Chapel Language Specification 0.750

Cray Inc
411 First Ave S, Suite 600
Seattle, WA 98104

Chapel Language Specification

Contents

2 Notation|

[3__ Organization|

4 Acknowledgments|

|5 Language Overview|

51

Guiding Principles|

5.1.1 General Parallel Programming|
[5.1.2 Control of Localit

[3.1.37 Object-Oriented Programming] . . .

5.1.4 Generic Programming|

5.2

Getting Starte

5.4.1 Primitive Types

[-42 Ranges

[5.4.3 Domains and Arrays|

5.4.8 Summary of Non-Primitive Types| .

53

Expressions|

6.1 Comments|

62

White Space]

6.3

Case Sensitivit

6.4.1 _ Identifiers|
[6.4.2 Keywords
643 TLiterald
16.4.4 Operators and Punctuation|
16.4.5 Grouping Tokens|

63

User-Defined Compiler Errors|.

[7_Types

1Al

Primitive Types|

7.1.1 'The Bool T
1gned an

[7.1.3 Real Types|
/.1.4 Complex Types

[7135 Tmaginary Types|

ii Chapel Language Specification
[7.1.6 The String Type|. e 35

[7.1.7 Primitive Type Literals| L 35

[7.2 Enumerated Types| o e 37
[7.3 Class Types| e e 37
[74 Record Types| 37
[7.5 Union'lypes| o e 37
7.6 Tuple Types| o . e e e e 37
[7.7 Range Types| o o e e e e 38
7.8 Domain and Array Types| 38
[79 Type Aliases| o 38
8 Variables! 39
1 Vanable Declarations| 39
8.1.1 Default Imtializationl L oo 40

8.1.2 Local Type Inference] 40

82 Global Variables| e 40
B3 Tocal Vamables] 40
8.4 Constants]. 41
8.4.1 Compile-Time Constants| 41
842 Runtime Constants| 41

8.5 Configuration Variables| 42
9 Conversions! 43
9.1 Implicit Conversions|. L e e 43
9.1.1 Implicit Bool and Numeric Conversions| 43

9.1.2 Tmplicit Enumeration Conversions| 44

9.1.3 Implicit Class Conversions| o v i i it e 44

9.1.4 Implicit Record Conversions| 44

9.1.5 Tmplicit Compile-Time Constant Conversions| 44

9.1.6 Implicit Statement Bool Conversions| 45

9.2 Explicit Conversions|. e 45
9.2.1 Explicit Numeric Conversions| 45

9.2.2 Explicit Enumeration Conversions|o 45

9.2.3 Explicit Class Conversions| 45

9.2.4 Explicit Record Conversions| 45

10 Expressions 47
[10.1 Literal Expressions| 47
110.2 Variable Expressions|. 47
[10.3 Call Expressions| e e 47
[10.3.1 Indexing Expressions|. 48
110.3.2 Member Access Expressions| 0oL 48

[10.4 The Query Expression| e 48
.. 49

110.6 LValue Expressions| L e 49
|10.7 Operator Precedence and Associativity| 50
[10.8 Operator EXpressions| o 0 o i e e e e e e 50
110.9 Arithmetic Operators| o o i e e e e 51
[10.9.1 Unary Plus Operators|. i 51
[10.9.2 Unary Minus Operators|. it 51
[10.9.3 Addition Operators| e e e 52

Chapel Language Specification

110.9.4 Subtraction Operators| e

[110.9.5 Multiplication Operators| e

110.9.6 Division Operators|

[10.9.7 Modulus Operators| o e e

110.9.8 Exponentiation Operators| e

|10.10 Bitwise Operators|

110.10.1 Bitwise Complement Operators|

[10.10.2 Bitwise And Operators|

110.10.3 Bitwise Or Operators| o ittt e

[10.10.4 Bitwise Xor Operators| e

10.11 Shift Operators|.
10.12 Logical Operators|

10.12.1 The Logical Negation Operator]
10.12.2 The Logical And Operator] v v v v it

[T0.13 Relational Operators| . . .

[10.12.3 The Logical Or Operator]

10.13.1 Ordered Comparison Operators|
10.13.2 Equality Comparison OpPerators] oo v v v v ..

110.14 Miscellaneous Operators|

[10.14.1 The String Concatenation Operator] v

110.14.2 The Arithmetic Domain By Operator]

[10.14.3 The Range By Operator]

110.15 Let Expressions|
|10.16 Conditional Expressions| .

|[11.3 Expression Statements| . .
|I11.4 Assignment Statements| .
|[11.5 The Swap Statement| . . .

[11.8 The While and Do While Loops|. o o oL

I11.9 The For Loop|
[11.9.1 Zipper Iteration| .

[11.11 The Type Select Statement]
|I11.12 The Empty Statement| . .

12 Modules

12.2.3 Module Execution|

112.2.4 Programs with a Single Module| 0o

112.3 Using Modules|.
[12.3.1 Explicit Naming|

il

52
53
54
55
56
56
56
56
57
57
57
58
58
58
59
59
59
60
61
61
61
61
62
62

63
63
64
64
64
65
66
66
67
68
68
68
69
69
70
70

v Chapel Language Specification

124 Nested Modules| 73
112.5 TImplicit Modules|. 73
3 Functionsl 75
3.1 Function Definitionsl 75
[13.2 The Return Statement] 76
(33 Function Callsl o 76
[13.4 Formal Arguments|. e e e 76
113.4.1 Named Arguments| e 77
342 Default Values 77
M33INENE - -« o oo o e 77
[[351 TheBlankIntentl i 77
1352 Thelnlntentl e 78
1353 TheOutlntent] 78
[[354 ThelnoutIntentl. i 78

[13.6 Variable Functionsl 78
(1377 Parameter Functions| 79
|[13.8 Function Overloading| e 79
[13.9 Function Resolution| 80
[13.9.1 Identifying Visible Functions|. 80
[13.9.2 Determining Candidate Functions| 80
[13.9.3 Determining More Specific Functions| oL 81
[13.10 Functions without Parentheses| 82
[BIT NestedFunctionso vttt 82
I13.11.1 Accessing Outer Variables| 82
|13.12 Variable Length Argument Lists|. 83
14 Classes! 85
[41 ClassDeclarationslo it 85
[14.2 Class ASSIgNment] o o i it e e e e e e 85
143 ClassFields| 85
[[431 ClassFleldAccesses 86

144 ClassMethodsl e 86
[[44.1 Class Method Declarations] 86
1442 ClassMethodCalls| 86
1443 ThethisReferencel L o 87
[444 ThethisMethodl 87
[14.4.5 The these Methodl. 88

4.5 Class Constructors| o 88
451 The Default Constructod 88

[14.6 Variable Getter Methods| 89
4.7 Inheritance| L 89
[14.7.1 Accessing Base Class Fields| 89
[14.7.2 Derived Class Constructors| 89
[14.7.3 Shadowing Base Class Fields|. 89
[14.7.4 Overriding Base Class Methods| 90
14.7.5 Inheriting from Multiple Classes| 90

4.8 Nested Classes| o o i i i e e e 90

Chapel Language Specification v

[I5_Records| 91
[[50 RecordDeclarations] o o i i 91
152 Cl nd Record Differences| 91

15.2.1 Recor 1 lasses| 91
[15.2.2 Record Inheritancel 91
[15.2.3 Record Assignment|. 92
133 Default Comparison Operators on RECOrs] . . « « « « o o o oo oo 92

[16_Unionsl 93

[16.1 Union Declarations| 93
g6.1.1 UnmonkFieldsl 93

[16.2 Union Assignment] it e e e e e 93
|116.3 The Type Select Statement and Unions| 93
95

[17.1 Tuple Expressions| e e 95
[17.2 Tuple Type Definitions| 95
. uple Assignment]| L L L L e e 95
.. 96
4. upleop Scalar] 96

4 D pTuplel 96

T743 Tuple ReTational OPerators] « « « o o oo oo 96

[17.5 Tuple Destructuring| 96
|i 7§i YarlaE!e Eeclaratlons maluplel o 97

5. noring Values with Underscore|. 97

|| 7§ Eomogeneous !uEIes| 97
|| 7.6.1 Declaring Homogeneous Tuples| 97

[T7.7 TupleIndexing]. o e 98
[17.8 Formal Arguments of Tuple Type| 98
7.8.1 Formal Argument Declarationsmma Tuple] 98

8 Rang 99
[18.1 Range Types| e 99
[18.2 Literal Range Values|. 100
8.2.1 Bounded Range Literals|, 100

2. 100
.. 101
MBA Range ASSIEAMONT . . « « « o o o oo oo 101
[18.5 Range Operators| e e 101
[18.5.1 ByOperator|. e 101
................................. 101

8 Range S . S 102

8354 Open Tnterval NOW@OON| . . . « « v o o o oo e 102

(19 Domains and Arrays| 105
MO Domains] . - - - - o e e e e e e 105
[19.1.1 DomainTypes| 105

0 d DES| . . . e e 106

M013 Domain ASSTEAMERT . « « - « o o oo e oo 106
19.1.4 Formal Arguments of Domain Type| 106

ration over Domains|o e 106

vi Chapel Language Specification

19.2 Arrays| o e 107
[19.2.1 Array Types|. o o e 107
[19.2.2 Array Indexing| 108
119.2.3 Array Slicing] 108
[19.2.4 Array Assignment] e e e 108
119.2.5 Formal Arguments of Array Type|, 109
[19.2.6 Tteration over Arrays|o e 109
|19.2.7 Array Promotion of Scalar Functions| 109
119.2.8 Array Initialization| Lo 110
119.2.9 Array Aliases| 110

[19.3 Arnthmetic Domains and Arrays|. Lo 111
............................. 111
19.3.2 Anthmetic Domamn Types| 112
‘ 112
19.3.4 Anthmetic Domamn Shicing|, 112
19.3.5 Arithmetic Array Indexing] oo 113
19.3.6 Anthmetic Array Slicing| L oo 113
19.3.7 Formal Arguments of Arithmetic Array 1ype| v v v v v i et 113

|19.4 Sparse Domains and Arrays| Lo 114
[19.4.1 Sparse Domain Types|. e 114
19.4.2 Sparse Domain Assignment|o 114
[119.4.3 Modifying a Sparse Domain| oL 115
[19.4.4 Sparse Arrays|. e 116

|19.5 Associative Domains and Arrays| 116
[19.5.1 Changing the Indices in Associative Domains| 116
[19.5.2 Testing Membership in Associative Domains| 117

[19.6 Opaque Domains and Arrays| e 117

119.7 Enumerated Domains and Arrays| 117

|19.8 Association of Arraysto Domains|.o oL oL 118

[[9.9 Subdomainsl 118

[19.10 Predefined Functions and Methods on Domainsl 118
(19.10.1 Predefined Functions and Methods on Arithmetic Domains| 119

|19.11 Predefined Functions and Methods on Arrays|. 119

121

20.1 Iterator Functionsl 121

202 The YieldStatement| 121

203 Tterator Callsl 121
[20.3.1 Tterators in For and Forall Loops| 121
[20.3.2 Tterators as Arrays| e e e e 121
[20.3.3 Tterators and Generics|o 122

204 Scalar Promotionl 122
20.4.1 Zipper Promotion|. 122
20.4.2 Tensor Product Promotion| 123
[20.4.3 Promotion and Evaluation Orden 123

21_Genericsl 125

RI.1 Generic Functions| 125
21.1.1 Formal Type Arguments| 125
[21.1.2 Formal Parameter Arguments| 126

[21.1.3 Formal Arguments without Types| 126

Chapel Language Specification

21.1.4 Formal Arguments with Querted Types|
21.1.5 Formal Arguments of Generic Type|
[21.1.6 Formal Arguments of Generic Array Types|
[21.2 Function Visibility in Generic Functions| o oo
21.3 Generic 'Types| e
21.3.1 Type Aliases in Generic Types|
[21.3.2 Parameters in Generic Types|
21.3.3 Fields without Types|
21.3.4 Fields of Generic Types|

21.3.6 The eltType Type| o o o i e e e e
21.4 Where Expressions| e
21.5 Example: A Generic Stack] Lo

22

Parallelism and Synchronization|

22.1 The Forall Loop|
22.1.1 Alternative Forall Loop Syntax|.
22.1.2 The Ordered Forall Loop|

[22.2° The Forall Expression|
22.2.1 Filtering Predicates|

22.3 The Cobegin Statement] e

22.4 The Coforall Loop| e

22.5 The Begin Statement]. L L e

22.6 The Ordered Expression|

22.8 Synchronization Variables|o o
22.8.1 Single Variables|.
[22.8.2 Sync Variables| L
22.8.3 Additional Synchronization Variable Functions|
22.8.4 Synchronization Variables of Record and Class Types|.

22.9 Memory Consistency Modell.

23

[23.1.3 Predefined Locales Array|.
23.1.4 Querying the Localeofa Variable|
23.2 Specitying Locales for Computation|,
2321 Onl. . . . e

vii

126
127
127
127
128
128
128
129
129
129
130
130
130

131
131
131
132
132
133
133
133
134
134
134
135
135
136
137
137
137
137

viii Chapel Language Specification

24 _Reductions and Scans| 143
[24.1 Reduction Expressions|. 143

4. dScan EXPressions| L e e e e e e e e e 144
luctionsand Scansl. 144

[25_Input and Output) 145
P50 TREATEIYDE] - - o o v oo e e e e e e e e 145
252 Standard files stdout, stdin, and stderr]. 146

6 BItOPS| e e e e e e e e 149
26.2 Mathl e e e e 149
26.3 Random| e e e e e e 153
6.4 Searchl e e e e e e 154
0.5 Sortl. e e e e e e e 154
26.6 Standard| L 154
6.7 _Timel e e e 156
26.8 Types|. e e 156

Scope 1
1 Scope

Chapel is a new parallel programming language that is under development at Cray Inc. in the context of
the DARPA High Productivity Language Systems initiative and the DARPA High Productivity Computing
Systems initiative.

This document specifies the Chapel language. It is a work in progress and is not definitive. In particular, it is
not a standard.

Chapel Language Specification

Notation 3

2 Notation

Special notations are used in this specification to denote Chapel code and to denote Chapel syntax.

Chapel code is represented with a fixed-width font where keywords are bold and comments are italicized.

Example.
for i in D do // iterate over domain D
writeln (i) ; // output indices in D

Chapel syntax is represented with standard syntax notation in which productions define the syntax of the
language. A production is defined in terms of non-terminal (italicized) and terminal (non-italicized) symbols.
The complete syntax defines all of the non-terminal symbols in terms of one another and terminal symbols.

A definition of a non-terminal symbol is a multi-line construct. The first line shows the name of the non-
terminal that is being defined followed by a colon. The next lines before an empty line define the alternative
productions to define the non-terminal.

Example. The production

bool-literal:
true
false

defines bool-literal to be either the symbol true or false.

In the event that a single line of a definition needs to break across multiple lines of text, more indentation is
used to indicate that it is a continuation of the same alternative production.

As a short-hand for cases where there are many alternatives that define one symbol, the first line of the
definition of the non-terminal may be followed by “one of” to indicate that the single line in the production
defines alternatives for each symbol.

Example. The production

unary—-operator: one of
+-"!

is equivalent to

unary-operator:
+

!

As a short-hand to indicate an optional symbol in the definition of a production, the subscript “opt” is suffixed
to the symbol.

Example. The production

formal:
formal-tag identifier formal-type,,. default—expression,:

is equivalent to

formal:
formal-tag identifier formal—-type default-expression
formal-tag identifier formal-type
formal-tag identifier default-expression
formal-tag identifier

Chapel Language Specification

Organization 5

3 Organization

This specification is organized as follows:

Section[I] Scope, describes the scope of this specification.

Section 2] Notation, introduces the notation that is used throughout this specification.

Section |3} Organization, describes the contents of each of the sections within this specification.
Section 4} Acknowledgments, offers a note of thanks to people and projects.

Section[5] Language Overview, describes Chapel at a high level.

Section[6] Lexical Structure, describes the lexical components of Chapel.

Section |7} Types, describes the types in Chapel and defines the primitive and enumerated types.
Section@ Variables, describes variables and constants in Chapel.

Section[9] Conversions, describes the legal implicit and explicit conversions allowed between values of
different types. Chapel does not allow for user-defined conversions.

Section[I0} Expressions, describes the serial expressions in Chapel.

Section Statements, describes the serial statements in Chapel.

Section[I2] Modules, describes modules, Chapel’s abstraction to allow for name space management.
Section Functions, describes functions and function resolution in Chapel.

Section@ Classes, describes reference classes in Chapel.

Section@ Records, describes records or value classes in Chapel.

Section@ Unions, describes unions in Chapel.

Section[I7] Tuples, describes tuples in Chapel.

Section 18] Ranges, describes ranges in Chapel.

Section Domains and Arrays, describes domains and arrays in Chapel. Chapel arrays are more
general than arrays in many other languages. Domains are index sets, an abstraction that is typically
not distinguished from arrays.

Section@], Iterators, describes iterator functions and promotion.
Section [21] Generics, describes Chapel’s support for generic functions and types.

Section [22} Parallelism and Synchronization, describes parallel expressions and statements in Chapel
as well as synchronization constructs and atomic sections.

Section Locality and Distribution, describes constructs for managing locality and distributing data
in Chapel.

Section Reductions and Scans, describes the built-in reductions and scans as well as structural
interfaces to support user-defined reductions and scans.

Chapel Language Specification

e Section[25] Input and Output, describes support for input and output in Chapel, including file input and
output..

e Section [26} Standard Modules, describes the standard modules that are provided with the Chapel lan-
guage.

Acknowledgments 7

4 Acknowledgments

We would like to recognize the following people for their efforts and impact on the Chapel language and its
implementation—David Callahan, Hans Zima, John Plevyak, Shannon Hoffswell, Roxana Diaconescu, Mark
James, Mackale Joyner, and Robert Bocchino.

Chapel is a derivative of a number of parallel and distributed languages and takes ideas directly from them.
These include the MTA extensions of C, HPF, and ZPL.

Chapel also takes many serial programming ideas from many other programming languages, especially C#,
C++, Java, Fortran, and Ada.

The preparation of this specification was made easier and the final result greatly improved because of the good
work that went in to the creation of other language standards and specifications, in particular the specifications
of C# and C.

Chapel Language Specification

Language Overview 9

S Language Overview

Chapel is a new programming language under development at Cray Inc. as part of the DARPA High Produc-
tivity Computing Systems (HPCS) program to improve the productivity of parallel programmers.

This section provides a brief overview of the Chapel language by first discussing the guiding principles behind
the design of the language and then providing introductory discussions of the main language features. These
discussions are written at an intuitive level of detail. They are neither formal nor complete, but rather are
intended as starting points for the beginning Chapel programmer.

5.1 Guiding Principles
The following four main principles have guided the design of the Chapel language since conception:

1. General parallel programming
2. Control of locality
3. Object oriented programming

4. Generic programming

The first two principles were motivated by a desire to support general, performance-oriented parallel program-
ming through high-level abstractions. The second two principles were motivated by a desire to narrow the
gulf between high-performance parallel programming languages and mainstream programming and scripting
languages.

5.1.1 General Parallel Programming

First and foremost, Chapel is designed to support general parallel programming through the use of high-level
language abstractions. Chapel supports a global-view programming model that raises the level of abstraction
of expressing both data and control flow when compared to parallel programming models currently used in
production. A global-view programming model is best defined in terms of global-view data structures and a
global view of control.

Global-view data structures are arrays and other data aggregates whose sizes and indices are expressed glob-
ally even though their implementations may distribute them across the locales of a parallel system. A locale
is an abstraction of a unit of uniform memory access on a target architecture. That is, within a locale, all
threads exhibit similar access times to any specific memory address. For example, a locale in a commodity
cluster could be defined to be a single core of a processor, a multicore processor or an SMP node of multiple
processors.

Such a global view of data contrasts with most parallel languages which tend to require users to partition
distributed data aggregates into per-processor chunks either manually or using language abstractions. As
a simple example, consider creating a 0-based vector with n elements distributed between p locales. A
language like Chapel that supports global-view data structures allows the user to declare the array to contain
n elements and to refer to the array using the indices 0...7n — 1. In contrast, most traditional approaches

10 Chapel Language Specification

require the user to declare the array as p chunks of n/p elements each and to specify and manage inter-
processor communication and synchronization explicitly (and the details can be messy if p does not divide
n evenly). Moreover, the chunks are typically accessed using local indices on each processor (e.g., 0..n/p),
requiring the user to explicitly translate between logical indices and those used by the implementation.

A global view of control means that a user’s program commences execution with a single logical thread of
control and then introduces additional parallelism through the use of certain language concepts. All paral-
lelism in Chapel is implemented via multithreading, though these threads are created via high-level language
concepts and managed by the compiler and runtime, rather than through explicit fork/join-style program-
ming. An impact of this approach is that Chapel can express parallelism that is more general than the Single
Program, Multiple Data (SPMD) model that today’s most common parallel programming approaches use as
the basis for their programming and execution models. Chapel’s general support for parallelism does not
preclude users from coding in an SPMD style if they wish.

Supporting general parallel programming also means targeting a broad range of parallel architectures. Chapel
is designed to target a wide spectrum of HPC hardware including clusters of commodity processors and
SMPs; vector, multithreading, and multicore processors; custom vendor architectures; distributed-memory,
shared-memory, and shared address space architectures; and networks of any topology. Our portability goal
is to have any legal Chapel program run correctly on all of these architectures, and for Chapel programs that
express parallelism in an architecturally-neutral way to perform reasonably on all of them. Naturally, Chapel
programmers can tune their codes to more closely match a particular machine’s characteristics, though doing
so may cause the program to be a poorer match for other architectures.

5.1.2 Control of Locality

A second principle in Chapel is to allow the user to optionally and incrementally specify where data and com-
putation should be placed on the physical machine. Such control over program locality is essential to achieve
scalable performance on large machine sizes. Such control contrasts with shared-memory programming
models which present the user with a flat memory model. It also contrasts with SPMD-based programming
models in which such details are explicitly specified by the programmer on a process-by-process basis via
the multiple cooperating program instances.

5.1.3 Object-Oriented Programming

A third principle in Chapel is support for object-oriented programming. Object-oriented programming has
been instrumental in raising productivity in the mainstream programming community due to its encapsulation
of related data and functions into a single software component, its support for specialization and reuse, and
its use as a clean mechanism for defining and implementing interfaces. Chapel supports objects in order to
make these benefits available in a parallel language setting, and to provide a familiar paradigm for members
of the mainstream programming community. Chapel supports traditional reference-based classes as well as
value classes that are assigned and passed by value.

Chapel does not require the programmer to use an object-oriented style in their code, so that traditional
Fortran and C programmers in the HPC community need not adopt a new programming paradigm in order
to use Chapel effectively. Many of Chapel’s standard library capabilities are implemented using objects, so
such programmers may need to utilize a method-invocation style of syntax to use these capabilities. However,
using such libraries does not necessitate broader adoption of object-oriented methodologies.

Language Overview 11

5.1.4 Generic Programming

Chapel’s fourth principle is support for generic programming and polymorphism. These features allow code
to be written in a style that is generic across types, making it applicable to variables of multiple types, sizes,
and precisions. The goal of these features is to support exploratory programming as in popular interpreted
and scripting languages, and to support code reuse by allowing algorithms to be expressed without explicitly
replicating them for each possible type. This flexibility at the source level is implemented by having the
compiler create versions of the code for each required type signature rather than by relying on dynamic
typing which would result in unacceptable runtime overheads for the HPC community.

5.2 Getting Started

A Chapel version of the standard “hello, world” computation is as follows:

writeln("hello, world");

This complete Chapel program contains a single line of code that makes a call to the standard writeln
function.

In general, Chapel programs define code using one or more named modules, each of which supports top-level
initialization code that is invoked the first time the module is used. Programs also define a single entry point
via a function named main. To facilitate exploratory programming, Chapel allows programmers to define
modules using files rather than an explicit module declaration and to omit the program entry point when the
program only has a single user module.

Chapel code is stored in files with the extension .chpl. Assuming the “hello, world” program is stored
in a file called hello.chpl, it would define a single user module, hello, whose name is taken from the
filename. Since the file defines a module, the top-level code in the file defines the module’s initialization
code. And since the program is composed of the single hello module, the main function is omitted. Thus,
when the program is executed, the single hello module will be initialized by executing its top-level code
thus invoking the call to the writeln function. Modules are described in more detail in

To compile and run the “hello world” program, execute the following commands at the system prompt:

> chpl -o hello hello.chpl
> ./hello

The following output will be printed to the console:

hello, world

5.3 Variables

There are three kinds of Chapel variables: var, const (runtime constants), and param (compile time con-
stants). Chapel variables are discussed in detail in

Chapel is a strongly typed language. Each variable declaration must include a type specification or an initial-
ization assignment from which the type can be inferred. Variable declarations include the kind of variable,

12 Chapel Language Specification

a type specification, and an initialization assignment. The type specification can be omitted if the type can
be inferred from the initial value. If the variable is not initialized in its declaration, then it contains a default
initial value according to its type.

Example. The following code gives examples of variable declarations in Chapel:

var x: real = 1.0; // x is real, init to 1.0

var y, z: real; // v, z are real, init to 0.0
var n = 10; // n inferred to be int, init to 10
const size = n; // size is runtime constant int,

// set to 10

The keyword config may precede any global variable declaration, indicating that the variable may be set at
compile time or runtime. To set configuration variables at compile time, use “~s” followed by the variable
name and value on the compiler command line. To set configuration variables at runtime, use “~-" followed
by the variable name and value on the execution command line. More details about configuration variables

are given in

Example. The following code gives an example of a configuration compile time constant debug
and a configuration runtime constant n:
config param debug: bool;

config const n = 100;

If the program is stored in a file called “test.chpl,” then to set debug at compile time, use the
following command:

> chpl test.chpl -s debug=true

To set n at runtime, use the following command:

> ./a.out --n=1000

5.4 Types

Chapel is a strongly typed language. Some implicit conversions between data types are supported, but many
type conversions require an explicit cast. See §9]for more information.

Type aliases and generics are unified by the syntax of Chapel. Type aliases are described in more detail

in {79

5.4.1 Primitive Types

Chapel provides primitive data types for signed and unsigned integers, real, imaginary and complex floating-
point numbers, logical values, strings, files, and locales. The following table provides information about the
names of these data types in Chapel, and their default sizes and initial values. If the size of the integer and
floating point data types are not specified, then the default size is used. When declaring variables, if an initial
value is not supplied, then the default initial value for that variable’s type is used.

Language Overview 13

Type Default Size | Types with Specified Sizes Default Initial Value
int 32 bits int (8), int (16), int (32), int (64) 0

uint 32 bits uint (8), uint (16), uint (32), uint (64) 0

real 64 bits real (32), real (64), real (128) 0.0

imag 64 bits imag (32), imag (64), imag (128) 0.01i

complex | 128 bits complex (64), complex (128), complex (256) | 0.0 + 0.01

bool false

string "

file closed file with no name
locale predefined

5.4.2 Ranges

Ranges are bounded and unbounded strided sequences of integral types. Ranges can be specified by the literal
expression, low. .high by stride where low, high and stride are integral expressions. The bounds of
the range, 1ow and high, can be left unspecified to indicate an unbounded range. The stride is also optional.
If by stride is omitted, the default stride of the range is one.

Ranges are most commonly used in the definition of arithmetic domains and in iterator expressions. Ranges
are described further in

Example. The following example defines a range span1D which is the ordered set 1 to n. This
range is then used in the definition of the arithmetic two-dimensional domain, D, which is then
used to declare the n x n array A. See the following paragraph for an introduction to domain and
array types.

var spanlD: range = l..n; // spanlD represents set of ints 1 to n
var D = [spanlD, spanlD]; // D is 2-D, n x n domain
var A: [D] real; // A is 2-D, n x n array

5.4.3 Domains and Arrays

In Chapel, the indices and values for a data set are maintained in two distinct types of data structures. Domains
specify indices and arrays store the values for sets of data. Arrays and domains may be arithmetic, sparse,
associative, enumerated or opaque.

Example. The code below gives simple examples of how domains and arrays are declared and
used. The variable D2 is declared to have type domain (2) indicating that it is a two-dimensional
domain. The domain declaration also includes an initialization for the domain using the range
literal expression 1. . n, indicating that D2 is an arithmetic domain. The arrays declared with D2,
A, B, C are two-dimensional arithmetic integer arrays.

The for loop statement demonstrates how domains are used to index into and iterate over entries
in arrays. And, finally the assignment statement, C = A + B shows that whole array operations
are supported in Chapel.

14 Chapel Language Specification

const D2: domain(2) = [1..n, 1..n];
var A, B, C: [D2] int;

for (i, J) in D2 {

A(i,3) = 3;
B(i,3J) = 1i;
}
C=A+ B;

An array must be specified with a domain in its variable declaration, and it is linked with this domain during
execution. When a domain is modified by adding or removing indices, all arrays declared with this domain
reflect this change. Arrays and domains are passed by reference into functions but are assigned by value.

A domain can be declared with a distribution function which indicates how the data values in arrays declared
with this domain are to be distributed across processors.

