Mason and C. L. Talcott. Actor languages their syntax, semantics,
translation, and equivalence, 1999. to appear.

[Nee89] R.M. Needham. Names. In S. Mullender, editor, Distributed Systems,
pages 89-101. Addison-Wesley, 1989.

[Ren97] Shangping Ren. An Actor-Based Framework for Real-Time Coordination.
PhD thesis, Department Computer Science. University of Illinois at
Urbana-Champaign, 1997.

[San98] D. Sangiorgi. An Interpretation of Typed Objects into Typed Pi-Calculus.
Information and Computation, 143(1), 1998.

Actors 25

[Smi98] Scott Smith. On specification diagrams for actor systems. In C. Talcott,
editor, Proceedings of the Second Workshop on Higher-Order Techniques in
Semantics, Electronic Notes in Theoretical Computer Science. Elsevier, 1998.

[Stu96] Daniel C. Sturman. Modular Specification of Interaction Policies in
Distributed Computing. PhD thesis, University of Illinois at
Urbana-Champaign, May 1996.

[SWP99] Peter Sewell, Pawel T. Wojciechowski, and Benjamin C. Pierce. Location
Independent Communication for Mobile Agents: A Two Level Architecture.
Technical Report 462, Computer Laboratory, University of Cambridge, 1999.

[Tal96] C. Talcott. Interaction Semantics for Components of Distributed Systems.
In E.Najm and J.B. Stefani, editors, Formal Methods for Open Object Based
Distributed Systems. Chapman & Hall, 1996.

[Tha0O0] Prasannaa Thati. Towards an Algebraic Formulation of Actors. Master’s
thesis, University of Illinois at Urbana-Champaign, 2000.

[TKST89] C. Tomlinson, W. Kim, M. Schevel, V. Singh, B. Will, and G. Agha.
Rosette: An Object-Oriented Concurrent System Architecture. Sigplan
Notices, 24(4):91-93, 1989.

[VA98] C. Varela and G. Agha. What after java? Computer Networks and ISDN
Systems: The International J. of Computer Telecommunications and
Networking, 1998.

[Var00] C. Varela. World Wide Computing with Universal Actors: Linguistic
Support for Coordination, Naming and Migration. PhD thesis, University of
Ilinois at Urbana-Champaign, August 2000.

[VT95] N. Venkatasubramanian and C. L. Talcott. Reasoning about Meta-Level
Activities in Open Distributed Systems. In Principles of Distributed
Computing, 1995.

[Wal95] D. Walker. Objects in the Pi-Calculus. Information and Computation,
116(2):253-271, 1995.

