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Abstract
Multicore systems with non-uniform memory are of increas-
ing importance in desktop and server computing. Such sys-
tems represent both potentially vast computing power and
significant research problems in expressing and maximiz-
ing parallelism, which has prompted researchers to design
new languages such as X10, Fortress, and Chapel. Common
to these languages is support for location-aware program-
ming, which gives the programmer control over the location
of both data and computations. One primary data structure
in these languages is the distributed array, which elevates the
location of individual array elements to a language concept.
A location-aware algorithm executing on a particular core
must be designed to exploit the locality of the distributed ar-
ray, because access to remote data is far slower than to local
data. In this paper, we solve the open problem of statically
checking whether such a program has achieved the desired
locality of access.

We present a statically-typed core language in which a
well-typed program only accesses local parts of distributed
arrays and every array access is within the array bounds.
The type system integrates dependent types and set con-
straints, with the key operation during type checking be-
ing constraint entailment. Type checking for this system is
co-NP-complete. We have integrated our type system into
the object-oriented language X10 and shown that for seven
benchmarks, a programmer needs insert only a few casts to
make a program type check.

Categories and Subject DescriptorsD.3 [Software]: Pro-
gramming Languages

General Terms languages, performance, verification

Keywords dependent types, non-uniform memory
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1. Introduction
1.1 Background

According to Moore’s Law, the number of transistors on an
integrated circuit doubles every 18 months. In the past few
years, one of the practical manifestations of Moore’s Law
has been that microprocessor chip packages have begun to
integrate more than one execution unit, orcore on a single
die. As the physical limits of processor clockspeeds are
beginning to be reached, chip manufacturers are now turning
to multicore chips to keep performance increases on track.

Multicore systems are quickly becoming mainstream. For
example, Intel released its first dual-core processor, namely
the Intel Pentium processor Extreme Edition (www.intel.com)
in 2005; AMD offers quad-core Opteron processors (multi-
core.amd.com); and IBM’s Cell processor has one general-
purpose core and eight specialized cores (www.ibm.com).
Sun Microsystems’ Niagara 2 processor will debut with sup-
port for 64 hardware threads, with 4 threads per core and 8
cores per processor (http://www.sun.com/processors/niagara).

The full utilization of the computing power of multi-
core systems is a major challenge, and for that and similar
purposes, researchers have designed new programming lan-
guages such as X10 [9], Fortress [2], Chapel [5], Titanium
[13], Co-Array Fortran [19], and ZPL [7]. Although these
languages are highly different (e.g. X10 is derived from a
Java-like language, Co-Array Fortran is a Fortran-like lan-
guage, etc), they also have important similarities. For exam-
ple, all of the first four of those languages share the notion of
distributed arrays, where the location of individual array el-
ements is elevated to a language concept. Distributed arrays
are a key data structure in high performance computing. We
will use X10 terminology for four basic notions associated
with distributed arrays:

• apoint is an array index,

• a region is a set of array indices,

• a place is a location where data is stored and code is
executed, and

• adistribution is a mapping from regions to places.
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Language X10 Fortress Chapel Titanium Co-Array Fortran ZPL

Array index point index index point index index
Set of array indices region n/a domain domain n/a region
Location place region locale demesne image n/a
Array distribution distribution distribution distribution distribution n/a n/a

Table 1. Language terminology.

The notion of regions stems from ZPL where the idea is
to allow the domain of an array to be any finite set of
indices, not just intervals [6, 8, 7]. In their most general
form, a programmer can use regions to specify dense, sparse,
multidimensional, and even hierarchical arrays.

The notion of a distribution enables a programmer to
specify, for example, that the elements of an array with
indices{1, 2, 3, 4} will be distributed such that:

elements with indices 1,2: will be allocated at placeP1

elements with indices 3,4: will be allocated at placeP2.

Table 1 gives a overview of the terminology used in the six
languages.

Distributed arrays are linked to locality-aware algorithms
in which the code on a core primarily accesses the local part
of an array. A locality-aware algorithm running on a multi-
core computer with nonuniform memory favors access to
local data, which is much faster, over access to remote data.
For example, we may have codee1 running at placeP1 and
codee2 running at placeP2, ande1 will try to access only
data atP1, while e2 will try to access only data atP2. X10
enables programmers to ensure data locality by providing
constructs to programatically shift the place of execution.

This leaves us with the question: did the implementer of
the locality-aware algorithm get locality right? We focus on
the X10 policy that all accesses to mutable data be place-
local. We would prefer to check that all accesses are local
before running the program and thereby give the locality-
aware programmer as much help as possible.

Problem: Can we statically check that a program only
accesses local parts of distributed arrays?

This problem has remained open until now.

1.2 Our Results

In this paper we present a statically-typed core language
for computing with distributed arrays. The core language
is a dependently-typed lambda calculus [3] with distributed
arrays and place-shifting operations. We prove that a well-
typed program can only access local parts of distributed
arrays; we also prove that every array access is within the
array bounds. Our proof of type soundness uses the standard
technique based on proving preservation and progress.

Our distributed arrays are defined in terms of points,
regions, places, and, for simplicity, a fixed distribution for

each region. The type system uses dependent types that
are parameterized by points, regions, and places. The type
system integrates dependent types and set constraints. The
key operation during type checking is constraint entailment;
type checking itself is co-NP-complete.

For each expression-level operator on points, regions, and
places, we have a similar type-level operator. A type-level
constraint is a conjunction of set constraints of the forms
r1 ⊆t r2 and σ ∈t r, wherer1, r2, r are type-level set
expressions,σ is a type-level point expression, and⊆t and
∈t denote type-level subset inclusion and set membership,
respectively.

To type check an array access expressiony1[y2], we must
(among other things) check that the access is within bounds
and to local data, that is, to data in the right place. Suppose
we find thaty1 is an array over a region-typer1, and that
y2 is a point in region-typer2. We can then do the bounds
check by checking thatr2 is a subset ofr1, and we can do
the place check by checking that the data is at the current
place of computation. In our type system, the bounds check
is a constraint entailment problem, while the place check is
a type equivalence problem. In slogan form:

check of array access= bounds check + place check

bounds check = constraint entailment

place check = type equivalence

We have integrated our type system into a variant of X10.
In our X10 version, a programmer can write a cast to signal
to the compiler that a combined subset and locality check
must be performed; all array accesses without explicit casts
are guaranteed to be within bounds. We have shown that for
seven benchmarks, a programmer needs insert only a few
casts to make a program type check. We have also measured
how many dynamic checks are executed as a result of those
casts; compared to doing the checks for every array access,
the reduction in checks is substantial.

Our choice of point-region-place algebra and form of set
constraints is sufficient to cover several fundamental exam-
ples, as we will demonstrate below. Changes to the alge-
bra or constraints would impact the complexity of the type
checker, but would likely not change the style of the type
soundness proof.

In summary, this paper makes four contributions:

• a core language for computing with distributed arrays,
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• a type system that ensures locality of access and memory
safety for distributed arrays,

• design and implementation of a variant of X10 which
embodies our type system, and

• experimental results that show for a suite of seven bench-
marks, a programmer need insert only a few casts to make
a program type check.