Example. In the code below, the domain DistD2 is declared to be a block distributed two-
dimensional arithmetic domain. The arrays 2, B, and C are then block distributed two dimensional
integer arrays.

const DistD2: domain(2) distributed(Block) = [1..n, 1..n];
var A, B, C: [DistD2] int;

The Chapel language also supports constructs that allow access to a specific part of an array or domain
through slicing, reindexing, and array aliasing. For more information about domains and arrays see

5.4.4 Enumerations

An enumerated type defines an ordered set of named constants. By default, these constants have an associated
integral value, starting with one for the first constant. An integral value may be assigned to one or more of
the constants to override the default behavior. For more information about enumerated types see

Example.

enum day {sun, mon, tue, wed, thu, fri, sat};
var d: day = wed;

writeln(d, " is day number ", d:int, " of the week");

This example would output:

wed is day number 4 of the week

Language Overview 15

5.4.5 Tuples

A tuple is an ordered collection of types.

Example. The following code shows two ways of declaring tuples. When the tuple contains
multiple types, as in the variable pt, the tuple declaration specifies the component types of the
tuple, separated by commas and contained within parentheses. For the homogeneous tuple x,
a short-hand notation can be used for its declaration. The number of elements of the tuple,
followed by x and the type can be used in this case.

var pt: (int,real);
var x: 3xint;

A tuple expression is a comma-separated list of expressions that is enclosed in parentheses. Tuples can be
declared and assigned to with tuple expressions. When a tuple expression appears on the left-hand side of an
assignment statement, the expression on the right-hand side is a destructured tuple expression.

Example.
The example below shows how the tuple variables pt and x are declared with tuple expression
literals.

var pt = (1, 3.0);

var x = (1, 1, 1);

The elements of the tuple x can be assigned to integer variables through the use of tuple destruc-
turing.

var a, b, c: int;

(a, b, ¢c) = x;

There are a set of operators defined for variables of tuple type and elements of a tuple are accessed through
indexing and destructuring. For more detailed information about tuples see

Tuples are very useful constructs. They can be used in functions with variable length argument lists, index
expressions for for loops and in the assignment to complex variables. One such example follows.

Example. Tuples may be used in the assignment to a complex variable.

var x, y: real;
var z: complex;

z = (x,y) :complex;

16 Chapel Language Specification

5.4.6 Classes

Classes are data structures defined with fields and methods. A variable that is declared to be of a class type
is a reference to an object, or instance, of that class.

An instance of a class is created by calling its constructor in a variable declaration. Each call to the constructor
instantiates a new object of the class and returns a reference to the object. Chapel provides a default class
constructor for each class. For more information about classes see

Example. The following code gives an example of the circle class. The variable, x, is an
instance of the circle class with a radius of 1.0. The variable y is assigned the reference to the
same object as x. When the radius of y is modified, the radius of x is modified as well. Writing
the area of x and y prints the same value, 12. 56.

class circle {
var radius: real;
def area {
param pi = 3.14;
return pix (radius*x2);
}
}
var x = circle(radius=1.0);
var y

X
y.radius = 2.0;
writeln((x.area, y.area));

This program has the output
(12.56, 12.56)

5.4.7 Records

Records are similar to classes. They contain fields and methods and can inherit fields and methods from other
records. A record, however, directly contains the data associated with the fields in the record. A record is
not a reference to storage location as classes are. Thus, records are assigned by value. For more information
about records see

Example. In the example code below, p and g are both variables of the record point. They are
distinct storage locations that are updated independently of each other. When p is assigned to g,
g then contains the same values as p. But, when q is updated, p is not since they are referring to
the same storage location.
record point {
var x,y: real;
def magnitude {
return max (abs (x),abs (y));

}

var p point (0.0,1.0);
var q = p;

g.x = 2.0;

writeln ((p.magnitude, g.magnitude));

Language Overview 17

This program has the output:

(1.0, 2.0)

5.4.8 Summary of Non-Primitive Types

The non-primitive types are listed in the table below, along with their default initial values for variables of
that type.

Type Default Initial Value

range 1..0

domain | empty range for each dimension

array each element has its default initial value
enum first enumeration constant

tuple each component has its default initial value
class nil

record | default constructor with zero arguments

5.5 Expressions

Chapel provides a rich set of expressions described in

The following table provides a summary of Chapel’s expressions. They are listed in order of precedence
(high to low) and with an associativity:

Operators Associativity | Use
. left member access
) [] left function call, index expression
* % right exponentiation
unary + - right sign and bitwise negation
: left cast
* /% left multiply, divide, and modulus
+ - left plus and minus
& left bitwise and
" left bitwise xor
<< >> left shift left and shift right
| left bitwise or
<= >= < > left ordered comparison
== | left equality comparison
! right logical negation
&& left logical and
|| left logical or
left ranges
in left forall expressions
by left striding ranges and domains
if left conditional expressions
reduce scan | left reductions and scans
, left comma separated expressions

18 Chapel Language Specification

Scans and Reductions Chapel supports standard and user-defined reduction and scan operators. These
operators precede the keyword scan or reduce, depending on the desired operation.

The built-in Chapel scan and reduction operators are;

+ x && || & | 7 min max

For more information about reductions, scans and user-defined operators for either see

Query Expression The query expression is used to query the type of a generic function argument and assign
that type to a variable. For more information about query expressions and generic functions see The_Query_Expression

and §21.1]

Example. The following definition of the generic function sumOfThree ensures that all argu-
ments and the return value are of the same type, without specifying the type. The type of the first
argument in the sumOfThree function is queried and assigned to the variable t. The remaining
arguments and the return value are then specified to also be of type t.

def sumOfThree(x:?t, y:t, z:t):t {
return x + y + z;

}

Let Expression The let—in expression defines variables to be used only in the expression following the
in keyword. For more information about the 1et expression see §10.15

Example.

x = let tl = sqrt(bxb - 4.0xaxc), t2 = 2.0xa
in ((-b + tl1)/t2, (-b - tl1)/t2);

Conditional Expression Chapel provides a conditional expression that can be evaluated at the expression
level. For more information about conditional expressions see §10.16

Example.

var half = if (i % 2) then i/2 +1 else i/2;

5.6 Statements

Assignment Assignment in Chapel is supported by the following operators:

= 4= —= x= /= %= xx= &= |= = &&= | |= <<= >>=

An assignment statement contains a left hand-side side expression followed by an assignment operator and
a right-hand side expression. An assignment operator that has a binary operator as a prefix is a short-hand
notation for applying the binary operator to the left and right-hand side expressions assigning the result to the
left-hand side. For example, x += 1 is an alternative way of writing x = x + 1.

Language Overview 19

Swap The swap operator, <=> swaps the values between the left and right-hand side expressions.

X <=>vy; // swaps the value in x with the value in y

The Array Alias Operator The array alias operator, =>, used within a variable declaration, creates an alias
to an array or an array slice.

var All => A[blockl,blockl];

For more information about array aliasing see §19.2.9

Block Statement A block statement is delimited by braces, { } and it contains a set of Chapel statements
separated by semi-colons. Variables declared within a block statement are local to that block.

Example. The following code shows a block of statements for computing a Givens rotation. The
variable tau is declared within the block as is local to this block.

var a, b: real;
var s, c: real;

var tau = —-a/b;
s = 1/sgrt(l + tauxtau);
c = sxtau;

For Loop Statements In Chapel, a for loop statement defines an index and specifies either a function,
expression or a variable to iterate over. For more information about for loops see §11.9)

Example. The following code gives an example of a for loop statement that reads in data from
the files xdatain and ydatain to initialize the arrays x and y.

The next for loop iterates over the elements of x and y, an element of x and an element of y on
each line. This loop iterates over arrays rather than a domain. Also, since the body of this loop
is not a block statement, the keyword do is needed to delimit the loop body.

var x, y: [D] real;

for ind in D {
xdatain.read (x (ind)) ;
ydatain.read(y (ind)) ;
}

for (ex, ey) in (x, y) do
writeln((ex, ey));

20 Chapel Language Specification

Conditional Statement The Chapel conditional statement uses the standard if-then—else structure.
When the then clause is a block of statements, delimited with ‘{* and ‘}’, the then keyword may be omitted.
For more information about conditional statements see §11.6]

Example.

if (a == 0.0) then
x = 0.0;

else
X = axy;

if (b !'= 0.0) {
z = bxx;
y = z;

The example demonstrates two conditional statements, one with both then and else clauses,
and one with just a then clause.

Select Statement Chapel provides a select statement that allows the option of executing different state-
ment blocks, depending on the value of the select variable. For more information about the select statement

see 411.7]

Example.

enum day {sun, mon, tue, wed, thu, fri, sat};
var today: day;

select today {
when fri, sat do rate = 250;
when sun do rate = 180;
otherwise rate = 140;

In the above example, the select statement assigns a value to peakRate depending on the
value of the variable today.

Type Select Statement The type select statement allows the choice of executing different statement
blocks depending on the type of the select variable. For more information about the t ype select statement

see 411.11

Example.

type select ind {
when int do y = x(ind);
when real, uint do y = x(ind:int);
otherwise y = 0.0;

}

In the above example, the variable ind is used to index into the array x if it has the appropriate
type.

Language Overview 21

5.7 Functions and Iterators

Function Definitions Functions are defined with the keyword de f, a name and a list of function arguments.
Optionally, intents and types for the function arguments, return types and a where clause can be specified.

Example. The example below defines a simple function that computes the area of a rectangle.
The areaRect function is defined to take two function arguments of type real and return a
value of type real. If this function is called with function arguments that have a type other than
real, it will result in a function resolution error at compile time.

def areaRect (x:real, y:real): real {

return x»*y;

}

The Chapel language supports function overloading. At compile time, function resolution will identify the
most specific function for each function call from a set of candidate functions depending on the number of
function arguments, the types specified for the input and return values, and any where clauses.

Function Intents Intents of function arguments specify how an argument can be modified during and after
the function call. The intents can be specified as in, out or inout.

If the intent of an argument is in, the actual argument is copied to the formal argument and it may be modified
within the function. However, the actual argument at the call site does not reflect any modifications made
within the function. The out intent indicates that the actual argument is ignored when the call is made,
but after the call the formal argument is assigned to the actual argument at the call site. The inout intent
indicates that the actual argument be copied to the formal argument and then copied back after the call.

If the intent is omitted, then the argument has a blank intent, copying in the value using the assignment
operator. Arguments with a blank intent cannot be assigned within a function. Actual arguments of array and
domain types are handled differently when they have a blank intent. In this case, array and domain arguments
are passed by reference. Thus, they can be modified within the function and those modifications are reflected
at the call site. Arrays arguments with non-blank intents are handled according to definition, being copied to
and from the formal arguments. Actual arguments of domain types can only have a blank intent.

Further information about function intents is in §13.5]

Generic Functions The Chapel language supports generic functions, allowing the user to define a function
without specifying the types of the formal arguments or return variables. A generic function definition can
have formal arguments of generic type, formal arguments without a specified type or with a queried type, or
formal arguments that are tagged with type or param keywords. In addition, a function is considered to be
generic if it contains an array argument with its domain or element type unspecified or queried.

Example.

def absSum(x) {
return + reduce abs (x);

}

22 Chapel Language Specification

This routine, absSum, can be called with arrays of any element type for which an abs function
is defined. Further, this routine can be called with arrays of any domain type, so it can be called
with arrays of arbitrary dimension.

Generic functions use query expressions to query the types or domains of arguments. The query expression
uses a ? to indicate that the type of the preceding variable be queried and assigned to the following variable.
For more information about generic functions, see §21.1|

Example. The generic function average?2 returns the average of the two input arguments. The
type of the first argument x is queried and assigned to t. The second argument y and the return
value and specified to be of same type as the first argument. In the function, the constant two is
defined to be 2, casted to the same type as the input arguments and result.

Two calls to average2 are shown, one with integer arguments and one with real arguments.

def average2(x: ?t, y: t): t {
const two = 2.0:t;
return (x + y)/two;

}

writeln (average2(1,4));
writeln (average2(1.0,4.0);

This program has the output:

2
2.5

Variable Length Argument Lists Functions in Chapel can take variable length argument lists. Tuples
can be used in the definition of such functions. For more information about variable length argument lists

see 413.12

Example. In the code below, the function writeLines is defined to write each string argument
on a separate line. The symbol ... in the argument list indicates the number of arguments is
variable. The notation ?n indicates to query the number of arguments and assign that number
to n. The variable eachLine is a homogeneous tuple that contains n elements of type string.
The function contains a for loop that writes each element of eachLine on a separate line.
def writelines (eachLine:string...?n) {
for i in 1..n do

writeln (eachLine(i));

}

writeLines ("Write", "one", "word", "on", "each", "line");

The output of this example is:

Write
one
word
on
each
line

Language Overview 23

Iterators Iterators generate sequences of values. They are defined similarly to functions, except that they
contain at least one yield statement. Iterators may be called in for and forall loop statements. For each
iteration of the loop, a value from the iterator is yielded and the body of the loop executed. More information
about iterators is in §20]

Example.

def evens(n) {
for i in 1..n do yield (i, 2x1);

}

for (i,i2) in evens(m) {
x(1) = y(i2);
}

The above code gives an example of an iterator definition and use. The iterator, evens yields a
tuple of integers at each iteration.

5.8 Input and Output

File I/O The Chapel language provides a £ile type for use in reading and writing to files. To read or write
from a file, a variable of f£ile type must be declared and then assigned the name and path of the file and
whether the file is to be read or written. Methods to open, to close, to read and to write from that file can be
invoked with this file variable.

Example. In the following example, the array A is initialized with values read from the file
inMatrix.dat.

var A: [D] real;

var inputFile = file("inMatrix.dat");
inputFile.open () ;

for (i, j) in D do inputFile.read(A(i,]J));
inputFile.close();

Chapel Standard I/O Files and Functions Chapel provides three standard files, stdout, stdin and
stderr which map to standard output, standard input and standard error, respectively.

Chapel provides built-in functions write and writeln to write to stdout, and the built-in function read
that reads from stdin.

Default I/O Methods for Chapel Types Default read, write, and writeln methods are provided for all
Chapel types.

Example. The following code shows the definition of an arithmetic domain D and array 2, and
calling the writeln function to print both variables to standard output.

24 Chapel Language Specification

var D = [1..5, 1..5];
var A: [D] real;

class circle {
var radius: real;
const diameter = 2.0*radius;
def area {
param pi = 3.14;
return pix (radiusx**2);

}

var x = circle(1.0);
writeln (x);

writeln ("Writing a variable of domain type:");
writeln (D) ;
writeln ("Writing a variable of array type:");
writeln (A);

’

The output is shown below. Variables of arithmetic domain type are formatted to print the ranges
for each dimension of the domain. Variables of arithmetic array type are formatted to print the
values of each row separated by a carriage return.

Writing a variable of domain type:

[1..5, 1..5]

Writing a variable of array type:
0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

In addition, read, write and writeln methods are provided for user-defined types. Users may override the
default write method by providing a writeThis method for that type.

Example. In the following example, the class circle is defined and an instance x is declared
and then written. When an instance of class is written, by default, the names and values of that
object’s fields are written. So, the radius and diameter fields of x are written.

class circle {
var radius: real;
const diameter = 2.0xradius;
def area {
param pi = 3.14;
return pix (radius*x2);

var x = circle(1.0);
writeln (x);

This code produces the output:

{radius = 1.0, diameter = 2.0}

Language Overview 25

5.9 Parallelism

The Chapel language is designed to ease the challenges of parallel programming. Since the language has
specific constructs to support parallel computations, the user can easily express the parallel work, and the
compiler can easily identify it.

Chapel supports both data parallelism and task parallelism. To efficiently manage both types of parallelism a
multi-processor system, users can specify how data and work is to be distributed across processors by using
distribution and locality features.

Status note. Currently, the Chapel compiler supports only single-locale features. Task parallel
features will spawn computations only on one locale. Data parallel features execute sequentially
on one locale.

More examples and discussion of parallel features will be added to the language specification
when they are available in the compiler.

Data Parallelism Data parallelism refers to work where the same operations can be executed concurrently
on a set of data. To support data parallel work, the Chapel language provides the parallel forall statement.
The iterations of a forall loop execute concurrently, as determined by the compiler and the runtime library.
For more information about forall loops see §22.1

The Chapel language provides an alternative, short-hand notation for defining a parallel loop. This notation
omits the forall keyword and uses brackets to delimit the rest of the loop statement which includes the
index and iterator expressions. This notation is convenient to use when the loop body is a single statement.

The compiler will also parallelize whole array and domain statements, where possible.

Example. The following code demonstrates three ways to assign, in parallel, the scaled elements
of the array B to the elements of the array A.

D= [1l..m, 1..n];
A, B: [D] real;
alpha: real;

forall ij in D {
A(ij) = alphax*B(ij);
}

[ij in D] A(ij) = alpha*B(ij);

A = alphaxB;
The first loop uses the forall loop statement. The second loop uses the short-hand bracketed
notation and the third statement expresses the computation using whole-array operations. All

three computations will execute concurrently in the same manner, as determined by the compiler
and runtime library.

26 Chapel Language Specification

Task Parallelism The Chapel language also supports parallelism where different types of operations are
being executed concurrently with different data sets. In this case, computations are spawned through the use
of the begin or co-begin statements. Synchronization between these computations is managed through the
use of sync and single variables.

The begin statement spawns a computation to execute a statement. Control continues simultaneously with
the statement following the begin statement. A begin statement cannot contain break, yield, or return state-
ments. For more information about the begin statement see

The cobegin statement is used to create parallelism within a block statement. All statements within the
block statement are executed concurrently. Any variable declared within the cobegin statement is a single
variable. For more information about the cobegin statement see §22.3]

Example.

var done: sync bool;

begin
while (!done) do work (x);

otherwork (x) ;
done = true;

cobegin {
init (A);
init (B);

In addition, the coforall loop statement is provided in order to express the concurrent statements within a
cobegin in an easier way. For more details about the coforall loop statement see §22.4]

Example. If three consumer computations needed to be started, a cobegin statement could be
used.
cobegin {
runConsumer () ;
runConsumer () ;

runConsumer () ;

}

By using a coforall statement instead, the code is shorter and less redundant.

coforall i in 1..3 do
runConsumer () ;

Synchronization Variables Synchronization between computations is managed through sync and single
variables. Sync variables have a full or empty state associated with them that is modified when read and
written to and control access to these variables between threads of computation. Single variables are similar
to sync variables, but they are assigned once. Using a single variable before it is assigned, suspends the
computation until another task assigns a value to it. For more information about synchronization variables

see §22.8

var x: single int;
var y: sync real;

Language Overview 27

Suppressing Parallelism It is often necessary to suppress concurrency during sections of parallel pro-
grams. Chapel provides a serial statement to serialize statements within a parallel region. For more infor-
mation about the serial statement see §22.7]

Scans and Reductions Chapel supports operations that execute over multiple locales through the use of
scan and reduce expressions. The language provides built-in scan and reduce operators. For more
information about scans and reductions see

Data Distributions and Locality In Chapel, the term locale refers to the processing unit in a parallel
computer system. Chapel provides a predefined array Locales where each entry is of the locale type.
User-defined variables of 1ocale type can be declared to store entries from this Locales array or the entries
can be accessed directly to indicate where data should be reside in memory or where computations should be
executed. For more information about locales, see §23.1]and

Chapel manages the distribution of data through the use of domains and distributions. A distribution is a
mapping of a domain’s indices to locales. When a domain is declared with a distribution, then any iteration
over that domain or its associated arrays will execute in parallel across the locales according to how the data
is distributed.

The on statement controls on which locale a computation or data should be placed.

For more information about locality and distributions see

28

Chapel Language Specification

Lexical Structure 29

6 Lexical Structure

This section describes the lexical components of Chapel programs.

6.1 Comments

Two forms of comments are supported. All text following the consecutive characters // and before the end
of the line is in a comment. All text following the consecutive characters /+ and before the consecutive
characters / is in a comment.

Comments, including the characters that delimit them, are ignored by the compiler. If the delimiters that start
the comments appear within a string literal, they do not start a comment but rather are part of the string literal.

6.2 White Space

White-space characters are spaces, tabs, and new-lines. Aside from delimiting comments and tokens, they
are ignored by the compiler.

6.3 Case Sensitivity

Chapel is a case sensitive language so identifiers that are identical except of the case of the characters are still
different.

6.4 Tokens

Tokens include identifiers, keywords, literals, operators, and punctuation.

6.4.1 Identifiers

An identifier in Chapel is a sequence of characters that must start with a letter, lower-case or upper-case, or
an underscore, and can include lower-case letters, upper-case letters, digits, and the underscore.

Example. The following are legal identifiers:

x, xle, xt3, legalChapelldentifier, legal_chapel_identifier

30

6.4.2 Keywords

The following keywords are reserved:

atomic
class
const
domain
forall
int
nil
out
record
serial
type
when

6.4.3 Literals

begin
cobegin
continue
else
goto
inout
of
param
reduce
single
uint
where

bool
coforall
def
enum
if

let

on
pragma
return
sync
union
while

break
complex
distributed
false
imag
locale
ordered
range
scan
then
use
yield

Literal values for primitive types are described in

6.4.4 Operators and Punctuation

Chapel Language Specification

by
config
do

for

in
module
otherwise
real
select
true
var

The following special characters are interpreted by the syntax of the language specially:

symbols

use

<= >=

<< >>
< >

assignment

swap operator
ranges

variable argument lists
logical operators
bitwise operators
relational operators
arithmetic operators
types

statement separator
expression separator
member access
query types

string delimiters

6.4.5 Grouping Tokens

The following braces are part of the Chapel language:

braces | use

() parenthesization, function calls, and tuples
[] domains, square tuples, forall expressions, and function calls
type scopes and blocks

{1}

Lexical Structure 31

6.5 User-Defined Compiler Errors

The special compiler error statement given by

compiler-error-statement:
compilerError (expression-list) ;

expression-list:
expression
expression , expression-list

invokes a compiler error if the function that the statement is located within may be called when the program
is executed and the statement is not eliminated by parameter folding.

The compiler error is defined by the expression list which can contain string literals and types. The error
points to the spot in the Chapel program where the function containing the compiler—error-statement is called
from.

32

Chapel Language Specification

Types 33

7 Types

Chapel is a statically typed language with a rich set of types. These include a set of predefined primitive
types, enumerated types, classes, records, unions, tuples, ranges, domains, and arrays. This section defines
the primitive types, enumerated types, and type aliases.

Programmers can define their own enumerated types, classes, records, unions, and type aliases in type decla-
ration statements summarized by the following syntax:

type—declaration—-statement:
enum-—declaration— statement
class—declaration—statement
record—declaration—statement
union—declaration—statement
type—alias—declaration- statement

Classes are discussed in Records are discussed in Unions are discussed in §I6] Tuples are discussed
in Ranges are discussed in §I8] Domains and arrays are discussed in §19]

7.1 Primitive Types

The primitive types include the following types: bool, int, uint, real, complex, imag, string, and
locale. These primitive types are defined in this section except for the locale type which is defined

in §23.1.1

7.1.1 The Bool Type

Chapel defines a logical data type designated by the symbol bool with the two predefined values t rue and
false.

The relational operators return values of bool type and the logical operators operate on values of bool type.

Some statements require expressions of bool type and Chapel supports a special conversion of values to
bool type when used in this context (§9.1.6). For example, an integer can be used as the condition in a
conditional statement. It is converted to false if it is zero, and otherwise, it is converted to t rue.

7.1.2 Signed and Unsigned Integral Types

The integral types can be parameterized by the number of bits used to represent them. The default signed
integral type, int, and the default unsigned integral type, uint, are 32 bits.

The integral types and their ranges are given in the following table:

34 Chapel Language Specification

Type Minimum Value Maximum Value
int (8) -128 127
uint (8) 0 255
int (16) -32768 32767
uint (16) 0 65535
int (32), int -2147483648 2147483647
uint (32),uint 0 4294967295
int (64) -9223372036854775808 | 9223372036854775807
uint (64) 0 | 18446744073709551615

The unary and binary operators that are pre-defined over the integral types operate with 32- and 64-bit pre-
cision. Using these operators on integral types represented with fewer bits results in a coercion according to
the rules defined in

7.1.3 Real Types

Like the integral types, the real types can be parameterized by the number of bits used to represent them.
The default real type, real, is 64 bits. The real types that are supported are machine-dependent, but usually
include real (32) and real (64), and sometimes include real (128).

Arithmetic over real values follows the IEEE 754 standard.

7.1.4 Complex Types

Like the integral and real types, the complex types can be parameterized by the number of bits used to
represent them. A complex number is composed of two real numbers so the number of bits used to represent a
complex is twice the number of bits used to represent the real numbers. The default complex type, complex,
is 128 bits; it consists of two 64-bit real numbers. The complex types that are supported are machine-
dependent, but usually include complex (64) and complex (128), and sometimes include complex (256).

The real and imaginary components can be accessed via the methods re and im. The type of these compo-
nents is real.

Example. Given a complex number 3.14+2.721, the expressions c.re and c.imreferto 3.14
and 2. 72 respectively.

7.1.5 Imaginary Types

The imaginary types can be parameterized by the number of bits used to represent them. The default imag-
inary type, imag, is 64 bits. The imaginary types that are supported are machine-dependent, but usually
include imag (32) and imag (64), and sometimes include imag (128).

Rationale. The imaginary type is included to avoid numeric instabilities and under-optimized
code stemming from always coercing real values to complex values with a zero imaginary part.

Types 35

7.1.6 The String Type

Strings are a primitive type designated by the symbol st ring. Their length is unbounded.

Characters in a string can be accessed via the substring method on strings. This method takes an integer ¢
and returns the ¢th character in the string.

Example. The first character of a string s can be selected by the method call s. substring(1).

7.1.7 Primitive Type Literals

Bool literals are designated by the following syntax:

bool-literal: one of
true false

Signed and unsigned integer literals are designated by the following syntax:

integer-literal:
digits
0°’x> hexadecimal—-digits
0°b’ binary-digits

digits:
digit
digit digits

digit: one of
0123456789

hexadecimal-digits:
hexadecimal-digit
hexadecimal-digit hexadecimal-digits

hexadecimal-digits: one of
0123456789 ABCDEFabcdef

binary-digits:
binary—-digit
binary-digit binary-digits

binary-digit: one of

01

Suffixes, like those in C, are not necessary. The type of an integer literal is the first type of the following that
can hold the value of the digits: int, int (64), uint (64). Explicit conversions are necessary to change the
type of the literal to another integer size.

Real literals are designated by the following syntax:

36 Chapel Language Specification

real-literal:
digits,, . digits exponent—part,

exponent-part:
e sign,,, digits

sign: one of
+ —

The type of a real literal is real. Explicit conversions are necessary to change the type of the literal to
another real size.

Note that real literals require that a digit follow the decimal point. This is necessary to avoid an ambiguity in
interpreting 2 . e+2 that arises if a method called e is defined on integers.

Imaginary literals are designated by the following syntax:

imaginary-literal:
real-literal i
integer-literal i

A complex literal is specified by adding or subtracting an imaginary literal with a real literal. Alternatively,
a 2-tuple literal of expressions of integer or real type can be cast to a complex. These expressions can be
literals, but do not need to be. To create a complex literal or parameter, they must be literals or parameters.

Example. The following codes represent the same complex literal:

2.01, 0.0+2.01, (0.0,2.0) :complex.

String literals are designated by the following syntax:

string-literal:
” characters,,: ”
> characters,: ’

characters:
character
character characters

character:
any-character

Status note. Strings are currently restricted to ASCII characters. In a future version of Chapel,
strings will be defined over alphabets to allow for more exotic characters.

Types 37

7.2 Enumerated Types

Enumerated types are declared with the following syntax:

enum-declaration—statement:
enum identifier { enum-constant-list } ;

enum-constant-list:
enum-constant

enum-constant , enum-constant—list

enum-constant:
identifier init—part,,,

init-part:

= expression

An enumerated type defines a set of named constants. These are associated with parameters of integral type.
Each enumerated type is a distinct type. If the init—part is omitted, the enum-constant has an integral value one
higher than the previous enum-constant in the enum, with the first having the value 1.

7.3 Class Types

The class type defines a type that contains variables and constants, called fields, and functions, called meth-
ods. Classes are defined in The class type can also contain type aliases and parameters. Such a class is
generic and is defined in

7.4 Record Types

The record type is similar to a class type; the primary difference is that a record is a value rather than a
reference. The difference between classes and records is elaborated on in

7.5 Union Types

The union type defines a type that contains one of a set of variables. Like classes and records, unions may
also define methods. Unions are defined in

7.6 Tuple Types

A tuple is a light-weight record that consists of one or more anonymous fields. If all the fields are of the same
type, the tuple is homogeneous. Tuples are defined in

38 Chapel Language Specification

7.7 Range Types

A range defines an integral sequence of some integral type. Ranges are defined in

7.8 Domain and Array Types

Domains are index sets. Arrays are types that contain a set of zero or more elements all of the same type. The
elements are referenced via indices that are in the domain that the array is declared over. Domains and arrays
are defined in

7.9 Type Aliases

Type aliases are declared with the following syntax:

type—alias—declaration—statement:
type type-alias—declaration ;

type—alias—declaration:
identifier type-part, .
identifier type—part,,. , type-alias—declaration

type—part:
= type

A type alias is a symbol that aliases any type as specified in the type—part. A use of a type alias has the same
meaning as using the type specified by type—part directly.

