Preprint.

A Type System for Distributed Arrays

Christian Grothoff Jens Palsberg Vijay Saraswat
Dept. of Computer Science UCLA Computer Science Dept. IBM T.J. Watson Research Center
University of Denver University of California, P.O. Box 704, Yorktown Heights,
christian@grothoff.org Los Angeles NY 10598, USA
palsberg@ucla.edu vsaraswa@us.ibm.com
Abstract 1. Introduction

Multicore systems with non-uniform memory are of increas- 1.1 Background
ing importance in desktop and server computing. Such sys-according to Moore’s Law, the number of transistors on an
tems represent both potentially vast computing power andpieqgrated circuit doubles every 18 months. In the past few
significant research problems in expressing and maximiz-years one of the practical manifestations of Moore’s Law
ing parallelism, which has prompted researchers to designp 4 peen that microprocessor chip packages have begun to
new languages such as X10, Fortress, and Chapel. Common,taqrate more than one execution unit,core on a single
to these languages is support for location-aware program-gie “aAs the physical limits of processor clockspeeds are
ming, which gives the programmer control over the location peginning to be reached, chip manufacturers are now turning
of both data and computations. One primary data structure, miticore chips to keep performance increases on track.
in these languages is the distributed array, which elevates the \1.iticore systems are quickly becoming mainstream. For
location of individual array elements to a language concept. gyample, Intel released its first dual-core processor, namely
A location-aware algorithm executing on a particular Core e |nte| Pentium processor Extreme Edition (www.intel.com)
must be designed to exploit the locality of the distributed ar- ;, 2005; AMD offers quad-core Opteron processors (multi-
ray, because access to remote data is far slower than to Ioca&ore.amd.com); and IBM's Cell processor has one general-
data. In this paper, we solve the open problem of statically urpose core and eight specialized cores (www.ibm.com).
checking whether such a program has achieved the deSireCgun Microsystems’ Niagara 2 processor will debut with sup-
locality of access. .)) port for 64 hardware threads, with 4 threads per core and 8
We present a statically-typed core language in which @ ¢qreq per processor (http:/www.sun.com/processors/niagara).
well-typed program only accesses Io_ca_l parts of distributed Thea full utilization of the computing power of multi-
arrays and every array access is within the array bounds..re systems is a major challenge, and for that and similar
The type system integrates dependent types and set conghoses; researchers have designed new programming lan-
straints, with the key operation during type checking be- guages such as X10 [9], Fortress [2], Chapel [5], Titanium
ing constraint entailment. Type checking for this system is [13], Co-Array Fortran [19], and ZPL [7]. Although these
co-NP-complete. We have integrated our type system into |5qages are highly different (e.g. X10 is derived from a
the object-oriented language X10 and shown that for seven .= jike language, Co-Array Fortran is a Fortran-like lan-

benchmarks, a programmer needs insert only a few casts tqy5ge, etc), they also have important similarities. For exam-

make a program type check. ple, all of the first four of those languages share the notion of
Categories and Subject DescriptorsD.3 [Softwarg: Pro- distributed arrayswhere the location of individual array el-
gramming Languages ements is elevated to a language concept. Distributed arrays

are a key data structure in high performance computing. We
will use X10 terminology for four basic notions associated
Keywords dependent types, non-uniform memory with distributed arrays:

General Terms languages, performance, verification

apointis an array index,

aregionis a set of array indices,

a placeis a location where data is stored and code is
executed, and

[Copyright notice will appear here once 'preprint’ option is removed.]

adistributionis a mapping from regions to places.

1 2007/3/20

Language | X10 | Fortress | Chapel | Titanium | Co-Array Fortran| ZPL
Array index point index index point index index
Set of array indiceg region n/a domain domain n/a region
Location place region locale demesne image n/a
Array distribution || distribution | distribution | distribution | distribution n/a n/a

Table 1. Language terminology.

The notion of regions stems from ZPL where the idea is each region. The type system uses dependent types that
to allow the domain of an array to be any finite set of are parameterized by points, regions, and places. The type
indices, not just intervals [6, 8, 7]. In their most general system integrates dependent types and set constraints. The

form, a programmer can use regions to specify dense, sparsekey operation during type checking is constraint entailment;

multidimensional, and even hierarchical arrays.

The notion of a distribution enables a programmer to
specify, for example, that the elements of an array with
indices{1, 2, 3,4} will be distributed such that:

elements with indices 1,2: will be allocated at placé;
elements with indices 3,4: will be allocated at placé.

Table 1 gives a overview of the terminology used in the six
languages.

Distributed arrays are linked to locality-aware algorithms
in which the code on a core primarily accesses the local part
of an array. A locality-aware algorithm running on a multi-
core computer with nonuniform memory favors access to
local data, which is much faster, over access to remote data
For example, we may have coderunning at place?;, and
codee, running at placeP,, ande; will try to access only
data atP;, while es will try to access only data a®,. X10
enables programmers to ensure data locality by providing
constructs to programatically shift the place of execution.

This leaves us with the question: did the implementer of
the locality-aware algorithm get locality right? We focus on

the X10 policy that all accesses to mutable data be place-

local. We would prefer to check that all accesses are local
beforerunning the program and thereby give the locality-
aware programmer as much help as possible.

Problem: Can we statically check that a program only
accesses local parts of distributed arrays?

This problem has remained open until now.

1.2 Our Results

In this paper we present a statically-typed core language
for computing with distributed arrays. The core language
is a dependently-typed lambda calculus [3] with distributed
arrays and place-shifting operations. We prove that a well-
typed program can only access local parts of distributed
arrays; we also prove that every array access is within the

array bounds. Our proof of type soundness uses the standard

technique based on proving preservation and progress.
Our distributed arrays are defined in terms of points,
regions, places, and, for simplicity, a fixed distribution for

type checking itself is co-NP-complete.

For each expression-level operator on points, regions, and
places, we have a similar type-level operator. A type-level
constraint is a conjunction of set constraints of the forms
ry C; ro ando €; r, wherery,ro,r are type-level set
expressionsy is a type-level point expression, add and
€; denote type-level subset inclusion and set membership,
respectively.

To type check an array access expresgidp:|, we must
(among other things) check that the access is within bounds
and to local data, that is, to data in the right place. Suppose
we find thaty, is an array over a region-typg, and that
12 iS @ point in region-types. We can then do the bounds
check by checking that, is a subset of, and we can do

the place check by checking that the data is at the current

place of computation. In our type system, the bounds check
is a constraint entailment problem, while the place check is
a type equivalence problem. In slogan form:

check of array access=
bounds check =
place check =

bounds check + place check
constraint entailment
type equivalence

We have integrated our type system into a variant of X10.
In our X10 version, a programmer can write a cast to signal
to the compiler that a combined subset and locality check
must be performed; all array accesses without explicit casts
are guaranteed to be within bounds. We have shown that for
seven benchmarks, a programmer needs insert only a few
casts to make a program type check. We have also measured
how many dynamic checks are executed as a result of those
casts; compared to doing the checks for every array access,
the reduction in checks is substantial.

Our choice of point-region-place algebra and form of set
constraints is sufficient to cover several fundamental exam-
ples, as we will demonstrate below. Changes to the alge-
bra or constraints would impact the complexity of the type
hecker, but would likely not change the style of the type
soundness proof.

In summary, this paper makes four contributions:

¢ a core language for computing with distributed arrays,

2007/3/20

¢ atype system that ensures locality of access and memorytheoretical results, and in Section 4 we present our experi-
safety for distributed arrays, mental results.

¢ design and implementation of a variant of X10 which 2

embodies our type system, and Example Programs

We will give a taste of our core language and type system via
six example programs. The first five example programs all
type check, while the sixth program does not. The programs
are written to highlight aspects of the language and type
system, and not necessarily to represent the most elegant

1.3 Related Work coding style. .
We use functions of the form®*z : t.e which run at the

Liblet and Aiken [17] presented three type systems for dis- jace where they are defined. Our core language also has
tributed data structures that distinguish between local andsnctions e : t.e which run at the place where they are
global data. Our type system goes further by supporting dis- c5|jeq. In both cases; is the name of the argumentis the
trlputed arrays and operations that shift the place of COMPU- e of the argument, andis the body which evaluates to
tation. _ the return value of the function.

Xi-and Pfenning [24, 25] presented a type system that gjmjlarly, we use dependent expressionslam k.e for
uses dependent types to guarantee that all array accesses afhich the body will be evaluated at the place where the
in bounds. Xi and Pfenning work with arrays defined over genendent expression was defined. Additionally, our core
intervals and use a decision procedure based on Pressburgq'(r;mguage has dependent expressibasa : k.c which are
arith_metic [21] in order to fshow the safety of array accesses. o\ gluated at the place they are called. In both casésthe
Inspired by Xi and Pfenning, our type system goes further e of argument; is the kind of the argument, ands the
by supporting distributed arrays. body.

Instead of types, one can use static analysis to eliminate Thq gifference betweek®s : t.c and lamta : k. is that

array—bounds_, checks. Suzuki and Ishihata [22] used th.eorerT\Nh”e both take a value as argumentgan only be used as a
proving to eliminate array-bounds checks. Our work is re- type while z can only be used asvalue The idea of using

lated in that our type checker relies on using decision pro- ;| 51ue as a type is what makes dependent types powerful.
cedures to settle subset and locality questions. For just-in- \yile two kinds of functions (and two kinds of depen-
time compiled languages such as Java where short compil§jent expressions) appear a bit excessive, we have found it

time is crucial, the ABCD algorithm [4] describes a light- ¢onyenient to have both; we have been unable to define one
weight analysis based on interval constraints that is capable, erms of the other.

of eliminating on average 45% of the array bounds checks.
The results range from 0 to 100% for individual benchmarks 2.1 init
and that may make it hard for programmers to write code The functioninit initializes all elements of an array to
that achieves consistently good performance. In contrast, the1, This example shows how to use (1) a region as a first-
type system for our core language guarantees that all arrayclass value, (2) @or-loop over a region, and (3) the place-
accesses (without explicit casts) are within bounds. changing operatioat (e;) {es }.
For parallel languages without programmer-definable dis-
tributions, researchers have developed algorithms for auto-1et init = lam®a :region(true).A"a:int[a].
matically determining distributions that can reduce or elimi- for (p in a.reg) {
nate nonlocal data access [10, 12, 16, 14, 11]. An emerging, . . at(a.reglepl) { alpl=t } }
point of view inherent in X10, Fortress, and Chapel is that in init<0:9>(new int[0:9])
the definition of d_istributions is best left to the Programmer. s ... [l : region(true). int[al — int
When speed is of utmost concern, a language designer
may decide to not require any bounds checks altogether. The functioninit takes two arguments, namely a re-
For example, the 2005 reference manual for Titanium [13] gion « and an array over regiona. Notice thato has kind
defines that operations which cause bounds violations resultregion (true) which means that can be any region. No-
in the behavior of the rest of the program beimefined tice also thatv is used in the type oi such thata must be
The semantics of our core language is similar: a violation an array over region.
of locality or an access out of bounds result in the semantics The use of the dependent typemakesinit polymor-
getting stuck. Our type system guarantees statically that suchphic: init can initialize any array without the need for any
errors cannot occur. Thus, our type system enables us to havéounds or place checking. In the body of he-expression,
both memory safety and high performance. we have the call ofnit<0:9>(new int[0:9]). The no-
Rest of the paper.In Section 2 we explain several exam- tation0:9 denotes the regiof0, 1, ...,9}. We use<.. .> to
ple programs; in Section 3 we present our core language anddenote an argument to a dependent expression.

e experimental results that show for a suite of seven bench-
marks, a programmer need insert only a few casts to make
a program type check.