1.3 Related Work

Liblet and Aiken [17] presented three type systems for dis-
tributed data structures that distinguish between local and
global data. Our type system goes further by supporting dis-
tributed arrays and operations that shift the place of compu-
tation.

Xi and Pfenning [24, 25] presented a type system that
uses dependent types to guarantee that all array accesses are
in bounds. Xi and Pfenning work with arrays defined over
intervals and use a decision procedure based on Pressburger
arithmetic [21] in order to show the safety of array accesses.
Inspired by Xi and Pfenning, our type system goes further
by supporting distributed arrays.

Instead of types, one can use static analysis to eliminate
array-bounds checks. Suzuki and Ishihata [22] used theorem
proving to eliminate array-bounds checks. Our work is re-
lated in that our type checker relies on using decision pro-
cedures to settle subset and locality questions. For just-in-
time compiled languages such as Java where short compile
time is crucial, the ABCD algorithm [4] describes a light-
weight analysis based on interval constraints that is capable
of eliminating on average 45% of the array bounds checks.
The results range from 0 to 100% for individual benchmarks
and that may make it hard for programmers to write code
that achieves consistently good performance. In contrast, the
type system for our core language guarantees that all array
accesses (without explicit casts) are within bounds.

For parallel languages without programmer-definable dis-
tributions, researchers have developed algorithms for auto-
matically determining distributions that can reduce or elimi-
nate nonlocal data access [10, 12, 16, 14, 11]. An emerging
point of view inherent in X10, Fortress, and Chapel is that
the definition of distributions is best left to the programmer.

When speed is of utmost concern, a language designer
may decide to not require any bounds checks altogether.
For example, the 2005 reference manual for Titanium [13]
defines that operations which cause bounds violations result
in the behavior of the rest of the program beingundefined.
The semantics of our core language is similar: a violation
of locality or an access out of bounds result in the semantics
getting stuck. Our type system guarantees statically that such
errors cannot occur. Thus, our type system enables us to have
both memory safety and high performance.

Rest of the paper.In Section 2 we explain several exam-
ple programs; in Section 3 we present our core language and

theoretical results, and in Section 4 we present our experi-
mental results.

2. Example Programs
We will give a taste of our core language and type system via
six example programs. The first five example programs all
type check, while the sixth program does not. The programs
are written to highlight aspects of the language and type
system, and not necessarily to represent the most elegant
coding style.

We use functions of the formλ•x : t.e which run at the
place where they are defined. Our core language also has
functionsλx : t.e which run at the place where they are
called. In both cases,x is the name of the argument,t is the
type of the argument, ande is the body which evaluates to
the return value of the function.

Similarly, we use dependent expressions lam•α : k.e for
which the body will be evaluated at the place where the
dependent expression was defined. Additionally, our core
language has dependent expressionslam α : k.e which are
evaluated at the place they are called. In both cases,α is the
name of argument,k is the kind of the argument, ande is the
body.

The difference betweenλ•x : t.e and lam•α : k.e is that
while both take a value as argument,α can only be used as a
type, while x can only be used as avalue. The idea of using
a value as a type is what makes dependent types powerful.

While two kinds of functions (and two kinds of depen-
dent expressions) appear a bit excessive, we have found it
convenient to have both; we have been unable to define one
in terms of the other.

2.1 init

The functioninit initializes all elements of an array to
1. This example shows how to use (1) a region as a first-
class value, (2) afor-loop over a region, and (3) the place-
changing operationat(e1){e2}.

let init = lam•α : region(true).λ•a:int[α].
for (p in a.reg) {

at(a.reg[@p]) { a[p]=1 } }
in init<0:9>(new int[0:9])

init: Πα : region(true). int[α] → int

The functioninit takes two arguments, namely a re-
gionα and an arraya over regionα. Notice thatα has kind
region(true) which means thatα can be any region. No-
tice also thatα is used in the type ofa such thata must be
an array over regionα.

The use of the dependent typeα makesinit polymor-
phic: init can initialize any array without the need for any
bounds or place checking. In the body of thelet-expression,
we have the call ofinit<0:9>(new int[0:9]). The no-
tation0:9 denotes the region{0, 1, . . . , 9}. We use<. . .> to
denote an argument to a dependent expression.
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The expressiona.reg denotes the region over which the
arraya is defined. The loop variablep ranges over points in
a.reg.

The body of thefor-loop is the expressionat(a.reg[@p])
{ ...}. The expressiona.reg[@p] denotes theplaceof the
element at pointp in the regiona.reg. Our core language
uses a fixed distribution for each region; the languages that
our core language models allow user-specified distributions.

The loop bodyat(a.reg[@p]) { a[p]=1 } does the
computation ofa[p]=1 at the place denoted bya.reg[@p].
Given that the elements ofa may be distributed on many
places, the body of thefor-loop will run on those places.

Let us consider the type checking process for each of the
two array accessesa.reg[@p] anda[p].

In the case ofa.reg[@p]we have thata has typeint[α]
and thata.reg has typereg α. The type system givesp the
type pt (σ, α), whereα is the region to whichp belongs,
and σ is a fresh type variable for which we have the set
constraintσ ∈t α. We use the subscriptt to denote type-
level operations. The type checker then does a bounds check
by checking that the type of the region ofp is a subset of the
type of the regiona.reg, which amounts to checking thatα
is a subset ofα, which is true for allα.

In the case ofa[p]=1 we must do the same bounds check
as we did fora.reg[@p] and we must also do a place check.
The place check verifies that the data is at the current place
of computation. In the body ofat(a.reg[@p]) { ...},
the place of computation is given bya.reg[@p]) which has
typepl α[@t(σ, α)]. That place is exactly the place of the
dataa[p] so the place check succeeds. Note that we needσ
in the type ofp to ensure that we find the type of the place
for that specific point.

2.2 partialinit

The functionpartialinit initializes those elements of an
array that are at a given place. This example shows how
to use (1) a place as a first-class value and (2) the restrict
operatore1 %s e2.

let partialinit = lam•γ:place.λ•h:pl γ.
lam•α:region(true).λ•a:int[α].

at(h) { for (p in a.reg %s h) { a[p]=1 } }
in partialinit <P>(P)<0:9>(new int[0:9])

partialinit: Πγ:place.pl γ
→ (Πα:region(true).int[α] → int)

Compared toinit, the functionpartialinit takes two
extra arguments, namely a placeγ and a second placeh. In
the body of thelet-expression, we can see that the idea is to
applypartialinit twice to the same place value. The idea
is that we want to use the place both as a value and as a type.
This idiom seems inescapable because we want to keep each
construct in our core language simple. Notice thatγ has the
kind place which means thatγ can be any place. We useγ

in the type ofh; in other words, the type ofh is essentially
itself, which is the most accurate type possible.

The body ofpartialinit initializes those points in the
arraya which can be found at the placeh. The expression
a.reg %s h denotes those points ina.reg which by the
fixed distribution ofa.reg are mapped to the placeh. The
for loop iterates only over points ina.reg %s h and since
the for loop is wrapped inat(h){...}, each accessa[p]
will happen at the place ofa[p].