The type—-part is optional in the definition of a class or record. Such a type alias is called an unspecified type
alias. Classes and records that contain type aliases, specified or unspecified, are generic (§21.3.1).

Variables 39

8 Variables

A variable is a symbol that represents memory. Chapel is a statically-typed, type-safe language so every
variable has a type that is known at compile-time and the compiler enforces that values assigned to the
variable can be stored in that variable as specified by its type.

8.1 Variable Declarations

Variables are declared with the following syntax:

variable-declaration—statement:
config,,. variable-kind variable—declaration—list ;

variable—kind: one of
param const var

variable—declaration-list:
variable—declaration
variable—declaration , variable—declaration—list

variable-declaration:
identifier-list type—part,,,, initialization—part
identifier-list type—part

identifier—list:
identifier
identifier , identifier—list

type-part:
: type
: synchronization—type type

initialization—part:
= expression

A variable-declaration-statement is used to define one or more variables. If the statement is a top-level module
statement, the variables are global; otherwise they are local. Global variables are discussed in Local
variables are discussed in

The optional keyword config specifies that the variables are configuration variables, described in Sec-

tion

The variable-kind specifies whether the variables are parameters (param), constants (const), or regular vari-
ables (var). Parameters are compile-time constants whereas constants are runtime constants. Both levels of
constants are discussed in

Multiple variables can be defined in the same variable-declaration-list. All variables defined in the same
identifier-list are defined to have the same type and initialization expression.

The type-part of a variable declaration specifies the type of the variable. It is optional if the initialization—part
is specified. If the type—part is omitted, the type of the variable is inferred using local type inference described

in §8.1.21

40 Chapel Language Specification

The initialization—part of a variable declaration specifies an initial expression to assign to the variable. If the
initialization—part is omitted, the variable is initialized to a default value described in §8.1.1]

8.1.1 Default Initialization

If a variable declaration has no initialization expression, a variable is initialized to the default value of its
type. The default values are as follows:

Type Default Value

bool false

int (%) 0

uint (*) 0

real (x) 0.0

imag (%) 0.01

complex (%) | 0.0 + 0.01

string "

enums first enum constant

classes nil

records default constructed record
ranges an empty range

arrays elements are default values
tuples components are default values

8.1.2 Local Type Inference

If the type is omitted from a variable declaration, the type of the variable becomes the type of the initialization
expression.

8.2 Global Variables

Variables declared in statements that are in a module but not in a function or block within that module are
global variables. Global variables can be accessed anywhere within that module after the declaration of that
variable. They can also be accessed in other modules that use that module.

8.3 Local Variables

Local variables are variables that are not global. Local variables are declared within block statements. They
can only be accessed within the scope of that block statement (including all inner nested block statements
and functions).

A local variable only exists during the execution of code that lies within that block statement. This time is
called the lifetime of the variable. When execution has finished within that block statement, the local variable
and the storage it represents is removed. Variables of class type are the sole exception. Constructors of class
types create storage that is not associated with any scope. Such storage is managed automatically as discussed

in {129

Variables 41

8.4 Constants

Constants are divided into two categories: parameters, specified with the keyword param, are compile-time
constants and constants, specified with the keyword const, are runtime constants.

8.4.1 Compile-Time Constants

A compile-time constant or parameter must have a single value that is known statically by the compiler.
Parameters are restricted to primitive and enumerated types.

Parameters can be assigned expressions that are parameter expressions. Parameter expressions are restricted
to the following constructs:

e Literals of primitive or enumerated type.
e Parenthesized parameter expressions.

e Casts of parameter expressions to primitive or enumerated types.

e Applications of the unary operators +, —, !, and ~ on operands that are bool or integral parameter
expressions.
e Applications of the binary operators +, —, *, /, %, %, &&, | |, !, &, |, ", 7, <<, >>, ==, | =, <=, >=,

<, and > on operands that are bool or integral parameter expressions.

e The conditional expression where the condition is a parameter and the then- and else-expressions are
parameters.

e Call expressions of parameter functions. See §13.7]

There is an expectation that parameters will be expanded to more types and more operations.

8.4.2 Runtime Constants

Constants do not have the restrictions that are associated with parameters. Constants can be any type. They
require an initialization expression and contain the value of that expression throughout their lifetime.

Variables of class type that are constants are constant references. The fields of the class can be modified, but
the variable always points to the object that it was initialized to reference.

42 Chapel Language Specification
8.5 Configuration Variables

If the keyword config precedes the keyword var, const, or param, the variable, constant, or parame-
ter is called a configuration variable, configuration constant, or configuration parameter respectively. Such
variables, constants, and parameters must be global.

The initialization of these variables can be set via implementation dependent means, such as command-line
switches or environment variables. The initialization expression in the program is ignored if the initialization
is alternatively set.

Configuration parameters are set during compilation time via compilation flags or other implementation de-
pendent means.

Example. A configuration parameter is set via a compiler flag. It may be used to control the
target that is being compiled. For example, the code

config param target: string = "XT3";

sets a string parameter target to "XT3". This can be checked to compile different code for this
target.

Conversions 43

9 Conversions

A conversion allows an expression of one type to be converted into another type. Conversions can be either

implicit (§9.1)) or explicit (§0.1).

9.1 Implicit Conversions

Implicit conversions can occur during an assignment (from the expression on the right-hand side to the vari-
able on the left-hand side) or during a function call (from the actual expression to the formal argument). An
implicit conversion does not require a cast.

Implicit conversions are allowed between numeric types (§9.1.1), from enumerated types to numeric types (§9.1.2)),
between class types (§9.1.3), and between record types (§9.1.4). A special set of implicit conversions are al-
lowed from compile-time constants of type int and int (64) to other smaller numeric types if the value is

in the range of the smaller numeric type (§9.1.5). Lastly, implicit conversions are supported from integral and
class types to bool in the context of a statement (§9.1.6).

9.1.1 Implicit Bool and Numeric Conversions

The implicit numeric conversions are as follows:

e From bool to int (8), int (16), int (32), int (64), uint (8), uint (16), uint (32), uint (64),
Or string

e From int (8) to int (16), int (32), int (64), real (32), real (64), real (128), complex (64),
complex (128), complex (256),0r string

e Fromint (16) toint (32),int (64),real (32),real (64),real (128), complex (64), complex (128),
complex (256),0r string

e From int (32) to int (64), real (32), real (64), real (128), complex (64), complex (128),
complex (256), 0r string

e From int (64) to real (32),real (64),real (128), complex (64),complex (128), complex (256),
Or string

e From uint (8) to int (16), int (32), int (64), uint (16), uint (32), uint (64), real (32),
real (64), real (128), complex (64), complex (128), complex (256), Or string

e From uint (16) to int (32), int (64), uint (32), uint (64), real (32), real (64), real (128),
complex (64), complex (128), complex (256), O0r string

e Fromuint (32) toint (64),uint (64), real (32),real (64),real (128), complex (64),complex (128),
complex (256),0r string

e Fromuint (64) toreal (32),real (64),real (128), complex (64), complex (128), complex (256),
Or string

e From real (32) to real (64), real (128), complex (64), complex (128), complex (256), Or
string

44 Chapel Language Specification

e From real (64) to real (128), complex (128), complex (256), 0r string
e From real (128) to complex (256) Or string

e From imag(32) to imag(64), imag(128), complex (64), complex (128), complex (256), Or
string

e From imag (64) to imag (128), complex (128), complex (256), Oor string
e From imag(128) to complex (256) Or string

e From complex (64) to complex (128), complex (256), Or string

e From complex (128) to complex (256), Or string

e From complex (256) to string

The implicit numeric conversions do not result in any loss of information except for the conversions from
any of the int and uint types to any of the real and complex types and from any of the real, imag, and
complex types to st ring where there is a loss of precision.

9.1.2 Implicit Enumeration Conversions

An expression that is an enumerated type can be implicitly converted to any integral type as long as all of
the constants defined by the enumerated type are within range of the integral type. It can also be implicitly
converted to st ring where the string is the name of the enumerated constant.

9.1.3 Implicit Class Conversions

An expression of class type D can be implicitly converted to another class type C provided that D is a subclass
of C.

9.1.4 Implicit Record Conversions

An expression of record type D can be implicitly converted to another record type C provided that D is a
nominal subtype of C.

9.1.5 Implicit Compile-Time Constant Conversions

The following two implicit conversions of parameters are supported:

e A parameter of type int (32) can be implicitly converted to int (8), int (16), or any unsigned
integral type if the value of the parameter is within the range of the target type.

e A parameter of type int (64) can be implicitly converted to uint (64) if the value of the parameter
is nonnegative.

Conversions 45

9.1.6 Implicit Statement Bool Conversions

In the condition of an if-statement, while-loop, and do-while-loop, the following implicit conversions are
supported:

e An expression of integral type is taken to be true if it is non-zero and is otherwise false.
e An expression of a class type is taken to be true if is not nil and is otherwise false.
9.2 Explicit Conversions

Explicit conversions require a cast in the code. Casts are defined in §10.5] Explicit conversions are supported
between more types than implicit conversions, but explicit conversions are not supported between all types.

The explicit conversions are a superset of the implicit conversions.
9.2.1 Explicit Numeric Conversions

Explicit conversions are allowed from any numeric type, bool, or string to any other numeric type, bool, or
string. The definitions of how these explicit conversions work is forthcoming.

9.2.2 Explicit Enumeration Conversions

Explicit conversions are allowed from any enumerated types to any numeric type, bool, or string, and vice
versa.

9.2.3 Explicit Class Conversions

An expression of static class type C can be explicitly converted to a class type D provided that C is derived
from D or D is derived from C. In the event that D is derived from c, it is a runtime error if the the dynamic
class type of C is not derived from or equal to D.

9.2.4 Explicit Record Conversions

An expression of record type C can be explicitly converted to another record type D provided that C is derived
from D. There are no explicit record conversions that are not also implicit record conversions.

46

Chapel Language Specification

Expressions 47

10 Expressions

This section defines expressions in Chapel. Forall expressions are described in §22.2]

The syntax for an expression is given by:

expression:
literal-expression
variable—expression
member—access—expression
call-expression
query—expression
cast—expression
Ivalue—expression
unary-expression
binary—expression
let—expression
if-expression
forall-expression

10.1 Literal Expressions

A literal value for any of the built-in types is a literal expression. These are defined where the type is defined.
The list of literal values is given by the following syntax:

literal-expression:
bool-literal
integer-literal
real-literal
imaginary-literal
string—literal
range-literal
domain-literal

10.2 Variable Expressions

A use of a variable is itself an expression. The syntax of a variable expression is given by:

variable—expression:
identifier

10.3 Call Expressions

The syntax to call a function is given by:

48 Chapel Language Specification

call-expression:
expression (named-expression—list)

named-expression-list:
named—expression
named-expression , named—expression—list

named-expression:
expression
identifier = expression

A call-expression is resolved to a particular function according to the algorithm for function resolution de-

scribed in §13.9]

A named-expression is an expression that may be optionally named. The optional identifier represents a named
actual argument described in §13.4.1

10.3.1 Indexing Expressions

Indexing into arrays, tuples, and domains shares the same syntax of a call expression. Indexing, at its core, is
nothing more than a call to the indexing function defined on these types.

10.3.2 Member Access Expressions

Member access expressions are call expressions to members of classes, records, or unions. The syntax for a
member access is given by:

member—access—expression:
expression . identifier

The member access may be an access of a field or a function inside a class, record, or union.

10.4 The Query Expression

A query expression is used to query a type or value within a formal argument type expression. The syntax of
a query expression is given by:

query—expression:
? identifier

Querying is restricted to querying the type of a formal argument, the element type of an formal argument
that is an array, the domain of a formal argument that is an array, the size of a primitive type, or a type or
parameter field of a formal argument type.

Example. The following code defines a generic function where the type of the first parameter
is queried and stored in the type alias t and the domain of the second argument is queried and
stored in the variable D:

Expressions 49

def foo(x: 2t, y: [?D] t) {
for i in D do
yIlil = x;
}

The type alias t is used to specify the element type of array y. Arrays passed to this function
must have element type y. The body of the function iterates over the domain of y captured in
variable D and assigns the value of argument x to each element in array y.

There is an expectation that query expressions will be allowed in more places in the future.

10.5 Casts

A cast is specified with the following syntax:

cast—expression:
expression : type

The expression is converted to the specified type. Except for the casts listed below, casts are restricted to
valid explicit conversions (§9.2).

The following cast has a special meaning and does not correspond to an explicit conversion:

e A cast from a 2-tuple to complex converts the 2-tuple into a complex where the first component
becomes the real part and the second component becomes the imaginary part. The size of the complex
is determined from the size of the components based on implicit conversions.

10.6 LValue Expressions

An [value is an expression that can be used on the left-hand side of an assignment statement or on both sides
of a swap statement, that can be passed to a formal argument of a function that has out or inout intent, or
that can be returned by a variable function. Valid lvalue expressions include the following:

e Variable expressions.
e Member access expressions.
e (all expressions of variable functions.

e Indexing expressions.

LValue expressions are given by the following syntax:

Ivalue—expression:
variable—expression
member-access—expression
call-expression

The syntax is more relaxed than the definition above. For example, not all call-expressions are lvalues.

50

10.7 Operator Precedence and Associativity

Chapel Language Specification

The following table summarizes the precedence of operators and their associativity. Operators listed earlier
have higher precedence than those listed later.

operators associativity | use
. left member access
O[] left function call, index expression
* right exponentiation
unary + - right sign and bitwise negation
: left cast
* /% left multiply, divide, and modulus
+ - left plus and minus
& left bitwise and
" left bitwise xor
<< >> left shift left and shift right
| left bitwise or
<= >= < left ordered comparison
== = left equality comparison
! right logical negation
&& left logical and
I left logical or
left ranges
in left forall expressions
by left striding ranges and domains
if left conditional expressions
reduce scan | left reductions and scans
, left comma separated expressions

10.8 Operator Expressions

The application of operators to expressions is itself an expression. The syntax of a unary expression is given

by:

unary-expression:
unary-operator expression

unary-operator: one of
+ -1

The syntax of a binary expression is given by:

binary-expression:

expression binary—operator expression

binary-operator: one of

+ %/ Pxx & |"<<>>&&||==1=<=>=<>

The operators are defined in subsequent sections.

Expressions 51

10.9 Arithmetic Operators

This section describes the predefined arithmetic operators. These operators can be redefined over different
types using operator overloading (§13.8).

All arithmetic operators are implemented over integral types of size 32 and 64 bits only. For example, adding
two 8-bit integers is done by first converting them to 32-bit integers and then adding the 32-bit integers. The
result is a 32-bit integer.

10.9.1 Unary Plus Operators

The unary plus operators are predefined as follows:

def +(a: int(32)): int (32)

def +(a: int (64)): int (64)

def +(a: uint (32)): uint (32)

def +(a: uint(64)): uint (64)

def +(a: real(32)): real(32)

def +(a: real(64)): real (64)

def +(a: real(128)): real(128)

def +(a: imag(32)): imag(32)

def +(a: imag(64)): imag(64)

def +(a: imag(128)): imag(128)

def +(a: complex(32)): complex(32)
def +(a: complex(64)): complex(64)
def +(a: complex(128)): complex(128)

For each of these definitions, the result is the value of the operand.

10.9.2 Unary Minus Operators

The unary minus operators are predefined as follows:

def -(a: int(32)): int (32)

def -(a: int (64)): int (64)

def -(a: uint (64))

def -(a: real(32)): real(32)

def -(a: real(64)): real (64)

def -(a: real(128)): real(128)

def -(a: imag(32)): imag(32)

def -(a: imag(64)): imag(64)

def -(a: imag(128)): imag(128)

def -(a: complex(32)): complex(32)
def -(a: complex(64)): complex(64)
def - (a: complex(128)): complex(128)

For each of these definitions that return a value, the result is the negation of the value of the operand. For
integral types, this corresponds to subtracting the value from zero. For real and imaginary types, this corre-
sponds to inverting the sign. For complex types, this corresponds to inverting the signs of both the real and
imaginary parts.

It is an error to try to negate a value of type uint (64). Note that negating a value of type uint (32) first
converts the type to int (64) using an implicit conversion.

52

10.9.3 Addition Operators

The addition operators are predefined as follows:

def +(a: int(32), b: int(32)): int (32)

def +(a: int(64), b: int (64)): int (64)

def +(a: uint(32), b: uint(32)): uint (32)

def +(a: uint (64), b: uint (64)): uint (64)

def +(a: uint(64), b: int(64))

def +(a: int(64), b: uint (64))

def +(a: real(32), b: real(32)): real(32)

def +(a: real(64), b: real(64)): real(64)

def +(a: real(128), b: real(128)): real(128)

def +(a: imag(32), b: imag(32)): imag(32)

def +(a: imag(64), b: imag(64)): imag(64)

def +(a: imag(128), b: imag(128)): imag(128)

def +(a: complex(64), b: complex(64)): complex(64)
def +(a: complex(128), b: complex(128)): complex(128)

def +(a: complex(256), b: complex(256)): complex(256)

def +(a: real(32), b: imag(32)): complex(64)

def +(a: imag(32), b: real(32)): complex(64)

def +(a: real(64), b: imag(64)): complex(128)

def +(a: imag(64), b: real(64)): complex(128)

def +(a: real(128), b: imag(128)): complex(256)
def +(a: imag(128), b: real(128)): complex(256)
def +(a: real(32), b: complex(64)): complex(64)
def +(a: complex(64), b: real(32)): complex(64)
def +(a: real(64), b: complex(128)): complex(128)
def +(a: complex(128), b: real(64)): complex(128)
def +(a: real(128), b: complex(256)): complex(256)
def +(a: complex(256), b: real(128)): complex(256)
def +(a: imag(32), b: complex(64)): complex(64)
def +(a: complex(64), b: imag(32)): complex(64)
def +(a: imag(64), b: complex(128)): complex(128)
def +(a: complex(128), b: imag(64)): complex(128)
def +(a: imag(128), b: complex(256)): complex(256)
def +(a: complex(256), b: imag(128)): complex(256)

Chapel Language Specification

For each of these definitions that return a value, the result is the sum of the two operands.

It is a compile-time error to add a value of type uint (64) and a value of type int (64).

Addition over a value of real type and a value of imaginary type produces a value of complex type. Addition
of values of complex type and either real or imaginary types also produces a value of complex type.

10.9.4 Subtraction Operators

The subtraction operators are predefined as follows:

def -(a: int(32), b: int(32)): int (32)
def -(a: int(64), b: int (64)): int (64)
def -(a: uint(32), b: uint(32)): uint (32)
def -(a: uint (64), b: uint (64)): uint (64)

Expressions 53

def -(a: uint(64), b: int(64))
def -(a: int (64), b: uint (64))

def -(a: real(32), b: real(32)): real(32)

def -(a: real(64), b: real(64)): real(64)

def -(a: real(128), b: real(128)): real(128)

def -(a: imag(32), b: imag(32)): imag(32)

def -(a: imag(64), b: imag(64)): imag(64)

def -(a: imag(128), b: imag(128)): imag(128)

def -(a: complex(64), b: complex(64)): complex(64)
def -(a: complex(128), b: complex(128)): complex(128)

def - (a: complex(256), b: complex(256)): complex(256)

def -(a: real(32), b: imag(32)): complex(64)

def -(a: imag(32), b: real(32)): complex(64)

def -(a: real(64), b: imag(64)): complex(128)

def -(a: imag(64), b: real(64)): complex(128)

def -(a: real(128), b: imag(128)): complex(256)
def -(a: imag(128), b: real(128)): complex(256)
def -(a: real(32), b: complex(64)): complex(64)
def -(a: complex(64), b: real(32)): complex(64)
def -(a: real(64), b: complex(128)): complex(128)
def -(a: complex(128), b: real(64)): complex(128)
def -(a: real(128), b: complex(256)): complex(256)
def - (a: complex(256), b: real(128)): complex(256)
def -(a: imag(32), b: complex(64)): complex(64)
def -(a: complex(64), b: imag(32)): complex(64)
def -(a: imag(64), b: complex(128)): complex(128)
def -(a: complex(128), b: imag(64)): complex(128)
def -(a: imag(128), b: complex(256)): complex(256)
def -(a: complex(256), b: imag(128)): complex(256)

For each of these definitions that return a value, the result is the value obtained by subtracting the second
operand from the first operand.

It is a compile-time error to subtract a value of type uint (64) from a value of type int (64), and vice versa.
Subtraction of a value of real type from a value of imaginary type, and vice versa, produces a value of complex

type. Subtraction of values of complex type from either real or imaginary types, and vice versa, also produces
a value of complex type.

10.9.5 Multiplication Operators

The multiplication operators are predefined as follows:

def x(a: int(32), b: int(32)): int (32)

def *(a: int(64), b: int(64)): int (64)

def *(a: uint (32), b: uint (32)): uint (32)
def *(a: uint (64), b: uint(64)): uint (64)
def *(a: uint(64), b: int (64))

def x(a: int(64), b: uint (64))

def *(a: real(32), b: real(32)): real(32)
def *(a: real(64), b: real(64)): real(64)
def *(a: real(128), b: real(128)): real(128)

54 Chapel Language Specification

def x(a: imag(32), b: imag(32)): real(32)
def *(a: imag(64), b: imag(64)): real (64)
def x(a: imag(128), b: imag(128)): real (128)

def *(a: complex(64), b: complex(64)): complex(64)
def x(a: complex(128), b: complex(128)): complex(128)
def *(a: complex(256), b: complex(256)): complex (256)
def *(a: real(32), b: imag(32)): imag(32)

def x(a: imag(32), b: real(32)): imag(32)

def x(a: real(64), b: imag(64)): imag(64)

def *(a: imag(64), b: real(64)): imag(64)

def x(a: real(128), b: imag(128)): imag(128)

def *(a: imag(128), b: real(128)): imag(128)

def *(a: real(32), b: complex(64)): complex(64)
def x(a: complex(64), b: real(32)): complex(64)
def *(a: real(64), b: complex(128)): complex(128)
def *(a: complex(128), b: real(64)): complex(128)
def x(a: real(128), b: complex(256)): complex(256)
def * (a: complex(256), b: real(128)): complex(256)
def *(a: imag(32), b: complex(64)): complex(64)
def x(a: complex(64), b: imag(32)): complex(64)
def *(a: imag(64), b: complex(128)): complex(128)
def x(a: complex(128), b: imag(64)): complex(128)
def x(a: imag(128), b: complex(256)): complex(256)
def *(a: complex(256), b: imag(128)): complex(256)

For each of these definitions that return a value, the result is the product of the two operands.
It is a compile-time error to multiply a value of type uint (64) and a value of type int (64).
Multiplication of values of imaginary type produces a value of real type. Multiplication over a value of real

type and a value of imaginary type produces a value of imaginary type. Multiplication of values of complex
type and either real or imaginary types produces a value of complex type.

10.9.6 Division Operators

The division operators are predefined as follows:

def /(a: int(32), b: int (32)): int (32)
def /(a: int (64), b: int (64)): int (64)
def /(a: uint (32), b: uint (32)): uint (32)
def /(a: uint (64), b: uint (64)): uint (64)
def /(a: uint (64), b: int (64))

def /(a: int (64), b: uint (64))

def /(a: real(32), b: real(32)): real(32)

/
def /(a: real(64), b: real(64)): real (64)
def /(a: real(128), b: real(128)): real(128)

def /(a: imag(32), b: imag(32)): real(32)
def /(a: imag(64), b: imag(64)): real (64)
def /(a: imag(128), b: imag(128)): real(128)

def /(a: complex(64), b: complex(64)): complex(64)
def /(a: complex(128), b: complex(128)): complex(128)

Expressions

def /(a: complex (256),
def /(a: real(32), b:
def /(a: imag(32), b:
def /(a: real(64), b:
def /(a: imag(64), b:
def /(a: real(128), b:
def /(a: imag(128), b:
def /(a: real(32), b:
def /(a: complex(64),
def /(a: real(64), b:
def /(a: complex(128),
def /(a: real(128), b:
def /(a: complex(256),
def /(a: imag(32), b:
def /(a: complex(64),
def /(a: imag(64), b:
def /(a: complex(128),
def /(a: imag(128), b:
def /(a: complex(256),

55

b: complex(256)): complex (256)

imag (32)): imag(32)

real (32)): imag(32)

imag (64)): imag(64)

real (64)): imag(64)

imag(128)): imag(128)

real (128)): imag(128)

complex (64)): complex(64)

b: real(32)): complex(64)
complex (128)): complex(128)
b: real(64)): complex(128)
complex (256)) : complex (256)
b: real(128)): complex(256)

complex (64)): complex(64)

b: imag(32)): complex(64)
complex (128)): complex(128)
b: imag(64)): complex(128)
complex (256)) : complex (256)
b: imag(128)): complex (256)

For each of these definitions that return a value, the result is the quotient of the two operands.

It is a compile-time error to divide a value of type uint (64) by a value of type int (64), and vice versa.

Division of values of imaginary

type produces a value of real type. Division over a value of real type and a

value of imaginary type produces a value of imaginary type. Division of values of complex type and either
real or imaginary types produces a value of complex type.

10.9.7 Modulus Operators

The modulus operators are predefined as follows:

def % (a: int (32), b: int(32)): int (32)
def % (a: int(64), b: int (64)): int (64)
def % (a: uint (32), b: uint (32)): uint (32)
def %$(a: uint (64), b: uint (64)): uint (64)
def % (a: uint(64), b: int(64))

def %(a: int(64), Db: uint (64))

For each of these definitions that return a value, the result is the remainder when the first operand is divided

by the second operand.

It is a compile-time error to take the remainder of a value of type uint (64) and a value of type int (64),

and vice versa.

There is an expectation that the predefined modulus operators will be extended to handle real, imaginary, and

complex types in the future.

56

10.9.8 Exponentiation Operators

The exponentiation operators are predefined as follows:

def xx(a: int(32), b: int(32)): int (32)

def *x(a: int(64), b: int (64)): int (64)

def *%(a: uint(32), b: uint (32)): uint (32)
def **(a: uint(64), b: uint (64)): uint (64)
def *x(a: uint(64), b: int (64))

def *x(a: int (64), b: uint(64))

def **(a: real(32), b: real(32)): real(32)
def **(a: real(64), b: real(64)): real(64)
def **(a: real(128), b: real(128)): real(128)

Chapel Language Specification

For each of these definitions that return a value, the result is the value of the first operand raised to the power

of the second operand.

It is a compile-time error to take the exponent of a value of type uint (64) by a value of type int (64), and

vice versa.

There is an expectation that the predefined exponentiation operators will be extended to handle imaginary

and complex types in the future.

10.10 Bitwise Operators

This section describes the predefined bitwise operators. These operators can be redefined over different types

using operator overloading (§13.8§]

10.10.1 Bitwise Complement Operators

The bitwise complement operators are predefined as follows:

def " (a: bool): bool

def " (a: int (32)): int (32)
def " (a: int (64)): int (64)
def " (a: uint (32)): uint (32)
def " (a: uint (64)): uint (64)

For each of these definitions, the result is the bitwise complement of the operand.

10.10.2 Bitwise And Operators

The bitwise and operators are predefined as follows:

def & (a: bool, b: bool): bool

def & (a: int(32), b: int(32)): int (32)
def &(a: int(64), b: int (64)): int (64)
def & (a: uint (32), b: uint(32)): uint (32)
def &(a: uint (64), b: uint (64)): uint (64)
def &(a: uint(64), b: int(64))

def & (a: int (64), b: uint (64))

Expressions 57

For each of these definitions that return a value, the result is computed by applying the logical and operation
to the bits of the operands.

It is a compile-time error to apply the bitwise and operator to a value of type uint (64) and a value of type
int (64), and vice versa.

10.10.3 Bitwise Or Operators

The bitwise or operators are predefined as follows:

def | (a: bool, b: bool): bool

def | (a: int(32), b: int (32)): int (32)
def | (a: int(64), b: int (64)): int (64)
def | (a: uint (32), b: uint (32)): uint (32)
def | (a: uint (64), b: uint(64)): uint (64)
def | (a: uint(64), b: int (64))

def | (a: int(64), Db: uint (64))

For each of these definitions that return a value, the result is computed by applying the logical or operation to
the bits of the operands.

It is a compile-time error to apply the bitwise or operator to a value of type uint (64) and a value of type
int (64), and vice versa.

10.10.4 Bitwise Xor Operators

The bitwise xor operators are predefined as follows:

def " (a: bool, b: bool): bool

def " (a: int(32), b: int(32)): int (32)
def " (a: int (64), b: int (64)): int (64)
def " (a: uint (32), b: uint (32)): uint (32)
def " (a: uint(64), b: uint(64)): uint (64)
def " (a: uint(64), b: int (64))

def “(a: int (64), b: uint(64))

For each of these definitions that return a value, the result is computed by applying the XOR operation to the
bits of the operands.

It is a compile-time error to apply the bitwise xor operator to a value of type uint (64) and a value of type
int (64), and vice versa.