3 2007/3/20

The expression.reg denotes the region over which the in the type ofh; in other words, the type df is essentially
arraya is defined. The loop variableranges over points in itself, which is the most accurate type possible.

a.reg. The body ofpartialinit initializes those points in the
The body of thefor-loop is the expressiost (a.reg[@p]) arraya which can be found at the plate The expression
{ ...}.The expressiona.reg[@p] denotes thelaceof the a.reg %s h denotes those points ia.reg which by the

element at poinp in the regiona.reg. Our core language fixed distribution ofa.reg are mapped to the place The

uses a fixed distribution for each region; the languages thatfor loop iterates only over points ia.reg %5 h and since

our core language models allow user-specified distributions. the for loop is wrapped it (h){. ..}, each access[p]
The loop bodyat(a.reglepl) { alpl=1 } does the will happen at the place cf[p].

computation ok [p]=1 at the place denoted lay. reg[@p]. Let us consider the type checking processafby] .

Given that the elements ef may be distributed on many First we explain the bounds check fofp]. The type of

places, the body of theor-loop will run on those places. a.regisreg a and the type ofi ispl v. As aresult, the type
Let us consider the type checking process for each of theof a.reg %s; his « % 7, which illustrates that we use a

two array accesses reg[@p] anda[p]. type operator to mirror the expression operator. The variable
Inthe case 0&.reg[@p] we have thak has typeint [a] pthengetsthe typgt (o, a %:), whereo is a fresh variable

and thata. reg has typereg «. The type system givegsthe for which we have the set constramte; « %, . The static

type pt (o, «), wherea is the region to whichp belongs, bounds check will verify that the type of the regionmfs

and o is a fresh type variable for which we have the set a subset of the type of the region &f which amounts to
constrainto €; «. We use the subscrigtto denote type- checking thaty %, v is a subset ofy, which is true for alk.
level operations. The type checker then does a bounds check Second we explain the place cheskp]. This check

by checking that the type of the regionmpfs a subset of the illustrates the use of the most importagpe equivalence
type of the regiora.. reg, which amounts to checking that rule in the type system. Recall that the goal of the place
is a subset ofy, which is true for alk. check is to determines that the current place of execution is

In the case o0& [p] =1 we must do the same bounds check the same as the placeafp]. The current place of execution
as we did fora. reg [@p] and we must also do a place check. is given by the enclosingt (h) expression, and we have that
The place check verifies that the data is at the current placeh has typepl . The type of the place of[p] is given by
of computation. In the body ot (a.reglepl) { ...}, the type expression[Q,(o,a %;)], which says that the
the place of computation is given yreg[@p]) which has place is that of a point ilw which has its data located at a
typepl a[@;(o,«)]. That place is exactly the place of the point with typept (o,« % ~). We can then use the type
dataa [p] so the place check succeeds. Note that we meed equivalence
in the type ofp to ensure that we find the type of the place al@(o,a)] = v

for that specific point. to conclude that the place of execution is indeed the same as

2.2 partialinit the place of the datalp]. We can read the type equivalence

. o as saying, intuitively: “if we have a regiom and a pointr,
The functlonpartlall_nlt initializes 'Fhose elements of an whereo belongs to a subregion of in which all the points
array that are at a given place. This example shows hO,Whave their elements on the plage then indeeds has its
to use (1) a place as a first-class value and (2) the restnctelement on place”

operatote; % es.
2.3 copy

let partialinit = lam®y:place.A’h:pl 7. The functioncopy takes two arrays over the same region
lam._a:regionftr“e) ‘/\.a’ir_‘t La]. and copies the elements from one array to the other. This
. parta::fi)ni{t f<°Pr> ((15) jéi ;)-(rfegw /mfz o fgf)[p] - example shows how to use (1) a function with two arguments
over the same region and (2)farallplaces-loop which
partialinit: Tly:place.pl 7 iterates over all available places.
— (Ilo:region(true) .int[a] — int)
let copy = lam®a:region(true).\®a:int[a].A*b:int[a].

. ; s forallplaces h { at(h) {
Compared tanit, the functionpartialinit takes two for (p in (a.reg % W) {

extra arguments, namely a plagend a second plade In alpl =blpl } }}

the body of thelet-expression, we can see thatthe ideaisto ip copy<0:7>(new int[0:71) (new int[0:71)
applypartialinit twice to the same place value. The idea

is that we want to use the place both as a value and as a typecopy: Ila:region(true).int[a] — (int[a] — int)
This idiom seems inescapable because we want to keep each

construct in our core language simple. Notice théias the The functioncopy takes two arraya andb, both with
kind place which means that can be any place. We use regiona. The body ofcopy copies elements fromto a. The

4 2007/3/20

body of copy uses the construébrallplaces h { ...} p is in a region with typereg a N; (8 % =) which only
which iterates over all places available to the program and in includes points with elements at a place with type .

each iterations binds the current placentd-or each place, ,

the code copies elements that reside at that place. Notice thag-> Shiftieft

sincea andb have the same region, they also have the sameThe functionshiftleft shifts all elements in an array to

distribution, so for a given poin in that region, botta [p] the left, while leaving the rightmost element unchanged.

andb [p] will be at the same place. This example shows how to use (1) arithmetic operators on
points and (2) arithmetic operators on regions.

2.4 expand

The functionexpand takes an array and returns a new ar- let shiftleft = lam®a:region(true).\’a:int[a].

ray over a bigger region; the output array will be partially let inner = (a.reg + 1) N, a.reg

initialized with values from the input array. This example in { for (p in inmner) { at(a.reglep-11) {

shows how to use (1) constraints over region variables and alp-1] = at(a.reglepl) { alpl } }

(2) the intersection operator on regions. ')

in shiftleft<reg 3:7>(new int[3:7])

let expand = lam®«:region(true).)\®a:int[a].

lam®fB:region(a C; 3) . \°x:reg f. shiftleft: Ila:region(true).int[a] — int
let b = new int[x]
in { forallplaces h { at(h) { The functionshiftleft takes an argumerd with re-
for (p in a.reg N, (b.reg %s h)) { gion « and shifts all elements one position to the left, while
blp] = at (a.reglepl) { alp] } } leaving the rightmost element unchanged. In more detalil,
}rsbp} shiftleft first creates a regiofinner by shifting all el-
in expand<3:7>(new int[3:7]1)<0:10>(int[0:10]) ements ofa.reg by one to the right and then intersecting

the result witha.reg. If a.reg is simply an interval, this
effectively removes the first element framreg. The type
of innerisreg ((a«+1)N;«). Thenshiftleft proceeds
with doing essentially[p-1] = a[p] for each pointp in
the inner region.

Let us now consider the bounds checks 4¢p-1] and
al[p]. The expressiom is always within the region o&

expand: Ila:region(true).int[a]
— (IIB:region(a C; B) .reg B — int[B])

The functionexpand takes an array over regiono and
region x with region types, wherex must be a superset
of the region ofa, and creates and returns a new artay

over the regiorx. The function d partially initializes ! L
g expand P y because has region(« + 1) N; a which is a subset ofv

the new arrayb with values froma at overlapping points. X : s .
The program specifies the desired relationship between thefor all . The expressiop-1 is always within the region of

region ofa andx by giving the argument a kind other than afbe}:aus?—lbhas reg|01r((a; 1}) _Il Whr']Cht'hS a su?set
true. The kind off3 is the constraint: C, 3, which means ~ ©' @ for alla becauset-1 and—1 cancel each other out.
that the regiore must be a subset of the regign The call 2.6 shift
expand<3:7>(new int[3:7])<0:10>(int[0:10]) is a .)
good example of the kind of reasoning that the programmer The funCt'OHShlftlef? IS a bu.ggy version Oé.hlft' Th|s
has to do when programming directly in the core language; example shows that mistakes in the arithmetic on points can
the call satisfies the constraiitC,; o because : 7 C 0 : be caught by our type checker.
10.

The functionexpand highlights the importance of keep-
ing upper and lower bounds for the region of arrays dur-

let shift = lam®a:region(true).\a:intl[a].
let inner = (a.reg + 1) N, a.reg
in { for (p in immer) {

ing type checking. The type af.reg N (b.reg %s h) at(a.reglep+1]) {
isreg an: (B %), wherer is a fresh type variable about alp+1] = at(a.reglep]) { alp] } }
which we know thah has typepl . |
When we type check[p] we have thap is in regionreg in ...
an: (B % m)anda has the regiom. So the bounds check
is satisfied becausseg a N (8 %) is a subset ofx for The programshift is a small variation okhiftleft
all «. The place check is also satisfied because the currentthat contains a bug which would result in an array bounds
place of execution is exactly the placeadfp] . violation and that consequently does not type check. The

When we type check[p] we have thab has the region problem withshift is that the array access[p+1] will
8, and we havex C, (. So the bounds check is satisfied be out of bounds whep reaches the end of the array. When
becausereg o N; (8 %:) is a subset ofy for all « and the type checker considesgp+1] it will determine that the
a C; . The place check is also satisfied because the currentregion ofp+1 is ((a + 1) N; «) + 1 which isnot a subset of
place of execution i which has typepl 7 and we know « for all a.

5 2007/3/20

(Kind) k ::= point ¢ | region ¢ | place Specifically, if p is a mapping from region variables to re-

(Type) t ::= int | pt (o,7) | reg r | t[r] gions, pointvariables to points, and place variables to places,
| pl o | t—t | Ma:kt then the meaning of the expressions is given as follows:
(Region) roi= al Rl rUgr | rer
I rtielrhen ap = pla)
(Point) o = alpl o+t .
(Place) m = a | P | r[@o,r) Rp = R
| unknown (riUgra)p = ripUrap
(Constraint) ¢ ::= rCir | o&r | oAp (riNeme)p = ripNrap
(Value) v = clpl RILIPI Az:te (rt+ec)p = rpte
| lam a: ke (rhem)p = {pe€rp|distributerp,p) =7mp }
(ValOrVa:'r) y = v l«x pp = p
(Expression) e ::= gy | e1 ex | ei<ex>
ANz te | lam®a: ke (r+t+ic)p = rp+te
new te] | yilya] | yalye] = e Pp = P
c.reg | y1[Qsy2] (r1[Q¢(o,12)])p = distributgrip, op).

e1tUsez | esNsex | e+sc
e++sc | y1 hs Y2

. The expressior ¥, w evaluates to a subset of which
for (x in e1){e2}

forallplaces z{e} contains tho;e points which are mappedtoy distribute. _
eires | at(y){e} The expression[@, (o,)] evaluates to the place of the paint
(Dep Val) w = p|lRI|P o according the distribution given byistribute.

The type of a point is a paiw,) whereo is a type-level
identity of the point and is a region that contains the point.
The type of a region is a singleton type consisting of that
region itself. A dependently-typed functidmam « : k.e has
3. The Core Language its argument constrained by the kikdits type isllo : k.t

W t th i i dt ¢ ¢ The expression language contains syntax for creating and
€ now present the syntax, semantics, and type system 0calling functions, for creating, accessing, and updating ar-
our core language. We prove type soundness using the stan

. . rays, for computing with regions, for iterating over regions,
dard technique of Nielson [18] and others that was popular- for iterating over all blaces. and for shifting the place of exe-
ized by Wright and Felleisen [23]. feraing over al places, Ming the p X

cution. The expression. reg returns the region of an array.
The expression+-,c adds a constamtto the point to which
3.1 Syntax .

_ _ e evaluates. The expressien-, c adds a constant to each of
Figure 1 gives the syntax for the core language. Wecise the points in the region to whichevaluates.
range over integer Cc_)nstanjﬂ;o range over point Constgnts, We need the set operators to work both on types, expres-
R to range over region constants (such as [1:4], which de- sjons, and actual sets. In order to avoid confusion, we give

notes{1,2, 3,4}), [to range over array labels drawn from a each operator on types the subsctipbn expressions the
setLabel, Pto range over place constantsto range over SUbSCfiptS, and on sets no Subscript at all.