Let us consider the type checking process fora[p].
First we explain the bounds check fora[p]. The type of

a.reg isreg α and the type ofh ispl γ. As a result, the type
of a.reg %s h is α %t γ, which illustrates that we use a
type operator to mirror the expression operator. The variable
p then gets the typept (σ, α %t γ), whereσ is a fresh variable
for which we have the set constraintσ ∈t α %t γ. The static
bounds check will verify that the type of the region ofp is
a subset of the type of the region ofa, which amounts to
checking thatα %t γ is a subset ofα, which is true for allα.

Second we explain the place checka[p]. This check
illustrates the use of the most importanttype equivalence
rule in the type system. Recall that the goal of the place
check is to determines that the current place of execution is
the same as the place ofa[p]. The current place of execution
is given by the enclosingat(h) expression, and we have that
h has typepl γ. The type of the place ofa[p] is given by
the type expressionα[@t(σ, α %t γ)], which says that the
place is that of a point inα which has its data located at a
point with typept (σ, α %t γ). We can then use the type
equivalence

α[@t(σ, α %t γ)] ≡ γ

to conclude that the place of execution is indeed the same as
the place of the dataa[p]. We can read the type equivalence
as saying, intuitively: “if we have a regionα and a pointσ,
whereσ belongs to a subregion ofα in which all the points
have their elements on the placeγ, then indeedσ has its
element on placeγ.”

2.3 copy

The functioncopy takes two arrays over the same region
and copies the elements from one array to the other. This
example shows how to use (1) a function with two arguments
over the same region and (2) aforallplaces-loop which
iterates over all available places.

let copy = lam•α:region(true).λ•a:int[α].λ•b:int[α].
forallplaces h { at(h) {

for (p in (a.reg %s h)) {
a[p] = b[p] } } }

in copy<0:7>(new int[0:7])(new int[0:7])

copy: Πα:region(true).int[α] → (int[α] → int)

The functioncopy takes two arraysa andb, both with
regionα. The body ofcopy copies elements fromb toa. The
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body ofcopy uses the constructforallplaces h { ...}
which iterates over all places available to the program and in
each iterations binds the current place toh. For each place,
the code copies elements that reside at that place. Notice that
sincea andb have the same region, they also have the same
distribution, so for a given pointp in that region, botha[p]
andb[p] will be at the same place.

2.4 expand

The functionexpand takes an array and returns a new ar-
ray over a bigger region; the output array will be partially
initialized with values from the input array. This example
shows how to use (1) constraints over region variables and
(2) the intersection operator on regions.

let expand = lam•α:region(true).λ•a:int[α].
lam•β:region(α ⊆t β).λ•x:reg β.

let b = new int[x]

in { forallplaces h { at(h) {
for (p in a.reg ∩s (b.reg %s h)) {

b[p] = at (a.reg[@p]) { a[p] } }
} } ; b }

in expand<3:7>(new int[3:7])<0:10>(int[0:10])

expand: Πα:region(true).int[α]
→ (Πβ:region(α ⊆t β).reg β → int[β])

The functionexpand takes an arraya over regionα and
region x with region typeβ, wherex must be a superset
of the region ofa, and creates and returns a new arrayb
over the regionx. The functionexpand partially initializes
the new arrayb with values froma at overlapping points.
The program specifies the desired relationship between the
region ofa andx by giving the argumentβ a kind other than
true. The kind ofβ is the constraintα ⊆t β, which means
that the regionα must be a subset of the regionβ. The call
expand<3:7>(new int[3:7])<0:10>(int[0:10]) is a
good example of the kind of reasoning that the programmer
has to do when programming directly in the core language;
the call satisfies the constraintβ ⊆t α because3 : 7 ⊆ 0 :
10.

The functionexpand highlights the importance of keep-
ing upper and lower bounds for the region of arrays dur-
ing type checking. The type ofa.reg ∩s (b.reg %s h)
is reg α∩t (β %t π), whereπ is a fresh type variable about
which we know thath has typepl π.

When we type checka[p] we have thatp is in regionreg
α ∩t (β %t π) anda has the regionα. So the bounds check
is satisfied becausereg α ∩t (β %t π) is a subset ofα for
all α. The place check is also satisfied because the current
place of execution is exactly the place ofa[p].

When we type checkb[p] we have thatb has the region
β, and we haveα ⊆t β. So the bounds check is satisfied
becausereg α ∩t (β %t π) is a subset ofα for all α and
α ⊆t β. The place check is also satisfied because the current
place of execution ish which has typepl π and we know

p is in a region with typereg α ∩t (β %t π) which only
includes points with elements at a place with typepl π.

2.5 shiftleft

The functionshiftleft shifts all elements in an array to
the left, while leaving the rightmost element unchanged.
This example shows how to use (1) arithmetic operators on
points and (2) arithmetic operators on regions.

let shiftleft = lam•α:region(true).λ•a:int[α].
let inner = (a.reg + 1) ∩s a.reg

in { for (p in inner) { at(a.reg[@p-1]) {
a[p-1] = at(a.reg[@p]) { a[p] } }

} }
in shiftleft<reg 3:7>(new int[3:7])

shiftleft: Πα:region(true).int[α] → int

The functionshiftleft takes an argumenta with re-
gionα and shifts all elements one position to the left, while
leaving the rightmost element unchanged. In more detail,
shiftleft first creates a regioninner by shifting all el-
ements ofa.reg by one to the right and then intersecting
the result witha.reg. If a.reg is simply an interval, this
effectively removes the first element froma.reg. The type
of inner is reg ((α+ 1)∩t α). Thenshiftleft proceeds
with doing essentiallya[p-1] = a[p] for each pointp in
the inner region.

Let us now consider the bounds checks fora[p-1] and
a[p]. The expressionp is always within the region ofa
becausep has region(α + 1) ∩t α which is a subset ofα
for all α. The expressionp-1 is always within the region of
a becausep-1 has region((α+1)∩tα)−1 which is a subset
of α for all α because+1 and−1 cancel each other out.

2.6 shift

The functionshiftleft is a buggy version ofshift. This
example shows that mistakes in the arithmetic on points can
be caught by our type checker.

let shift = lam•α:region(true).λ•a:int[α].
let inner = (a.reg + 1) ∩s a.reg

in { for (p in inner) {
at(a.reg[@p+1]) {

a[p+1] = at(a.reg[@p]) { a[p] } }
} }

in ...

The programshift is a small variation ofshiftleft
that contains a bug which would result in an array bounds
violation and that consequently does not type check. The
problem withshift is that the array accessa[p+1] will
be out of bounds whenp reaches the end of the array. When
the type checker considersa[p+1] it will determine that the
region ofp+1 is ((α+ 1) ∩t α) + 1 which isnot a subset of
α for all α.
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(Kind) k ::= point ϕ | region ϕ | place

(Type) t ::= int | pt (σ, r) | reg r | t[r]
| pl π | t→ t | Πα : k.t

(Region) r ::= α | R | r ∪t r | r ∩t r
| r +t c | r %t π

(Point) σ ::= α | p | σ ++tc
(Place) π ::= α | P | r[@t(σ, r)]

| unknown
(Constraint) ϕ ::= r ⊆t r | σ ∈t r | ϕ ∧ ϕ

(Value) v ::= c | p | R | l | P | λx : t.e
| lam α : k.e

(ValOrVar) y ::= v | x
(Expression) e ::= y | e1 e2 | e1<e2>

| λ•x : t.e | lam•α : k.e
| new t[e] | y1[y2] | y1[y2] = e
| e.reg | y1[@sy2]
| e1 ∪s e2 | e1 ∩s e2 | e+s c
| e++sc | y1 %s y2

| for (x in e1){e2}
| forallplaces x{e}
| e1; e2 | at(y){e}

(Dep Val) w ::= p | R | P

Figure 1. Syntax of the core language.