10.11 Shift Operators

This section describes the predefined shift operators. These operators can be redefined over different types
using operator overloading (§13.8§]

The shift operators are predefined as follows:

58 Chapel Language Specification

def <<(a: int(32), b): int (32)
def >>(a: int (32), b): int (32)
def << (a: int (64), b): int (64)
def >>(a: int (64), b): int (64)
def << (a: uint (32), b): uint (32)
def >>(a: uint (32), b): uint (32)
def << (a: uint (64), b): uint (64)
def >>(a: uint (64), b): uint (64)

The type of the second actual argument must be any integral type.
The << operator shifts the bits of a left by the integer b. The new low-order bits are set to zero.

The >> operator shifts the bits of a right by the integer b. When a is negative, the new high-order bits are set
to one; otherwise the new high-order bits are set to zero.

The value of b must be non-negative.

10.12 Logical Operators

This section describes the predefined logical operators. These operators can be redefined over different types
using operator overloading (§13.8).

10.12.1 The Logical Negation Operator

The logical negation operator is predefined as follows:
def ! (a: bool): bool

The result is the logical negation of the operand.

10.12.2 The Logical And Operator

The logical and operator is predefined over bool type. It returns true if both operands evaluate to true;
otherwise it returns false. If the first operand evaluates to false, the second operand is not evaluated and the
result is false.

The logical and operator over expressions a and b given by

a && b

is evaluated as the expression

if isTrue(a) then isTrue(b) else false

The function isTrue is predefined over bool type as follows:

def isTrue (a:bool) return a;

Overloading the logical and operator over other types is accomplished by overloading the i sTrue function
over other types.

Expressions 59

10.12.3 The Logical Or Operator

The logical or operator is predefined over bool type. It returns true if either operand evaluate to true; otherwise
it returns false. If the first operand evaluates to true, the second operand is not evaluated and the result is true.

The logical or operator over expressions a and b given by

a |l b

is evaluated as the expression

if isTrue(a) then true else isTrue (b)

The function isTrue is predefined over bool type as described in §10.12.2] Overloading the logical or
operator over other types is accomplished by overloading the isTrue function over other types.

10.13 Relational Operators

This section describes the predefined relational operators. These operators can be redefined over different
types using operator overloading (§13.8§]

10.13.1 Ordered Comparison Operators

The “less than” comparison operators are predefined as follows:

def <(a: int(32), b: int (32)): bool

def <(a: int(64), b: int (64)): bool

def <(a: uint(32), b: uint(32)): bool
def <(a: uint (64), b: uint (64)): bool
def <(a: real(32), b: real(32)): bool
def <(a: real(64), b: real(64)): bool
def <(a: real(128), b: real(128)): bool
def <(a: imag(32), b: imag(32)): bool
def <(a: imag(64), b: imag(64)): bool
def <(a: imag(128), b: imag(128)): bool

The result of a < b is true if a is less than b; otherwise the result is false.

The “greater than” comparison operators are predefined as follows:

def >(a: int (32), b: int (32)): bool

def >(a: int(64), b: int (64)): bool

def >(a: uint (32), b: uint(32)): bool
def >(a: uint (64), b: uint(64)): bool
def >(a: real(32), b: real(32)): bool
def > (a: real(64), b: real(64)): bool
def >(a: real(128), b: real(128)): bool
def >(a: imag(32), b: imag(32)): bool
def > (a: imag(64), b: imag(64)): bool
def >(a: imag(128), b: imag(128)): bool

The result of a > b is true if a is greater than b; otherwise the result is false.

The “less than or equal to” comparison operators are predefined as follows:

60

def <=(a: int (32), b:

def <=(a: int(64), b:

def <=(a: uint (32), b:
def <=(a: uint(64), b:
def <=(a: real(32), b:
def <=(a: real(64), b:
def <=(a: real(128), b:
def <=(a: imag(32), b:
def <=(a: imag(64), b:
def <=(a: imag(128), b:

int (32)): bool
int (64)) : bool

uint (32)): bool
uint (64)): bool
real (32)): bool
real (64)) : bool
real (128)): bool
imag (32)): bool
imag (64)): bool
imag (128)): bool

Chapel Language Specification

The result of a <= b is true if a is less than or equal to b; otherwise the result is false.

The “greater than or equal to” comparison operators are predefined as follows:

def >=(a: int (32), b:

def >=(a: int (64), b:

def >=(a: uint (32), b:
def >=(a: uint(64), b:
def >=(a: real(32), b:
def >=(a: real(64), b:
def >=(a: real(128), b:
def >=(a: imag(32), b:
def >=(a: imag(64), b:
def >=(a: imag(128), b:

int (32)): bool
int (64)) : bool

uint (32)): bool
uint (64)) : bool
real (32)): bool
real (64)) : bool
real (128)): bool
imag (32)): bool
imag (64)): bool

imag (128)): bool

The result of a >= b is true if a is greater than or equal to b; otherwise the result is false.

10.13.2 Equality Comparison Operators

The equality comparison operators are predefined over bool and the numeric types as follows:

def ==(a: int(32), b: int(32)): bool

def ==(a: int(64), b: int (64)): bool

def ==(a: uint (32), b: uint (32)): bool

def ==(a: uint (64), b: uint (64)): bool

def ==(a: real(32), b: real(32)): bool

def ==(a: real(64), b: real(64)): bool

def ==(a: real(128), b: real(128)): bool

def ==(a: imag(32), b: imag(32)): bool

def ==(a: imag(64), b: imag(64)): bool

def ==(a: imag(128), b: imag(128)): bool

def ==(a: complex(64), b: complex(64)): bool

def ==(a: complex(128), b: complex(128)): bool

def ==(a: complex(256), b: complex(256)): bool
The result of a == b is true if a and b contain the same value; otherwise the result is false. The result of
a != bisequivalentto ! (a == b).

The equality comparison operators are predefined over classes as follows:

def ==(a: object, b: object): bool
def !=(a: object, b: object): bool
The result of a == b is true if a and b reference the same storage location; otherwise the result is false. The

resultof a != bisequivalentto ! (a == Db).

Expressions 61

Default equality comparison operators are generated for records if the user does not define them. These
operators are described in

The equality comparison operators are predefined over strings as follows:

def ==(a: string, b: string): bool

def !=(a: string, b: string): bool
The result of a == b is true if the sequence of characters in a matches exactly the sequence of characters in
b; otherwise the result is false. The result of a != bisequivalentto ! (a == b).

10.14 Miscellaneous Operators

This section describes several miscellaneous operators. These operators can be redefined over different types
using operator overloading (§13.8§]

10.14.1 The String Concatenation Operator

The string concatenation operator is predefined as follows:

def +(a: string, b: string): string

The result is the concatenation of a followed by b.

Example. Since integers can be implicitly converted to strings, an integer can be appended to a
string using the string concatenation operator. The code

"result: "+i

where i is an integer appends the value of i to the string literal. If i is 3, then the resulting string
would be "result: 3".

10.14.2 The Arithmetic Domain By Operator

The operator by is predefined on arithmetic domains. It is described in §19.3.3

10.14.3 The Range By Operator

The operator by is predefined on ranges. It is described in §18.5.1]

62 Chapel Language Specification

10.15 Let Expressions

A let expression allows variables to be declared at the expression level and used within that expression. The
syntax of a let expression is given by:

let—expression:
let variable—declaration—list in expression

The scope of the variables is the let-expression.

Example. Let expressions are useful for defining variables in the context of expression. In the
code

let x: real = axb, y = x*x in 1/y

the value determined by axb is computed and converted to type real if it is not already a real.
The square of the real is then stored in y and the result of the expression is the reciprocal of that
value.

10.16 Conditional Expressions

A conditional expression is given by the following syntax:
conditional-expression:
if expression then expression else expression
if expression then expression

The conditional expression is evaluated in two steps. First, the expression following the i £ keyword is eval-
vated. Then, if the expression evaluated to true, the expression following the then keyword is evaluated and
taken to be the value of this expression. Otherwise, the expression following the e1se keyword is evaluated
and taken to be the value of this expression. In both cases, the unselected expression is not evaluated.

The ‘else’ keyword can be omitted only when the conditional expression is immediately nested inside a forall
expression. Such an expression is used to filter predicates as described in §22.2.1

Statements

11 Statements

63

Chapel is an imperative language with statements that may have side effects. Statements allow for the se-

quencing of program execution. They are as follows:

statement:
block—statement
expression—statement
conditional- statement
select—statement
while—do-statement
do—while—statement
for—statement
param-—for—statement
return-statement
yield-statement
module—declaration—statement
function—declaration—statement
type—declaration- statement
variable—declaration—-statement
use—statement
type-select-statement
empty-statement
cobegin-statement
begin-statement
serial-statement
atomic—statement
on-statement

The declaration statements are discussed in the sections that define what they declare. Module declaration

statements are defined in §12] Function declaration statements are defined in §13] Type declaration statements
are defined in §7] Variable declaration statements are defined in §8] Return statements are defined in §13.2}

Yield statements are defined in §20.2]

The cobegin-statement is defined in §22.3] The begin-statement is defined in §22.3] The serial-statement is
defined in @ The atomic-statement is defined in m The on-statement is defined in m

11.1 Blocks

A block is a statement or a possibly empty list of statements that form their own scope. A block is given by

block—statement:
{ statements,,: }

{}

statements:
statement
statement statements

Variables defined within a block are local variables (§8.3)).

The statements within a block are executed serially unless the block is in a cobegin statement (§22.3).

64 Chapel Language Specification
11.2 Block Level Statements

A block level statement is a category of statement that is sometimes called for by the language syntax. A
block level statement is given by

block-level-statement:
block—-statement
conditional- statement
select—statement
while—do-statement
for—statement
param-for—statement
return—statement
yield-statement
type-select-statement
empty-statement
cobegin-statement
begin-statement
serial-statement
atomic—statement
on-statement

Block level statements are part of the language to avoid the excessive and unnecessary use of curly brackets.
For example, function bodies are not required to be blocks, but must be block level statements.

11.3 Expression Statements

The expression statement evaluates an expression solely for side effects. The syntax for an expression state-
ment is given by

expression—statement:
expression ;

11.4 Assignment Statements

An assignment statement assigns the value of an expression to another expression that can appear on the
left-hand side of the operator, for example, a variable. Assignment statements are given by

assignment-statement:
Ivalue—expression assignment—operator expression

assignment-operator: one of
= 4= —= x= /= Y= xx= &= |: = &&= H: <LKL=>>=

The expression on the right-hand side of the assignment operator is evaluated first; it can be any expression.
The expression on the left hand side must be a valid Ivalue (§10.6)). It is evaluated second and then assigned
the value.

Statements 65

The assignment operators that contain a binary operator as a prefix is a short-hand for applying the binary
operator to the left and right-hand side expressions and then assigning the value of that application to the al-
ready evaluated left-hand side. Thus, for example, x += y isequivalentto x = x + y where the expression
x is evaluated once.

In a compound assignment, a cast to the type on the left-hand side is inserted before the simple assignment if
the right-hand side expression can be assigned to the left-hand side expression and the type of the left-hand
side is a primitive type.

Rationale. This cast is necessary to handle += where the type of the left-hand side is, for
example, int (8) because the + operator is defined on int (32), not int (8).

Status note. Currently, there is no verification that the right-hand side expression can be assigned
to the left-hand side expression.

Values of one primitive or enumerated type can be assigned to another primitive or enumerated type if an
implicit coercion exists between those types (§9.1).

The validity and semantics of assigning between classes (§14.2)), records (§15.2.3), unions (§16.2), tuples (§17.3),
ranges (§18.4), domains (§19.1.3)), and arrays (§19.2.4)) is discussed in these later sections.

11.5 The Swap Statement

The swap statement indicates to swap the values in the expressions on either side of the swap operator. Since
both expressions are assigned to, each must be a valid lvalue expression (§10.6).

swap-statement:
Ivalue—expression swap—operator Ivalue—expression

swap-operator:
<=>

To implement the swap operation, the compiler uses temporary variables as necessary.

Example. The following swap statement

var a, b: real;

a <=> b;

is semantically equivalent to:

const t = Db;
b = a;
a = t;

66 Chapel Language Specification

11.6 The Conditional Statement

The conditional statement allows execution to choose between two statements based on the evaluation of an
expression of bool type. The syntax for a conditional statement is given by

conditional-statement:
if expression then statement else-part, .
if expression block—level-statement else-part,,.

else-part:
else statement

A conditional statement evaluates an expression of bool type. If the expression evaluates to true, the first
statement in the conditional statement is executed. If the expression evaluates to false and the optional else-
clause exists, the statement following the e1se keyword is executed.

If the expression is a parameter, the conditional statement is folded by the compiler. If the expression eval-
uates to true, the first statement replaces the conditional statement. If the expression evaluates to false, the
second statement, if it exists, replaces the conditional statement; if the second statement does not exist, the
conditional statement is removed.

If the statement that immediately follows the optional then keyword is a conditional statement and it is not
in a block, the else-clause is bound to the nearest preceding conditional statement without an else-clause.

Each statement embedded in the conditional-statement has its own scope whether or not an explicit block
surrounds it.

11.7 The Select Statement

The select statement is a multi-way variant of the conditional statement. The syntax is given by:

select-statement:
select expression { when-statements }

when-statements:
when-statement
when-statement when-statements

when-statement:
when expression-list do statement
when expression-list block—level-statement
otherwise statement

expression-list:
expression
expression , expression—list

The expression that follows the keyword select, the select expression, is compared with the list of expres-
sions following the keyword when, the case expressions, using the equality operator ==. If the expressions
cannot be compared with the equality operator, a compile-time error is generated. The first case expression

Statements 67

that contains an expression where that comparison is t rue will be selected and control transferred to the asso-
ciated statement. If the comparison is always false, the statement associated with the keyword otherwise,
if it exists, will be selected and control transferred to it. There may be at most one otherwise statement and
its location within the select statement does not matter.

Each statement embedded in the when-statement has its own scope whether or not an explicit block surrounds
it.

11.8 The While and Do While Loops

There are two variants of the while loop in Chapel. The syntax of the while-do loop is given by:

while—do-statement:
while expression do statement
while expression block-Ievel-statement

The syntax of the do-while loop is given by:

do—while-statement:
do statement while expression ;

In both variants, the expression evaluates to a value of type bool which determines when the loop terminates
and control continues with the statement following the loop.

The while-do loop is executed as follows:

1. The expression is evaluated.

2. If the expression evaluates to false, the statement is not executed and control continues to the state-
ment following the loop.

3. If the expression evaluates to t rue, the statement is executed and control continues to step 1, evaluating
the expression again.

The do-while loop is executed as follows:

1. The statement is executed.
2. The expression is evaluated.
3. If the expression evaluates to false, control continues to the statement following the loop.

4. If the expression evaluates to t rue, control continues to step 1 and the the statement is executed again.

In this second form of the loop, note that the statement is executed unconditionally the first time.

68 Chapel Language Specification
11.9 The For Loop

The for loop iterates over ranges, domains, arrays, iterators, or any class that implements an iterator named
these. The syntax of the for loop is given by:

for—statement:

for loop-control-part loop—body-part

loop~—control-part:
index—expression in iterator-expression
iterator—expression

loop—body-part:

do statement
block-Ievel-statement

index—expression:
expression

iterator—expression:
expression

The index-expression can be an identifier or a tuple of identifiers. The identifiers are declared to be new
variables for the scope of this statement. A for loop can be defined without an index expression.

If the iterator-expression is a tuple, the components of the tuple must support iteration, e.g., a tuple of arrays,
and those components are iterated over using a zipper iteration defined in §11.9.1| If the iterator-expression is

a tuple delimited by square brackets, the components of the tuple must support iteration and these components
are iterated over using a tensor product iteration defined in §11.9.2

11.9.1 Zipper Iteration

When multiple iterators are iterated over in a zipper context, on each iteration, each expression is iterated over,
the values are returned by the iterators in a tuple and assigned to the index, and the statement is executed.

The shape of each iterator, the rank and the extents in each dimension, must be identical.

Example. The output of

for (i, j) in (1..3, 4..6) do
write(i, " ", j, nowy

is1425367.

11.9.2 Tensor Product Iteration

When multiple iterators are iterated over in a tensor product context, they are iterated over as if they were
nested in distinct for loops. There is no constraint on the iterators as there is in the zipper context.

Statements 69

Example. The output of

for (i, j) in [1..3, 4..6] do
Write(i, " ll, j’ " ");

is“141516242526343536”. The statement is equivalent to

for i in 1..3 do
for j in 4..6 do
write(i, n "’ j’ " ");

11.9.3 Parameter For Loops

Parameter for loops are unrolled by the compiler so that the index variable is a parameter rather than a
variable. The syntax for a parameter for loop statement is given by:

param-—for—statement:
for param identifier in range-literal do statement
for param identifier in range-literal block—-level-statement

Parameter for loops are restricted to iteration over range literals the bounds of which must also be parameters.
The loop is then unrolled for each iteration.

11.10 The Use Statement

The use statement makes symbols in modules available without accessing them via the module name. The
syntax of the use statement is given by:

use—statement:
use module—name-list ;

module—name-list:
module—name
module-name , module—name-list

module—name:
identifier
module—name . module—name

The use statement makes symbols in each listed module’s scope available in the scope where the use statement
occurs.

It is an error for a variable, type or module to be defined both by a use statement and by a declaration in the
same scope. Functions may be overloaded in this way.

70 Chapel Language Specification

11.11 The Type Select Statement

A type select statement has two uses. It can be used to determine the type of a union, as discussed in §16.3| In
its more general form, it can be used to determine the types of one or more values using the same mechanisms
used to disambiguate function definitions. It syntax is given by:

type-select-statement:
type select expression-list { type—when-statements }

type—when-statements:
type—when-statement
type—-when-statement type—when-statements

type—when-statement:
when type-list do statement
when type-list block—level-statement
otherwise statement

expression-list:
expression
expression , expression—list

type-list:
type
type , type-list

Call the expressions following the keyword select, the select expressions. The number of select expressions
must be equal to the number of types following each of the when keywords. Like the select statement, one
of the statements associated with a when will be executed. In this case, that statement is chosen by the
function resolution mechanism. The select expressions are the actual arguments, the types following the
when keywords are the types of the formal arguments for different anonymous functions. The function that
would be selected by function resolution determines the statement that is executed. If none of the functions
are chosen, the the statement associated with the keyword otherwise, if it exists, will be selected.

As with function resolution, this can result in an ambiguous situation. Unlike with function resolution, in the
event of an ambiguity, the first statement in the list of when statements is chosen.

11.12 The Empty Statement

An empty statement has no effect. The syntax of an empty statement is given by

empty-statement:

s

Modules 71

12 Modules

Chapel supports modules to manage name spaces. Every symbol, including variables, functions, and types,
are associated with some module.

Module definitions are described in §12.1] A program consists of one or more modules. The execution of a
program and command-line arguments are described in §12.2] Module uses and explicit naming of symbols
is described in §12.3] Nested modules are described in §12.4] The relation between files and modules is

described in

12.1 Module Definitions

A module is declared with the following syntax:

module—declaration—statement:
module identifier block—statement

A module’s name is specified after the module keyword. The block-statement opens the module’s scope.
Symbols defined in this block statement are defined in the module’s scope.

Module declaration statements may only be top-level statements in files or top-level statements in other
modules. A module that is declared in another module is called a nested module (§12.4).

12.2 Program Execution

Chapel programs start by executing the main function (§12.2.1). The main function takes no arguments but
command-line arguments can be passed to a program via a global array of strings called argv (§12.2.2)).
Command-line flags can be passed to a program via configuration variables, as discussed in

12.2.1 The main Function

The main function must be called main and must have zero arguments. It can be specified with or without
parentheses. There can be only one main function in all of the modules that make up a program. Every
main function starts by using the module that it is defined in, and thus executing the top-level code in that

module (§12.2.3).

The main function can be omitted if there is only a single module in the program other than the standard

modules, as discussed in §12.2.4

72 Chapel Language Specification

12.2.2 Command-Line Arguments

A predefined array of strings called argv is used to capture arguments to the execution of a program. The
number of arguments passed to the program execution can be queried with the array numElements function
as in

argv.numElements

Status note. There is no support for the variable argv. Only configuration variables allow
arguments to be passed to the execution of a program.

12.2.3 Module Execution

Top-level code in a module is executed the first time that module is used via a use-statement.

12.2.4 Programs with a Single Module

To aid in exploratory programming, if a program is defined in a single module that uses only standard mod-
ules, the module need not define a main function. In this case, a default main function is created to execute
the module code.

Example. The code

writeln ("Hello World!");

is a legal and complete Chapel program. The module declaration is taken to be the file as de-

scribed in

12.3 Using Modules

Modules can be used by code outside of that module. This allows access to the symbols in the modules
without the need for explicit naming (§12.3.1). Using modules is accomplished via the use statement as

defined in §11.10

12.3.1 Explicit Naming

All symbols can be named explicitly with the following syntax:

module-named-identifier:
module—-identifier—list . identifier

module—identifier—list:
module—-identifier
module—identifier . module—identifier—list

module-identifier:
identifier

Modules 73

This allows two variables that have the same name to be distinguished based on the name of their module. If
code requires using symbols that have the same name from two different modules, explicit naming is needed
to disambiguate between the two symbols. Explicit naming can also be used instead of using a module.

12.4 Nested Modules

A nested module is a module that is defined inside another module, the outer module. Nested modules
automatically have access to all of the symbols in the outer module. However, the outer module needs to
explicitly use a nested module to have access to its symbols.

Example. A nested module can be used without using the outer module by explicitly naming
the module in the use statement. The code

use libmsl.blas;

uses a module named blas that is nested inside a module named 1ibms1.

12.5 Implicit Modules

Multiple modules can be defined in the same file and do not need to bear any relation to the file in terms of
their names. As a convenience, a module declaration statement can be omitted if it is the sole module defined
in a file. In this case, the module takes its name from the file.

74

Chapel Language Specification

Functions 75

13 Functions

This section defines functions. Methods and iterators are functions and most of this section applies to them
as well. They are defined separately in and §14.4]

13.1 Function Definitions

Functions are declared with the following syntax:

function-declaration-statement:
def function—name argument-list,,. var-param-clause,;
return—type,,: where—clause,,; block—level-statement

function—name:
identifier
operator-name

operator—name: one of
+x [Porxl==<=>=< > K< >> &[T

argument-list:
(formals,:)

formals:
formal
formal , formals

formal:
formal-tag identifier formal-type,,. default—expression,.
formal-tag identifier formal-type,,, variable-argument-expression

formal-type:

: type
: TQUESTION identifier

default—expression:
= expression

variable—argument—expression:
... expression
... TQUESTION identifier

formal-tag: one of
in out inout param type

var-param-clause:
var
param

where—clause:
where expression

76 Chapel Language Specification

Operator overloading is supported in Chapel on the operators listed above under operator name. Operator
and function overloading is discussed in §13.§]

The intents in, out, and inout are discussed in The formal tags param and type make a function
generic and are discussed in If the formal argument’s type is elided, generic, or prefixed with a question

mark, the function is also generic and is discussed in

Default expressions allow for the omission of actual arguments at the call site, resulting in the implicit passing
of a default value. Default values are discussed in §13.4.2

Functions do not require parentheses if they have no arguments. Such functions are described in §13.10
Functions can take a variable number of arguments. Such functions are discussed in §13.12

The optional var-param-clause defines a variable function, discussed in or a parameter function, dis-

cussed in

The optional where clause is only applicable if the function is generic. It is discussed in §21.4]

13.2 The Return Statement

The return statement can only appear in a function. It exits that function, returning control to the point at
which that function was called. It can optionally return a value. The syntax of the return statement is given
by

return—statement:
return expression,,; ;

Example. The following code defines a function that returns the sum of three integers:

def sum(il: int, i2: int, 13: int)
return il + i2 + 1i3;

13.3 Function Calls

Functions are called in call expressions described in §10.3] The function that is called is resolved according
to the algorithm described in §13.9

13.4 Formal Arguments

Chapel supports an intuitive formal argument passing mechanism. An argument is passed by value unless it
is a class, array, or domain in which case it is passed by reference.

Intents (§13.5) result in potential assignments to temporary variables during a function call. For example,
passing an array by intent in, a temporary array will be created.

Functions 77

13.4.1 Named Arguments
A formal argument can be named at the call site to explicitly map an actual argument to a formal argument.

Example. In the code
def foo(x: int, y: int) { ... }

foo(x=2, y=3);
foo(y=3, x=2);

named argument passing is used to map the actual arguments to the formal arguments. The two
function calls are equivalent.

Named arguments are sometimes necessary to disambiguate calls or ignore arguments with default values.
For a function that has many arguments, it is sometimes good practice to name the arguments at the call-site
for compiler-checked documentation.

13.4.2 Default Values

Default values can be specified for a formal argument by appending the assignment operator and a default
expression the declaration of the formal argument. If the actual argument is omitted from the function call,
the default expression is evaluated when the function call is made and the evaluated result is passed to the
formal argument as if it were passed from the call site.

Example. In the code
def foo(x: int = 5, y: int = 7) { ... }

foo();
foo (7);
foo(y=5);

default values are specified for the formal arguments x and y. The three calls to foo are
equivalent to the following three calls where the actual arguments are explicit: foo (5, 7),
foo(7, 7), and foo (5, 5). Note that named arguments are necessary to pass actual argu-
ments to formal arguments but use default values for arguments that are specified earlier in the
formal argument list.

13.5 Intents

Intents allow the actual arguments to be copied to a formal argument and also to be copied back.

13.5.1 The Blank Intent

If the intent is omitted, it is called a blank intent. In such a case, the value is copied in using the assignment
operator. Thus classes are passed by reference and records are passed by value. Arrays and domains are an
exception because assignment does not apply from the actual to the formal. Instead, arrays and domains are
passed by reference.

With the exception of arrays, any argument that has blank intent cannot be assigned within the function.

78 Chapel Language Specification

13.5.2 The In Intent

If in is specified as the intent, the actual argument is copied to the formal argument as usual, but it may also
be assigned to within the function. This assignment is not reflected back at the call site.

If an array is passed to a formal argument that has in intent, a copy of the array is made via assignment.
Changes to the elements within the array are thus not reflected back at the call site. Domains cannot be
passed to a function via the in intent.

13.5.3 The Out Intent

If out is specified as the intent, the actual argument is ignored when the call is made, but after the call, the
formal argument is assigned to the actual argument at the call site. The actual argument must be a valid
Ivalue. The formal argument can be assigned to and read from within the function.

The formal argument cannot not be generic and is treated as a variable declaration. Domains cannot be passed
to a function via the out intent.

13.5.4 The Inout Intent

If inout is specified as the intent, the actual argument is both passed to the formal argument as if the in
intent applied and then copied back as if the out intent applied. The formal argument can be generic and
takes its type from the actual argument. Domains cannot be passed to a function via the inout intent. The
formal argument can be assigned to and read from within the function.

13.6 Variable Functions

A variable function is a function that can be assigned a value. Note that a variable function does not return a
reference. That is, the reference cannot be captured.

A variable function is specified by following the argument list with the var keyword. A variable function
must return an lvalue.

When a variable function is called on the left-hand side of an assignment statement or in the context of a call
to a formal argument by out or inout intent, the lvalue that is returned by the function is assigned a value.

Variable functions support an implicit argument setter of type bool. If the variable function is called in a
context such that the returned lvalue is assigned a value, the argument setter is t rue; otherwise itis false.
This argument is useful for controlling different behavior depending on the call site.

Example. The following code creates a function that can be interpreted as a simple two-element
array where the elements are actually global variables:

Functions 79

var x, y = 0;

def A(i: int) wvar {

if i <0 || 1 > 1 then
halt ("array access out of bounds");
return if i == 0 then x else y;

}

This function can be assigned to in order to write to the “elements” of the array as in
A(0) = 1;
A(l) = 2;

It can be called as an expression to access the “elements” as in

writeln(A(0) + A(1l));

This code outputs the number 3.

The implicit setter argument can be used to ensure, for example, that the second element in
the pseudo-array is only assigned a value if the first argument is positive. To do this, the line

if setter && 1 == 1 && x <= 0 then
halt ("cannot assign value to A(l) if A(0) <= 0");

13.7 Parameter Functions

A parameter function is a function that returns a parameter expression. It is specified by following the
function’s argument list by the keyword param. It is often, but not necessarily, generic.

It is a compile-time error if a parameter function does not return a parameter expression. The result of a
parameter function is computed during compilation and the result is inlined at the call site.

Example. In the code

def sumOfSquares (param a: int, param b: int) param
return ax**2 + bxx2;

var x: sumOfSquares (2, 3)~*int;

the function sumOfSquares is a parameter function that takes two parameters as arguments.
Calls to this function can be used in places where a parameter expression is required. In this
example, the call is used in the declaration of a homogeneous and so is required to be a parameter.

13.8 Function Overloading

Functions that have the same name but different argument lists are called overloaded functions. Function
calls to overloaded functions are resolved according to the algorithm in §13.9

Operator overloading is achieved by defining a function with a name specified by that operator. The operators
that may be overloaded are listed in the following table:

80 Chapel Language Specification

arity | operators
unary | + - ! 7
binary | + — * / & *x | == <= >= < > << >> &

The arity and precedence of the operator must be maintained when it is overloaded. Operator resolution
follows the same algorithm as function resolution.