Figure 1. Syntax of the core language.

variable names, and to range over type-variable names. Syntactic Sugar.In the example programs earlier in the
In our core language, points are integers, and we will oc- paper, we used the syntactic sugat = = e in { ¢’ }
casionally write a point constant as For shifting a re- 5. ¢ forthe core language expressioxtz : t.¢’)e. We use
gion by a constant we use the notatipn,...,c,} + ¢ = true to denote the tautology C, 0.

{e1+¢ ... cn+ ¢} _
The language has seven data types, namely integers3.2 Semantics
points, regions, arrays, places, functions, and dependently4ye specify the semantics of the core language using small-

typed functions. We have deliberately avoided having distri- step operational semantics (see Figure 3.2). We His®
butions as values, in an effort to keep the size of the languagerange over heaps:

manageable. We assume a functibstributewhich maps a

region and a point in that region to a place. When we create H € Label — Point — (Value x Place)

an array over a regiof, the array will be distributed ac-

cording to the functioistribute We make no assumptions A heap maps labels to array representations. An array rep-

aboutdistribute resentation maps each point in the region of the array to its
The types are defined in terms of three forms of expres- value and its place. Both uses ef above denote a space

sions which, given an interpretation of the variables, evaluate of partial functions. We will use the notatiqm, P) for el-

to sets of points (regions), points, and places, respectively.ements of(Value x Place), and we will use the operators

6 2007/3/20

.1 and.2 to extract the first and second element of a pair, 3.3 Set Constraints
respectively. We us®(H) to denote the domain of a partial \ye will now define satisfiability and entailment for our class
function . o _ of set constraints, and we will settle their complexities.

A state in the semantics is a pdif/, 6)'/W:3 say that Let p be a mapping from region variables to regions, point
(H, e) cantake a stemt placeP if we haveH’, ¢’ such that \ariaples to points, and place variables to places. We say that
P+ (H,e) ~ (H',¢') using the rules below. We say that | satisfiesa set constraing if for all 7 C; 5 in ¢ we have
(H,e) is stuckat placeP if e is not a value an@H, ¢) cannot r1p C rop and for allo €, 7 in ¢ we haveop € rp. We say
take a step at placg. We say tha(H, ¢) can gowrongat that a constraing is satisfiableif there exists a satisfying
placeP if we haveH’, e’ such thatP - (H,e) ~* (H',€’) assignment fop.
and(H', ¢') is stuck at place’. We say that a constraint iglid if all variable assign-

We assume that the programmer (externally to the pro- ents satisfy the constraint. We say thaentailsy’ if the
gram text) provides a functiodefault which maps a implicationy = ¢’ is valid, and writep |= ¢'.
closed typet to a value, for each type used as an ele- The satisfiability problenis this: given a constrainp, is
ment type of an array in the program. The functiefault ¢ satisfiable? Thentailment problenis as follows: given

must have the property that; o; ' F default(t) : ¢ for fwo constraintsp, ¢/, is ¢ |= ¢’ true?
a ¥ that contains suitable definitions of the labels used in For our notion of constraints, the satisfiability problem is

default(t), and for anyy andl'. The idea is that we will \p_complete. To understand this, first note that already for
usedefault(t) as the initial value at all points in an array ¢ fragment of region constraints with just variables, con-
with element type. While we can easily define examples of - gants “union, and intersection, the satisfiability problem is
such a functiordefault, we will not show a specific one, - Np.pard [1]. Second, to show that the satisfiability problem
simply because all we need to know about it is the property is i Np we must first argue that we only need to consider
Ui ;' default(t) : t. . , sets of polynomial size; we can then guess a satisfying as-
We also assume a liptacesof the places available during gjgnment and check that assignment in polynomial time. Let
the execution of the program. The only thing a program s firstflatten the constraint by, for each subexpression
can do withplacesis to iterate over the places using the replacinge with a variablea and adding an extra conjunct

forallplaces construct.) a = e. In the flattened constraint, let be the number of
In order to specify the execution order for the for l00p \5riaples in the constraint, letbe the largest integer men-

construct, Rule (29) uses a function ordex;, ..., c,}) = tioned in any region constant in the constraint, andslee

(e, s cn), wheree, < ... < ey the largest: used in any—+, or e ++ expression in the con-

The following rules define a call-by-value semantics and gyraint In any solution, an upper bound on the largest integer

are mostly standard. Rule (7) and Rule (8) express thatig,, ., « k. To demonstrate, notice that either the constraint
the body ofA® or lam" must execute at the place of the gygiem js not satisfiable or else the biggest integer we can
definition. Effectively, each of those rules creates a closure .gnstruct is by a sequence of +k operations, each involving
consisting of the function and the current place of execution. o jitferent variable. Similarly, we have a lower bound on

The key rules (11) and (13) both have the side condition {he smajlest integer used in any solution. So, for each re-
that! € D(H) andp € D(H(l)) andP = H()(p)-2. The gion variable we can guess a set of polynomial size, for each
conditionp € D(H (1)) is the array-bounds checkmustbe qint variable we can guess a point in a set of polynomial
in the region of the array. The conditidn = H(I)(p)-2 is size, and for each place variable we can guess a place in the
the place check; the place of execution must_e_:qUFflI the placeyjg places We can then check that assignment in polynomial
of the data to be accessed. If the side condition is not met, e

then the semantics will get stuck. _ For our notion of set constraints, the entailment problem
Notice that in Rule (19) we evaluate the syntactic expres- ;g co-NP-complete. To see that, first note that ¢’ if and

sion Ry Us Rs to the valueR; U Ry. _only if ¢ A =’ is unsatisfiable. For the fragment of cases
Rule (29) unrolls the for loop and replaces the loop vari- where o’ = false we have that the entailment problem

able with an appropriate point in each copy of the body of 5 {he guestion of givew, is ¢ unsatisfiable, which is co-

the loop. Similarly Rule (30) unrolls the loop and replaces np_complete. So, the full entailment problem is co-NP-hard.

the loop variables with an appropriate place in each copy of gecond, note that the entailment problem is in co-NP; we

the body of the loop. The unrolling is specified the way it .5 easily collect the set of all points mentioned in the

is to enable the type checker to assign a type variable as theqngiraints, then guess an assignment, and finally check that

type of the loop variable and at the same time achieve thatyhe assignment is not a satisfying assignment, in polynomial
each iteration is executed using the exact value bound to the;jje.

loop variable.

7 2007/3/20

P+ (H,e1) ~ (H',e})
Pt (H,e1e2) ~ (H' €} e2) @)
P+ (H,e2) ~ (H', ep)
Pl (H,vez) ~ (H',veh))
Ptr (H,(A\z : t.e)v) ~ (H, e[z :=v]) (3)
Pr(H e) ~ (H,é))
P (1<) = (' 1<) “)
P+ (H,e2) ~ (H',e5)
P (H,v<ez>) ~ (H',v<eh>) ©®)
P (H,(lam a : k.e)<w>) ~ (H, e[a := w]) (6)
PF(H,\x:te)~ (H, x:t.at(P){e}) (7)
PF (H,Jlam*a: k.e) ~ (H,lam « : k.at (P){e}) (8)
Pt (H,e) ~ (H' e
P+ (H,new tle]) ~ (H’,new t[e']) ©
P+ (H,new t[R]) ~ (H[l — Ap € R.(default(t), distributg R, p))],I) wherel is fresh (10)
P+ (H,llp)) ~ (H,H()(p). 1) if € D(H)andp € D(H(l)) andP = H(Il)(p).2 (11)
F(H,e) ~ (H',¢)
P+ (H, U1[U2] = e) (H',vi[vz] =€) (12)
P+ (H,llp| =v) ~ (H[l— (H{1))[p+— (v, H()(p)-2)]], v) if | € D(H)andp € D(H(l)) andP = H(l)(p).2 (13)
H' ¢
Pt (H, e(reg§ EH’, e’.)reg) (14)
P+ (H,lreg) ~ (H,D(H(I))) if | € D(H) (15)
P+ (H,l[Qsp]) ~ (H,H(l)(p).2) if { € D(H)andp € D(H(I)) (16)
P (H el
PF (H 61(Us 23 EH’ 61)U5 e2) (a7
- (o) = (', h) a8)
PI—(H vUSez) (H', vUSeQ)
P& (H, Ry Uy Ry) ~ (H, Ry URy) (19)
Pt (H, e)— (Hé
Ptr(H, el(ﬂs egg EH el)ﬂs €2) (20)
P (H,es) ~ (H' e
Pt (H, v(ﬂs 62; EH v r)ws €h) (1)
P+ (H,Ry N Ro) ~ (H, Ry N Ry) 22)
Pl (He)~ (H, e
Ptr(H, e(+s ci ~ EH’, e’)+s c) (23)
Pt (H,d+.c)~ (H,d+c) (24)
PV (H,e)~ (H')
Pt (H,e+4+sc) ~ (H', € ++sc) (25)
Pt (H,p++sc)~ (H,p+c) (26)
P+ (H,R%s P']) ~ (H,R') whereR' ={pe R| distribute(R,p) = P’ } (27)
P+ (H,e1) ~ (H',€e})
Pt (H,for (ziney){ez}) ~ (H’,for (z ine)){e2}) (28)
Pt (H,for (z in R){e}) ~ (H, ((lam*« : point(a €; R).\°z : (o, R).€)<c1>)cas. . -
(lam*a : point(a € R)A' : (, R).c)<cn>)en;0) Where ordefR) = (ci,.. .,) (29)
P (H,forallplaces z{e}) ~ (H, ((lam*« : place.*z : pl a.e)<P1>)Py;. . .
((lam*a : place. Az : pl a.€)<P,>) Py; 0) whereplaces = (Pi, ..., Pn) (30)
P (H,e1) ~ (H'é,
P+ (HS e1; ez)) ((H el,)ez) (31)
Pt (H,v;e) ~ (H,e) (32)
P& (H,e)~ (H',€)
Pt (H,at(P){e}) ~ (H,at(P"){e'}) (33)
Pt (H, atéP'){v}) ~ (H,v) 2007(/%/490

3.4 Type System

Heap TypesWe useV to range over maps from array labels
to types of the form[R]. We use the judgment H : ¥
which holds if (1) D(H) = D(¥) and (2) if for each

l € D(H) we lett[R] = ¥(I), thenD(H(l)) = R and for
eachp € D(H(l)) we have (\)U; ;T'; here H H(1)(p).1: t
and (ii) distribute R, p) = H(I)(p).2. We write ¥ < U’ if
D(¥) C D(¥') and¥, U’ agree on their common domain.

Type Equivalence.We define type equivalence via the
judgmentsp Ft =t, o b r =1, F o= o, and
¢ F m = 7/, which hold if they can be derived using the
rules in Figure 2. The first three rules use a meta-variable
which ranges ovet, r, o, 7.

The complexity of deciding type equivalence is domi-
nated by the time to check constraint entailment. Given that
all other aspects of type checking for our core language
are in polynomial time, we conclude that type checking is
co-NP-complete. In a later section, our experimental results
show that the problem instances for entailment are small for
our benchmarks and thus type checking is fast.

Type Rules.A type judgment is of the fornd; ¢; I'; here -

e : t, which holds if it is derivable using the following rules.
The typehere is the type of the current place of execu-
tion. Rule (61) for type checking a functiox : t;.e type
checks the body at the unknown place of execution, written
unknown. The reason is thatr : t;.e will run at the place of

its call site, which is statically unknown. A similar comment
applies to Rule (62). Notice that the use of entailment is a
condition in rules such as Rule (65). Rule (78) is a key type
rule which says that to type check a lotgr (z in e;){es},

we check that; has a typereg r, and then assign the type

pt («, r) while checkinges, wherea is fresh. The type rules
for array lookup, Rule (69), and array update, Rule (70), en-
sure that (1) the point is in bounds by requiring that the type
of the point is a region which is a subset of the region of the
array, and (2) the place of execution equals the location of
the array data by requiring that the typere is equivalent to
the type of the place of the data.