3. The Core Language
We now present the syntax, semantics, and type system of
our core language. We prove type soundness using the stan-
dard technique of Nielson [18] and others that was popular-
ized by Wright and Felleisen [23].

3.1 Syntax

Figure 1 gives the syntax for the core language. We usec to
range over integer constants,p to range over point constants,
R to range over region constants (such as [1:4], which de-
notes{1, 2, 3, 4}), l to range over array labels drawn from a
setLabel, P to range over place constants,x to range over
variable names, andα to range over type-variable names.
In our core language, points are integers, and we will oc-
casionally write a point constant asc. For shifting a re-
gion by a constant we use the notation{c1, . . . , cn} + c =
{c1 + c, . . . , cn + c}.

The language has seven data types, namely integers,
points, regions, arrays, places, functions, and dependently-
typed functions. We have deliberately avoided having distri-
butions as values, in an effort to keep the size of the language
manageable. We assume a functiondistributewhich maps a
region and a point in that region to a place. When we create
an array over a regionR, the array will be distributed ac-
cording to the functiondistribute. We make no assumptions
aboutdistribute.

The types are defined in terms of three forms of expres-
sions which, given an interpretation of the variables, evaluate
to sets of points (regions), points, and places, respectively.

Specifically, ifρ is a mapping from region variables to re-
gions, point variables to points, and place variables to places,
then the meaning of the expressions is given as follows:

αρ = ρ(α)
Rρ = R

(r1 ∪t r2)ρ = r1ρ ∪ r2ρ

(r1 ∩t r2)ρ = r1ρ ∩ r2ρ

(r +t c)ρ = rρ+ c

(r %t π)ρ = { p ∈ rρ | distribute(rρ, p) = πρ }
pρ = p

(r ++tc)ρ = rρ+ c

Pρ = P

(r1[@t(σ, r2)])ρ = distribute(r1ρ, σρ).

The expressionr %t π evaluates to a subset ofr which
contains those points which are mapped toπ by distribute.
The expressionr[@t(σ, r)] evaluates to the place of the point
σ according the distribution given bydistribute.

The type of a point is a pair(σ, r) whereσ is a type-level
identity of the point andr is a region that contains the point.
The type of a region is a singleton type consisting of that
region itself. A dependently-typed functionlam α : k.e has
its argument constrained by the kindk; its type isΠα : k.t.

The expression language contains syntax for creating and
calling functions, for creating, accessing, and updating ar-
rays, for computing with regions, for iterating over regions,
for iterating over all places, and for shifting the place of exe-
cution. The expressione.reg returns the region of an array.
The expressione++sc adds a constantc to the point to which
e evaluates. The expressione+s c adds a constant to each of
the points in the region to whiche evaluates.

We need the set operators to work both on types, expres-
sions, and actual sets. In order to avoid confusion, we give
each operator on types the subscriptt, on expressions the
subscripts, and on sets no subscript at all.

Syntactic Sugar.In the example programs earlier in the
paper, we used the syntactic sugarlet x = e in { e′ }
x : t for the core language expression(λ•x : t.e′)e. We use
true to denote the tautology∅ ⊆t ∅.

3.2 Semantics

We specify the semantics of the core language using small-
step operational semantics (see Figure 3.2). We useH to
range over heaps:

H ∈ Label→ Point→ (Value× Place)

A heap maps labels to array representations. An array rep-
resentation maps each point in the region of the array to its
value and its place. Both uses of→ above denote a space
of partial functions. We will use the notation(v, P ) for el-
ements of(Value × Place), and we will use the operators
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.1 and .2 to extract the first and second element of a pair,
respectively. We useD(H) to denote the domain of a partial
functionH.

A state in the semantics is a pair(H, e). We say that
(H, e) cantake a stepat placeP if we haveH ′, e′ such that
P ` (H, e)  (H ′, e′) using the rules below. We say that
(H, e) is stuckat placeP if e is not a value and(H, e) cannot
take a step at placeP . We say that(H, e) can go wrongat
placeP if we haveH ′, e′ such thatP ` (H, e) ∗ (H ′, e′)
and(H ′, e′) is stuck at placeP .

We assume that the programmer (externally to the pro-
gram text) provides a functiondefault which maps a
closed typet to a value, for each typet used as an ele-
ment type of an array in the program. The functiondefault
must have the property thatΨ;ϕ; Γ ` default(t) : t for
a Ψ that contains suitable definitions of the labels used in
default(t), and for anyϕ andΓ. The idea is that we will
usedefault(t) as the initial value at all points in an array
with element typet. While we can easily define examples of
such a functiondefault, we will not show a specific one,
simply because all we need to know about it is the property
Ψ;ϕ; Γ ` default(t) : t.

We also assume a listplacesof the places available during
the execution of the program. The only thing a program
can do withplaces is to iterate over the places using the
forallplaces construct.

In order to specify the execution order for the for loop
construct, Rule (29) uses a function order({c1, . . . , cn}) =
〈c1, . . . , cn〉, wherec1 < . . . < cn.

The following rules define a call-by-value semantics and
are mostly standard. Rule (7) and Rule (8) express that
the body ofλ• or lam• must execute at the place of the
definition. Effectively, each of those rules creates a closure
consisting of the function and the current place of execution.

The key rules (11) and (13) both have the side condition
that l ∈ D(H) andp ∈ D(H(l)) andP = H(l)(p).2. The
conditionp ∈ D(H(l)) is the array-bounds check;pmust be
in the region of the array. The conditionP = H(l)(p).2 is
the place check; the place of execution must equal the place
of the data to be accessed. If the side condition is not met,
then the semantics will get stuck.

Notice that in Rule (19) we evaluate the syntactic expres-
sionR1 ∪s R2 to the valueR1 ∪R2.

Rule (29) unrolls the for loop and replaces the loop vari-
able with an appropriate point in each copy of the body of
the loop. Similarly Rule (30) unrolls the loop and replaces
the loop variables with an appropriate place in each copy of
the body of the loop. The unrolling is specified the way it
is to enable the type checker to assign a type variable as the
type of the loop variable and at the same time achieve that
each iteration is executed using the exact value bound to the
loop variable.

3.3 Set Constraints

We will now define satisfiability and entailment for our class
of set constraints, and we will settle their complexities.

Letρ be a mapping from region variables to regions, point
variables to points, and place variables to places. We say that
ρ satisfiesa set constraintϕ if for all r1 ⊆t r2 in ϕ we have
r1ρ ⊆ r2ρ and for allσ ∈t r in ϕ we haveσρ ∈ rρ. We say
that a constraintϕ is satisfiableif there exists a satisfying
assignment forϕ.