13.9 Function Resolution

Given a function call, the function that the call resolves to is determined according to the following algorithm:

o Identify the set of visible functions. A visible function is any function with the same name that satisfies

the criteria in §13.9.1

e From the set of visible functions, determine the set of candidate functions. A function is a candidate if
the function is a valid application of the function call’s actual arguments as determined in §13.9.2] A
compiler error occurs if there are no candidate functions.

e From the set of candidate functions, the most specific function is determined. The most specific func-
tion is a candidate function that is more specific than every other candidate function. If there is no

function that is more specific than every other candidate function, the function call is ambiguous and a
compiler error occurs. The term more specific function is defined in §13.9.3

13.9.1 Identifying Visible Functions

A function is a visible function to a function call if the name of the function is the same as the name of the
function call and the function is defined or used in a lexical outer scope.

Additionally, functions that have arguments of class type are considered globally visible and so are always
visible regardless of the location of their definition.

13.9.2 Determining Candidate Functions

A function is a candidate function if there is a valid mapping from the function call to the function and each
actual argument is mapped to a formal argument that is a legal argument mapping.

Functions 81

Valid Mapping A function call is mapped to a function according to the following steps:

e Each actual argument that is passed by name is matched to the formal argument with that name. If
there is no formal argument with that name, there is no valid mapping.

e The remaining actual arguments are mapped in order to the remaining formal arguments in order. If
there are more actual arguments then formal arguments, there is no valid mapping. If any formal
argument that is not mapped to by an actual argument does not have a default value, there is no valid

mapping.

e The valid mapping is the mapping of actual arguments to formal arguments plus default values to
formal arguments that are not mapped to by actual arguments.

Legal Argument Mapping An actual argument of type T4 can be mapped to a formal argument of type
Tr if any of the following conditions hold:

e Ty and Tr are the same type.
e There is an implicit coercion from 7’4 to T'r.
o T4 is derived from 1.

e T4 is scalar promotable to Tr.

13.9.3 Determining More Specific Functions

Given two functions F} and Fy, F} is determined to be more specific than F; by the following steps:

o If at least one of the legal argument mappings to F} is a more specific argument mapping than the
corresponding legal argument mapping to F» and none of the legal argument mappings to F5 is a more
specific argument mapping than the corresponding legal argument mapping to Fi, then Fj is more
specific.

e If F} shadows F5, then F} is more specific.

e Otherwise, I is not more specific than F5.

Given an argument mapping, M7, from an actual argument, A, of type 7’4 to a formal argument, F'1, of type
Ty and an argument mapping, Mo, from the same actual argument to a formal argument, F'2, of type T'ro,
the more specific argument mapping is determined by the following steps:

If Tr1 and T'ro are the same type and F'1 is an instantiated parameter, M; is more specific.

If Tr1 and T'ro are the same type and F'2 is an instantiated parameter, M5 is more specific.

If M; requires scalar promotion and M, does not require scalar promotion, M5 is more specific.

If M, requires scalar promotion and M7 does not require scalar promotion, M; is more specific.

If F'1 is generic over all types and F'2 is not generic over all types, M5 is more specific.

82 Chapel Language Specification

e If F'2 is generic over all types and F'1 is not generic over all types, M is more specific.
e If Ty and T'ro are the same type, neither mapping is more specific.

e If T’y and T'r; are the same type, M is more specific.

e If T’y and T’ro are the same type, M> is more specific.

o If Tr; is derived from T'ro, then M; is more specific.

o If Tps is derived from T'rq, then M5 is more specific.

e If there is an implicit coercion from T to T'ro, then M; is more specific.

e If there is an implicit coercion from Ty to Tr1, then Ms is more specific.

e If Try is any int type and T is any uint type, M; is more specific.

o If T’y is any int type and T'7; is any uint type, My is more specific.

e Otherwise neither mapping is more specific.

13.10 Functions without Parentheses

Functions do not require parentheses if they have empty argument lists. Functions declared without paren-
theses around empty argument lists must be called without parentheses.

Example. Given the definitions

def foo { }
def bar() { }

the function foo can be called by writing foo and the function bar can be called by writing
bar (). Itis an error to apply parentheses to foo or omit them from bar.

13.11 Nested Functions

A function defined in another function is called a nested function. Nesting of functions may be done to
arbitrary degrees, i.e., a function can be nested in a nested function.

Nested functions are only visible to function calls within the scope in which they are defined. An exception
is to a function that has an argument that is a class type. Such functions are globally visible.

13.11.1 Accessing Outer Variables

Nested functions may refer to variables defined in the function in which they are nested. If the function has
class arguments, and is thus globally visible, it is a compiler error to refer to a variable in the outer function.

Rationale. It may be too strict to make this a compiler error. Are there advantages to making
this a runtime error?

Functions 83

13.12 Variable Length Argument Lists

Functions can be defined to take a variable number of arguments. This allows the call site to pass a different
number of actual arguments.

If the variable argument expression is an identifier prepended by a question mark, the number of arguments
is variable. Alternatively, the variable expression can evaluate to an integer parameter value requiring the call
site to pass that number of arguments to the function.

In the function, the formal argument is a tuple of the actual arguments.

Example. The code

def mywriteln(x: int ...%k) {
for param i in 1..k do
writeln(x(i));

}

defines a function called mywriteln that takes a variable number of arguments and then writes
them out on separate lines. The parameter for-loop (§11.9.3) is unrolled by the compiler so that i
is a parameter, rather than a variable. This function can be made generic (§21)) to take arguments
of different types by eliding the type.

A tuple of variables arguments can be passed to a function that takes variable arguments by destructuring the
tuple in a tuple destructuring expression. The syntax of this expression is given by

tuple—destructuring—expression:
(... expression)

In this expression, the tuple defined by expression is expanded in place to represent its components. This
allows for the forwarding of variable arguments as variable arguments.

84

Chapel Language Specification

Classes 85

14 Classes

Classes are an abstraction of a data structure where the storage location is allocated independent of the scope
of the variable of class type. Each call to the constructor creates a new data object and returns a reference to
the object. Storage is reclaimed automatically as described in §14.9

14.1 Class Declarations

A class is defined with the following syntax:

class—declaration—statement:
class identifier class—inherit-type-list,,: {
class—statement-list }

class—inherit-expression-list:
class—type
class—type , inherit—expression—list
class—statement-list:
class—statement
class—statement class—statement- list
class—statement:
type—declaration-statement

tunction—declaration—statement
variable— declaration— statement

A class—declaration-statement defines a new type symbol specified by the identifier. Classes inherit data and
functionality from other classes if the inherit—type-list is specified. Inheritance is described in §14.7|

The body of a class declaration consists of a sequence of statements where each of the statements either
defines a variable (called a field), a function (called a method), or a type.

If a class contains a type alias or a parameter, the class is generic. Generic classes are described in

14.2 Class Assignment

Classes are assigned by reference. After an assignment from one variable of class type to another, the vari-
ables reference the same storage location.

14.3 Class Fields

Variables and constants declared within class declarations define fields within that class. (Parameters make a
class generic.) Fields define the storage associated with a class.

Example. The code

86 Chapel Language Specification

class Actor {
var name: string;
var age: uint;

}

defines a new class type called Actor that has two fields: the string field name and the unsigned
integer field age.

14.3.1 Class Field Accesses

The field in a class is accessed via a member access expression as described in §10.3.2] Fields in a class can
be modified via an assignment statement where the left-hand side of the assignment is a member access.

Example. Given a variable anActor of type Actor, defined above, the code

var s: string = anActor.name;
anActor.age = 27;

reads the field name and assigns the value to the variable s, and assigns the storage location in
the object anActor associated with the field age the value 27.

14.4 Class Methods

A method is a function or iterator that is bound to a class. A method is called by passing an instance of the
class to the method via a special syntax that is similar to a field access.

14.4.1 Class Method Declarations

Methods are declared with the following syntax:

method-declaration—statement:
def type-binding function-name argument-list,,, var-clause,.
return—type,,: where—clause,,. block—level-statement

type-binding:
identifier .

If a method is declared within the lexical scope of a class, record, or union, the type binding can be omitted
and is taken to be the innermost class, record, or union that the method is defined in.

14.4.2 Class Method Calls

A method is called by using the member access syntax as described in §10.3.2) where the accessed expression
is the name of the method.

Classes 87

Example. A method to output information about an instance of the Actor class can be defined
as follows:

def Actor.print () {
writeln ("Actor ", name, " is ", age, " years old");

}

This method can be called on an instance of the Actor class, anActor, by writing anActor.print ().

14.4.3 The this Reference

The instance of a class is passed to a method using special syntax. It does not appear in the argument list to
the method. The reference this is an alias to the instance of the class on which the method is called.

Example. Let class C, method foo, and function bar be defined as

class C {
def foo() {
bar (this);
}
}
def bar(c: C) { }

Then given an instance of C called c, the method call c. foo () results in a call to bar where the
argument is c.

14.4.4 The this Method

A method declared with the name this allows a class to be “indexed” similarly to how an array is indexed.
Indexing into a class has the semantics of calling a method on the class named this. There is no other way
to call a method called this. The this method must be declared with parentheses even if the argument list
is empty.

Example. In the following code, the this method is used to create a class that acts like a simple
array that contains three integers indexed by 1, 2, and 3.

class ThreeArray {
var x1, x2, x3: int;
def this(i: int) wvar {
select 1 {
when 1 do return x1;
when 2 do return x2;
when 3 do return x3;
}

halt ("ThreeArray index out of bounds: ", 1i);

88 Chapel Language Specification
14.4.5 The these Method

A method declared with the name these allows a class to be “iterated over” similarly to how a domain or
array is iterated over. Using a class in the context of a loop where an iterator—expression is expected has the
semantics of calling a method on the class named these.

Example. 1In the following code, the these method is used to create a class that acts like a
simple array that can be iterated over and contains three integers.

class ThreeArray {
var x1, x2, x3: int;
def these() wvar {
yield x1;
yield x2;
yield x3;
}

14.5 Class Constructors

A class constructor is defined by declaring a method with the same name as the class. The constructor is used
to create instances of the class. When the constructor is called, memory is allocated to store a class instance.

14.5.1 The Default Constructor

A default constructor is automatically created for every class in the Chapel program. This constructor is
defined such that it has one argument for every field in the class. Each of the arguments has a default value.

The default constructor is very useful but its generality in terms of having one argument for each field all of
which have default values makes it slightly difficult for the user to create their own constructor. It is expected
that in many simple cases, the default constructor will be all that is necessary.

Example. Given the class
class C {
def x: int;

def y: real = 3.14;
def z: string = "Hello, World!";

then instances of the class can be created by calling the default constructor as follows:

e The call c () is equivalentto C (0,3.14, "Hello, World”)!.
e The call c (2) is equivalentto C (2,3.14, "Hello, World”)!l.
e Thecall c(z="") is equivalentto C (0,3.14,"").

e Thecallc(0,0.0,"") isequivalentto C (0,0.0,"").

Classes 89
14.6 Variable Getter Methods

All field accesses are resolved via getters that are variable methods (§13.6) defined in the class with the same
name as the field. The default getter is defined to simply return the field if the user does not define their own.

Example. In the code

class C {
var setCount: int;
var x: int;
def x var {
if setter then
setCount += 1;
return x;
}
}

an explicit variable getter method is defined for field x. It returns the field x and increments
another field that records the number of times x was assigned a value.

14.7 Inheritance

A “derived” class can inherit from one or more other classes by specifying those classes, the base classes,
following the name of the derived class in the declaration of the derived class. When inheriting from multiple
base classes, only one of the base classes may contain fields. The other classes can only define methods.
Note that a class can still be derived from a class that contains fields which is itself derived from a class that
contains fields.

14.7.1 Accessing Base Class Fields

A derived class contains data associated with the fields in its base classes. The fields can be accessed in the
same way that they are accessed in their base class unless the getter or setter method is overridden in the
derived class, as discussed in §14.7.4]

14.7.2 Derived Class Constructors

Derived class constructors automatically call the default constructor of the base class. There is an expectation
that a more standard way of chaining constructor calls will be supported.

14.7.3 Shadowing Base Class Fields

A field in the derived class can be declared with the same name as a field in the base class. Such a field
shadows the field in the base class in that it is always referenced when it is accessed in the context of the
derived class. There is an expectation that there will be a way to reference the field in the base class but this
is not defined at this time.

90 Chapel Language Specification

14.7.4 Overriding Base Class Methods

If a method in a derived class is declared with the identical signature as a method in a base class, then it is
said to override the base class’s method. Such a method is a candidate for dynamic dispatch in the event that
a variable that has the base class type references a variable that has the derived class type.

The identical signature requires that the names, types, and order of the formal arguments be identical.
14.7.5 Inheriting from Multiple Classes

Status note. Multiple inheritance is not yet supported.

A class can be derived from multiple base classes provided that only one of the base classes contains fields
either directly or from base classes that it is derived from. The methods defined by the other base classes can
be overridden.

14.8 Nested Classes

A class defined within another class is a nested class.

Nested classes can refer to fields and methods in the outer class implicitly or explicitly with an outer refer-
ence.

14.9 Automatic Memory Management

Status note. Memory allocated to store class objects is not yet reclaimed.

Memory associated with class instances is reclaimed automatically when there is no way for the current
program to reference this memory. The programmer does not need to free the memory associated with class
instances.

Records 91

15 Records

A record is a data structure that is like a class but has value semantics. The key differences between records
and classes are described in this section.

15.1 Record Declarations

A record is defined with the following syntax:

record—-declaration—statement:
record identifier inherit—type—list,,: {
record-statement-list }

record-inherit-expression-list:
record-type
record—-type , inherit—expression—list

record- statement-list:
record-statement
record-statement record—statement—list

record-statement:
type—declaration-statement
function—declaration—statement
variable—declaration—-statement

The only difference between record and class declarations is that the record keyword replaces the class
keyword.

15.2 Class and Record Differences

The main differences between records and classes are that records are value classes. They do not need to be
reclaimed since the data is recovered when the variable goes out of scope. Records do not support dynamic
dispatch and are assigned by value.

15.2.1 Records as Value Classes

A record is not a reference to a storage location that contains the data in the record but is more like a variable
of a primitive type. A record directly contains the data associated with the fields in the record.

15.2.2 Record Inheritance

When a record is derived from a base record, it contains the data in the base record. The difference between
record inheritance and class inheritance is that there is no dynamic dispatch. The record type of a variable is
the exact type of that variable.

92 Chapel Language Specification

15.2.3 Record Assignment

In record assignment, the fields of the record on the left-hand side of the assignment are assigned the values
in the fields of the record on the right-hand side of the assignment. When a base record is assigned a derived
record, just the fields that exist in the base record are assigned. Record assignment is generic in that the
right-hand side expression can be of any type as long as the type contains the same fields (by name) as the
record on the left-hand side.

15.3 Default Comparison Operators on Records

Default functions to overload == and != are defined for records if there is none defined for the record in the
Chapel program. The default implementation of == applies == to each field of the two argument records and
reduces the result with the & & operator. The default implementation of ! = applies ! = to each field of the two
argument records and reduces the result with the | | operator.

Unions 93

16 Unions

Unions have the semantics of records, however, only one field in the union can contain data at any particular
point in the program’s execution. Unions are safe so that an access to a field that does not contain data is a
runtime error. When a union is constructed, it is in an unset state so that no field contains data.

16.1 Union Declarations

A union is defined with the following syntax:

union—declaration-statement:
union identifier { union-statement-list }

union-statement-list:
union-statement
union-statement union—statement-list
union-statement:
type—declaration—-statement

function—declaration—statement
variable—declaration—-statement

16.1.1 Union Fields

Union fields are accessed in the same way that record fields are accessed. It is a runtime error to access a
field that is not currently set.

Union fields should not be specified with initialization expressions.

16.2 Union Assignment

Union assignment is by value. The field set by the union on the right-hand side of the assignment is assigned
to the union on the left-hand side of the assignment and this same field is marked as set.

16.3 The Type Select Statement and Unions

The type-select statement can be applied to unions to access the fields in a safe way by determining the type
of the union.

Status note. The type-select statement is not yet implemented on unions.

94

Chapel Language Specification

Tuples 95

17 Tuples

A tuple is an ordered set of components that allows for the specification of a light-weight record with anony-
mous fields.

17.1 Tuple Expressions

A tuple expression is a comma-separated list of expressions that is enclosed in parentheses. The number of
expressions is the size of the tuple and the types of the expressions determine the component types of the
tuple.

The syntax of a tuple expression is given by:
tuple—expression:

(expression—list)

expression—list:
expression
expression , expression-list

Example. The statement

var x = (1, 2);

defines a variable x that is a 2-tuple containing the values 1 and 2.

17.2 Tuple Type Definitions

A tuple type is a comma-separated list of types. The number of types in the list defines the size of the tuple,
which is part of the tuple’s type. The syntax of a tuple type is given by:

tuple-type:
(type-list)

type-list:
type
type , type-list

Example. Given a tuple expression (1, 2),the type of the tuple valueis (int, int), referred
to as a 2-tuple of integers.

17.3 Tuple Assignment

In tuple assignment, the components of the tuple on the left-hand side of the assignment operator are each
assigned the components of the tuple on the right-hand side of the assignment. The assignments are simul-
taneous so that each component expression on the right-hand side is fully evaluated before being assigned to
the left-hand side.

96 Chapel Language Specification

17.4 Tuple Operators

The arithmetic (§10.9), bitwise (§10.10), shift (§10.11), and relational (§10.13)) operators are also defined

over tuples. There are versions for scalar op tuple and tuple op tuple.

17.4.1 Tuple op Scalar

With the exception of relational operators, when an operation is applied to a scalar value s and a tuple t, the
result is a tuple r with each element r (i) defined by applying the operation to s and r (1) .

Example. The result of the multiply:
3.0 x (1, 2, 3);

is the value:
(3.0, 6.0, 9.0)

17.4.2 Tuple op Tuple

With the exception of relational operators, operations applied to two tuples result in element-by-element
application of the operation. Relational operators are defined in (§17.4.3)). The tuples must match each other
in shape.

17.4.3 Tuple Relational Operators

Relational operators over tuples apply in an “alphabetical” manner. Each component is compared to the
corresponding component or to the scalar value until the relation is found to be true or false.

Example. In the code:
var x = ("C", llh"’ "p"’ "l") > ("c"’ "h", "a"’ "t");

The value of x is t rue. After comparing "c" to "c", and "h" to "h", "p" is found to be greater
than "a", so the expression is t rue.

17.5 Tuple Destructuring

When a tuple expression appears on the left-hand side of an assignment statement, the expression on the
right-hand side is said to be destructured. The components of the tuple on the right-hand side are assigned
to each of the component expressions on the left-hand side. This assignment is simultaneous in that the
right-hand side is evaluated before the assignments are made.

Example. Given two variables of the same type, x and y, they can be swapped by the following
single assignment statement:

(x, y) = (y, X);

Tuples 97
17.5.1 Variable Declarations in a Tuple

Variables can be defined in a tuple to facilitate capturing the values from a function that returns a tuple. The
extension to the syntax of variable declarations is as follows:

tuple-variable-declaration—statement:
config,,, variable-kind tuple—variable-declaration ;

tuple-variable—declaration:
(tuple-identifier-list) type—part,,, initialization—part
(tuple—identifier-list) type—part

tuple-identifier-list:
tuple—identifier
tuple—identifier , tuple—identifier—list

tuple—identifier:
identifier
(tuple-identifier-1list)

The identifiers defined within the tuple-identifier-list are declared to be new variables in the scope of the state-
ment. The type-part and/or initialization—part defines a tuple that is destructured when assigned to the new vari-
ables. The shape of the tuple-identifier-list must match the shape of any specified type—part or initialization—part.

17.5.2 Ignoring Values with Underscore

If an underscore appears as a component in a tuple expression in a destructuring context, the expression on
the right-hand side is ignored, though it is still evaluated.

17.6 Homogeneous Tuples

A homogeneous tuple is a special-case of a general tuple where the types of the components are identical.
Homogeneous tuples have fewer restrictions for how they can be indexed (§17.7).

17.6.1 Declaring Homogeneous Tuples

A homogeneous tuple type may be specified with the following syntax if it appears as a top-level type in a
variable declaration, formal argument declaration, return type specification, or type alias declaration:

homogeneous—tuple-type:

integer- parameter—expression * type

integer—parameter—expression:
expression

The homogeneous tuple type specification is syntactic sugar for the type explicitly replicated a number of
times equal to the integer—parameter—expression.

98 Chapel Language Specification

Example. The following types are equivalent:

3xint (int, int, int)

17.7 Tuple Indexing
A tuple may be indexed into by an integer. Indexing a tuple is given by the following syntax:
tuple-indexing—expression:

expression (integer—expression)

The result of indexing a tuple by integer k is the value of the kth component. If the tuple is not homogeneous,
the tuple can only be indexed by an integer parameter. This ensures that the type of the indexing expression
is known at compile-time.

17.8 Formal Arguments of Tuple Type

Status note. Formal arguments of tuple type are treated as if they were records. Conversions are
not applied to the components.

17.8.1 Formal Argument Declarations in a Tuple

Formal argument declarations can be grouped into a tuple similarly to variable declarations to facilitate pass-
ing the result of a function that returns a tuple directly to another function.

Status note. Formal arguments grouped in a tuple cannot be explicitly typed. A function with
formal arguments grouped in a tuple is therefore generic.

Ranges 99

18 Ranges

Chapel’s ranges represent a sequence of integral values. Ranges are either bounded or unbounded.

Bounded ranges are characterized by a low bound [, a high bound h, and a stride s. If the stride is positive,
the values described by the range are [, + s,1 + 2s,1 + 3s, ... such that all of the values in the sequence are
less than h. If the stride is negative, the values described by the range are i, h — s, h — 2s, h — 3s, ... such that
all of the values in the sequence are greater than [. If [> h, the range is considered degenerate and represents
an empty sequence.

Unbounded ranges are those in which the low and/or high bounds are omitted. Unbounded ranges conceptu-
ally represent a countably infinite number of values.

18.1 Range Types

The type of a range in Chapel is characterized by three things: (1) the type of the values being represented,
(2) the boundedness of the range, and (3) whether or not the range is stridable.

The type of the range’s values is represented using a type parameter named elt7Type. This must be one of
Chapel’s int or uint types.

Open issue. It has been hypothesized that ranges of other types, such as floating point values,
might also be of interest to represent a range of legal tolerances, for example. If you believe such
support would be of interest to you, please let us know.

The boundedness of the range is represented using an enumerated parameter named boundedType of type
BoundedRangeType. Legal values are bounded, boundedLow, boundedHigh, and boundedNone. The
first value specifies a bounded range while the other three values specify a range in which the high bound is
omitted, the low bound is omitted, or both bounds are omitted, respectively.

The stridability of a range is represented by a boolean parameter named stridable. If this parameter is set to
true, the range can represent any stride. If set to false, the range’s stride is fixed to be the value 1.

Rationale. The boundedType and stridable values of a range are used to optimize the generated
code for common cases of ranges, as well as to optimize the implementation of domains and
arrays defined using ranges.

Example. As an example, the following declaration declares a variable r of range type that can
represent ranges of 64-bit integers, with both high and low bounds specified, and the ability to
have a stride other than 1.

var r: range (int (64), bounded, stridable=true);

100 Chapel Language Specification

18.2 Literal Range Values

Range literals are specified as follows:

range-literal:
bounded-range-literal
unbounded-range-literal

18.2.1 Bounded Range Literals

A bounded range is specified by the syntax

bounded-range-literal:
expression .. expression

The first expression is taken to be the lower bound [and the second expression is taken to be the upper bound
h. The stride of the range is 1 and can be modified with the by operator as described in §18.5.1

The element type of the range type is determined by the type of the low and high bound. It is either int,
uint, int (64), or uint (64). The type is determined by conceptually adding the low and high bounds
together. The boundedness of such a range is bounded. The stridability of the range is false.

18.2.2 Unbounded Range Literals

An unbounded range is specified by the syntax

unbounded-range-literal:
expression ..
.. expression

The first form results in a boundedLow range, the second in a boundedHigh range, and the third in a
boundedNone range.

Unbounded ranges can be iterated over with zipper iteration and their shape conforms to the shape of the
other iterators they are being iterated over with.

Example. The code

for i in (1..5, 3..) do

write(i, "; ");

produces the output “(1, 3); (2, 4); (3, 5); (4, 6); (5, 7); ™.

It is an error to zip an unbounded range with a range that does not have a stride with the same sign.

Unbounded ranges can also be used to index into ranges, domains, arrays, and strings. In these cases, elided
bounds are inherited from the bounds of the expression being indexed.

Ranges 101

18.3 Range Methods

def range.low: eltType
def range.high: eltType
def range.stride: int

These routines respectively return the low bound, the high bound, and the stride of the range. The type
of the returned low and high bound is the element type of the range.

18.4 Range Assignment

Assigning one range to another results in its low, high, and stride values being copied from the source range
to the destination range.

In order for range assignment to be legal, the element type of the source range must be implicitly coercible to
the element type of the destination range. The two range types must have the same boundedness parameter.
It is legal to assign a non-stridable range to a stridable range, but illegal to assign a stridable range to a
non-stridable range unless the stridable range has a stride value of 1.

18.5 Range Operators
18.5.1 By Operator

The by operator can be applied to any range to create a strided range. Its syntax is as follows:

expression by expression

The by operator takes a range and an integer to yield a new range that is strided by the integer. Striding a
strided range results in a stride whose value is the product of the two strides.

18.5.2 Arithmetic Operators

The following arithmetic operators are defined on ranges and integral types:

def +(r: range, s: integral): range
def +(s: integral, s: range): range
def - (r: range, s: integral): range
def - (s: integral, s: range): range
def *(r: range, s: integral): range
def x(s: integral, s: range): range
def /(r: range, s: integral): range
def /(s: integral, s: range): range

The + and - operators apply the scalar via the operator to the range’s low and high bounds, producing a
shifted version of the range. The element type of the resulting range is based on the element type of applying
the operator to the input range’s element type and the scalar type. The bounded and stridable parameters for
the result range are the same as for the input range.

102 Chapel Language Specification

The « and / operators apply the scalar via the operator to the range’s low and high bounds as well as to its
stride value, producing a shifted and scaled version of the range. The element type of the resulting range
is based on the element type of applying the operator to the range’s element type and the scalar type. The
bounded parameter for the result range is the same as for the input range. The stridable parameter for the
result range is always set to t rue.

Example. The following code creates a bounded, non-stridable range r which has an element
type of int representing the values 0, 1, 2, 3. It then uses the » and + operators to create a second
range r2 representing the values 1,3,5,7. The r2 range is bounded, stridable, and represents
values of type int

var r = 0..3;
var r2 = (r * 2) + 1;

18.5.3 Range Slicing

Ranges can be sliced using other ranges to create new sub-ranges. Range slicing is accomplished using either
square brackets or parenthesis using the following syntax:
slice-expr:
expression [expression]
expression (expression)

Where the first expression is the range being sliced and the second expression is the range expressing the slice.
The resulting range represents the intersection between the two ranges. If the slicing range is unbounded in
one or both dimensions, it inherits its upper and lower bounds from the range being sliced.

Example. In the following example, r represents the integers from 1 to 10 inclusive. Ranges r2
and r2 are defined using range slices and represent the indices from 3 to 10 and the odd integers
between 1 and 10 respectively.

var r = 1..10;
var r2 = r[3..];
var r3 = r[l.. by 21;

Status note. Slicing strided ranges is not currently supported.

18.5.4 Open Interval Notation

Chapel’s open interval notation uses the following syntax:

open-interval-expr:
[expression)

This notation is a loose adaptation of mathematical notation for open (upper) intervals in which the upper
bound is not included in the range. For an argument range expression characterized by [, h, and s, this syntax
produces a range characterized by [, h — 1 and s.

Ranges 103

Rationale. While this operator is pure syntactic sugar for subtracting one from a range’s upper
bound, it is provided as a concession to C programmers and others who prefer 0-based indexing
to avoid having to write declare ranges (and domains) using 0. .n-1 all the time. In its place,
[0..n) can be used.

Open intervals are not supported on lower bounds or on both upper and lower bounds due to the
syntactic ambiguities that they can result in combined with the fact that these cases are not as
important as the above for O-based programming.

104 Chapel Language Specification

Domains and Arrays 105

19 Domains and Arrays

A domain describes a collection of names for data. These names are referred to as the indices of the domain.
All indices for a particular domain are values with some common type. Valid types for indices are primitive
types and class references or unions, tuples or records whose fields are valid types for indices. This excludes
ranges, domains, and arrays. Domains have a rank and a total order on their elements. An array is a map
from a domain’s indices to a collection of variables. Chapel supports a variety of kinds of domains and arrays
defined over those domains as well as a mechanism to allow application-specific implementations of arrays.