Rules for extracting constraints:

constraint(point ¢) = ¢ (83)
constraint(region) = ¢ (84)
constraint(place) = true (85)

We uselV to range over regionsand variables of kind
place.
Rules for kind checking:

Fpt (o,7): point >0 (86)
Fregr: regionp> r (87)
Fplm: place > 7. (88)

phqg=q
pra=a
et =aq
PFa=@ pFe=g
phq =g
pho=0d kFr=r
o Fpt(o,r) =pt (o/,7)
okr=1
pFregr=regr!
pokm=7
pkFplm=pln
pht1 =t ohFta=t)
gOFt1—>tQEt3—>t2
pokt=t

pFla:kt=1a: k.t
oF R U Ry =R1UR;y

pbr=r; pkro=rl

phriUgrg =1] Up rh
pFRi Ny Ro=RiNRy

pkr=r; pkro=rl

phEriNerg =71 Ny rh

oFR+c=R+c
ebr=7

pFr4+ic=r"+4c

o+ R% P={pe R|distributg R, p) = P

okr=r pbFr=a

oFrem=rl
pbp+tic=p+c

prFo=0o
pF o4+ =o' +c
pEPEr pETGR

© F R[Q(p,r)] = distribute R, p)
ebr=r] pFo=d @kro=r)

o Fri[Qo,72)] = r1[Q(0’, 15)]
pETE T T
o r(@Qorh)] =T

(35)
(36)

(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
} (49)
(50)
(51)
(52)

(53)
(54)

(55)

Figure 2. Type equivalence rules.

2007/3/20

W; ;T here F ¢ @ int (56)

W; ;T here - p: pt (p, R) (wherep € R) (57)
U, o;T here- R: reg R (58)
W; ;s here 12 ¥(l) (59)
W, p;T;here-P: pLl P (60)
U5 ;D[: t1]; unknown b e : o 61)
U p; s here - Ax t ti.e: t1 — to
U; o A constraint(k); T'; unknown e : t 62)

W: ;T here - lama: ke : Ta: k.t
U; ;s here bz : T'(x) (63)
U:p; T hereber @ t1 —ta Wy hereea: tr

;s here -er ea @ to (64)
U ;T here ey : Mot kit W0, here Feg @ ta Fto: k> W ¢ = (constraint(k))[a := W] (65)
U; ;T here er<ea> : tia : = W]
U;;[x : t1]; here e : ta here # unknown (66)
U ; s here E A%x i ti.e: t1 — to
U; o A constraint(k);T; here b e: t here # unknown (67)
W p; s here F lam*a : ke : Tla: k.t
;s here -e: regr (68)
W; ; T'; here - new tle] : t[r]
Ws ;D here b yr @ tfr] ;0305 here by @ pt (o, 72)
pETMCiri plETEre @k here =r1[Q(o,r2)] (69)
W; ;T here Fyi[yz] : ¢
W o; T here b yr: tfri] U, herebya: pt(o,rm2) @ lET2 Cim
pEoTE T2 @b here =r[Qo,72)] YT herete: ¢
Ws ;s here - y1[y2] = e: ¢ (70)
U; ;s here e @ t[r] 71)
W; ;s here |- e.reg : regr
U; ;T here =y« t[r1] U;o; T hereEya : pt (o,1m2) @ ET2Cim plEOTELT2 (72)
W ;s here - y1[@Qsy2] = pl r1[@Qc(o, 72)]
W; ;s here - e1 @ regr W; ;' here ez @ regrs (73)
U ; s here Fe1 Us ea @ regri Up o
;I here-er @ regr: Wi ;I here ez @ regrs
U, ;T here-e1 Ng ez : regri My r (74)
2 11s €2 grille T2
;s here -e: regr
W:p;Tsheree+4sc: regr+ic (75)
;@5 L3 s g t
U; ;T here e : pt (o,1)
U; ;T here b e ++sc: pt (0 +ee, 7+ ¢) (76)
® P
U ; s here -y - regr Uy heret-y2 @ plm 77)

;o here -y hs yo : Tegr e m
U; ;T hereter: regr VU0 A(a € 7r);T[x: pt (a,7)];here - ex: int here # unknown
W; o;T'; here - for (x inej){ez2} : int
U; ;[:plaf;here - e: int here # unknown
W; ; I'; here - forallplaces z{e} : int
Uip;shereer: t1 Uy here Fea: to

(wherea is fresh) (78)

(whereq is fresh) (79)

80
W: ;I here - erjea @ ta (80)
U;p;Dsherety: plm Uy imbe: t (81)
U; ;T here - at(y) {e} : ¢
;; 1 Fe: Ft=t
Uip;'shereke: t pHt=t (82)

WU herel-e: t/

10 2007/3/20

3.5 Type Soundness

THEOREM 2. (Progress)

We have proved the soundness of our type system. HereFOr @ placeP, letQ € {P, unknown}. If U;true; ; Q - e :
is a listing of the needed lemmas and theorems with brief { @Md[= H : ¥, then(H, ¢) is not stuck at place”.

proof sketches, concluding with the statement and proof of praof, By induction on the structure of the derivation of

type soundness. The appendices give detailed proofs of Typeq,; trugB;Q F e : t.

Preservation (Theorem 1) and Progress (Theorem?2).

LEMMA 1. (Substitution)
If U;0;T[x : t1]; here Fe: to andW;o; T here v @ g,
thenW; o; T'; here F e[z := v] : ta.

Proof. By induction on the structure of the derivation of
U: ;[: t1]; here e : to. O

LEMMA 2. (Dependent Substitution)
If U;0;T; here b e : t, thenU; pla := Wi T here[a :
W]k ela:=W]: tla:=W].

Proof. By induction on the structure of the derivation of
W ;s here Fe @ t. (I

LEMMA 3. (Weakening)
If U: ;T here b e: tandy' | ¢, then¥;¢';T'; here -
e: t.

Proof. By induction on the structure of the derivation of
W ;s here - e : t. ([l

LEmMMA 4. (Indifference)
If U; ;T here v : t, thenU; ;T here’ v : t.

Proof. Immediate from the seven type rules for values.]
LEMMA 5. (Canonical Forms)

o If U; ; T'; here - v : int, thenw is of the forme.

o If U;;T'; here - v : pt (o, r), thenv is of the formp.

o If U; ;T'; here v : reg r, thenu is of the formR.

o If U;:T'; here - v : t[r], thenv is of the forml, and
I € D(W).

o If U:p;T'; here F v : pl a, thenu is of the formP.

o If W:p;T here - v @ t; — tg, thenw is of the form
Az tee.

o If W:p; T here F v :
lam «: k.e.

Il : k.t, thenv is of the form

Proof. From an examination of the type rules we have that
each form of type is the type of exactly one form of value,
namely the one given in the lemma. O

THEOREM 1. (Type Preservation)

For a placeP, letQ € {P, unknown}. f U; p; T;Q F e : ¢,
EH:V,andP+ (H,e) ~ (H' '), then we haved’, ¢/
such thatl < ¥/, ¥;o;T;Q F e : t/, = H : ¥, and
pHt=t.

Proof. By induction on the structure of the derivation of
U, IQFe: t. O

11

O

COROLLARY 1. (Type Soundness)
For a placeP, letQ € {P, unknown}. If ¥;true;0; Q F e :
tand= H : U, then(H, e) cannot go wrong at plac®.

Proof. Supposd H, e) can go wrong at plac®, that is, we
haveH’, ¢’ suchthatP - (H,e) ~" (H',e¢') and(H',¢e’) is
stuck at place”. From Theorem 1, Rule (37), and induction
on n, we have¥’ ¢ such that¥’;trug 0;Q +~ ¢ : ¢,
E H' : ¥, and true= t = ¢. From Theorem 2 we have
that(H’, e’) is not stuck at plac, a contradiction. O

4. Experimental Results

We have designed and implemented a variant of the object-
oriented language X10 which embodies our type system. To
evaluate our type system, we have created the ArrayBench
benchmark suite which consists of seven programs of a total
of 865 lines of code. The type system cannot completely

eliminate the need for dynamic checks of array accesses. In
our X10 version, a programmer can write a cast to signal

to the compiler that a combined bounds and place check
must be performed. All array accesses without explicit casts
are guaranteed to be within bounds. The main goal of this
section is to answer these two questions:

e How many casts does a programmer need to insert to
make the benchmarks type check?

¢ How many times will those casts be executed at run time
and how does that compare to dynamically checlihg
array accesses?

In the following subsections we will first explain the notion
of cast in more detail and give an example. We will then
present the ArrayBench benchmark suite and finally present
our experimental results and answer the two questions.

Our variant of X10 is called XTC-X10 and extends
X10 version 0.4 with the type system presented in this pa-
per along with parametric types (generics) and first-order
functions. The implementation is publically available at
http://grothoff.org/christian/xtc/x10/. Our im-
plementation can type check and execute the benchmark
programs listed below along with the five type-safe example
programs from Section 2.

4.1 Array-Access Casts

In our experience, we need three categories of array-access
casts:

1. Required casts due to the fact that the type-checker is
flow insensitive. The classical Java equivalent for this
kind of type cast is of the formif (a instanceof B)

2007/3/20

B b = (B) a; .Here, the cast itself is always guarded explicitly writing sufficiently precise region type annotations
by an dominating branch that yields an assertion that the for all local variables would be tedious.

cast will succeed. These casts should be considered to The type annotatior#1> adds the requirement that the
be free at runtime since a reasonable compiler should respective point, region or array is one-dimensional. The
be able to completely eliminate the check. They could type annotatior : r> specifies that the respective point must
be avoided entirely if the compiler was flow-sensitive be contained in the region. In the code, & is appended

to begin with; however, such a choice is likely to result to numbers in order to syntactically show the difference
in problems with respect to programmers’ understanding between (one-dimensional) points and integers.

of overloading resolution. In terms of language design,
we believe it is better to require the programmer to put
in explicit casts even if the control-flow already yields
equivalent assertions.

Array<point<#1>>
overlap(int m, ValueArray<int:([0:m-1])#1> pat) {

if (m <= 0)
throw new Exception("Empty pattern!");
. overlap = new Array<point<#1>>([0:m], Op);
overlap[(point<:([0:m])>)0p] = -1p; // CAST #1
for (p : [1:m]) {
. prev = p - 1p;
overlap[p] = overlapl[prev] + 1p;
while ((overlap([p] > Op) &%
(pat [prev] !'=
pat [(point<:pat.reg>)

. Casts that are used to cover certain corner cases that
could be avoided (but at the expense of using signifi-
cantly more complex type constructions). For example,
a function may operate on arrays of arbitrary sigdong
as they are not emptyuch a corner case might be cov-
ered by requiring the programmer to supply an additional
point and have the array satisfy the condition that it must
contain this point and only points larger than it. A pro-

grammer might choose to instead obtain the minimum (overlaplpl-1p)1)) // CAST #2
point of the array using the build-inin operator and use overlaplp] = 1p + overlap

a cast (not-null) to establish that the point exists. Our de- [(point<:pat.reg>)

sign allows the programmer to decide that the simplicity (overlaplpl-1p)]; // CAST #3

of a cast might be a better choice than a complex type

}

construction. Typically, the cost of these casts for corner *
cases is minimal — programmers are likely to use them
outside of loops, and often the particular checks them-
selves are also rather inexpensive. The reason for this is
that if the cast is in a critical section of the code, the pro-
grammer has the option of using more elaborate types.

The example program contains ten locations where array
accesses occur. The first array accesses in the example occur
during the initialization of the overlap array to zero. The ini-
tialization is done in the array constructor (not shown) which
corresponds closely to thimit function from Section 2.