We say that a constraint isvalid if all variable assign-
ments satisfy the constraint. We say thatϕ entailsϕ′ if the
implicationϕ⇒ ϕ′ is valid, and writeϕ |= ϕ′.

Thesatisfiability problemis this: given a constraintϕ, is
ϕ satisfiable? Theentailment problemis as follows: given
two constraintsϕ,ϕ′, isϕ |= ϕ′ true?

For our notion of constraints, the satisfiability problem is
NP-complete. To understand this, first note that already for
the fragment of region constraints with just variables, con-
stants, union, and intersection, the satisfiability problem is
NP-hard [1]. Second, to show that the satisfiability problem
is in NP we must first argue that we only need to consider
sets of polynomial size; we can then guess a satisfying as-
signment and check that assignment in polynomial time. Let
us first flatten the constraint by, for each subexpressione,
replacinge with a variableα and adding an extra conjunct
α = e. In the flattened constraint, letn be the number of
variables in the constraint, letu be the largest integer men-
tioned in any region constant in the constraint, and letk be
the largestc used in anye+s or e++s expression in the con-
straint. In any solution, an upper bound on the largest integer
isn×u×k. To demonstrate, notice that either the constraint
system is not satisfiable or else the biggest integer we can
construct is by a sequence of +k operations, each involving
a different variable. Similarly, we have a lower bound on
the smallest integer used in any solution. So, for each re-
gion variable we can guess a set of polynomial size, for each
point variable we can guess a point in a set of polynomial
size, and for each place variable we can guess a place in the
list places. We can then check that assignment in polynomial
time.

For our notion of set constraints, the entailment problem
is co-NP-complete. To see that, first note thatϕ |= ϕ′ if and
only if ϕ ∧ ¬ϕ′ is unsatisfiable. For the fragment of cases
whereϕ′ = false we have that the entailment problem
is the question of givenϕ, is ϕ unsatisfiable, which is co-
NP-complete. So, the full entailment problem is co-NP-hard.
Second, note that the entailment problem is in co-NP; we
can easily collect the set of all points mentioned in the
constraints, then guess an assignment, and finally check that
the assignment is not a satisfying assignment, in polynomial
time.
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P ` (H, e1) (H ′, e′1)

P ` (H, e1 e2) (H ′, e′1 e2)
(1)

P ` (H, e2) (H ′, e′2)

P ` (H, v e2) (H ′, v e′2)
(2)

P ` (H, (λx : t.e)v) (H, e[x := v]) (3)

P ` (H, e1) (H ′, e′1)

P ` (H, e1<e2>) (H ′, e′1<e2>)
(4)

P ` (H, e2) (H ′, e′2)

P ` (H, v<e2>) (H ′, v<e′2>)
(5)

P ` (H, (lam α : k.e)<w>) (H, e[α := w]) (6)

P ` (H,λ•x : t.e) (H,λx : t.at(P){e}) (7)

P ` (H, lam•α : k.e) (H, lam α : k.at(P){e}) (8)

P ` (H, e) (H ′, e′)

P ` (H, new t[e]) (H ′, new t[e′])
(9)

P ` (H, new t[R]) (H[l 7→ λp ∈ R.(default(t), distribute(R, p))], l) wherel is fresh (10)

P ` (H, l[p]) (H,H(l)(p).1) if l ∈ D(H) andp ∈ D(H(l)) andP = H(l)(p).2 (11)

P ` (H, e) (H ′, e′)

P ` (H, v1[v2] = e) (H ′, v1[v2] = e′)
(12)

P ` (H, l[p] = v) (H[l 7→ (H(l))[p 7→ (v,H(l)(p).2)]], v) if l ∈ D(H) andp ∈ D(H(l)) andP = H(l)(p).2 (13)

P ` (H, e) (H ′, e′)

P ` (H, e.reg) (H ′, e′.reg)
(14)

P ` (H, l.reg) (H,D(H(l))) if l ∈ D(H) (15)

P ` (H, l[@sp]) (H,H(l)(p).2) if l ∈ D(H) andp ∈ D(H(l)) (16)

P ` (H, e1) (H ′, e′1)

P ` (H, e1 ∪s e2) (H ′, e′1 ∪s e2)
(17)

P ` (H, e2) (H ′, e′2)

P ` (H, v ∪s e2) (H ′, v ∪s e′2)
(18)

P ` (H,R1 ∪s R2) (H,R1 ∪R2) (19)

P ` (H, e1) (H ′, e′1)

P ` (H, e1 ∩s e2) (H ′, e′1 ∩s e2)
(20)

P ` (H, e2) (H ′, e′2)

P ` (H, v ∩s e2) (H ′, v ∩s e′2)
(21)

P ` (H,R1 ∩s R2) (H,R1 ∩R2) (22)

P ` (H, e) (H ′, e′)

P ` (H, e+s c) (H ′, e′ +s c)
(23)

P ` (H, d+s c) (H, d+ c) (24)

P ` (H, e) (H ′, e′)

P ` (H, e++sc) (H ′, e′ ++sc)
(25)

P ` (H, p++sc) (H, p+ c) (26)

P ` (H,R %s P
′]) (H,R′) whereR′ = { p ∈ R | distribute(R, p) = P ′ } (27)

P ` (H, e1) (H ′, e′1)

P ` (H, for (x in e1){e2}) (H ′, for (x in e′1){e2})
(28)

P ` (H, for (x in R){e}) (H, ((lam•α : point(α ∈t R).λ•x : (α,R).e)<c1>)c1; . . . ;
((lam•α : point(α ∈t R).λ•x : (α,R).e)<cn>)cn; 0) where order(R) = 〈c1, . . . , cn〉

(29)

P ` (H, forallplaces x{e}) (H, ((lam•α : place.λ•x : pl α.e)<P1>)P1; . . . ;
((lam•α : place.λ•x : pl α.e)<Pn>)Pn; 0) whereplaces = 〈P1, . . . , Pn〉

(30)

P ` (H, e1) (H ′, e′1)

P ` (H, e1; e2) (H, e′1; e2)
(31)

P ` (H, v; e) (H, e) (32)

P ′ ` (H, e) (H ′, e′)

P ` (H, at(P ′){e}) (H, at(P ′){e′}) (33)

P ` (H, at(P ′){v}) (H, v) (34)
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3.4 Type System

Heap TypesWe useΨ to range over maps from array labels
to types of the formt[R]. We use the judgment|= H : Ψ
which holds if (1)D(H) = D(Ψ) and (2) if for each
l ∈ D(H) we let t[R] = Ψ(l), thenD(H(l)) = R and for
eachp ∈ D(H(l)) we have (i)Ψ;ϕ; Γ; here ` H(l)(p).1 : t
and (ii) distribute(R, p) = H(l)(p).2. We writeΨ C Ψ′ if
D(Ψ) ⊆ D(Ψ′) andΨ,Ψ′ agree on their common domain.

Type Equivalence.We define type equivalence via the
judgmentsϕ ` t ≡ t′, ϕ ` r ≡ r′, ϕ ` σ ≡ σ′, and
ϕ ` π ≡ π′, which hold if they can be derived using the
rules in Figure 2. The first three rules use a meta-variableq
which ranges overt, r, σ, π.