Arrays abstract mappings from sets of values to variables. This key use of data structures coupled with the
generic syntactic support for array usage increases software reusability. By separating the sets of values
into their own abstraction, i.e., domains, distributions can be associated with sets rather than variables. This
enables the orthogonality of data distributions. Distributions are discussed in

19.1 Domains

Domains are first-class ordered sets of indices. There are five kinds of domains:

e Arithmetic domains are rectilinear sets of Cartesian indices that can have an arbitrary rank.

e Sparse domains are subdomains that support a notion of an implicit “zero element” for array elements
described by its base domain but not the domain itself.

e Associative domains are sets of indices where the type of the index is some type that is not an array,
domain, or range. Associative domains define dictionaries or associative arrays implemented via hash
tables.

e Enumerated domains are sets of constants defined by some enumerated type.

e Opaque domains are sets of anonymous indices. Opaque domains define graphs and unspecified sets.

19.1.1 Domain Types

Domain types vary based on the kind of the domain. The type of an arithmetic domain is parameterized by the
rank of the domain and the integral type of the indices. The type of a sparse domain is parameterized by the
type of the domain that defines its bounding index set. The type of an associative domain is parameterized
by the type of the index. The type of an opaque domain is unique. The type of an enumerated domain is
parameterized by the enumerated type.

Example. In the code

var D: domain(2) = [1l..n, 1..n];

D is defined as a two-dimensional arithmetic domain and is initialized to contain the set of indices
(i,j) forall iand j suchthati € 1,2,...,nand j € 1,2,...,n.

106 Chapel Language Specification
19.1.2 Index Types

Each domain has a corresponding index type which is the type of the domain’s indices qualified by its status
as an index. Variables of this type can be declared using the following syntax:

index—type:
index (domain—expression)

If the type of the indices of the domain is int, then the index type can be converted into this type.
A value with a type that is the same as the type of the indices in a domain but is not the index type can be

converted into the index type using a special “method” called index.

Example. In the code

var j = D.index (i) ;

the type of the variable 7 is the index type of domain D. The variable i, which must have the
same type as the underlying type of the indices of D, is verified to be in domain D before it is
assigned to J.

Values of index type are known to be valid and may have specialized representations to facilitate accessing
arrays defined for that domain. It may therefore be less expensive to access arrays using values of appropriate
index type rather than values of the more general type the domain is defined over.

Status note. In the current implementation, the index type is not distinguished from the under-
lying type of the indices. The index method is not yet implemented.

19.1.3 Domain Assignment

Domain assignment is by value. If arrays are declared over a domain, domain assignment impacts these arrays
as discussed in §19.8] but the arrays remain associated with the same domain regardless of the assignment.

19.1.4 Formal Arguments of Domain Type

Domains are passed to functions by reference. Formal arguments that receive domains are aliases of the actual
arguments. It is a compile-time error to pass a domain to a formal argument that has a non-blank intent.

19.1.5 Iteration over Domains

All domains support iteration via forall and for loops over the indices in the set that the domain defines. The
type of the indices returned by iterating over a domain is the index type of the domain.

Domains and Arrays 107

19.1.6 Domain Promotion of Scalar Functions

Domain promotion of a scalar function is defined over the domain type and the type of the indices of the
domain (not the index type).

Example. Given an array A with element type int declared over a one-dimensional domain
D with integral type int, then the array can be assigned the values given by the indices in the
domain by writing

A = D;

19.2 Arrays

Arrays associate variables or elements with the sets of indices in a domain. Arrays must be declared over
domains and have a specified element type.

19.2.1 Array Types

The type of an array is parameterized by the type of the domain that it is declared over and the element type
of the array. Array types are given by the following syntax:

array—-type:
[domain—expression] type

domain-expression:
expression

The domain-expression must specify a domain that the array can be declared over. This can be a domain literal.
If it is a domain literal, the square brackets around the domain literal can be omitted.

Example. In the code

var A: [D] real;

A is declared to be an array over domain D with elements of type real.

An array’s element type can be referred to using the member symbol el tType.

Example. In the following example, x is declared to be of type real since that is the element
type of array A.

var A: [D] real;
var x: A.eltType;

Status note. Arrays of arrays are not currently supported.

108 Chapel Language Specification

19.2.2 Array Indexing

Arrays can be indexed by indices in the domain they are declared over. The indexing results in an access of
the element that is mapped by this index.

Example. If A is an array with element type real declared over a one-dimensional arithmetic
domain [1..n], then the first element in A can be accessed via the expression A (1) and set to
zero via the assignment A (1) = 0.0.

Indexing into an array with a domain is call array slicing and is discussed in the next section.

Arithmetic arrays also support indexing over the components of their indices for multidimensional arithmetic
domains (where the indices are tuples), as described in §19.3.5

19.2.3 Array Slicing

An array can be indexed by a domain that has the same type as the domain which the array was declared over.
Indexing in this manner has the effect of array slicing. The result is a new array declared over the indexing
domain where the elements in the array alias the elements in the array being indexed.

Example. Given the definitions

var OuterD: domain(2) = [0..n+1, 0..n+1];
var InnerD: domain(2) = [l..n, 1..n];
var A, B: [OuterD] real;

the assignment given by

A(InnerD) = B(InnerD);

assigns the elements in the interior of B to the elements in the interior of A.

Arithmetic arrays also support slicing by indexing into them with ranges or tuples of ranges as described

in §19.3.6

19.2.4 Array Assignment

Array assignment is by value. Arrays can be assigned arrays, ranges, domains, iterators, or tuples. If A is
an lvalue of array type and B is an expression of either array, range, or domain type, or an iterator, then the
assignment

A = B;

is equivalent to

forall (i,e) in (A.domain,B) do
A(l) = e;

Domains and Arrays 109

If the zipper iteration is illegal, then the assignment is illegal. Notice that the assignment is implemented with
the semantics of a forall loop.

Arrays can be assigned tuples of values of their element type if the tuple contains the same number of elements
as the array. For multidimensional arrays, the tuple must be a nested tuple such that the nesting depth is equal
to the rank of the array and the shape of this nested tuple must match the shape of the array. The values are
assigned element-wise.

Arrays can also be assigned single values of their element type. In this case, each element in the array is
assigned this value. If e is an expression of the element type of the array or a type that can be implicitly
converted to the element type of the array, then the assignment

A = ¢g;

is equivalent to

forall i in A.domain do
A(i) = e;

19.2.5 Formal Arguments of Array Type

Arrays are passed to functions by reference. Formal arguments that receive arrays are aliases of the actual
arguments. The ordinary rule that disallows assignment to formal arguments of blank intent does not apply
to arrays.

When a formal argument has array type, the element type of the array can be omitted and/or the domain of
the array can be queried or omitted. In such cases, the argument is generic and is discussed in §21.1.6]

If a non-queried domain is specified in the array type of a formal argument, the domain must match the
domain of the actual argument. This is verified at runtime. There is an exception if the domain is an arithmetic

domain; it is described in §19.3.7

19.2.6 Iteration over Arrays

All arrays support iteration via forall and for loops over the elements mapped to by the indices in the array’s
domain.

19.2.7 Array Promotion of Scalar Functions

Array promotion of a scalar function is defined over the array type and the element type of the array. The
domain of the returned array, if an array is captured by the promotion, is the domain of the array that promoted
the function. In the event of zipper promotion over multiple arrays, the promoted function returns an array
with a domain that is equal to the domain of the first argument to the function that enables promotion. If the
first argument is an iterator or a range, the result is a one-based one-dimensional array.

Status note. In the current implementation, promotion always returns one-dimensional arrays.

110 Chapel Language Specification

Example. Whole array operations is a special case of array promotion of scalar functions. In the
code

if &, B, and C are arrays, this code assigns each element in A the element-wise sum of the elements
in B and C.

19.2.8 Array Initialization

By default, the elements in an array are initialized to the default values associated with the element type of
the array. There is an expectation that this default initialization can be overridden for performance reasons by
explicitly marking the array type or variable.

The initialization expression in the declaration of an array can be based on the indices in the domain using
special array declaration syntax that replaces both the type and initialization specifications of the declaration:
special-array—declaration:

identifier-list indexed—array—type—part initialization—part

indexed-array—type-part:
: array—type—forall-expression type

array-type—tforall-expression:
[identifier in domain—expression]

initialization—part:
= expression

In this code, the array—type—forall-expression is syntactic sugar for surrounding the initialization—part with this
basic forall-expression.

Given a domain expression D, an element type t, an expression e that is of type t or that can be implicitly
converted to type t, then the declaration of array A given by

var A: [i in D] t = e;

is equivalent to

var A: [D] t = [i in D] e;

The scope of the forall expression is as in the rewritten part so the expression e can include references to
index i.

19.2.9 Array Aliases

Array slices alias the data in arrays rather than copying it. Such array aliases can be captured and optionally
reindexed with the array alias operator =>. The syntax for capturing an alias to an array requires a new
variable declaration:

Domains and Arrays 111

array-alias—declaration:
var identifier reindexing—expression,,,; => array—expression ;

reindexing—expression:
[domain—expression]

array—-expression:
expression

The identifier is an alias to the array specified in the array—expression.

The optional reindexing—expression allows the domain of the array alias to be reindexed. The shape of the
domain in the reindexing—expression must match the shape of the domain of the array—expression. Indexing via
the alias is governed by the new indices.

Example. In the code
var A: [1..5, 1..5] int;
var AA: [0..2, 0..2] => A[2..4, 2..4]1;

an array alias AA is created to alias the interior of array A given by the sliceA[2..4, 2..4]. The
reindexing expression changes the indices defined by the domain of the alias to be zero-based in
both dimensions. Thus Aa (1, 1) is equivalent to A (3, 3).

19.3 Arithmetic Domains and Arrays

An arithmetic domain is a rectilinear set of Cartesian indices. Arithmetic domains are specified as a tuple of
ranges enclosed in square brackets.

19.3.1 Arithmetic Domain Literals

An arithmetic domain literal is specified by the following syntax:

arithmetic—domain- literal:
[range—expression-list]

range—expression-list:
range—expression
range—expression , range—expression—list

range—expression:
expression

Example. The expression [1..5, 1..5] defines a 5 x 5 arithmetic domain with the indices
(1,1),(1,2),...,(5,5).

112 Chapel Language Specification

19.3.2 Arithmetic Domain Types

The type of an arithmetic domain is determined by three components: (1) the rank of the arithmetic domain
(the number of ranges that define it); (2) an underlying integral type called the dimensional index type which
must be identical to each of the integral element types of the ranges that define the arithmetic domain; (3) a
boolean value indicating whether any of the ranges that define the domain are stridable or not. By default,
the dimensional index type of an arithmetic domain is int and the stridability value is set to false.

The arithmetic domain type is specified by the syntax of a function call to the keyword domain that takes
at least an argument called rank that is a parameter of type int and optionally an integral type named
dim_type and a boolean value named stridable.

Example. Theexpression [1..5, 1..5] defines an arithmetic domain with type domain (2, int, false).

19.3.3 Strided Arithmetic Domains

If the ranges that define an arithmetic domain are strided, then the arithmetic domain is said to be strided and
the stridable parameter must be set to true. For domains with inferred type, if the initializing expression uses
stridable ranges, the domain will be inferred to have a stridable parameter of true.

The by operator can be applied to any arithmetic domain to create a strided arithmetic domain. It is predefined
over an arithmetic domain and an integer or a tuple of integers. In the integer case, the ranges in each
dimension are strided by the integer. In the tuple of integers case, the size of the tuple must match the rank
of the domain; the integers stride each dimension of the domain. If the ranges are already strided, the strides
applied by the by operator are multiplied to the strides of the ranges.

19.3.4 Arithmetic Domain Slicing

Arithmetic domains support slicing by indexing into them specifying a range per dimension. Square brackets
should be used for multidimensional domains, while either square brackets or parenthesis can be used for 1D
domains.

The result is a subdomain of the domain being sliced as described in Section The indices described
by each range must be legal indices for accessing the corresponding dimension of the domain. Partially un-
bounded or completely unbounded ranges may be used to specify that the slice should extend to the domain’s
lower and/or upper bound.

Example. The following code declares a 2D arithmetic domain D, and then a number of sub-
domains of D by slicing into D using bounded and unbounded ranges. The InnerD domain
describes the inner indices of D, Co120£D describes the 2nd column of D, and A11ButLastRow
describes all of D except for the last row.

const D: domain(2) = [l1..n, 1..n],
InnerD = D[2..n-1, 2..n-1],
Col20fD = D[.., 2..2],
AllButLastRow = D[..n-1, ..];

Domains and Arrays 113
19.3.5 Arithmetic Array Indexing

In addition to being indexed by indices defined by their arithmetic domains, arithmetic arrays can be indexed
directly by values of the dimensional index type where the number of values is equal to the rank of the array.
This has the semantics of first moving the values into a tuple and then indexing into the array.

Example. Given the definition

var ij = (i,3);

the indexing expressions & (1j) and A (i, j) are equivalent.

19.3.6 Arithmetic Array Slicing

In addition to slicing an arithmetic array by an arithmetic domain, arithmetic arrays also support slicing by
ranges directly. If each dimension is indexed by an range, this is equivalent to slicing the domain by an
arithmetic domain defined by those ranges.

Status note. It is currently required that each dimension be indexed by an range. There is
an expectation that indexing some dimensions directly by values of integral type will result in
an array slice of a different rank. In the current implementation, doing so would result in a
promotion of the array indexing function and would have similar semantics though with more
restrictions.

Array slices may also be expressed using partially unbounded or completely unbounded ranges. This is
equivalent to slicing the array’s defining domain by the specified ranges to create a subdomain as described
in Section|[19.3.4]and then using that subdomain to slice the array.

19.3.7 Formal Arguments of Arithmetic Array Type

Formal arguments of arithmetic array type allow an arithmetic domain to be specified that does not match the
arithmetic domain of the actual arithmetic array that is passed to the formal argument. In this case, the shape
(size in each dimension and rank) of the domain of the actual array must match the shape of the domain of
the formal array. The indices are translated in the formal array, which is a reference to the actual array.

Example. In the code

def foo(X: [1..5] int) { ... }
var A: [1..10 by 2] int;
foo (A);

the array A is strided and its elements can be indexed by the odd integers between one and nine.
In the function foo, the array x references array A and the same elements can be indexed by the
integers between one and five.

114 Chapel Language Specification

19.4 Sparse Domains and Arrays

Sparse domains are used in Chapel to describe irregular index subsets and to define sparse arrays. Sparse
arrays are typically used to represent data aggregates in which a value occurs so frequently that it would be
wasteful to store it explicitly for each occurrence. This value is commonly described as the “zero value”,
though we refer to it as the implicitly replicated value or IRV since it may be a value other than zero.

Status note. The Chapel implementation currently only supports sparse arithmetic domains and
arrays. One could conceive of wanting sparse associative and opaque domains and arrays as
well.

19.4.1 Sparse Domain Types

A sparse domain type is specified by the syntax

sparse—domain-type:
sparse subdomain (domain—expression)

This syntax specifies that the domain is a sparse subset of the indices in the domain specified by the domain—expression,
sometimes called the base domain or parent domain.

Example. The following code declares a 2D dense domain D, followed by a 2D sparse subdo-
main of D named SpsD. Since SpsD is uninitialized, it will initially describe the empty set of
indices from D.

const D: domain(2) = [1..n, 1..n];
var SpsD: sparse subdomain (D) ;

19.4.2 Sparse Domain Assignment

Sparse domains can be assigned aggregates of indices from their parent domain. Common methods for
expressing such aggregates are to use a tuple of indices, a forall expression that enumerates indices, or an
iterator that generates indices.

Example. The following three assignments show ways of assigning indices to a sparse domain,
SpsD. The first assigns the domain two index values, (1, 1) and (n, n). The second assigns the
domain all of the indices along the diagonal from (1, 1)...(n,n). The third invokes an iterator
that is written to yield indices read from a file named “inds.dat”. Each of these assignments
has the effect of replacing the previous index set with a completely new set of values.

SpsD = ((1,1), (n,n));
SpsD = [1 in 1..n] (i,1i);
SpsD = readIndicesFromFile ("inds.dat");

Sparse domains can be emptied by using a method clear that clears out its index set.

Domains and Arrays 115

Example. The following call will cause the sparse domain SpsD to describe an empty set of
indices as it was when initially declared.

SpsD.clear () ;

As with other domain types, reassigning a domain’s index set will cause arrays declared in terms of that
domain to store elements corresponding to the new indices of the domain. These elements will be initialized
to the array’s IRV by default.

19.4.3 Modifying a Sparse Domain

Indices can be incrementally added to or removed from sparse domains. Sparse domains support a method
add that takes an index and adds it to the sparse domain’s index set. All arrays declared over this sparse
domain will now store an element corresponding to this index, initialized to be its IRV.

Sparse domains support a method remove that takes an index and removes this index from the sparse domain.
The values in the arrays indexed by the removed index are lost.

The operators += and —= have special semantics for sparse domains; they are interpreted as calls to the add

and remove methods respectively. The statement

D += i;

is equivalent to

D.add (i) ;

Similarly, the statement

D -= i;

is equivalent to

D.remove (i) ;

As with other methods and operators, the add, remove, +=, and —= operators can be invoked in a promoted
manner by specifying an aggregate of indices rather than a single index at a time.

Status note. The remove and —= capabilities are not yet implemented for sparse domains.

116 Chapel Language Specification

19.4.4 Sparse Arrays

An array declared over a sparse domain can be indexed using all of the indices in the domain’s parent domain.
If it is read using an index that is not part of the sparse domain’s index set, the IRV value is returned.
Otherwise, the array’s unique value corresponding to the index is returned.

Sparse arrays can only be written at locations corresponding to indices in their domain’s index set. In general,
writing to other locations will result in a runtime error.

By default a sparse array’s IRV is defined as the default value for the array’s element type. The IRV can be
set to any value of the array’s element type by assigning to a pseudo-field named “IRV” in the array. It is an
error to assign a value to the IRV by assigning to an array element whose index is not described by the sparse
domain.

Example. The following code example declares a sparse array, SpsA using the sparse domain
SpsD (For this example, assume that n>1). Lines 2 assigns two indices to SpsD’s index set and
then lines 3—4 store the values 1.1 and 9.9 to the corresponding values of SpsaA. The IRV of
SpsA will initially be 0.0 since its element type is real. However, the fifth line sets the IRV to
be the value 5.5, causing Spsa to represent the value 1.1 in its low corner, 9.9 in its high corner,
and 5.5 everywhere else. The final statement is an error since it attempts to assign to SpsA at an
index not described by its domain, SpsD.

var SpsA: [SpsD] real;

SpsD = ((1,1), (n,n));
SpsA(1,1) = 1.1;

SpsA(n,n) = 9.9;

SpsA.IRV = 5.5;

SpsA(l,n) = 0.0; // ERROR!

19.5 Associative Domains and Arrays

An associative domain type can be defined over any scalar type and is given by the following syntax:

sparse—domain—type:
domain (scalar-type)

scalar—type:
type

A scalar type is any primitive type, tuple of scalar types, or class, record, or union where all of the fields have
scalar types. Enumerated types are scalar types but domains declared over enumerated types are described
in §19.7} Arrays declared over associative domains are dictionaries mapping from values to variables.

19.5.1 Changing the Indices in Associative Domains

Like with sparse domains, indices can be added or removed to associative domains. Associative domains
support a method add that takes an index and adds this index to the associative domain. All arrays declared
over this associative domain can now access elements corresponding to this index.

Domains and Arrays 117
Associative domains support a method remove that takes an index and removes this index from the associa-
tive domain. The values in the arrays indexed by the removed index are lost.

The operators += and —= have special semantics for associative domains; they are interpreted as calls to the
add and remove methods respectively. The statement

D += 1i;

is equivalent to

D.add (1) ;

Similarly, the statement

D —= 1i;

is equivalent to

D.remove (1) ;

19.5.2 Testing Membership in Associative Domains

An associative domain supports a member method that can test whether a particular value is part of the index
set. It returns true if the index is in the associative domain and otherwise returns false.

19.6 Opaque Domains and Arrays
Status note. Opaque domains are not yet implemented.

An opaque domain is a form of associative domain where there is no algebra on the types of the indices. The
indices are, in essence, opaque. The opaque domain type is given by the following syntax:

opaque—domain:
opaque domain

New index values for opaque domains are explicitly requested via a method called new. Indices can be
removed by a method called remove.

Opaque domains permit more efficient implementations than associative domains under the assumption that
creation of new domain index values is rare.

19.7 Enumerated Domains and Arrays

Enumerated domains are a special case of associative domains where the indices are the constants defined by
an enumerated type. Enumerated domains do not support the add or remove methods. All of the constants
defined by the enumerated type are indices into the enumerated domain.

An enumerated domain is specified identically to the associative domain type, except that the type is an
enumerated type rather than some other value type.

118 Chapel Language Specification
19.8 Association of Arrays to Domains

When an array is declared, it is linked during execution to the domain over which it was declared. This
linkage is constant and cannot be changed.

When indices are added or removed from a domain, the change impacts the arrays declared over this particular
domain. In the case of adding an index, an element is added to the array and initialized to the default value
associated with the element type. In the case of removing an index, the element in the array is removed.

When a domain is reassigned a new value, the array is also impacted. Values that could be indexed by both
the old domain and the new domain are preserved in the array. Values that could only be indexed by the old
domain are lost. Values that can only be indexed by the new domain have elements added to the new array
and initialized to the default value associated with their type.

For performance reasons, there is an expectation that a method will be added to domains to allow non-
preserving assignment, i.e., all values in the arrays associated with the assigned domain will be lost.

19.9 Subdomains

A subdomain is a domain whose indices are a subset of those described by a base domain. A subdomain is
specified by the following syntax:

subdomain-type:
subdomain (domain—expression)

The ordering of the indices in the subdomain is consistent with the ordering of the indices in the base domain.

Subdomains are verified during execution even as domains are reassigned. The indices in a subdomain are
known to be indices in a domain, allowing for fast bounds-checking.

Status note. The subdomain syntax is implemented, but subdomains are not yet semantically
checked to ensure that they are proper subdomains of their parent domains.

19.10 Predefined Functions and Methods on Domains

There is an expectation that this list of predefined functions and methods will grow.

def Domain.numIndices: dim_type
Returns the number of indices in the domain.
def Domain.member (i: index (Domain)): bool

Returns whether or not index i is a member of the domain’s index set.

Domains and Arrays 119

19.10.1 Predefined Functions and Methods on Arithmetic Domains

We expect that this list of predefined functions and methods will grow.

def Domain.dim(d: int): range

Returns the range of indices described by dimension d of the domain.

Example. In the code

for i in D.dim(1l) do
for j in D.dim(2) do
writeln (A(i,3));

domain D is iterated over by two nested loops. The first dimension of D is iterated over in the
outer loop. The second dimension is iterated over in the inner loop.

def Domain.low: integral // for 1D domains
def Domain.low: index (Domain) // for multidimensional domains

Returns the low index of the domain as a scalar value for 1D domains and as an index value for a
multidimensional domain.

def Domain.high: integral // for 1D domains
def Domain.high: index (Domain) // for multidimensional domains

Returns the high index of the domain as a scalar value for 1D domains and as an index value for a
multidimensional domain.

19.11 Predefined Functions and Methods on Arrays

There is an expectation that this list of predefined functions and methods will grow.

def Array.numElements: this.domain.dim_type

Returns the number of elements in the array.

120 Chapel Language Specification

Iterators 121

20 Iterators

An iterator is a function that conceptually returns multiple values rather than simply a single value.

20.1 Iterator Functions

The syntax of an iterator declaration is identical to that of a function declaration. A function is an iterator if
it includes yield statements. When a yield is encountered, the value is returned, but the iterator is not finished
evaluating when called within a loop. It will continue from the point after the yield and can yield or return
more values. When a return is encountered, the value is returned and the iterator finishes. An iterator also
completes after the last statement in the iterator function is executed.

20.2 The Yield Statement

The yield statements can only appear in iterators. The syntax of the yield statement is given by

yield-statement:
yield expression ;

20.3 Iterator Calls

Iterator functions can be called within for or forall loops, in which case they are executed in an interleaved
manner with the body of the loop, can be captured in new variable declarations or arrays, in which case they
evaluate to an array of values, or can be passed to a generic function argument.

20.3.1 Iterators in For and Forall Loops

When an iterator is accessed via a for or forall loop, the iterator is evaluated alongside the loop body in an
interleaved manner. For each iteration, the iterator yields a value and the body is executed.

20.3.2 Iterators as Arrays

If an iterator function is captured into a new variable declaration or assigned to an array, the iterator is
iterated over in total and the expression evaluates to a one-dimensional arithmetic array that contains the
values returned by the iterator on each iteration.

Example. Given an iterator

def squares(n: int): int {
for i in 1..n do
yield i * 1i;
}

the expression squares (5) evaluates to the array 1, 4, 9, 16, 25.

122 Chapel Language Specification

20.3.3 Iterators and Generics

If an iterator call expression is passed to a function argument that is generic, the iterator is passed without
being evaluated and is treated as a closure within the generic function.

20.4 Scalar Promotion

A function requires scalar promotion if an iterator (or array, domain, or range) is passed to a formal argument
with a type that allows the yielded type of the iterator to dispatch to the formal argument. In the case of arrays,
the yielded type is the element type. In the case of domains and ranges, the yielded type is the index type.
The rules of when an overloaded function is promoted are discussed in If a promoted function returns
a value, the promoted function becomes an iterator that is controlled by a loop over the iterator (or array,
domain, or range) that it is promoted by. If the function does not return a value, the function is controlled by
a loop over the iterator that it is promoted by, but the promotion does not become an iterator.

In addition to scalar promotion of functions, operators and casts are also promoted.

Example. Given an iterator

def oneToFive () {
for i in 1..5 do
yield i;

}

and a function

def square(x: int) return xxx2;

then the call square (oneToFive ()) results in the promotion of the square function over the
values returned by the oneToFive iterator. The result is an iterator that returns the values 1, 4,
9, 16, and 25. Instead of using the oneToFive iterator to promote the square function, the
range 1. .5 could be used directly as in square (1..5). Also note that operator invocations are
treated as function calls in terms of promotion so (1..5) x*2 is also equivalent.

20.4.1 Zipper Promotion

Consider a function £ with formal arguments s1, s2, ... that are promoted and formal arguments a1, a2, ...
that are not promoted. The call

f(sl, s2, ..., al, a2, ...)

is equivalent to

[(el, e2, ...) in (sl, s2, ...)] f(el, e2, ..., al, a2, ...)

The usual constraints of zipper iteration apply to zipper promotion so the promoted actuals must have the
same shape.

Example. Given a function defined as

Iterators 123

def foo(i: int, j: int) {
write(i, " ll, j’ " ll);

}

and a call to this function written

foo(l..3, 4..6);

then the outputis “142536”.

20.4.2 Tensor Product Promotion

If the function £ were called by using square brackets instead of parentheses, the equivalent rewrite would be

[(el, 2, ...) in [sl, s2, ...]]1 f(el, e2, ., al, a2, ...)

There are no constraints on tensor product promotion.

Example. Given a function defined as

def foo(i: int, j: int) {
Write(i, " ll, j’ n ll);

}

and a call to this function written

fool[l..3, 4..6]1;

then the outputis “141516242526343536”.

20.4.3 Promotion and Evaluation Order

The evaluation of an iterator is interleaved with the evaluation of the promoted expression or function. The
values produced by the iterator are not evaluated first. This means that the array semantics of array program-
ming languages are not maintained.

Example. 1If A is an array declared over the indices 1. .5, then the following codes are not
equivalent:

A[2..4] = A[1..3] + A[3..5];

and

This follows because, in the former code, some of the new values that are assigned to A may be
read to compute the sum depending on the amount of concurrency in the promotion.

124 Chapel Language Specification

Generics 125

21

Generics

Chapel supports generic functions and types that are parameterizable over both types and parameters. The
generic functions and types look similar to non-generic functions and types already discussed.

21.1 Generic Functions

A function is generic if any of the following conditions hold:

Some formal argument is specified with an intent of t ype or param.
Some formal argument has no specified type and no default value.
Some formal argument is specified with a queried type.

The type of some formal argument is a generic type, e.g., List. Queries may be inlined in generic
types, e.g., List (?eltType).

The type of some formal argument is an array type where either the element type is queried or omitted
or the domain is queried or omitted.

These conditions are discussed in the next sections.

21.1.1 Formal Type Arguments

If a formal argument is specified with intent t ype, then a type must be passed to the function at the call site.
A copy of the function is instantiated for each unique type that is passed to this function at a call site. The
formal argument has the semantics of a type alias.

Example. The following code defines a function that takes two types at the call site and returns
a 2-tuple where the types of the components of the tuple are defined by the two type arguments
and the values are specified by the types default values.

def build2Tuple (type t, type tt) {
var x1: t;
var x2: tt;
return (x1, x2);

}

This function is instantiated with “normal” function call syntax where the arguments are types:

var t2 = build2Tuple (int, string);
t2 = (1, "hello");

126 Chapel Language Specification

21.1.2 Formal Parameter Arguments

If a formal argument is specified with intent param, then a parameter must be passed to the function at the
call site. A copy of the function is instantiated for each unique parameter that is passed to this function at a
call site. The formal argument is a parameter.