3. Casts used to produce necessary loop invariants. Somerhe compiler requires no further information to avoid any
algorithms use loops which make it impossible for the phounds-checks on the constructor.

type system to establish the loop invariants necessary for The second array access, initializiogerlay[0p] to

checking the loop or code depending on the result of the _1 requires a bounds-check as indicated by the cast in the

computation performed by the loop. In these cases, thecode. Cast1 (identified by comments in the example) in
programmers must add casts to produce the necessargveriap falls into both category 1 and 2. The fact that
invariants. Naturally, the compiler may still be able to was checked to be positive in the first line of the function

use flow information to reduce the cost of these casts; establishes thap is in the (now non-empty) intervéd : m).

however, eliminating the check completely would require However, because the type checker is flow-insensitive, a cast

a theorem-prover that is stronger than what our type js needed. The programmer might have chosen to deslare

system can offer. to be strictly positive — a minimal and sane restriction of

the API — and avoided both the cast and the sanity check in

To illustrate the use of casts, let us consider some XTC- the first line. Capturing such corner cases with types is often
X10 code from an implementation of the Knuth-Morris- possible, but programmers are likely to use such "dirty” casts
Pratt string searching algorithm [15]. We will focus on the wherever they fail to find appropriate types.
function overlap which computes the partial match table The type system is able to prove the safety of the five
(or failure function); the code is given below in the syntax accesses toverlap[p] andoverlap [prev] inside of the
of our X10 variant. The syntax is mostly similar to Java and for loop. The access toverlap[p] is safe becausp €
C++.ValueArray is an immutable array, which meansthat [1 : m] C [0 : m], and[0 : m] is the domain obverlap
accesses are not required to be local — only in-bounds. Thewhich is immediate from the creation efrerlap. Simi-
language uses “” for the type of a local variable that the larly, overlap[prev] is safe becausprev € [0 : m —
compiler is supposed to infer from the right hand side of 1] C [0 : m]. Note that these proofs are a variation on
the assignment. Type elision is an important feature sincethepartialinit andshiftleft examples from Section 2,

12 2007/3/20

except that here the subset relationships are completely in- name | LOC ‘ #IR ‘ pp‘ SP | SW | Oum ‘ Og

ferred — region type declarations are usually only necessary ggries 871 2018 P 1 n/P 0 0
to describe constraints on arguments and return values, type i yp 7424071 1 1 man| 0 0
inference is sufficient for reasoning within methods. Reversel 96 | 3659 | P 1 n/P P2 o
The array access tpat [prev] is an example where Crypt 550 | 5759 | 1 P /P 0 0
region types must be provided. Because the array is Crypt-2 | 220 5873] 1 2 n/P 0 0
known to be defined over the intervéd:m-1] andprev
: . SOR 70 | 1702 1 n n 0 0
iterates over exactly the same intervatév = p - 1p and DSOR 68 1742 P | n/P - - 2

p € [1 : m]), the accespat [prev] is safe. Ensuring that

the type checker can verify the safety of this kind of access —
is the main difficulty for programming with region types: it Table 2. Size (in lines of code (LOC) and number of nodes

is not always obvious which region type should be used for in the intermediate representation (# IR) of the compiler) and
a particular argument. classification of parallelism for the benchmarks.

When working with region types, programmers also need
to be aware of the limitations of the type checker. In the ex-
ample, the access fmt at the indexoverlap[p]l-1p re- single-place parallelism, in other words, how many activities
quires a cast since it cannot be shown to be safe by the typeare running in parallel at the same place. In particular, these
checker. Cas#2 highlights the problem that the type sys- Places will be able to access the same share of the global
tem may not always be able to establish proper loop invari- partitioned address space. A value of 1 indicates that there
ants (category 3). For the points in the overlap array, the typeiS only one activity per place involved in the computation.
system does verify that all points are one-dimensional. How- Finally, the figureSWis the amount of sequential work that
ever, it cannot establish a loop invariant that would show that €ach parallel activity performs. The productR®, SPand

the assignment of the foreverlap[p]l = overlapl[ql + SWoives the total amount of work required for the bench-
1p never produces points with a value larger thar- 1. mark (for exampleQ(n?) for SOR and DSOR).
The situation is similar for the array accessoteerlap For communication, we give two figure3,, is the num-

at indexoverlap[p]l-1p. Again, the type checker fails to ber of messages exchangeds is the sum of the size of
establish the loop invarianb¢erlap [p] is always a valid these messages. The figures for communication do not in-
index into overlap). However, the type checker is able to clude initial distribution of the computation and data (WhICh
deduce thapat.reg C [0 : m], allowing the programmer to for all parallel benchmarks can be done with, () mes-
simply repeat cas#2. Cast#3 could thus be considered Sages transmittings(n/P) data with P being the number
falling into both categories 1 and 3. of places).

Overall, the example has 10 array accesses. The type The ArrayBench benchmarks implement the following
system is able to show that 7 of those (including 5 in the algorithms:
innermost |00p) are Statica”y safe. Given that two of the Series Calculates the first fourier coefficients of the
remaining casts are identical, only a single bounds-checkfunction (z + 1)* defined on the intervap, 2]. Uses one
remains within any of the loops of the example. array-access cast in source code.

) KMP : Sequential implementation of Knuth-Morris-Pratt
4.2 The ArrayBench Benchmark Suite string searching algorithm (with pattern of sizeand string
The ArrayBench Benchmark Suite consists of seven bench-of sizen). Uses six array-access casts in source code.
mark programs. We adapted the benchmarks from code writ- Reverse Given an array distributed across places, re-
ten in X10, mainly by making the code use regions. This verses the order of the elements. Uses two array-access casts
section briefly explains the functionality of each benchmark, in source code.
the style of parallelism (if any) and the overall amount of Crypt: Implements the IDEA symmetric blockcipher
communication. Table 2 gives some fundamental benchmark(encrypt and decrypt) using integer increment operations to
statistics. LOC denotes the number of lines of code; # IR de- iterate over a stream. Uses nine array-access casts in source
notes the number of nodes in the intermediate representationcode.

The X10 language model features two levels of paral- Crypt-2: Implements the IDEA symmetric blockcipher
lelism: parallel execution on different places and parallel ex- (encrypt and decrypt) using region iterators to iterate over a
ecution at the same place. Consequently, for each benchmarlstream. Uses three array-access casts in source code.
program we will give three figure®P, SPandSW The fig- SOR: Given a 2D array, performs successive over-relaxation [20]
urePPis the amount of place-parallelism (for a maximum of of ann x n matrix. Uses two array-access casts in source
P places available) and describes how many places computecode.
in parallel. A value of 1 indicates that a computation is not ~ DSOR: Given a 2D array, performs distributed successive
distributed, a value of is used for a computation that uses over-relaxation of am x n matrix. Uses no array-access
all available places in parallel. The figus®is the amount of casts.

13 2007/3/20

name entailment checks dynamic array-access casts ual methods are unlikely to become extremely large. For the
total max. | without types| withtypes size of the expressions studied in our experiments, the execu-

number size S | L S | L tiontime of our heuristic is so fast that it cannot be properly
Series 7324 24 12 23 2 > Mmeasured, especially given that the implementation is cur-
KMP 11705 42 | 150 | 6181 124 | 49g 'ently in Java where noise from the garbage collector and
Reverse| 48138 26 | 114 | 240 12 48 JIT compiler interfere with measurements on that scale. The
Crypt 54898 54 2684 | 9980 | 2591 | 9887 total_compile time qf the ArrayBenc_h benchmarks, incluo_ling
Crypt-2 | 65316 31| 2684 | 9980 15 15 Parsing a_nd compilation of 3.000 lines o_f core X10 runtime
SOR 60488 95 | 192 | 1200 5 5 libraries, is about 5s on a modern machine for a cold run of
DSOR | 105374 115] 192| 1200] 0] 0 TeJVM.

Our prototype does not allow us to gather meaningful
runtime performance data for the generated code. XTC-X10
compiles the benchmarks into SSA-form which is currently
interpreted using a multi-threaded interpreter which is writ-
ten in Java and simulates a distributed runtime. While this

In summary, the seven benchmarks need 23 array-accesgloes not allow us to give specific speed-up data, it is pos-
casts in a total of 865 lines of array-intensive code; that is sible to count the number of bounds and p|ace checks that
about one cast per 37 lines of code. Our compiler helps with a Janguage without region types would have to perform and
finding the places where casts are needed. We conclude thaéompare it to the number of dynamic region and place casts
a programmer needs insert only a few array-access casts tqwhich are equivalent to those bounds and place checks) in
make a program type check. Because the casts are infrethe typed language. We do not distinguish between bounds
quent, the effort required from the programmer to investigate checks and place checks because for array locality, any
possible restructuring of the code to eliminate such casts—place check is effectively a bounds check for place-adjusted
should they bein performance-critical sections of the code— bounds. Consequenﬂy’ for some particu|ar checks, the dis-
is acceptable. tinction would often not be possible.

As expected, the typed language always outperforms the
untyped language in terms of the total number of dynamic
We collected our run-time measurements by instrumenting checks required_ For some benchmarks (KMP, Crypt), the
the implementation of our X10 variant. reduction that can be achieved is rather small — here, most

Table 3 table shows the number of dynamic checks re- accesses had to be converted into casts of category (3). For
quired for the various benchmarks. We ran each benchmarkother benchmarks, only a handful of casts remain, and these
on two input sizes (marked as “S” for small input, and as “L" are often in code that is run only once. This is illustrated
for large input). by running the benchmarks with two different input sizes.

Using the classification scheme described earlier, the ma-fFor Series, Crypt2, SOR and DSOR, the total number of
jority of the static type casts required for the ArrayBench dynamic checks does not change if the problem size is in-
suite falls into the category (3), followed by casts in category creased. The reason for this is that the casts here deal with
(1). Casts in category (1) are usually obvious to the program- corner cases, such as initialization. Note that the particular
mer and have no runtime overhead. Determining that a castproblem sizes chosen for the benchmarks are tiny — for ex-
falls into category (2) or (3) is less obvious — the reason for ample, the smaller version of Crypt uses a stream of 128
this is that there might be non-obvious ways to change the pytes, SOR uses a 6x6 array, and Series computes 3 Fourier
structure or typing of the code which would allow the castto coefficients. For larger benchmark sizes, the reduction in the
be eliminated. number of dynamic checks will clearly be more dramatic, as

Using the types, the compiler will verify that all array = shown by the respective second dynamic values.
accesses are in bounds and local using a decision procedure The Crypt-2 benchmark deserves some further discus-
that tries to determine subset relationships between symbolicsjon. The difference between Crypt and Crypt-2 is that most
expressions. Note that the XTC-X10 compiler allows over- casts were eliminated by replacing the integer-arithmetic
loading of methods based on dependent typing, resulting inthat was used to walk over the streamr<) with iterators
many more invocations of the decision procedure than thereover regions. These iterators are equivalent to the generators
are static array accesses in the code. The heuristic used to deof the ordered point list in the operational semantics of the
termine subset relationships that is implemented in our pPro- for statement in the core |anguage_ In particu|ar' they are
totype has exponential complexity. However, the problem guaranteed to yield only points that are inside of the region
sizes are relatively small (up to 115 nodes in the symbolic (unlike thei++ statement which, if used in a loop, does not
expression tree for ArrayBench). We expect this to continue have an obvious bound). Permitting the programmer to use

to be true even for larger benchmarks than the ones studiedthe (region-typed) iterators directly instead ofer loop al-
since type checking can be done per method, and individ-

Table 3. Numbers of dynamic checks required for the
benchmarks.