The complexity of deciding type equivalence is domi-
nated by the time to check constraint entailment. Given that
all other aspects of type checking for our core language
are in polynomial time, we conclude that type checking is
co-NP-complete. In a later section, our experimental results
show that the problem instances for entailment are small for
our benchmarks and thus type checking is fast.

Type Rules.A type judgment is of the formΨ;ϕ; Γ; here `
e : t, which holds if it is derivable using the following rules.
The typehere is the type of the current place of execu-
tion. Rule (61) for type checking a functionλx : t1.e type
checks the bodye at the unknown place of execution, written
unknown. The reason is thatλx : t1.ewill run at the place of
its call site, which is statically unknown. A similar comment
applies to Rule (62). Notice that the use of entailment is a
condition in rules such as Rule (65). Rule (78) is a key type
rule which says that to type check a loopfor (x in e1){e2},
we check thate1 has a typereg r, and then assignx the type
pt (α, r) while checkinge2, whereα is fresh. The type rules
for array lookup, Rule (69), and array update, Rule (70), en-
sure that (1) the point is in bounds by requiring that the type
of the point is a region which is a subset of the region of the
array, and (2) the place of execution equals the location of
the array data by requiring that the typehere is equivalent to
the type of the place of the data.

Rules for extracting constraints:

constraint(point ϕ) = ϕ (83)

constraint(region ϕ) = ϕ (84)

constraint(place) = true (85)

We useW to range over regionsr and variablesα of kind
place.

Rules for kind checking:

` pt (σ, r) : point ϕB σ (86)

` reg r : region ϕB r (87)

` pl π : place B π. (88)

ϕ ` q ≡ q (35)
ϕ ` q1 ≡ q2

ϕ ` q2 ≡ q1
(36)

ϕ ` q1 ≡ q2 ϕ ` q2 ≡ q3

ϕ ` q1 ≡ q3
(37)

ϕ ` σ ≡ σ′ ϕ ` r ≡ r′

ϕ ` pt (σ, r) ≡ pt (σ′, r′)
(38)

ϕ ` r ≡ r′

ϕ ` reg r ≡ reg r′
(39)

ϕ ` π ≡ π′

ϕ ` pl π ≡ pl π′
(40)

ϕ ` t1 ≡ t′1 ϕ ` t2 ≡ t′2
ϕ ` t1 → t2 ≡ t′1 → t2

(41)

ϕ ` t ≡ t′

ϕ ` Πα : k.t ≡ Πα : k.t′
(42)

ϕ ` R1 ∪t R2 ≡ R1 ∪R2 (43)
ϕ ` r1 ≡ r′1 ϕ ` r2 ≡ r′2
ϕ ` r1 ∪t r2 ≡ r′1 ∪t r′2

(44)

ϕ ` R1 ∩t R2 ≡ R1 ∩R2 (45)
ϕ ` r1 ≡ r′1 ϕ ` r2 ≡ r′2
ϕ ` r1 ∩t r2 ≡ r′1 ∩t r′2

(46)

ϕ ` R+t c ≡ R+ c (47)
ϕ ` r ≡ r′

ϕ ` r +t c ≡ r′ +t c
(48)

ϕ ` R %t P ≡ { p ∈ R | distribute(R, p) = P } (49)

ϕ ` r ≡ r′ ϕ ` π ≡ π′

ϕ ` r %t π ≡ r′ %t π′
(50)

ϕ ` p++tc ≡ p+ c (51)
ϕ ` σ ≡ σ′

ϕ ` σ ++tc ≡ σ′ ++tc
(52)

ϕ |= p ∈t r ϕ |= r ⊆t R
ϕ ` R[@t(p, r)] ≡ distribute(R, p)

(53)

ϕ ` r1 ≡ r′1 ϕ ` σ ≡ σ′ ϕ ` r2 ≡ r′2
ϕ ` r1[@t(σ, r2)] ≡ r′1[@t(σ′, r′2)]

(54)

ϕ |= σ ∈t r %t π
ϕ ` r[@t(σ, r %t π)] = π

(55)

Figure 2. Type equivalence rules.
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Ψ;ϕ; Γ; here ` c : int (56)

Ψ;ϕ; Γ; here ` p : pt (p,R) (wherep ∈ R) (57)

Ψ;ϕ; Γ; here ` R : reg R (58)

Ψ;ϕ; Γ; here ` l : Ψ(l) (59)

Ψ;ϕ; Γ; here ` P : pl P (60)

Ψ;ϕ; Γ[x : t1]; unknown ` e : t2
Ψ;ϕ; Γ; here ` λx : t1.e : t1 → t2

(61)

Ψ;ϕ ∧ constraint(k); Γ; unknown ` e : t

Ψ;ϕ; Γ; here ` lam α : k.e : Πα : k.t
(62)

Ψ;ϕ; Γ; here ` x : Γ(x) (63)
Ψ;ϕ; Γ; here ` e1 : t1 → t2 Ψ;ϕ; Γ; here ` e2 : t1

Ψ;ϕ; Γ; here ` e1 e2 : t2
(64)

Ψ;ϕ; Γ; here ` e1 : Πα : k.t1 Ψ;ϕ; Γ; here ` e2 : t2 ` t2 : k B W ϕ |= (constraint(k))[α := W ]

Ψ;ϕ; Γ; here ` e1<e2> : t1[α := W ]
(65)

Ψ;ϕ; Γ[x : t1]; here ` e : t2 here 6= unknown

Ψ;ϕ; Γ; here ` λ•x : t1.e : t1 → t2
(66)

Ψ;ϕ ∧ constraint(k); Γ; here ` e : t here 6= unknown

Ψ;ϕ; Γ; here ` lam•α : k.e : Πα : k.t
(67)

Ψ;ϕ; Γ; here ` e : reg r

Ψ;ϕ; Γ; here ` new t[e] : t[r]
(68)

Ψ;ϕ; Γ; here ` y1 : t[r1] Ψ;ϕ; Γ; here ` y2 : pt (σ, r2)
ϕ |= r2 ⊆t r1 ϕ |= σ ∈t r2 ϕ ` here ≡ r1[@t(σ, r2)]

Ψ;ϕ; Γ; here ` y1[y2] : t
(69)

Ψ;ϕ; Γ; here ` y1 : t[r1] Ψ;ϕ; Γ; here ` y2 : pt (σ, r2) ϕ |= r2 ⊆t r1

ϕ |= σ ∈t r2 ϕ ` here ≡ r1[@t(σ, r2)] Ψ;ϕ; Γ; here ` e : t

Ψ;ϕ; Γ; here ` y1[y2] = e : t
(70)

Ψ;ϕ; Γ; here ` e : t[r]

Ψ;ϕ; Γ; here ` e.reg : reg r
(71)

Ψ;ϕ; Γ; here ` y1 : t[r1] Ψ;ϕ; Γ; here ` y2 : pt (σ, r2) ϕ |= r2 ⊆t r1 ϕ |= σ ∈t r2