Example. The following code defines a function that takes an integer parameter p at the call site
as well as a regular actual argument of integer type x. The function returns a homogeneous tuple
of size p where each component in the tuple has the value of x.
def fillTuple(param p: int, x: int) {
var result: px*int;
for param i in 1..p do
result (i) = x;
return result;

}

The function call £fi11Tuple (3, 3) returns a 3-tuple where each component contains the value
3.

21.1.3 Formal Arguments without Types

If the type of a formal argument is omitted, the type of the formal argument is taken to be the type of the
actual argument passed to the function at the call site. A copy of the function is instantiated for each unique
actual type.

Example. The example from the previous section can be extended to be generic on a parameter
as well as the actual argument that is passed to it by omitting the type of the formal argument
x. The following code defines a function that returns a homogeneous tuple of size p where each
component in the tuple is initialized to x:
def fillTuple (param p: int, x) {
var result: p*x.type;
for param i in 1..p do
result (i) = x;
return result;

}

In this function, the type of the tuple is taken to be the type of the actual argument. The call
fillTuple (3, 3.14) returns a 3-tuple of real values (3.14, 3.14, 3.14). The return
typeis (real, real, real).

21.1.4 Formal Arguments with Queried Types

If the type of a formal argument is specified as a queried type, the type of the formal argument is taken to be
the type of the actual argument passed to the function at the call site. A copy of the function is instantiated
for each unique actual type. The queried type has the semantics of a type alias.

Example. The example from the previous section can be rewritten to use a queried type for
clarity:

Generics 127

def fillTuple(param p: int, x: ?t) {
var result: pxt;
for param i in 1..p do
result (i) = x;
return result;

}

21.1.5 Formal Arguments of Generic Type

If the type of a formal argument is a generic type, the type of the formal argument is taken to be the type
of the actual argument passed to the function at the call site with the constraint that the type of the actual
argument is an instantiation of the generic type. A copy of the function is instantiated for each unique actual

type.

Example. The following code defines a function writeTop that takes an actual argument that
is a generic stack (see §21.5) and outputs the top element of the stack. The function is generic
on the type of its argument.

def writeTop(s: Stack) {
write(s.top.item);

}

Types and parameters may be queried from the top-level types of formal arguments as well. In the example
above, the formal argument’s type could also be specified as Stack (?type) in which case the symbol type
is equivalent to s.itemType.

The generic types integral and numeric are generic types that can only be instantiated with, respectively,
the signed and unsigned integral types and all of the numeric types.

21.1.6 Formal Arguments of Generic Array Types

If the type of a formal argument is an array where either the domain or the element type is queried or omitted,
the type of the formal argument is taken to be the type of the actual argument passed to the function at the
call site. If the domain is omitted, the domain of the formal argument is taken to be the domain of the actual
argument.

21.2 Function Visibility in Generic Functions

Function visibility in generic functions is altered depending on the instantiation. When resolving function
calls made within visible functions, the visible functions are taken from any call site at which the function is
instantiated for each particular instantiation.

128 Chapel Language Specification
21.3 Generic Types

A class or record is generic if any of the following conditions hold:

The class contains a specified or unspecified type alias.

The class contains a field that is a parameter.

The class contains a field that has no type and no initialization expression.

e The class contains a field where the type of the field is generic.

21.3.1 Type Aliases in Generic Types

Type aliases defined in a class or a record can be unspecified type aliases; type aliases that are not bound to a
type. If a class or record contains an unspecified type alias, the aliased type must be specified whenever the
type is used.

A type alias defined in a class or record is accessed as if it were a field. Moreover, it becomes an argument
with intent t ype to the default constructor for that class or record. This makes the default constructor generic.
When the default constructor is instantiated, the type is instantiated where the type bound to the type alias is
set to be the type passed to the default constructor.

Example. The following code defines a class called Node that implements a linked list data
structure. It is generic over the type of the element contained in the linked list.
class Node {
type eltType;

var data: eltType;
var next: Node (eltType);

The call Node (real, 3.14) creates a node in the linked list that contains the value 3.14. The
next field is set to nil. The type specifier Node is a generic type and cannot be used to define
a variable. The type specifier Node (real) denotes the type of the Node class instantiated over
real. Note that the type of the next field is specified as Node (eltType) ; the type of next is
the same type as the type of the object that it is a field of.

21.3.2 Parameters in Generic Types

Parameters defined in a class or record do not require an initialization expression. If they do not have an
initialization expression, the parameter must be specified whenever the type is used.

A parameter defined in a class or record is accessed as if it were a field. This access returns a parameter.
Parameters defined in classes or records become arguments with intent param to the default constructor for
that class or record. This makes the default constructor generic. When the default constructor is instantiated,
the type is instantiated where the parameter is bound to the parameter passed to the default constructor.

Generics 129

Example. The following code defines a class called IntegerTuple that is generic over an
integer parameter which defines the number of components in the class.
class IntegerTuple {

param size: int;
var data: size=*int;

The call IntegerTuple (3) creates an instance of the IntegerTuple class that is instantiated
over parameter 3. The field data becomes a 3-tuple of integers. The type of this class instance
is IntegerTuple (3). The type specified by IntegerTuple is a generic type.

21.3.3 Fields without Types

If a field in a class or record has no specified type or initialization expression, the class or record is generic
over the type of that field. The field must be specified when the class or record is constructed or specified.
The field becomes an argument to the default constructor that has no specified type and no default value. This
makes the default constructor generic. When the default constructor is instantiated, the type is instantiated
where the type of the field becomes the type of the actual argument passed to the default constructor.

Example. The following code defines another class called Node that implements a linked list
data structure. It is generic over the type of the element contained in the linked list. This code
does not specify the element type directly in the class as a type alias but rather omits the type
from the data field.

class Node {

var data;
var next: Node (data) = nil;

A node with integer element type can be defined in the call to the constructor. The call Node (1)
defines a node with the value 1. The code

var list = Node(1l);
list.next = Node(2);

defines a two-element list with nodes containing the values 1 and 2.

21.3.4 Fields of Generic Types

If a field in a class or record is specified to have a generic type, then the class or record is generic over the
type of this field and the type of the field is constrained to be an instantiation of the field’s specified generic

type.

21.3.5 Generic Methods

All methods bound to generic classes or records are generic over the implicit this argument and any other
argument that is generic.

130 Chapel Language Specification

21.3.6 The eltType Type

The common idiom of parameterizing a collection-oriented data type by a single element type has special
syntactic support given by

of-type:
type of type

This syntax is a short-hand for passing the second type by name e1tType as the only argument to the first
type. Given the definition of Node in the example in §21.3.T one can specify the type Node (real) or
Node(eltTypezreal)by\NﬂﬁngNode of real.

21.4 Where Expressions

The instantiation of a generic function can be constrained by where clauses. A where clause is specified in the
definition of a function (§I3.1). When a function is instantiated, the expression in the where clause must be
a parameter expression and must evaluate to either t rue or false. If it evaluates to false, the instantiation
is rejected and the function is not a possible candidate for function resolution. Otherwise, the function is
instantiated.

Example. Given two overloaded function definitions

def foo(x) where x.type == int { ... }
def foo(x) where x.type == real { ... }

the call foo(3) resolves to the first definition because when the second function is instantiated the
where clause evaluates to false.

21.5 Example: A Generic Stack

class MyNode {
type itemType; // type of item
var item: itemType; // item in node
var next: MyNode (itemType); // reference to next node (same type)

}

record Stack {
type itemType; // type of items
var top: MyNode (itemType); // top node on stack linked list

def push(item: itemType) {
top = MyNode (itemType, item, top);
}

def pop() {
if isEmpty then
halt ("attempt to pop an item off an empty stack");
var oldTop = top;
top = top.next;
return oldTop.item;

}

def isEmpty return top == nil;

Parallelism and Synchronization 131
22 Parallelism and Synchronization

Chapel is an explicitly parallel programming language. Parallelism is introduced into a program by the user
with the following three constructs: forall, cobegin, and begin. In addition, some operations on arrays
and domains, as well as invocations of promotion, are executed in parallel. Synchronization is provided
with synchronization variables and atomic statements. To avoid any unintended implications, the terms
computation and sub-computation will be used to refer to distinct, concurrently executing portions of the
program.

22.1 The Forall Loop

The forall loop is a variant of the for loop that allows for the concurrent execution of the loop body. The for
loop is described in §11.9] The syntax for the forall loop is given by

forall-statement:
forall loop—-control-part loop—body-part

The forall loop evaluates the loop body once for each element in the iterator-expression. Each instance of
the forall loop’s statement may be executed concurrently with each other, but this is not guaranteed. The
compiler and runtime determine the actual concurrency based on the specification of the iterator of the loop.
The keyword ordered, described in can be used to constrain the parallelism to give a partial order
on the iterator.

Control continues with the statement following the forall loop only after each iteration has been completely
evaluated. Control transfers out of a loop body via break, continue, and return are not permitted. Control
can be transferred out of the loop via a yield statement.

Example. In the code

forall i in 1..N do
a(i) = b(i);

the user has stated that the element-wise assignments can execute concurrently. This loop may
be performed serially, with maximum concurrency where each loop body iteration instance is
executed in a separate computation, or somewhere in between.

Status note. The forall loop is currently executed serially.

22.1.1 Alternative Forall Loop Syntax

The forall loop may be alternatively specified with a more concise syntax given by:

alternative—forall-statement:
[loop—control-part] statement

The semantics are unchanged.

Example. The previous forall example can be alternatively written as:

[i in 1..N] a(i) = b(i);

132 Chapel Language Specification

22.1.2 The Ordered Forall Loop

By default a forall loop allows complete concurrent evaluation of the iterator expression and among the loop
instances. The keyword ordered can be used to constrain the general parallelism among instances of the
loop to that expressed by an iterator. This allows an iterator to both define an array of values and to impose a
partial order on that iterator. This has the same semantics as with the ordered expression which is explained

in §22.6l The syntax is:

ordered-forall-statement:
ordered forall loop—control-part loop—body—part

Example. In the code
ordered forall i in walk (root) do

work (1) ;

def walk (n: node) {
yield n;
forall ¢ in 0..n.numOfChildren {
yield n.child[c];
}
}

there is a constraint on the parallel execution such that the function work is evaluated on a
node before any of its immediate children nodes. The work on sibling nodes can be executed
concurrently.

Status note. The ordered forall loop is currently executed serially.

22.2 The Forall Expression

With syntax similar to the alternative forall loop statement, a forall expression can be used to enable concur-
rent evaluation of sub-expressions. The sub-expressions are evaluated once for each element in the iterator
expression. The syntax of a forall expression is given by

forall-expression:
[loop—control-part] expression

A forall expression is semantically equivalent to an iterator that yields the expressions.

Example. The code

[i in S] £(1);

is equivalent to

def ff() {
for i in S do
yield £f(i);

££0) 7

Status note. Forall expressions are evaluated serially.

Parallelism and Synchronization 133

22.2.1 Filtering Predicates

An if expression that is immediately enclosed by a forall expression does not require an else part.

Example. The following expression returns every other element starting with the first:

o

[i in 1..s.length] if i $ 2 == 1 then s (i)

22.3 The Cobegin Statement

The cobegin statement is used to create parallelism among statements within a block statement. The cobegin
statement syntax is

cobegin-statement:
cobegin block-statement

Each statement within the block statement is executed concurrently and is considered a separate computation.
Control continues after all of the statements within the block statement have been evaluated.

As with the forall loop, control transfers are not permitted either into or out of the cobegin’s block statement.
Similarly, yield statements are allowed.

Variables declared in the cobegin statement are single variables, described in §22.8.1

22.4 The Coforall Loop

The coforall loop is a variant of the cobegin statement and the forall loop. The syntax for the coforall loop is
given by

coforall-statement:
coforall loop—control-part loop—body-part

The semantics of the coforall loop are identical to the forall loop except that each iteration is guaranteed
to run concurrently. It thus has potentially higher overhead than a forall loop, but in cases where concurrency
is required for correctness, it is essential.

The semantics of the coforall loop are also identical to a cobegin statement where each iteration of the
coforall loop is equivalent to a separate statement in a cobegin block.

Control continues with the statement following the coforall loop only after each iteration has been com-
pletely evaluated. Control transfers out of a loop body via break, continue, and return are not permitted.
Control can be transferred out of the loop via a yield statement.

134 Chapel Language Specification
22.5 The Begin Statement

The begin statement spawns a computation to execute a statement. Control continues simultaneously with
the statement following the begin statement. The begin statement is an unstructured way to create a new
computation that is executed only for its side-effects. The syntax for the begin statement is given by

begin-statement:
begin statement

The following statements cannot be contained in begin-statements: break-statements, continue-statements,
yield-statements, and return-statements.

22.6 The Ordered Expression

Status note. The ordered expression is not yet implemented.

The ordered keyword can be used as an unary operator to suppress parallel execution among instances of
an expression that can involve side-effects to memory. The ordered keyword does not inhibit parallelism
within the sub-expression. The syntax is:

ordered—-expression:
ordered expression

Example. In the code
ordered [i in S] f (i)
£ is a function and s is an iterator expression. Each instance of £ (i) is executed once for each

value in S and in serial order. The ordered constraint does not propagate to inhibit parallelism
within £.

22.7 The Serial Statement

The serial statement can be used to dynamically control the degree of parallelism. The syntax is:

serial-statement:
serial expression block—level-statement

where the expression evaluates to a bool type. Independent of that value, the block-Ilevel-statement is eval-
uated. If the expression is true, any dynamically encountered forall loop or cobegin statement is executed
serially within the current computation. Any dynamically encountered begin-statement is executed serially
with the current computation; no new computation is spawned. Control continues to the statement following
the begin-statement after the begin-statement finishes.

Example. In the code

Parallelism and Synchronization 135

ordered forall i in walk (root) do
work (1) ;

def walk (n: node) {
yield n;
serial n.depth > 4 forall c in 0..n.numOfChildren {
yield n.childl[c];
}
}

the serial statement inhibits concurrent execution on the tree for nodes that are deeper than four
levels in the tree.

There is an expectation that functions that may be executed in a serial context are cloned to avoid the overhead
of testing and suppressing parallelism.

22.8 Synchronization Variables

Synchronization variables are used to coordinate computations that share data. The use of and assignment to
these variables implicitly controls the execution order of the computation. There are two kinds of synchro-
nization variables, single and sync variables. A single variable can only be assigned once during its lifetime.
A sync variable can be assigned multiple times during its lifetime.

The normal use of and assignment to a synchronization variable is well suited for producer-consumer data
sharing. Additional functions on synchronization variable are provided such that other traditional synchro-
nization primitives, such as semaphores and mutexes, can be constructed.

22.8.1 Single Variables

A single (assignment) variable can only be assigned once during its lifetime. A use of a single variable before
it is assigned causes the computation’s execution to be suspended until the variable is assigned. Otherwise,
the use proceeds as with normal variables and the computation continues. After a single assignment variable
is assigned, all computations with pending uses resume in an unspecified order. A single variable is specified
with a single type given by the following syntax:

single—type:
single type

Example. In the code

class Tree {
var is_leaf : bool;

var left : Tree;
var right : Tree;
var value : int;

def sum() {
if (is_leaf) then
return value;

var x : single int;

136 Chapel Language Specification

begin x = left.sum();
var y = right.sum();
return x+y;
}
}

the single variable x is assigned by an asynchronous computation created with the begin state-
ment. The computation returning the sum waits on the reading of x until it has been assigned.

While a cobegin might be a more suitable formulation, this fragment creates an asynchronous
computation to compute the sum of the left sub-tree while the main computation continues with
the right sub-tree. The final reference to variable x will be delayed until the assignment to x
completes and that value will be used as a summand.

When a single variable has an initializer, the evaluation of that initializer is implicitly performed as an asyn-
chronous computation.

Example. The code

var x: single int = left.sum;

is equivalent to

var x: single int;
x = left.sum;

Any variable declaration within a cobegin statement is implicitly treated as a single variable for references in
other statements of the cobegin statement.

Example. In the code

def sum() {
if (is_leaf) then
return value;

var z;

cobegin {
var x = left.sum();
var y right.sum();
z = xty;

}
return z;

}

the computation with assignment to z waits for the other computations to assign to x and y before
it references x and y in order to assign to z. The variables x and y are implicitly single.

22.8.2 Sync Variables

A sync variable generalizes the single assignment variable to permit multiple assignments to the variable. A
sync variable is logically either full or empty. When it is empty, computations that attempt to read that variable
are suspended until the variable becomes full by the next assignment to it, which atomically changes the state
to full. When the variable is full, a read of that variable consumes the value and atomically transitions the
state to empty. If there is more than one computation waiting on a sync variable, one is non-deterministically

Parallelism and Synchronization 137

selected to use the variable and resume execution. The other computations continue to wait for the next
assignment.

If a computation attempts to assign to a sync variable that is full, the computation is suspended and the as-
signment is delayed. When the sync variable becomes empty, the computation is resumed and the assignment
proceeds, transitioning the state back to full. If there are multiple computations attempting such an assign-
ment, one is non-deterministically selected to proceed and the other assignments continue to wait until the
sync variable is emptied again.

A sync variable is specified with a sync type given by the following syntax:

sync-type:
sync

22.8.3 Additional Synchronization Variable Functions

Synchronization variables support additional methods that can be used to bypass their semantics to provide
new ones. For sync variable s, the following functions are defined:

writeFE(s, v) // wait for full, assign s=v, and leave empty
writeXF (s, v) // no wait, assign s=v, and leave full

writeXE (s, v) // no wait, assign s=v, and leave empty

readFF (s) // wait for full, leave full, and return s’s value
readXF (s) // no wait, leave full, and return s’s value

readXX (s) // no wait, leave F/E unchanged, and return s’s value

For single variables s only readFF is defined.

22.8.4 Synchronization Variables of Record and Class Types

A variable of record or class type can be a single or sync variable. The semantics of single and sync variables
are applied only to the variable and not to accesses of individual fields. A record or class type may have
synchronization variable fields to get synchronization semantics on individual field accesses.

22.9 Memory Consistency Model

This section is forthcoming.

22.10 Atomic Statement

Status note. Atomic statements are not yet implemented.

138 Chapel Language Specification

The atomic statement creates an atomic transaction of a statement. The statement is executed with transaction
semantics in that the statement executes entirely, the statement appears to have completed in a single order
and serially with respect to other atomic statements, and no variable assignment is visible until the statement
has completely executed.

This definition of an atomic statement is sometimes called strong atomicity because the semantics are atomic
to the entire program. Weak atomicity is defined so that an atomic statement is atomic only with respect to
other atomic statements. If the performance implications of strong atomicity are not tolerable, the semantics
of atomic transactions may be revisited, and could become weaker.

The syntax for the atomic statement is given by:

atomic—statement:
atomic statement

Example. The following code illustrates one possible use of atomic statements:

var found = false;
atomic {
if head == obj {
found = true;
head = obj.next;
} else {
var last = head;
while last != null {
if last.next == obj {
found = true;
last.next = object.next;
break;
}

last = last.next;

}

Inside the atomic statement is a sequential implementation of removing a particular object de-
noted by obj from a singly linked list. This is an operation that is well-defined, assuming only
one computation is attempting it at a time. The atomic statement ensures that, for example, the
value of head does not change after it is first in the first comparison and subsequently read to
initialize 1ast. The variables eventually owned by this computation are found, head, obj, and
the various next fields on examined objects.

The effect of an atomic statement is dynamic.

Example. 1If there is a method associated with a list that removes an object, that method may not
be parallel safe, but could be invoked safely inside an atomic statement:

atomic found = head.remove (obj) ;

Locality and Distribution 139

23 Locality and Distribution

Status note. Programs can currently only run on a single locale. The abstractions described here
are not yet implemented.

Chapel provides high-level abstractions that allow programmers to exploit locality by defining the affinity of
data and computation. This is accomplished by associating both data objects and computations with abstract
locales. To provide a higher-level mechanism, Chapel allows a mapping from domains to locales to be
specified. This mapping is called a distribution and it guides that placement of variables associated with
arrays and the placement of subcomputations defined over the domain.

Throughout this section, the term local refers to data that is associated with the locale that a computation is
running on and remote refers to data that is not. We assume that there is some execution overhead associated
with accessing data that may be remote compared to data known to be local.

23.1 Locales

A locale abstracts a processor or node in a parallel computer system, or the basic component in the computer
system where local memory can be accessed uniformly.

23.1.1 The Locale Type

The identifier 1ocale is a primitive type that abstracts a locale as described above. Both data and computa-
tions can be associated with a value of locale type. The only operators defined over locales are the equality
and inequality comparison operators.

23.1.2 Locale Methods

The locale type supports the following methods:

def locale.numCores: int;
Returns the number of processor cores available on a given locale.

use Memory;
def locale.physicalMemory (unit: MemUnits=Bytes, type retType=int (64)): retType;

Returns the amount of physical memory available on a given locale in terms of the specified memory
units (Bytes, KB, MB, or GB) using a value of the specified return type.

140 Chapel Language Specification
23.1.3 Predefined Locales Array

A predefined configuration variable defines the execution environment for a program. This environment is
defined by the following definitions:

config const numLocales: int;
const Locales: [1l..numLocales] locale;
const Global: locale;

The environment consists of constants which are fixed when the program begins execution. The variable
Global holds a special value of 1ocale type that can be distinct from the values stored in Locales. This
value is used to denote an object or computation that has no defined affinity.

When a program starts, a single computation is executing. It is running on the locale given by Locales (1).

23.1.4 Querying the Locale of a Variable

Every variable v is associated with some locale which can be queried using the following syntax:

locale—access:
expression . locale

When the expression is a class type, the locale is where the object is located rather than where the expression
may be located.

23.2 Specifying Locales for Computation

When execution is proceeding on some locale, a computation can be associated with a different locale in two
ways: via distributions as discussed in §23.3|or with an on-statement as discussed below.

23.21 On

The on statement controls on which locale a computation or data should be placed. The syntax of the on
statement is given by

on-statement:
on expression do statement
on expression block—Ievel-statement

If the expression is a value of locale type, the statement or block—level-statement is executed on the locale
specified directly by the expression. Otherwise, the expression must be a variable and the locale is taken to
be the locale where the variable is located. Execution continues after the on-statement after execution of
the statement or block—Ilevel-statement completes.

If the locale that the expression refers to is equal to Global, then the locale is unspecified and is determined
by the runtime and/or compiler.

Locality and Distribution 141

Example. A common idiom is to use on in conjunction with forall to access an array decom-
posed over multiple locales. The code

forall i in D do on A(i) {
// some computation

}

executes each iteration of the forall loop on the locale where the element of A (i) is located.

By default, when new variables and data objects are created, they are created in the locale where the compu-
tation is running. This locale can be changed by using the on keyword. Variables can be defined within an
on-statement to define them on a particular locale.

23.2.2 On and Iterators

When a loop iterates over an iterator, on-statements inside the iterator control where the corresponding loop
body is executed.

Example. An iterator over a distributed tree might include an iterator over the nodes as defined
in the following code:

class Tree {
var left, right: Tree;
def nodes {
on this yield this;
if left then
forall t in left.nodes do
yield t;
if right then
forall t in right.nodes do
yield ¢t;

Given this code and a binary tree of type Tree stored in variable tree, then we can use the
nodes iterator to iterate over the tree with the following code:
forall t in tree.nodes {

// body executed on t as specified in nodes

}

Here, each instance of the body of the forall loop is executed on the locale where the corre-
sponding object t is located. This is specified in the nodes iterator where the on keyword is
used. In the case of zipper or tensor product iteration, the location of execution is taken from
the first iterator. This can be overridden by explicitly using on in the body of the loop or by
reordering the product of iteration.

23.3 Distributions

A mapping from domain index values to locales is called a distribution.

142 Chapel Language Specification

23.3.1 Distributed Domains

A domain for which a distribution is specified is referred to as a distributed domain. A domain supports a
method, 1locale, that maps index values in the domain to locales that correspond to the domain’s distribution.

Iteration over a distributed domain implicitly executes the control computation in the domain of the associ-
ated locale. Similarly, when iterating over the elements of an array defined over a distributed domain, the
controlled computations are determined by the distribution of the domain. If there are conflicting distributions
in product iterations, the locale of the computation is taken to be the first component in the product.

Example. If D is a distributed domain, then in the code

forall d in D {
// body
}

the body of the loop is executed in the locale where the index d maps to by the distribution of D.

23.3.2 Distributed Arrays

Arrays defined over a distributed domain will have the element variables stored on the locale determined by
the distribution. Thus, if d is an index of distributed domain D and A is an array defined over that domain,
then A (d) . locale is the locale to which d maps to according to D.

23.3.3 Undistributed Domains and Arrays

If a domain or an array does not have a distributed part, the domain or array is not distributed and exists only
on the locale on which it is defined.

23.4 Standard Distributions

Standard distributions include the following:

e The block distribution Block
e The cyclic distribution Cyclic
e The block-cyclic distribution BlockCyclic

e The cut distribution Cut

A design goal is that all standard distributions are defined with the same mechanisms that user-defined distri-
butions (§23.5)) are defined with.

23.5 User-Defined Distributions

This section is forthcoming.

Reductions and Scans 143
24 Reductions and Scans

Chapel provides reduction and scan expressions that apply operators to aggregate expressions in stylized
ways. Reduction expressions collapse the aggregate’s values down to a summary value. Scan expressions
compute an aggregate of results where each result value stores the result of a reduction applied to all of the
elements in the aggregate up to that expression. Chapel provides a number of built-in reduction and scan
operators, and also supports a mechanism for the user to define additional reductions and scans. Chapel
reductions and scans result in efficient parallel implementations, and enjoy syntactic support to make them
easy to use.

24.1 Reduction Expressions

A reduction expression applies a reduction operator to an aggregate expression, collapsing the aggregate’s
dimensions down into a result value (typically a scalar or summary expression that is independent of the
input aggregate’s size). For example, a sum reduction computes the sum of all the elements in the input
aggregate expression.

The syntax for a reduction expression is given by:

reduce—expression:
reduce—scan—operator reduce expression
type reduce expression

reduce—scan—operator: one of
+ % && || & | * min max minloc maxloc

Chapel’s built-in reduction operators are defined by reduce-scan—operator above. In order, they are: sum, prod-
uct, logical-and, logical-or, bitwise-and, bitwise-or, bitwise-exclusive-or, minimum, maximum, minimum-
with-location, and maximum-with-location.

The expression on the right-hand side of the reduce keyword can be of any type that can be iterated over
and to which the reduction operator can be applied. For example, the bitwise-and operator can be applied to
arrays of boolean or integral types to compute the bitwise-and of all the values in the array.

The minimum-with-location and maximum-with-location reductions take a 2-tuple of arguments where the
first tuple element is the collection of values for which the minimum/maximum value is to be computed.
The second tuple element is a collection of indices with the same size and shape that provides names for the
locations of the values in the first argument. The reduction returns a tuple containing the minimum/maximum
value in the first position and the location of the value in the second position.

Example.

The first line below computes the smallest element in an array A as well as its index, storing
the results in minA and minALoc, respectively. It then computes the largest element in a forall
expression making calls to a function foo (), storing the value and its number in maxval and

maxValNum.
var (minA, minALoc) = minloc reduce (A, A.domain);
var (maxVal, maxValNum) = maxloc reduce ([i in 1..n] foo(i), 1..n);

User-defined reductions are specified by preceding the keyword reduce by the class type that implements
the reduction interface as described in §24.3]

144 Chapel Language Specification

24.2 Scan Expressions

A scan expression applies a scan operator to an aggregate expression, resulting in an aggregate expression of
the same size and shape. The output values represent the result of the operator applied to all elements up to
and including the corresponding element in the input.

The syntax for a scan expression is given by:

SC&H*@XPI’CSSI'OHZ
reduce-scan—operator scan expression
type scan expression

The built-in scans are defined in reduce-scan—operator. These are identical to the built-in reductions and are

described in §24.1]

The expression on the right-hand side of the scan can be of any type that can be iterated over and to which
the operator can be applied.

User-defined scans are specified by preceding the keyword scan by the class type that implements the scan
interface as described in §24.3]

Status note. Currently, variables of unspecified type that are initialized using a scan of a multi-
dimensional array will cause the variable to be inferred to be a 1D array rather than preserving
the size and shape of the input aggregate expression.

24.3 User-Defined Reductions and Scans

User-defined reductions and scans are supported via class definitions where the class implements a structural
interface. The definition of this structural interface is forthcoming. The following paper sketched out such an
interface:

S. J. Deitz, D. Callahan, B. L. Chamberlain, and L. Snyder. Global-view abstractions for user-
defined reductions and scans. In Proceedings of the Eleventh ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2006.

Input and Output 145

25 Input and Output

Chapel provides a built-in £ile type to handle input and output to files using functions and methods called
read, write, and writeln.

25.1 Thefile type

The file type contains the following fields:

e The filename field is a st ring that contains the name of the file.
e The path field is a st ring that contains the path of the file.
e The mode field is a st ring that indicates whether the file is being read or written.

e The style field can be set to text or binary to specify that reading from or writing to the file should
be done with text or binary formats.

These fields can be modified any time that the file is closed.

The mode field supports the following strings:

e "r" The file can be read.

e "yw" The file can be written.

Status note. The style field is not yet implemented. All input and output is done in text mode.
All files must be text files.

There is an expectation that there will be more styles to control the default reading and writing
methods.