4.3 Measurements and Assessment

14 2007/3/20

lows preservation of the original structure of the code. Itera- References
tors do have the disadvantage that there is an implicit check — 1] Alexander Aiken, Dexter Kozen, Moshe Y. Vardi, and

as part of the iterator logic, the iterator verifies that a next el-
ement actually exists. This check is a range check that could
be seen as a bounds check; however, the check of the itera-
tor is also similar to the bounds check performed by £dwy
loop. The numbers given for Crypt-2 do not include the test
performed by the iterator, just as the numbers in all bench-
marks do not include tests performed for the execution of
for loops.

In summary, when we run seven statically-typed bench-
marks with large inputs, the run-time system will in one case

execute no array-access casts at all, and in another case exe-

checks all array accesses. The good news is that in most
of the cases, rather few dynamic array-access casts are ex-
ecuted. We conclude that the type system is successful in
achieving both better safety and better performance.

5. Future Work and Conclusion

In future work we will investigate how to type-check user-
defined distributions. We also plan to study richer constraint
systems that can represent the particularities of specific pro-
gramming idioms. Our existing X10 prototype already sup-

2

[3

—_—

]

Edward L. Wimmers. The complexity of set constraints.
In CSL, pages 1-17, 1993.

Eric Allen, David Chase, Victor Luchangco, Jan-Willem
Maessen, Sukyoung Ryu, Guy L. Steele Jr., and Sam Tobin-
Hochstadt. The fortress language specification version 0.618.
Technical report, Sun Microsystems, Inc., 2005.

David Aspinall and Martin Hofmann. Dependent types. In
Benjamin C. Pierce, editoAdvanced Topics in Types and
Programming Languageshapter Dependent Types, pages
45-86. The MIT Press, 2005.

; [4] Rastislav Bodik, Rajiv Gupta, and Vivek Sarkar. ABCD:
cute almost as many array-access casts as an execution that

[5

[6

]

—_—

ports an extended constraint algebra beyond that used in the [7]

core language. In particular, the algebra includes support for
arithmetic constraints. The extended algebra is needed in or-
der to type check common constructs in actual applications.
The underlying principles of the type system presented in
this paper are independent of the particular choice of con-
straint algebra, which we expect to evolve in step with the
power of constraint solvers and the needs of application de-
velopers.

Our core language may be a good starting point for other
foundational work on programming languages for multi-
core systems. Our type system contains an interesting mix
of dependent types and set constraints which may be more
broadly applicable. We have proved our type system sound
and shown via experiments that seven benchmarks can be
type checked after the insertion of a few array-access casts.

Acknowledgments

We thank Neal Glew for finding a bug in a previous version
of the type rules. We thank Christopher Donawa and Rajk-

ishore Barik for sharing with us with performance data on 14

the cost of bounds-checking in Java and X10. We thank
Krista Grothoff for editing. The research work reported

here is supported in part by DARPA under contract num-
ber NBCH30390004.

15

8

[9

—_

—_—

—_—

eliminating array bounds checks on demand.SIGPLAN
Conference on Programming Language Design and Imple-
mentation pages 321-333, 2000.

Brad Chamberlain, Steve Deitz, Mary Beth Hribar, and
Wayne Wong. Chapel. Technical report, Cray Inc,
http://chapel.cs.washington.edu, 2007.

Bradford L. Chamberlain, Sung-Eun Choi, E Christopher
Lewis, Calvin Lin, Lawrence Snyder, and W. Derrick
Weathersby. The case for high level parallel programming
in ZPL. IEEE Computational Science and Engineering
5(3):76-86, July—September 1998.

Bradford L. Chamberlain, Sung-Eun Choi, E Christopher
Lewis, Calvin Lin, Lawrence Snyder, and W. Derrick
Weathersby. ZPL: A machine independent programming
language for parallel computerdEEE Transactions on
Software Engineering?6(3):197-211, March 2000.

Bradford L. Chamberlain, E Christopher Lewis, Calvin Lin,
and Lawrence Snyder. Regions: An abstraction for expressing
array computation. liProceedings of the ACM International
Conference on Array Programming Languag&399.

Philippe Charles, Christopher Donawa, Kemal Ebcioglu,
Christian Grothoff, Allan Kielstra, Vijay A. Saraswat, Vivek
Sarkar, and Christoph Von Praun. X10: An object-oriented
approach to non-uniform cluster computing.Rroceedings
of the 20th ACM SIGPLAN conference on Object-oriented
programing, systems, languages, and applicatiqgremes
519-538. ACM SIGPLAN, 2005.

0] Daniel Chavarría-Miranda and John Mellor-Crummey.

Effective communication coalescing for data-parallel applica-
tions. InPPoPP '05: Proceedings of the tenth ACM SIGPLAN
symposium on Principles and practice of parallel program-
ming, pages 14-25, New York, NY, USA, 2005. ACM Press.

] Paul Feautrier. Toward automatic partitioning of arrays on

(12]

distributed memory computers. 1€S '93: Proceedings of
the 7th international conference on Supercomputjraiges
175-184, New York, NY, USA, 1993. ACM Press.

Manish Gupta and Prithviraj Banerjee. Paradigm: a compiler
for automatic data distribution on multicomputers. IG5

'93: Proceedings of the 7th international conference on
Supercomputingpages 87-96, New York, NY, USA, 1993.
ACM Press.

2007/3/20

[13] P. N. Hilfinger, Dan Bonachea, Kaushik Datta, David Gay,
Susan Graham, Ben Liblit, Geoff Pike, Jimmy Su, and
Katherine Yelick. Titanium language reference manual.
Technical report, U.C. Berkeley, 2005.

[14] Ken Kennedy and Ulrich Kremer. Automatic data layout for
distributed-memory machine&d\CM Trans. Program. Lang.
Syst, 20(4):869-916, 1998.

[15] Donald Knuth, Jr James H. Morris, and Vaughan Pratt. Fast
pattern matching in stringsSIAM Journal on Computing
6(2):323-350, 1977.

[16] Peizong Lee and Zvi Meir Kedem. Automatic data and
computation decomposition on distributed memory parallel
computers.ACM Trans. Program. Lang. Sys24(1):1-50,
2002.

[17] Ben Liblit and Alexander Aiken. Type systems for dis-
tributed data structures. Rroceedings of POPL'00, 27nd
Annual SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languagepages 199-213, 2000.

[18] Flemming Nielson. The typed lambda-calculus with first-
class processes. Proceedings of PARLE'8®ages 357—
373, 1989.

[19] Robert W. Numrich and John Reid. Co-array fortran for
parallel programming. ACM SIGPLAN Fortran Forum
Archive 17:1-31, August 1998.

[20] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.
Vetterling. Successive overrelaxation (sor). Nnmerical
Recipes in FORTRAN: The Art of Scientific Computing
pages 866—869. Cambridge University Press, 1992.

[21] William Pugh. The omega test: a fast and practical
integer programming algorithm for dependence analysis.
In Supercomputing '91: Proceedings of the 1991 ACM/IEEE
conference on Supercomputjmpges 4-13, New York, NY,
USA, 1991. ACM Press.

[22] Norihisa Suzuki and Kiyoshi Ishihata. Implementation of
an array bound checker. RPOPL '77: Proceedings of the
4th ACM SIGACT-SIGPLAN symposium on Principles of
programming languagepages 132-143, New York, NY,
USA, 1977. ACM Press.

[23] Andrew Wright and Matthias Felleisen. A syntactic approach
to type soundnessnformation and Computatiqri15(1):38—
94, 1994.

[24] Hongwei Xi and Frank Pfenning. Eliminating array bound
checking through dependent types. RPmoceedings of
PLDI'98, ACM SIGPLAN Conference on Programming
Language Design and Implementatipages 249-257, 1998.

[25] Hongwei Xi and Frank Pfenning. Dependent types in
practical programming. If#roceedings of POPL'99, 26th
Annual SIGPLAN-SIGACT Symposium on Principles of
Programming Languagepages 214-227, 1999.

16

A. Proof of Type Preservation

Here is the statement of Type Preservation (Theorem 1):
For a placeP, let @ € {P, unknown}. If U;po;T;Q +
e: t,=H:V,andP t+ (H,e) ~ (H',¢'), then we have
U’ ¢ such thatl < @/, O/ 0;T5Q F € = t/, = H : ¥,

andp -t =t

Proof. We proceed by induction on the structure of the
derivation of U;: p;I'; Q F e : t. There are now twenty-
five subcases depending on which one of the type rules was
the last one used in the derivation®f p; T'; Q F e : .

In eight of those casesjs a either a value or a variahle
and hencd H, e) cannot take a step. We will now consider
each of the remaining seventeen cases.

¢ Rule (64): the derivation is of the form:

Ui TiQbFer: ti —ta UpliQFex: by
Ui QFerex: to

We now have three subcases depending on which rule
was used to makeH, e; eq) take a step.
If Rule (1), that is,

Pt (H,e;) ~ (H',€e})
P (H,el 62) ~ (Hl76/1 62)

was used to take a step, then we have from the in-
duction hypothesis that we hawe such that¥ < ¥/,

U0 T5Q F e t; — to, and = H' L8
From ¥ < ¥ and ¥;o;T;Q F e t1 we have
U TQ F ea: th. From¥so;T5Q F e« th — to

and¥’; p;T;Q + es : t1, and Rule (64), we conclude
o T QF e ea: to.

If Rule (2), that is,

Pt (H,ez) ~ (H',e})
Pt (H,veg)~ (H' veb)

was used to take a step, then we have from the in-
duction hypothesis that we haw such that¥ < ¥,
Vo TQ F ey o ¢, and= H' @ . From¥ < ¥’
andV:o;T;Q F ey @ t1 — to we haveV’; ;T Q +

e1 ¢ t1 — to. FromU;o:Q F oep @t — to
andV’;o;T;Q F e : t, and Rule (64), we conclude
o T QF e ey to.

If Rule (3), that is,

Pk (H,(Ax:t.e)v) ~ (H, e[z :=v])

was used to take a step, then we have from Rule (61) that
U;o;T[z : t1];Q F e : tg, SO we pickl’ = ¥ and we
have from Lemma 1 thab; o; T;Q e[z :=] : t2.

¢ Rule (65): the derivation is of the form:

U, QFer: HMa:kty Vo TQFes:ts
Fto: k> W ¢ = (constraint(k)) o := W]
U 0T Q F er<ex> ot := W]

2007/3/20

We now have three subcases depending on which rule
was used to makeH, e; <e;>) take a step.

If Rule (4) or Rule (5) was used to take a step, then
the proof is similar to that given above for the case of
function application (Rule (1)); we omit the details.

If Rule (6), that is,

Ptr (H,(lam « : k.€)<w>) ~ (H,e[a == w])

was used to take a step, then we have from Rule (62)
that¥; o A constraintk); I'; unknown F e : t. We pick
¥’ = 0. We picka such thatx does not occur free ip.
Let ¢’ = constraintk). FromU; o A ¢';T5Q F e : ¢t
and Lemma 2, we hav@; (¢ A ¢')[a :== W];T;Q F
ela := W] : tla := W], which is the same a§; ¢ A
(¢l == W]);T;Q & ela :== W] tla := W]. From
Ui A (@ a:=W]);T;Q F ela = W] tla:= W],
¢ E ¢'[a := W], and Lemma 3, we havé; o;T; Q +
ela:=W]: tla:=W].

Rule (66): the derivation is of the form:

Uiz t1];QF et Q # unknown
U0 TQF Nex i tye: t1 —ta

If Rule (7), that is,

P& (H, Az :t1.e) ~ (H,\x : t;.at (P){e})

was used to take a step, then fragne {P, unknown}
and@ # unknown, we haveQ = P. From Rule (60)
we have¥; p; [z : t1]; unknown = P : pl P. From
U: ;[@ t1]; unknown H P : pl P and¥;;T[x :
t1); P F e : ty and Rule (81), we hav&@; p;T'[z :
t1]; unknown F at(P){e} : t2. From ¥;p; Tz :
t1]; unknown at (P){e} : ty and Rule (61) we have
U:o;T5Q F A s ty.at (P {e} : ¢ — ta.