Ψ;ϕ; Γ; here ` y1[@sy2] : pl r1[@t(σ, r2)]
(72)

Ψ;ϕ; Γ; here ` e1 : reg r1 Ψ;ϕ; Γ; here ` e2 : reg r2

Ψ;ϕ; Γ; here ` e1 ∪s e2 : reg r1 ∪t r2
(73)

Ψ;ϕ; Γ; here ` e1 : reg r1 Ψ;ϕ; Γ; here ` e2 : reg r2

Ψ;ϕ; Γ; here ` e1 ∩s e2 : reg r1 ∩t r2
(74)

Ψ;ϕ; Γ; here ` e : reg r

Ψ;ϕ; Γ; here ` e+s c : reg r +t c
(75)

Ψ;ϕ; Γ; here ` e : pt (σ, r)

Ψ;ϕ; Γ; here ` e++sc : pt (σ ++tc, r +t c)
(76)

Ψ;ϕ; Γ; here ` y1 : reg r Ψ;ϕ; Γ; here ` y2 : pl π

Ψ;ϕ; Γ; here ` y1 %s y2 : reg r %t π
(77)

Ψ;ϕ; Γ; here ` e1 : reg r Ψ;ϕ ∧ (α ∈t r); Γ[x : pt (α, r)]; here ` e2 : int here 6= unknown

Ψ;ϕ; Γ; here ` for (x in e1){e2} : int
(whereα is fresh) (78)

Ψ;ϕ; Γ[x : pl α]; here ` e : int here 6= unknown

Ψ;ϕ; Γ; here ` forallplaces x{e} : int
(whereα is fresh) (79)

Ψ;ϕ; Γ; here ` e1 : t1 Ψ;ϕ; Γ; here ` e2 : t2
Ψ;ϕ; Γ; here ` e1; e2 : t2

(80)

Ψ;ϕ; Γ; here ` y : pl π Ψ;ϕ; Γ;π ` e : t

Ψ;ϕ; Γ; here ` at(y){e} : t
(81)

Ψ;ϕ; Γ; here ` e : t ϕ ` t ≡ t′

Ψ;ϕ; Γ; here ` e : t′
(82)
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3.5 Type Soundness

We have proved the soundness of our type system. Here
is a listing of the needed lemmas and theorems with brief
proof sketches, concluding with the statement and proof of
type soundness. The appendices give detailed proofs of Type
Preservation (Theorem 1) and Progress (Theorem2).

LEMMA 1. (Substitution)
If Ψ;ϕ; Γ[x : t1]; here ` e : t2 andΨ;ϕ; Γ; here ` v : t1,
thenΨ;ϕ; Γ; here ` e[x := v] : t2.

Proof. By induction on the structure of the derivation of
Ψ;ϕ; Γ[x : t1]; here ` e : t2. �

LEMMA 2. (Dependent Substitution)
If Ψ;ϕ; Γ; here ` e : t, thenΨ;ϕ[α := W ]; Γ; here[α :=
W ] ` e[α := W ] : t[α := W ].

Proof. By induction on the structure of the derivation of
Ψ;ϕ; Γ; here ` e : t. �

LEMMA 3. (Weakening)
If Ψ;ϕ; Γ; here ` e : t andϕ′ |= ϕ, thenΨ;ϕ′; Γ; here `
e : t.

Proof. By induction on the structure of the derivation of
Ψ;ϕ; Γ; here ` e : t. �

LEMMA 4. (Indifference)
If Ψ;ϕ; Γ; here ` v : t, thenΨ;ϕ; Γ; here ′ ` v : t.

Proof. Immediate from the seven type rules for values.�

LEMMA 5. (Canonical Forms)

• If Ψ;ϕ; Γ; here ` v : int, thenv is of the formc.
• If Ψ;ϕ; Γ; here ` v : pt (σ, r), thenv is of the formp.
• If Ψ;ϕ; Γ; here ` v : reg r, thenv is of the formR.
• If Ψ;ϕ; Γ; here ` v : t[r], thenv is of the forml, and
l ∈ D(Ψ).
• If Ψ;ϕ; Γ; here ` v : pl α, thenv is of the formP .
• If Ψ;ϕ; Γ; here ` v : t1 → t2, thenv is of the form
λx : t.e.
• If Ψ;ϕ; Γ; here ` v : Πα : k.t, thenv is of the form
lam α : k.e.

Proof. From an examination of the type rules we have that
each form of type is the type of exactly one form of value,
namely the one given in the lemma. �

THEOREM 1. (Type Preservation)
For a placeP , letQ ∈ {P, unknown}. If Ψ;ϕ; Γ;Q ` e : t,
|= H : Ψ, andP ` (H, e)  (H ′, e′), then we haveΨ′, t′

such thatΨ C Ψ′, Ψ′;ϕ; Γ;Q ` e′ : t′, |= H ′ : Ψ′, and
ϕ ` t ≡ t′.

Proof. By induction on the structure of the derivation of
Ψ;ϕ; Γ;Q ` e : t. �

THEOREM 2. (Progress)
For a placeP , letQ ∈ {P, unknown}. If Ψ; true; ∅;Q ` e :
t and|= H : Ψ, then(H, e) is not stuck at placeP .

Proof. By induction on the structure of the derivation of
Ψ; true; ∅;Q ` e : t. �

COROLLARY 1. (Type Soundness)
For a placeP , letQ ∈ {P, unknown}. If Ψ; true; ∅;Q ` e :
t and|= H : Ψ, then(H, e) cannot go wrong at placeP .

Proof. Suppose(H, e) can go wrong at placeP , that is, we
haveH ′, e′ such thatP ` (H, e) n (H ′, e′) and(H ′, e′) is
stuck at placeP . From Theorem 1, Rule (37), and induction
on n, we haveΨ′, t′ such thatΨ′; true; ∅;Q ` e′ : t′,
|= H ′ : Ψ′, and true|= t ≡ t′. From Theorem 2 we have
that(H ′, e′) is not stuck at placeP , a contradiction. �

4. Experimental Results
We have designed and implemented a variant of the object-
oriented language X10 which embodies our type system. To
evaluate our type system, we have created the ArrayBench
benchmark suite which consists of seven programs of a total
of 865 lines of code. The type system cannot completely
eliminate the need for dynamic checks of array accesses. In
our X10 version, a programmer can write a cast to signal
to the compiler that a combined bounds and place check
must be performed. All array accesses without explicit casts
are guaranteed to be within bounds. The main goal of this
section is to answer these two questions:

• How many casts does a programmer need to insert to
make the benchmarks type check?

• How many times will those casts be executed at run time
and how does that compare to dynamically checkingall
array accesses?

In the following subsections we will first explain the notion
of cast in more detail and give an example. We will then
present the ArrayBench benchmark suite and finally present
our experimental results and answer the two questions.

Our variant of X10 is called XTC-X10 and extends
X10 version 0.4 with the type system presented in this pa-
per along with parametric types (generics) and first-order
functions. The implementation is publically available at
http://grothoff.org/christian/xtc/x10/. Our im-
plementation can type check and execute the benchmark
programs listed below along with the five type-safe example
programs from Section 2.