The file type supports the following methods:

e The open () method opens the file for reading and/or writing.
e The close () method closes the file for reading and/or writing.

e The isOpen method returns true if the file is open for reading and/or writing, and otherwise returns
false.

e The £lush () method flushes the file, finishing outstanding reading and writing.

Additionally, the file type supports the methods read, write, and writeln for input and output as discussed

in {53 and

146 Chapel Language Specification

25.2 Standard files stdout, stdin, and stderr

The files stdout, stdin, and stderr are predefined and map to standard output, standard input, and stan-
dard error as implemented in a platform dependent fashion.

25.3 The write, writeln, and read functions

The built-in function write can take an arbitrary number of arguments and writes each of the arguments out
in turn to stdout. The built-in function writeln has the same semantics as write but outputs an end-of-
line character after writing out the arguments. The built-in function read can take an arbitrary number of
arguments and reads each of the arguments in turn from stdin.

These functions are wrappers for the methods on files described next.

Example. The writeln wrapper function allows for a simple implementation of the Hello-
World program:

writeln("Hello, World!");

25.4 User-Defined writeThis methods

To define the output for a given type, the user must define a method called writeThis on that type that takes
a single argument of Writer type. If such a method does not exist, a default method is created.

25.5 The write and writeln method on files

The file type supports methods write and writeln for output. These methods are defined to take an
arbitrary number of arguments. Each argument is written in turn by calling the writeThis method on that
argument. Default writeThis methods are bound to any type that the user does not explicitly create one for.

A lock is used to ensure that output is serialized across multiple computations.

25.5.1 The write and writeln method on strings

The write and writeln methods can also be called on strings to write the output to a string instead of a file.

Input and Output 147

25.5.2 Generalized write and writeln

The writer class contains no arguments and serves as a base class to allow user-defined classes to be written
to. If a class is defined to be a subclass of Writer, it must override the writeIt method that takes a string
as an argument.

Example. The following code defines a subclass of Writer that overrides the writeIt method
to allow it to be written to. It also overrides the writeThis method to override the default way
that it is written.
class C: Writer {
var data: string;
def writelIt (s: string) ({
data += s.substring(l);
}
def writeThis(x: Writer) {
x.write (data);
}
}

var c = C();
c.write (41, 32, 23, 14);
writeln(c);

The c class filters the arguments sent to it, printing out only the first letter. The output to the
above is thus 4321.

25.6 The read method on files

The file type supports a method read that takes an arbitrary number of arguments. Each argument is read
in turn by calling a method also bound to the £ile type that takes a single argument of that type.

The £ile type also supports an overloaded method read that has a single generic type argument. It reads a
single value of the specified type from the file and returns it.

Example. The following line of code reads a value of type int from stdin and uses it to
initialize variable x (causing x to have an inferred type of int):

var x = stdin.read(int);

25.7 Default read and write methods

Default write methods are created for all types for which a user write method is not defined. They have
the following semantics:

e arrays Outputs the elements of the array in row-major order where rows are separated by line-feeds
and blank lines are used to separate other dimensions.

e domains Outputs the dimensions of the domain enclosed by [and 1.

148 Chapel Language Specification

e ranges Outputs the lower bound of the range followed by . . followed by the upper bound of the range.
If the stride of the range is not one, the output is additionally followed by the word by followed by the
stride of the range.

o tuples Outputs the components of the tuple in order delimited by (and), and separated by commas.

e classes Outputs the values within the fields of the class prefixed by the name of the field and the
character =. Each field is separated by a comma. The output is delimited by { and }.

e records Outputs the values within the fields of the class prefixed by the name of the field and the
character =. Each field is separated by a comma. The output is delimited by (and).

Default read methods are created for all types for which a user read method is not defined. The default
read methods are defined to read in the output of the default write method.

Standard Modules 149

26 Standard Modules

This section describes predefined functions that are available to any Chapel program as well as a set of
standard modules that, when used, define a set of functions and types available to Chapel programs. The
standard modules include the following:

BitOps Bit manipulation routines

Math (used by default) Math routines

Random Random number generation routines

Standard (used by default) Basic routines

Time Types and routines related to time

Types (used by default) Routines related to primitive types

There is an expectation that each of these modules will be extended and that more standard modules will be
defined.

26.1 BitOps

The module BitOps defines routines that manipulate the bits of values of integral types.

def bitPop(i: integral): int
Returns the number of bits set to one in the integral argument i.
def bitMatMultOr(i: uint (64), Jj: uint(64)): uint (64)

Returns the bitwise matrix multiplication of i and j where the values of uint (64) type are treated as
8 x 8 bit matrices and the combinator function is bitwise or.

def bitRotLeft (i: integral, shift: integral): i.type
Returns the value of the integral argument i after rotating the bits to the left shift number of times.
def bitRotRight (i: integral, shift: integral): i.type

Returns the value of the integral argument i after rotating the bits to the right shift number of times.

26.2 Math

The module Math defines routines for mathematical computations. This module is used by default; there is no
need to explicitly used this module. The Math module defines routines that are derived from and implemented
via the standard C routines defined in math.h.

def abs(i: int (?w)): int (w)
def abs (i: uint (?w)): uint (w)
def abs(x: real): real

def abs(x: complex): real

150

def

def

def

def

def

def

def

def

def

def

def

def

def

Chapel Language Specification

Returns the absolute value of the argument.
acos (x: real): real

Returns the arc cosine of the argument. It is an error if x is less than —1 or greater than 1.
acosh(x: real): real

Returns the inverse hyperbolic cosine of the argument. It is an error if x is less than 1.

asin(x: real): real
Returns the arc sine of the argument. It is an error if x is less than —1 or greater than 1.
asinh(x: real): real

Returns the inverse hyperbolic sine of the argument.

atan(x: real): real

Returns the arc tangent of the argument.

atan2 (y: real, x: real): real

Returns the arc tangent of the two arguments. This is equivalent to the arc tangent of y / x except
that the signs of y and x are used to determine the quadrant of the result.

atanh (x: real): real

Returns the inverse hyperbolic tangent of the argument. It is an error if x is less than —1 or greater than
1.

cbrt (x: real): real
Returns the cube root of the argument.
cell (x: real): real

Returns the value of the argument rounded up to the nearest integer.

conjg(a: complex(?w)): complex (w)
Returns the conjugate of a.
cos(x: real): real

Returns the cosine of the argument.

cosh (x: real): real

Returns the hyperbolic cosine of the argument.

erf(x: real): real

Standard Modules 151

def

def

def

def

def

def

def

def

def

def
def
def

def

Returns the error function of the argument defined as

% /0 ’ eVt

for the argument x.
erfc(x: real): real

Returns the complementary error function of the argument. This is equivalentto 1.0 - erf (x).
exp (x: real): real

Returns the value of e raised to the power of the argument.
exp2 (x: real): real

Returns the value of 2 raised to the power of the argument.
expml (x: real): real

Returns one less than the value of e raised to the power of the argument.
floor(x: real): real

Returns the value of the argument rounded down to the nearest integer.
lgamma (x: real): real

Returns the natural logarithm of the absolute value of the gamma function of the argument.
log(x: real): real

Returns the natural logarithm of the argument. It is an error if the argument is less than or equal to
ZEero.

loglO(x: real): real

Returns the base 10 logarithm of the argument. It is an error if the argument is less than or equal to
Zero.

loglp(x: real): real

Returns the natural logarithm of x+1.

log2(i: int (?w)): int (w)
log2(i: uint (?w)): uint (w)
log2(x: real): real

Returns the base 2 logarithm of the argument. It is an error if the argument is less than or equal to zero.

nearbyint (x: real): real

152 Chapel Language Specification

Returns the rounded integral value of the argument determined by the current rounding direction.
def rint(x: real): real

Returns the rounded integral value of the argument determined by the current rounding direction.
def round(x: real): real

Returns the rounded integral value of the argument. Cases halfway between two integral values are
rounded towards zero.

def sin(x: real): real

Returns the sine of the argument.
def sinh(x: real): real

Returns the hyperbolic sine of the argument.
def sqgrt(x: real): real

Returns the square root of the argument. It is an error if the argument is less than zero.
def tan(x: real): real

Returns the tangent of the argument.
def tanh(x: real): real

Returns the hyperbolic tangent of the argument.
def tgamma (x: real): real

Returns the gamma function of the argument defined as

o0
/ t*leTtdt
0

for the argument .

def trunc(x: real): real

Returns the nearest integral value to the argument that is not larger than the argument in absolute value.

Standard Modules 153

26.3 Random

The module Random supports the generation of pseudo-random values and streams of values. The current
interface is minimal and should be expected to grow and evolve over time.

class RandomStream

Implements a pseudo-random stream of values. Our current implementation generates the values using
a linear congruential generator. In future versions of this module, the RandomStream class will offer a
wider variety of algorithms for generating pseudo-random values.

const RandomStream.seed: int (64)

The seed value for the random stream. If no seed is specified in the constructor, the millisecond value
of the current time is used. The seed value must be an odd integer. If an even integer is supplied, the
class constructor will increment it to obtain an odd integer.

def RandomStream.fillRandom(x:[?D] real)

Fill the argument array, x, with the next |D| values of the pseudo-random stream. Arrays of arbitrary
rank can be passed to this routine, causing the 1D stream of values to be mapped to the array elements
according to the array’s default iteration order. Once our implementation supports distributed arrays,
this routine is intended to fill the array’s values in parallel.

def RandomStream.fillRandom(x:[?D] complex)

Similar to the previous routine, but for use with arrays of complex values. The elements are filled
in the same order as above except that pairs of values from the stream are assigned to each element,
the first to the real component, the second to the imaginary. As this module matures, we will support
fillRandom for arrays of other element types as well.

SeedGenerator
A symbol that can be used to generate seed values for the RandomStream class.
SeedGenerator.clockMs

Generates a seed value using the milliseconds value from the current time. As this module matures,
SeedGenerator will support additional mechanisms for generating seed values.

def fillRandom(x:[], initseed: int (64))

A routine provided for convenience to support filling an array x with pseudo-random values without
explicitly constructing an instance of the RandomStream class, useful for filling a single array or
multiple arrays which require no coherence between them. The initseed parameter corresponds to
the seed member of the Randomst ream class and will default to the milliseconds value of the current
time if no seed value is provided.

154 Chapel Language Specification

26.4 Search

The Search module is designed to support standard search routines. The current interface is minimal and
should be expected to grow and evolve over time.

def LinearSearch (Data: [?Dom], val): (bool, index (Dom))

Searches through the pre-sorted array Data looking for the value val using a sequential linear search.
Returns a tuple indicating (1) whether or not the value was found and (2) the location of the value if it
was found, or the location where the value should have been if it was not found.

def BinarySearch(Data: [?Dom], val, in lo = Dom.low, in hi = Dom.high);

Searches through the pre-sorted array Data looking for the value val using a sequential binary search.
If provided, only the indices 1o through hi will be considered, otherwise the whole array will be
searched. Returns a tuple indicating (1) whether or not the value was found and (2) the location of the
value if it was found, or the location where the value should have been if it was not found.

26.5 Sort

The sort module is designed to support standard sorting routines. The current interface is minimal and
should be expected to grow and evolve over time.

def InsertionSort (Data: [?Dom]) where Dom.rank == 1;
Sorts the 1D array Data in-place using a sequential insertion sort algorithm.
def QuickSort (Data: [?Dom]) where Dom.rank == 1;

Sorts the 1D array Data in-place using a sequential implementation of the QuickSort algorithm.

26.6 Standard

def ascii(s: string): int

Returns the ASCII code number of the first letter in the argument s.

def assert (test: bool) {

Exits the program if test is false and prints to standard error the location in the Chapel code of the
call to assert. If test is true, no action is taken.

def assert (test: bool, args ...?numArgs) {

Exits the program if test is false and prints to standard error the location in the Chapel code of the
call to assert as well as the rest of the arguments to the call. If test is true, no action is taken.

def complex.re: real

Returns the real component of the complex number.

def complex.im: real

Standard Modules 155

def

def

def

def

def

def

def

def

def

Returns the imaginary component of the complex number.

complex.=re (f: real)

Sets the real component of the complex number to £.

complex.=im(f: real)

Sets the imaginary component of the complex number to £.

exit (status: int)

Exits the program with code status.

halt () {

Exits the program and prints to standard error the location in the Chapel code of the call to halt as
well as the rest of the arguments to the call.

halt (args ...?numArgs) {

Exits the program and prints to standard error the location in the Chapel code of the call to halt as
well as the rest of the arguments to the call.

length(s: string): int

Returns the number of characters in the argument s.

max(x, y...?k)
Returns the maximum of the arguments when compared using the “greater-than” operator. The return
type is inferred from the types of the arguments as allowed by implicit coercions.

min(x, y...?k)
Returns the minimum of the arguments when compared using the “less-than” operator. The return type
is inferred from the types of the arguments as allowed by implicit coercions.

string.substring(x): string

Returns a value of string type that is a substring of the base expression. If x is ¢, a value of type int,
then the result is the ith character. If x is a range, the result is the substring where the characters in the
substring are given by the values in the range.

156 Chapel Language Specification

26.7 Time

The module Time defines routines that query the system time and a record Timer that is useful for timing
portions of code.

record Timer

A timer is used to time portions of code. Its semantics are similar to a stopwatch.

enum TimeUnits { microseconds, milliseconds, seconds, minutes, hours };

The enumeration TimeUnits defines units of time. These units can be supplied to routines in this
module to specify the desired time units.

def getCurrentDate(): (int, int, int)

Returns the year, month, and day of the month as integers. The year is the year since 0. The month is
in the range 1 to 12. The day is in the range 1 to 31.

def getCurrentTime (unit: TimeUnits = seconds): real

Returns the elapsed time since midnight in the units specified.

def Timer.clear ()

Clears the elapsed time stored in the Timer.

def Timer.elapsed(unit: TimeUnits = seconds): real

Returns the cumulative elapsed time, in the units specified, between calls to start and stop. If the
timer is running, the elapsed time since the last call to start is added to the return value.

def Timer.start ()

Start the timer. It is an error to start a timer that is already running.

def Timer.stop()

Stops the timer. It is an error to stop a timer that is not running.

def sleep(t: uint)

Delays the computation for t seconds.

26.8 Types

def numBits (type t) param : int
Returns the number of bits used to store the values of type t. This is implemented for all numeric types
and bool.

def numBytes (type t) param : int
Returns the number of bytes used to store the values of type t. This is implemented for all numeric
types and bool.

def max (type t): t

Returns the maximum value that can be stored in type t. This is implemented for all numeric types.

def min(type t): t

Returns the minimum value that can be stored in type t. This is implemented for all numeric types.

Biayale

Wt

)

v 0P oe
i =
REE

Eéﬂﬁ

—

argv,

artays, [13 105,
aliases to,[19]
arithmetic, [[11]
arithmetic, strided, [T12]

as formal arguments, @, m

assignment, [TO§]
association to domains, [T1g]

associative, [116]
distributed,
enumerated,
indexing, [T0g]
initialization,

opaque, [T17]
predefined functions, [TT9]
promotion, [T09]
slice, [T13]
slicing, [T0§]
sparse, [I14]
types, [107]
assignment, [64]
tuples, 93]
atomic, m

atomic transactions, [137]
automatic memory management,

begin, @

block, [63]

block level statement, [T9} [64]
bool, @

by, @

case sensitivity, 29]
casts,

class, @

classes, [16] B3]

assignment, 83
constructors,
declarations, [83)]
fields, [83]
generic, [12§]
getters, [89]
indexing, [87]
inheritance, [§9]
iterating, [38]
methods,
nested,
setters, [89]
cobegin, m
coforall, m
coforall loops, [133]
command-line arguments,
comments,
compiler errors
user-defined, [31]
complex
casts from tuples, [49)]

complex, @
conditional

expression, [62]

statement, [66]
conditional expressions, [T§]
conditional statement

157

158

dangling else, [66]
config,@
const,@@

constants
compile-time, [41]
runtime, 4]

conversions
bool, 3] [43]
class,[d4] [43]
enumeration, 44} 3]
explicit, [43]
implicit, [43]
numeric, [43] {3
parameter, [44]

record, [44] (3]

def, |7_3|
default values, [77]

distributions, [T47]

domains, [13] [T03]
arithmetic, [TT1]
arithmetic literals, [TT1]
arithmetic, strided, [T12]
as formal arguments, [T06]
assignment,
association to arrays, @
associative, [[16]
distributed,
enumerated, [TT7]
index types, [T06]
opaque,
predefined functions, [TT8§]
promotion, [I07]
sparse, [TT4]

subdomains, [TT3]
types, [103]

dynamic dispatch, [00]

else,IG_EI
eltType,m
enum,[T4]

enumerated types, [37]
execution environment,
exploratory programming,
expression

as a statement, [64]
expression statement,

fields

generic types, [129]
without types, [129]

file type, 23] [T43]

Chapel Language Specification

methods, [T43]
standard files, [T46]
for, @ @
for loops, [19] [68]

parameters, [69]

forall,[13]]
forall expressions, [132]

and conditional expressions, [133]

forall loops, [T31]
alternative syntax, [I31]

ordered, [132]
formal arguments, [76]
arithmetic arrays, [T13|
array types,
defaults, [77]
domains, [T06]
generic types, [127]
naming,
queried types, [126]
tuples, 98|
without types, [126]
function calls, [d7][76]
functions, [73)]
as lvalues,
as parameters, [79]
candidates,
functions without parentheses,
generic, [123]
intents, 21]
most specific, [§1]

nested, [82]
overloading, [79]

syntax, [73]

variable number of arguments, [83]
visible,

with class arguments, [0

generics
function visibility, [127]
functions, 21] [123]
methods,
types, [128]
Global,[T40]

high,[T0T]

identifiers, 29]
if,[62}[66]
imaginary, @
in, @
indexing, 48|
inheritance, [§9]

Standard Modules

inout,|7_'g|

int, @

integral,

intents, [77]
in,
inout,@
out, @
param,m
type,m

iterators, 23] [121]
and arrays, [T2]]
and generics, [122]
on, [T47]

keywords, [30]
let, @

literals

primitive type, 33]
local, [T39]
locale, m m
Locales

methods, [T39]
Locales, ﬂlﬁl
locales, [139]
low, m
lvalue, 9]

main, @ m

member access, 48] [36]

memory consistency model, [137]
module, @

modules, [TT] [77]
and files, [73]

nested,
using, [69]

multiple inheritance, 90|

named arguments, [77]

numeric,m

numLocales, @

on, [140

operators
arithmetic, 51]
array alias, [T9]
assignment, [T§]
associativity, [50]
bitwise, [56]
logical, [5§]
overloading,

precedence, [17} [50]

relational, 39|

swap,[19]
ordered, m @
out, @

param, [T} @]
parameters, 1]
configuration, [42]
in classes or records, [12§]

query expression, [T§]

ranges, [13]
arithmetic operators, [I01]
assignment, [TOT]
bounded,
by operator, [I01]
integral element type,
literals,
open interval,
operators, [101]
slicing, [T02]
strided, [TOT]
types,
unbounded, [T00]

read, [146]
default methods, [T47]
on files,

read, ﬂlgl

readfFF, m

readXF, @

readXX, m

real, @

record, @

records, [16] O]
assignment,
differences with classes, |Zf|
equality, [92]
generic, [128]
inequality, [92]
inheritance, 01]

remote, [139]
reserved words,

return, |7_6|

scalar promotion
tensor product iteration, @
zipper iteration, [122]
select,
serial, @
single, m

standard modules, [[49]

159

160

BitOps, 49
Math, [T49]
Random, [T33]
Search,[154]
Sort, [154]
Standard, [154]
Time, [156]
statement, [63)]
stride, ﬂT_ﬂ-I

string, le
subdomains, [[T§]

swap

operator, [63)]
statement, [63)]

sync,[136]

synchronization variables, [133]
built-in functions on,
implicit in cobegin, [136]
of class type, [137]
of record type, [137]
single, m
sync,[136]

tensor product iterator, [68]

then, I@

these,

this, m

tuple
scalar, [06]
tuple, [06]

tuples, [T3]
assignment, 03]
destructuring, [06]
homogeneous, [07]
indexing, 98|
operators,
relational, [06]

types, [93]

variable declarations, [97]

type aliases, [38]

in classes or records, [12§]
type inference,
type select statements, [20]
types

primitive, [12} [33]

uint,@
union,lﬂ
unions, 93]

assignment, [03]

fields, 03]

Chapel Language Specification

type select,

use, [69]

variables

configuration, 12 @2
declarations, [TT] 39]
default initialization, 40|
global,

local,

when,
where,
whi le,m
while loops,
white space, [29]
write, [146]
default methods, [T47]
on files, [146]
on strings, [146]
write,
writeFE,[137]
writeln,m
Writer, m
writexg,[137]
writex¥,[137]

yield,m

zipper iteration, [68]

	Title
	Table of Contents
	Scope
	Notation
	Organization
	Acknowledgments
	Language Overview
	Guiding Principles
	General Parallel Programming
	Control of Locality
	Object-Oriented Programming
	Generic Programming

	Getting Started
	Variables
	Types
	Primitive Types
	Ranges
	Domains and Arrays
	Enumerations
	Tuples
	Classes
	Records
	Summary of Non-Primitive Types

	Expressions
	Statements
	Functions and Iterators
	Input and Output
	Parallelism

	Lexical Structure
	Comments
	White Space
	Case Sensitivity
	Tokens
	Identifiers
	Keywords
	Literals
	Operators and Punctuation
	Grouping Tokens

	User-Defined Compiler Errors

	Types
	Primitive Types
	The Bool Type
	Signed and Unsigned Integral Types
	Real Types
	Complex Types
	Imaginary Types
	The String Type
	Primitive Type Literals

	Enumerated Types
	Class Types
	Record Types
	Union Types
	Tuple Types
	Range Types
	Domain and Array Types
	Type Aliases

	Variables
	Variable Declarations
	Default Initialization
	Local Type Inference

	Global Variables
	Local Variables
	Constants
	Compile-Time Constants
	Runtime Constants

	Configuration Variables

	Conversions
	Implicit Conversions
	Implicit Bool and Numeric Conversions
	Implicit Enumeration Conversions
	Implicit Class Conversions
	Implicit Record Conversions
	Implicit Compile-Time Constant Conversions
	Implicit Statement Bool Conversions

	Explicit Conversions
	Explicit Numeric Conversions
	Explicit Enumeration Conversions
	Explicit Class Conversions
	Explicit Record Conversions

	Expressions
	Literal Expressions
	Variable Expressions
	Call Expressions
	Indexing Expressions
	Member Access Expressions

	The Query Expression
	Casts
	LValue Expressions
	Operator Precedence and Associativity
	Operator Expressions
	Arithmetic Operators
	Unary Plus Operators
	Unary Minus Operators
	Addition Operators
	Subtraction Operators
	Multiplication Operators
	Division Operators
	Modulus Operators
	Exponentiation Operators

	Bitwise Operators
	Bitwise Complement Operators
	Bitwise And Operators
	Bitwise Or Operators
	Bitwise Xor Operators

	Shift Operators
	Logical Operators
	The Logical Negation Operator
	The Logical And Operator
	The Logical Or Operator

	Relational Operators
	Ordered Comparison Operators
	Equality Comparison Operators

	Miscellaneous Operators
	The String Concatenation Operator
	The Arithmetic Domain By Operator
	The Range By Operator

	Let Expressions
	Conditional Expressions

	Statements
	Blocks
	Block Level Statements
	Expression Statements
	Assignment Statements
	The Swap Statement
	The Conditional Statement
	The Select Statement
	The While and Do While Loops
	The For Loop
	Zipper Iteration
	Tensor Product Iteration
	Parameter For Loops

	The Use Statement
	The Type Select Statement
	The Empty Statement

	Modules
	Module Definitions
	Program Execution
	The main Function
	Command-Line Arguments
	Module Execution
	Programs with a Single Module

	Using Modules
	Explicit Naming

	Nested Modules
	Implicit Modules

	Functions
	Function Definitions
	The Return Statement
	Function Calls
	Formal Arguments
	Named Arguments
	Default Values

	Intents
	The Blank Intent
	The In Intent
	The Out Intent
	The Inout Intent

	Variable Functions
	Parameter Functions
	Function Overloading
	Function Resolution
	Identifying Visible Functions
	Determining Candidate Functions
	Determining More Specific Functions

	Functions without Parentheses
	Nested Functions
	Accessing Outer Variables

	Variable Length Argument Lists

	Classes
	Class Declarations
	Class Assignment
	Class Fields
	Class Field Accesses

	Class Methods
	Class Method Declarations
	Class Method Calls
	The this Reference
	The this Method
	The these Method

	Class Constructors
	The Default Constructor

	Variable Getter Methods
	Inheritance
	Accessing Base Class Fields
	Derived Class Constructors
	Shadowing Base Class Fields
	Overriding Base Class Methods
	Inheriting from Multiple Classes

	Nested Classes
	Automatic Memory Management

	Records
	Record Declarations
	Class and Record Differences
	Records as Value Classes
	Record Inheritance
	Record Assignment

	Default Comparison Operators on Records

	Unions
	Union Declarations
	Union Fields

	Union Assignment
	The Type Select Statement and Unions

	Tuples
	Tuple Expressions
	Tuple Type Definitions
	Tuple Assignment
	Tuple Operators
	Tuple op Scalar
	Tuple op Tuple
	Tuple Relational Operators

	Tuple Destructuring
	Variable Declarations in a Tuple
	Ignoring Values with Underscore

	Homogeneous Tuples
	Declaring Homogeneous Tuples

	Tuple Indexing
	Formal Arguments of Tuple Type
	Formal Argument Declarations in a Tuple

	Ranges
	Range Types
	Literal Range Values
	Bounded Range Literals
	Unbounded Range Literals

	Range Methods
	Range Assignment
	Range Operators
	By Operator
	Arithmetic Operators
	Range Slicing
	Open Interval Notation

	Domains and Arrays
	Domains
	Domain Types
	Index Types
	Domain Assignment
	Formal Arguments of Domain Type
	Iteration over Domains
	Domain Promotion of Scalar Functions

	Arrays
	Array Types
	Array Indexing
	Array Slicing
	Array Assignment
	Formal Arguments of Array Type
	Iteration over Arrays
	Array Promotion of Scalar Functions
	Array Initialization
	Array Aliases

	Arithmetic Domains and Arrays
	Arithmetic Domain Literals
	Arithmetic Domain Types
	Strided Arithmetic Domains
	Arithmetic Domain Slicing
	Arithmetic Array Indexing
	Arithmetic Array Slicing
	Formal Arguments of Arithmetic Array Type

	Sparse Domains and Arrays
	Sparse Domain Types
	Sparse Domain Assignment
	Modifying a Sparse Domain
	Sparse Arrays

	Associative Domains and Arrays
	Changing the Indices in Associative Domains
	Testing Membership in Associative Domains

	Opaque Domains and Arrays
	Enumerated Domains and Arrays
	Association of Arrays to Domains
	Subdomains
	Predefined Functions and Methods on Domains
	Predefined Functions and Methods on Arithmetic Domains

	Predefined Functions and Methods on Arrays

	Iterators
	Iterator Functions
	The Yield Statement
	Iterator Calls
	Iterators in For and Forall Loops
	Iterators as Arrays
	Iterators and Generics

	Scalar Promotion
	Zipper Promotion
	Tensor Product Promotion
	Promotion and Evaluation Order

	Generics
	Generic Functions
	Formal Type Arguments
	Formal Parameter Arguments
	Formal Arguments without Types
	Formal Arguments with Queried Types
	Formal Arguments of Generic Type
	Formal Arguments of Generic Array Types

	Function Visibility in Generic Functions
	Generic Types
	Type Aliases in Generic Types
	Parameters in Generic Types
	Fields without Types
	Fields of Generic Types
	Generic Methods
	The eltType Type

	Where Expressions
	Example: A Generic Stack

	Parallelism and Synchronization
	The Forall Loop
	Alternative Forall Loop Syntax
	The Ordered Forall Loop

	The Forall Expression
	Filtering Predicates

	The Cobegin Statement
	The Coforall Loop
	The Begin Statement
	The Ordered Expression
	The Serial Statement
	Synchronization Variables
	Single Variables
	Sync Variables
	Additional Synchronization Variable Functions
	Synchronization Variables of Record and Class Types

	Memory Consistency Model
	Atomic Statement

	Locality and Distribution
	Locales
	The Locale Type
	Locale Methods
	Predefined Locales Array
	Querying the Locale of a Variable

	Specifying Locales for Computation
	On
	On and Iterators

	Distributions
	Distributed Domains
	Distributed Arrays
	Undistributed Domains and Arrays

	Standard Distributions
	User-Defined Distributions

	Reductions and Scans
	Reduction Expressions
	Scan Expressions
	User-Defined Reductions and Scans

	Input and Output
	The file type
	Standard files stdout, stdin, and stderr
	The write, writeln, and read functions
	User-Defined writeThis methods
	The write and writeln method on files
	The write and writeln method on strings
	Generalized write and writeln

	The read method on files
	Default read and write methods

	Standard Modules
	BitOps
	Math
	Random
	Search
	Sort
	Standard
	Time
	Types

	Index