Rule (67): the derivation is of the form;

U: o A constraint(k);T; here b e: t here # unknown
U: ;T here F lam®ac: ke : Tla: k.t

If Rule (8), that is,

Pr (H,lam*a : k.e) ~ (H,lam « : k.at (P){e})

was used to take a step, then we can provedhat, I'; here -
lam o : k.at(P){e} : Ha : k.t in @ manner similar to
the previous case of Rule (66); we omit the details.
Rule (68): the derivation is of the form:

U, IQFe: regr
U: ;T Q F new tle] : t[r]

We now have two subcases depending on which rule was
used to makéH, new t[e]) take a step.

If Rule (9) was used to take a step, then the proof is simi-
lar to that given above for the case of function application
(Rule (1)); we omit the details.

17

If Rule (10), that is,

P+ (H,new t[R]) ~
(H[l — Ap € R.(default(t),distribute R, p))], 1)
wherel is fresh

was used to take a step, then we have: R, so from
Rule (58) we have = R. We define?’ to be an exten-
sion of ¥[l — ¢[R]] such that¥ < ¥’ and ¥’ contains
suitable definitions for the labels useddief ault(t); we
omit the details. Lefd’ be an extension off[l — Ap €
R.(default(t), distributg R, p))] such thatd’ contains
suitable definitions for the labels useddief ault(t); we
omit the details. From Rule (59) we ha¥g; o;T; Q +

[: (). We finally need to show= H’ : ¥’. From
the construction oft’ and H' we have that they ex-
tend the domains off and H, respectively, with the
same labels. Frorh= H : ¥ we haveD(H) = D(9),
so we concludeD(H’) = D(¥'). Moreover, we have
R = D(A\p € R.(default(t), distributg R, p))) and we
have ¥’; p;T;Q + default(t) : t. Finally, for each
p € Rwe haveH (1)(p).2 = distribute R, p).

Rule (69): the derivation is of the form:

U015 Q F oy o t[rd] U0, 0Q F ya : pt (o,72)
pET S pEoE T pkFQ=r1[Qo,72)]
o Q F yafya] : ¢

If Rule (11), that is,

P+ (H,lp]) ~ (H, H(l)(p).1)
if i€ D(H)andp € D(H(l)) andP = H(l)(p).2

was used to take a step, then we have= [andy, = p.
FromW:; ;T Q F 1 : t[r1] and Rule (59) we have that
r1 = Rand¥(l) = ¢[R]. We pick ¥’ = ¥ and from
E H: ¥ wehavel; o;T;QF H(l)(p).1:t.

Rule (70): the derivation is of the form:

Vo T;QFyr: tr] Vo T5QF g2 pt(o,r2)

pEre G plETE T

ok Q=r1[Qo,rs)] U, IQFe: t
Ui TiQEyifye] =e: t

We now have two subcases depending on which rule was
used to makéH, y1[y2] = e3) take a step.

If Rule (12) was used to take a step, then the proof
is similar to that given above for the case of function
application and Rule (1); we omit the details.

If Rule (13), that is,

P (H,l[p] = v) ~ (H[l — (H()[p — (v, H({1)(p)-2)]}, v)
if l e D(H)andp € D(H(l)) andP = H(l)(p).2

was used to take a step, then we hgye= [, yo = p,

e =v. FromU;p;T;Q F I : t[r;] and Rule (59) we
have that; = Rand¥(l) = ¢[R]. We havel; o; T;Q I+

2007/3/20

v : t so we need to prove= H[l — (H(]))[p —
(v, H1)(p).2)]] : ¥. Froml € D(H) we haveD(H|l —
(H(I))[p — v]]) = D(H). Notice thatH()(p).2 =

H[l = (H())[p = (v,H({1)(p)-2)]](1)(p)-2. The re-
maining thing to prove is

U T;Q - (H[l

We have(H [l — (H(1))[p — (v, H(1)(p)-2)]}) () (p).1 =
vandwe havel; o; T QFov: ¢t
¢ Rule (71): the derivation is of the form:

U T;QF e tr]
U0 Q Fereg @ regr

We now have two subcases depending on which rule was
used to makéH, e.reg) take a step.
If Rule (14) was used to take a step, then the proof
is similar to that given above for the case of function
application and Rule (1); we omit the details.
If Rule (15), that is,
P+ (H,l.reg) ~ (H,D(H(l))) ifleD(H)
was used to take a step, then we have fionp; I'; Q -
[: t[r]and Rule (59) tha¥ (1) = t[r]. Moreover we have
thatr is of the formR. From= H : ¥ and¥ (1) = t[R],
we haveD(H(l)) = R. We pick ¥/ = ¥ and from
Rule (58) we conclud@; o;T;Q - D(H (1)) : reg R.
¢ Rule (72): the derivation is of the form:

UoilQFy: tr] U TQFya: pt(o,72)
plET G plEoTETS
U015 Q F 1 [Quya] + pl 71[Q; (0, 72)]

If Rule (16), that is,

P+ (H,1[Qp]) ~
if le D(H

(H,H(I)(p).2)
Yyandp € D(H(I))

was used to take a step, then we have= [andy, = p.
From ¥;;T;Q + [: t[r1] and Rule (59) we have
thatr; = Rand¥(l) = ¢[R]. From¥;o;15Q + p -
pt (o,72) and Rule (57) we have that = p. We have
H' = H and we pickl?/ = ¥. Fromj= H : U we
have H(1)(p).2 = distributg R, p) andD(H(l)) = R.
From Rule (60) we have that we must shéil) (p).2 =
r1[@Q¢ (o, r2)]. We haveri[Q,(o,r2)] = R[Q(p,72)].
We haveH (I)(p).2 = distributg R, p). We also have
¢ Ero &, Randp + p €; ry so from Rule (53)
we havey - R[Q;(p,r3)] = distributg R, p). We con-
clude H(l)(p).2 = distributg R,p) = R[Q:(p,12)] =
r1[@Q¢(o,72)], as desired.
¢ Rule (73): the derivation is of the form:

Vo lQFer: regry Vo QFes:
U0 IQ Feg Uses : regry Ug g

regro

18

(HO)p — (0, HO@)- 2N O(p).1:

We now have three subcases depending on which rule
was used to makeH, e; U; eo) take a step.

If Rule (17) or Rule (18) was used to take a step, then
the proof is similar to that given above for the case of

function application and Rule (1); we omit the details.

If Rule (19), that is,
PE (H7R1 L-Js RQ) ~ (H7R1 U R2)

was used to take a step, then we have from Rule (58)
that we must show - Ry Uy Ry = Ry U R, which is

Rule (43).
Rule (74): the derivation is of the form:
U QFer: regry Uy;o1QFex: regrs

Ui I Q e Ngey:

We now have three subcases depending on which rule
was used to makeH, e; N, ey) take a step.

If Rule (20) or Rule (21) was used to take a step, then
the proof is similar to that given above for the case of

function application and Rule (1); we omit the details.

If Rule (22), that is,

regry Mg T2

PF (H,R1Ns Re) ~ (H,R; N Ry)

was used to take a step, then we have from Rule (58)
that we must show - Ry Ny Ry = R; N Ry, which is
Rule (45).

Rule (75): the derivation is of the form:

U QFe:
U, IQFe+sc: regr—+4c¢

We now have two subcases depending on which rule was
used to makéH, e +; c) take a step.

If Rule (23) was used to take a step, then the proof
is similar to that given above for the case of function
application and Rule (1); we omit the details.

If Rule (24), that is,

regr

Pr(H,R+sc¢)~ (H,R+c¢)

was used to take a step, then we have from Rule (58) that
we must showp - R +; ¢ = R + ¢, which is Rule (47).
Rule (76): the derivation is of the form:

;o T;Q e pt(o,7)

Ui IQ Fe++tsc: pt (0 +Hie,r 44)

We now have two subcases depending on which rule was
used to makéH, e ++c¢) take a step.
If Rule (25) was used to take a step, then the proof
is similar to that given above for the case of function

application and Rule (1); we omit the details.
If Rule (26), that is,

Pt (H,p++sc) ~ (H,p+c)

was used to take a step, then we have from Rule (57) that
we must showp - p ++;¢ = p + ¢, which is Rule (51).

2007/3/20

e Rule (77): the derivation is of the form: If Rule (30), that is,

Vo IQFy s regr U0 05QFy2: pla P+ (H,forallplaces z{e}) ~»
VoI QF g1 %hs y2 0 Tegr e ™ (H,((lam*« : place. Az : pl a.e)<P>)Py;.. .
If Rule (27), that s, ((lam®« : place. Nz : pl a.e)<P,,>) Py; 0)
whereplaces = (P, ..., P,)

P+ (H,R%s P')) ~ (H,R")

; o o was used to take a step, then we can provedhat I'; here -
wherelt' = { p € R | distribute(R,p) = P" } ((lam®« : place.*z : pl a.e)<P>)Py;...; ((lam*a :
place.A*z : pl a.e)<P,>)P,;0) : int in a fash-
ion similar to the case fofor-loops and Rule (78) and
Rule(29); we omit the details.

¢ Rule (80): the derivation is of the form:

U, QFer: regr @ # unknown UoT;Qker: tn WoTiQFes: to
UioA(a € r);T[z: pt(a,r)];QF ez : int
(fresh) Ui INQ Fersen: to

U5 Q F for (x iney){es} : int _)

We now have two subcases depending on which rule was
We now have two subcases depending on which rule was used to makéH, e;; e2) take a step.
used to makéH, for (z in e;){ez}) take a step. If Rule (31) was used to take a step, then the proof
If Rule (28) was used to take a step, then the proof is similar to that given above for the case of function
is similar to that given above for the case of function application and Rule (1); we omit the details.
application and Rule (1); we omit the details. If Rule (32), that is,
If Rule (29), that is,

was used to take a step, then we have from Rule (58) that
we must showp F r %, m# = R’, which is Rule (49).
¢ Rule (78): the derivation is of the form:

Pt (H,v;e) ~ (H,e)

P (H tor (zin R){ez}) ~ was used to take a step, then we piek = ¥ and we

(H,((lam*« : point(a €; R). A%z : (o, R).€2)<c1>)eq; .. 5 havel; o;T;Q F e : to.
((lam*« : point(a €, R).A°z : (o, R).e2)<cp,>)c,;0) © Rule (81): the derivation is of the form:
where ordefR) = (c1,...,cn) o QFy:plm U limbe: t

U o:T:QFat(y){e}: ¢
was used to take a step, then we have= R. From Pl Q 0

U0z : pt (o, R)];Q F ey - tandQ # unknown We now have two subcases depending on which rule was
and Rule (66) we hav@; o;:T;Q + Xz : (o, R).ey : used to makeH, at (z){e}) take a step.

pt (a,R) — t. From¥;o:T;Q F Xz : (o, R).es : If Rule (33), that is,

pt (o, R) — t and Rule (67) we hava;o;T';Q F P+ (H,e) ~ (H',¢)

lam*a. Az : (o, R).es : Il : point(a €; R).pt (o, R) —

t. From Rule (57) and the definition of ordét) we have P (H,at(P){e}) ~ (H,at (P){e'})

Uo15Q ¢ :opt (¢, R). From W o:T5Q F ¢ - was used to take a step, then we have ghat P’. From
pt (¢, R) and ¥; ;T Q F lam*a. Az @ (o, R).ez : Rule (60) we have that = P’. So, we can apply the
Ile : point(a €; R).pt (o, R) — t andk (¢;, R) : induction hypothesis t@&; o; T'; 7 F e : ¢ and get that
point(a €; R) > ¢; andy |= constraint(point)[a := U:p; Ty = € @ t. From Rule (81) we conclude that
¢;] and Rule (65) we hav@; o;T;Q + (lam*a. A’z : o T;Q Fat(y{e’}: ¢t

(o, R).e2)<¢;> @ pt (¢, R) — tla = ¢]. From If Rule (34), that is,

U o;T5Q F (lam*a. Az : (o, R).e2)<¢;> : pt (¢, R) —

tla:= ¢;] andW; o; T;Q F ¢; : pt (¢;, R) and Rule (64) P (H,at(P){v}) ~ (H,v)

we havel; o; T; Q F ((lam*a. Az : (o, R).ez)<¢;>)e;

t[a := ¢;]. From Rule (80) and Rule (56) we conclude was used o take a step, then we hale= H and we

pick ¥’ = ¥. We also have = v. FromV; o; ;7 - v :
U050 F ((lam*aAs (o, R).e)<ci>)ers .. . t and Lemma 4, We h.avé.; p; s here F o : t.
e e) ¢ Rule (82): the derivation is of the form
((lam*a.A*z : (o, R).e2)<c,>)cp; 00 int.
U;po;Tsherete: t pHt=t

¢ Rule (79): the derivation is of the form: U; ;T here e t

U;0;T[z:pla);QFe: int Q # unknown From the induction hypothesis we hawé, ¢ such that
U; ;T Q F forallplaces z{e} : int (afresh) g 4 v, i@ e st H' W, and

19 2007/3/20

okFt=t'.Fromp -t =t andyp -t =t and From Rule (8) we have that ldn : k.e can take a step.
Rule (37) and Rule (36), we have - ¢ = ¢”. From * Rule (68): the derivation is of the form:
. T /. /
Rule (82) we conclude thal; p;T'; here ¢’ : . U:trugd;Q Fe: regr
U U:true 0; Q b new tle] : t[r]

From the induction hypothesis we have that e) is not
stuck at placeP. If (H,e) can take a step at plade,

B. Proof of Progress

Here is the statement of Progress (Theorem 2): then (H, new t[e]) can also take a step at plafeusing
For a placeP, let @ € {P, unknown}. If W;trug 0;Q + Rule (9). Ife is a value, then we have from Lemma 5 that
e: tand= H : ¥, then(H, e) is not stuck at place. e is of the formR, so(H, new t[¢]) can take a step using
Proof. We proceed by induction on the structure of the Rule (10).
derivation of U; true ; Q + e : t. There are now twenty- ® Rule (69): the derivation is of the form:
five subcases dep_ending on which one of the type rules was Uitrue 0; Q - yy ¢ tfry] Witrug0;Q F yo - pt (o, 72)
the last one used in the derivation®ftrue §; Q + e : . true=r, Corp oo e @b Q=rQo,rs)]
In seven of those cases, the derivation is of the form: - X ;
!) Uitrue 0; Q F yifye] : ¢
U:trug 0;Q F v : t. wherev is a value, hencéH, v) is
not stuck at placeé®. The derivation cannot be of the form: We have thaty,, y» must be values and we have from
U:true §;Q - = : t because Rule (63) cannot apply. We ~ Lemma 5 thay, is of the formi, I € D(V¥) andys is of
will now consider each of the remaining seventeen cases. the formp. Further we have tha = P, sinceunknown
o is not equivalent to anything other than itself. LtéR]
* Rule (64): the derivation is of the form: denote¥ (). Froml € D(¥) and}= H : ¥, we have that
Uitrug 0;QFep: t; —ta Witrued; Qb es: ty I € D(H) andR = D(H(l)). We haver; = R. From
T true 0;Q F ey es : s the type rule for point constants, we have thais of the
form R’ and thatp € R’. We have true= R’ C; R.
From the induction hypothesis, we have tth 61), (H, 62) From true ': R’ C, R, we haveR' C R, hence
are not stuck at plac®. If (H,e;) can take a step at p € R' C R.FromH = ¥ we havedistributg R, p) =
place P, then(H, e, e) can also take a step at place H(l)(p).2. From Rule (57) we have = p. We conclude
using Rule (1). Ife; is a value and H, e;) can take a P = r[@,(0,7,)] = distributg R, p) = H(I)(p).2. So,
step at placeP, then also(H, e; e2) can take a step at (H,e1es]) can take a step using Rule (11).

placeP using Rule (2). lfe1, e; are both values, thenwe o Ryle (70): the derivation is of the form:
have from Lemma 5 that; is of the formAz : t.e, so
(H, ey e3) can take a step at pladeusing Rule (3). itug 0:Q Fyo: tfr] Witrue h;Q Fyz ¢ pt (0,72

. true ': ro Gt 1 true l: (ST D
Rule (65): the derivation is of the form:
* Rule (65) vationt truek Q = r1[Q; (0, r2)] U:truegP;QFe: ¢
g;true;k@;Q Fep: Ha: kit \Il;trge (Dsz Feo ity Ttrue 0;Q F yilyo] — e : ¢
fr: k> W true = (constraint(k))lo := W] We have thaty;,y, must be values and we have from
Vstrug 0; Q - er<ex> = tifa:= W] Lemma 5 thaty, is of the formi, I € D(¥) and ys,
From the induction hypothesis, we have tiiak, ¢;) is is of the formp. Further we have thaf) = P, since
not stuck at placeP. If (H,e;) can take a step at place unknown is not equivalent to anything other than itself.
P, then(H, e;<e5>) can take also a step at plaBeusing From the induction hypothesis we have ti{&,e) is
Rule (4). Ife; is a value and H, e5) can take a step at not stuck at placeP. If (H,e) can take a step at place
place P, then (H, e;<e,>) can also take a step at place > then(H,y:1[y2] = e) can also take a step at place
P using Rule (5). Ife1, e» are both values, then we have P using Rule (12). Suppose now thais a value. The
from Lemma 5 that, is of the formlam « : k.e, and we proof thaty, [ys] = e can take a step at plade using
have from- ¢, : k> W and Lemma 5 that, is of the Rule (13) is similar to that given above for the case of
form w, so(H, e1<e»>) can take a step using Rule (6). array lookup (Rule (69)), because Rule (11) has the same

side condition; we omit the details.
¢ Rule (71): the derivation is of the form:
Uitrug 0; Q F e : ¢r]
U;trug 0; Q - ereg: regr

¢ Rule (66): the derivation is of the form:

Uitrue bz : t1];Q Fe: to Q # unknown
U trug 0; Q - \°x : ti.e: t1 — to
From Rule (7) we have that*x : ¢;.e can take a step.
¢ Rule (67): the derivation is of the form:

From the induction hypothesis we have thaf, e) is
not stuck. If (H,e) can take a step at placB, then

;o A constraint(k);T;QFe: t Q # unknown (H,e.reg) can also take a step using Rule (14)elis
U, ;T here - lama : ke : Ha: k.t avalue, ther{ H, e.reg) can take a step using Rule (15).

20 2007/3/20

¢ Rule (72): the derivation is of the form:

Ustrue 0;Q Fyp : tr] Ustrue 0;Q F yo : pt (o,72)
true=re S 1 truel=o €; 1o

U:true 0; Q F y1[Qgys] @ pl ri[Qs (o, r2)]

We have thaty;, y» must be values and we have from
Lemma 5 thaty; is of the forml, [€ D(¥) and y,

is of the formp. The proof thaty,[@,y2] can take a
step at placeP using Rule (16) is similar to that given

above for the case of array lookup and Rule (69), because

Rules (11) and (13) have a stronger side condition; we
omit the details.
Rule (73): the derivation is of the form:

U:trug;QF ey : regry U;trugd;Q Fes : regro
U:true 0; Q F eg Us ea : Tegry Us 10

From the induction hypothesis we have thét e,), (H, e2)
are not stuck at placB. If (H, e;) can take a step at place
P,then(H, e; Usez) can also take a step at plaPausing
Rule (17). Ife; is a value and H, e5) can take a step at
placeP, then(H,e; U, e5) can also take a step at place
P using Rule (18). I&4, e5 are both values, then we have
from Lemma 5 thae; is of the formR; and thate, is of
the formRs, so(H, e; Uy e2) can take a step at plade
using Rule (19).

Rule (74): the derivation is of the form:

UitrueP; Qe : regry UstrugP;Q Fes : regro
U:trueD;Q Fep Ngea: Tegry Ny To

From the induction hypothesis we have th&t e,), (H, e2)
are not stuck at placB. If (H, e;) can take a step at place
P,then(H, e;Nsez) can also take a step at plaPausing
Rule (20). Ife; is a value and H, e2) can take a step at
placeP, then(H,e; N; e2) can also take a step at place
P using Rule (21). I&1, e5 are both values, then we have
from Lemma 5 that; is of the formR; and that is of
the formRs, so(H, e; N e2) can take a step at plade
using Rule (22).
Rule (75): the derivation is of the form:
U:trued;QFe: regr

U:trueP;QFe+gc: regr+;c
From the induction hypothesis we have that e) is not
stuck at place. If (H, e) can take a step at plaég then
(H,e+5c) can also take a step at plaaising Rule (23).
If eis a value, then we have from Lemma 5 thé of the
form R, so(H, e +5 ¢) can take a step at plade using
Rule (24).
Rule (76): the derivation is of the form:

U:trued;Q Fe: pt(o,7)
U:true §; Q F e ++sc: pt (0 ++ie, 7 +1)

From the induction hypothesis we have that ¢) is not
stuck at placeP. If (H,e) can take a step at plade,

21

then(H, e ++,c¢) can also take a step at plageusing
Rule (25). Ife is a value, then we have from Lemma 5
thate is of the formp, so(H, e ++5c) can take a step at
placeP using Rule (26).

Rule (77): the derivation is of the form:

U:true0; QFy1: regr Ustrugd;QFyo: plw
Uitrue 0; QF y1 %hs yo : Tegr Yoy

We have thaty,,y> must be values and we have from
Lemma 5 thaty, is of the formR andys, is of the form
P’. So,(H,y1 %s y2) can take a step at plade using
Rule (27).

Rule (78): the derivation is of the form:

U:true D; Q F ey : regr Q # unknown
U: (€ 7);0[z : pt (a,7)];QF ea: int
U;trug 0; Q + for (z iney){ea} : int

(a fresh)

From the induction hypothesis we have thdf,e;)
is not stuck at place’. If (H,e;) can take a step at
place P, then (H, for (z in e){ez}) can also take a
step at placeP using Rule (28). Ife; is a value, then
we have from Lemma 5 that; is of the form R, so
(H,for (z in e1){e2}) can take a step at plad@using
Rule (29).

Rule (79): the derivation is of the form:

U:o;T[z:pla);QFe: int Q # unknown
U; ;T here - forallplaces x{e} : int

(a fresh)

We have thaforallplaces xz{e} can take a step using
Rule (30).
Rule (80): the derivation is of the form:

U:trug 0;Q et UitrugD; QFeg: to
U trug 0; Q - eqr;ea : to

From the induction hypothesis we have tHi&f, e,) is
not stuck at place®. If (H,e;) can take a step at place
P, then(H,e1;es) can also take a step at plateusing
Rule (31). Ife; is avalue, theflH, e1; e5) can take a step
at placeP using Rule (32).

Rule (81): the derivation is of the form:

U:trug 0;QFy: plm Ustrugd;mhe: t
U trug 0; Q Fat(y) {e}: ¢

We have thaty must be a value and we have from
Lemma 5 thaty must be of the formP’. From the
induction hypothesis we have thél,e) is not stuck
at place P'. If (H,e) can take a step at plac®’,
then (H,at (y){e}) can take a step at place using
Rule (33). Ife is a value, the{H, at (y) {e}) can take a
step at place® using Rule (34).

¢ Rule (82): the derivation is of the form

U;true®;QFe: t truekt=+¢
Uitrugd;QFe: t/

2007/3/20

From the induction hypothesis we have thé not stuck
at placeP.

O

22 2007/3/20