4.1 Array-Access Casts

In our experience, we need three categories of array-access
casts:

1. Required casts due to the fact that the type-checker is
flow insensitive. The classical Java equivalent for this
kind of type cast is of the formif (a instanceof B)
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B b = (B) a; . Here, the cast itself is always guarded
by an dominating branch that yields an assertion that the
cast will succeed. These casts should be considered to
be free at runtime since a reasonable compiler should
be able to completely eliminate the check. They could
be avoided entirely if the compiler was flow-sensitive
to begin with; however, such a choice is likely to result
in problems with respect to programmers’ understanding
of overloading resolution. In terms of language design,
we believe it is better to require the programmer to put
in explicit casts even if the control-flow already yields
equivalent assertions.

2. Casts that are used to cover certain corner cases that
could be avoided (but at the expense of using signifi-
cantly more complex type constructions). For example,
a function may operate on arrays of arbitrary sizeas long
as they are not empty. Such a corner case might be cov-
ered by requiring the programmer to supply an additional
point and have the array satisfy the condition that it must
contain this point and only points larger than it. A pro-
grammer might choose to instead obtain the minimum
point of the array using the build-inmin operator and use
a cast (not-null) to establish that the point exists. Our de-
sign allows the programmer to decide that the simplicity
of a cast might be a better choice than a complex type
construction. Typically, the cost of these casts for corner
cases is minimal – programmers are likely to use them
outside of loops, and often the particular checks them-
selves are also rather inexpensive. The reason for this is
that if the cast is in a critical section of the code, the pro-
grammer has the option of using more elaborate types.

3. Casts used to produce necessary loop invariants. Some
algorithms use loops which make it impossible for the
type system to establish the loop invariants necessary for
checking the loop or code depending on the result of the
computation performed by the loop. In these cases, the
programmers must add casts to produce the necessary
invariants. Naturally, the compiler may still be able to
use flow information to reduce the cost of these casts;
however, eliminating the check completely would require
a theorem-prover that is stronger than what our type
system can offer.

To illustrate the use of casts, let us consider some XTC-
X10 code from an implementation of the Knuth-Morris-
Pratt string searching algorithm [15]. We will focus on the
function overlap which computes the partial match table
(or failure function); the code is given below in the syntax
of our X10 variant. The syntax is mostly similar to Java and
C++.ValueArray is an immutable array, which means that
accesses are not required to be local – only in-bounds. The
language uses “.” for the type of a local variable that the
compiler is supposed to infer from the right hand side of
the assignment. Type elision is an important feature since

explicitly writing sufficiently precise region type annotations
for all local variables would be tedious.

The type annotation<#1> adds the requirement that the
respective point, region or array is one-dimensional. The
type annotation<:r> specifies that the respective point must
be contained in the regionr. In the code, ap is appended
to numbers in order to syntactically show the difference
between (one-dimensional) points and integers.

Array<point<#1>>

overlap(int m, ValueArray<int:([0:m-1])#1> pat) {

if (m <= 0)

throw new Exception("Empty pattern!");

. overlap = new Array<point<#1>>([0:m], 0p);

overlap[(point<:([0:m])>)0p] = -1p; // CAST #1

for (p : [1:m]) {

. prev = p - 1p;

overlap[p] = overlap[prev] + 1p;

while ( (overlap[p] > 0p) &&

(pat[prev] !=

pat[(point<:pat.reg>)

(overlap[p]-1p)]) ) // CAST #2

overlap[p] = 1p + overlap

[(point<:pat.reg>)

(overlap[p]-1p)]; // CAST #3

}

}

The example program contains ten locations where array
accesses occur. The first array accesses in the example occur
during the initialization of the overlap array to zero. The ini-
tialization is done in the array constructor (not shown) which
corresponds closely to theinit function from Section 2.
The compiler requires no further information to avoid any
bounds-checks on the constructor.

The second array access, initializingoverlay[0p] to
−1 requires a bounds-check as indicated by the cast in the
code. Cast#1 (identified by comments in the example) in
overlap falls into both category 1 and 2. The fact thatm
was checked to be positive in the first line of the function
establishes that0p is in the (now non-empty) interval[0 : m].
However, because the type checker is flow-insensitive, a cast
is needed. The programmer might have chosen to declarem
to be strictly positive – a minimal and sane restriction of
the API – and avoided both the cast and the sanity check in
the first line. Capturing such corner cases with types is often
possible, but programmers are likely to use such ”dirty” casts
wherever they fail to find appropriate types.

The type system is able to prove the safety of the five
accesses tooverlap[p] andoverlap[prev] inside of the
for loop. The access tooverlap[p] is safe becausep ∈
[1 : m] ⊆ [0 : m], and[0 : m] is the domain ofoverlap
which is immediate from the creation ofoverlap. Simi-
larly, overlap[prev] is safe becauseprev ∈ [0 : m −
1] ⊆ [0 : m]. Note that these proofs are a variation on
thepartialinit andshiftleft examples from Section 2,
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except that here the subset relationships are completely in-
ferred – region type declarations are usually only necessary
to describe constraints on arguments and return values, type
inference is sufficient for reasoning within methods.

The array access topat[prev] is an example where
region types must be provided. Because thepat array is
known to be defined over the interval[0:m-1] andprev
iterates over exactly the same interval (prev = p - 1p and
p ∈ [1 : m]), the accesspat[prev] is safe. Ensuring that
the type checker can verify the safety of this kind of access
is the main difficulty for programming with region types: it
is not always obvious which region type should be used for
a particular argument.

When working with region types, programmers also need
to be aware of the limitations of the type checker. In the ex-
ample, the access topat at the indexoverlap[p]-1p re-
quires a cast since it cannot be shown to be safe by the type
checker. Cast#2 highlights the problem that the type sys-
tem may not always be able to establish proper loop invari-
ants (category 3). For the points in the overlap array, the type
system does verify that all points are one-dimensional. How-
ever, it cannot establish a loop invariant that would show that
the assignment of the formoverlap[p] = overlap[q] +
1p never produces points with a value larger thanm+ 1.

The situation is similar for the array access tooverlap
at indexoverlap[p]-1p. Again, the type checker fails to
establish the loop invariant (overlap[p] is always a valid
index intooverlap). However, the type checker is able to
deduce thatpat.reg ⊆ [0 : m], allowing the programmer to
simply repeat cast#2. Cast#3 could thus be considered
falling into both categories 1 and 3.

Overall, the example has 10 array accesses. The type
system is able to show that 7 of those (including 5 in the
innermost loop) are statically safe. Given that two of the
remaining casts are identical, only a single bounds-check
remains within any of the loops of the example.

4.2 The ArrayBench Benchmark Suite

The ArrayBench Benchmark Suite consists of seven bench-
mark programs. We adapted the benchmarks from code writ-
ten in X10, mainly by making the code use regions. This
section briefly explains the functionality of each benchmark,
the style of parallelism (if any) and the overall amount of
communication. Table 2 gives some fundamental benchmark
statistics. LOC denotes the number of lines of code; # IR de-
notes the number of nodes in the intermediate representation.

The X10 language model features two levels of paral-
lelism: parallel execution on different places and parallel ex-
ecution at the same place. Consequently, for each benchmark
program we will give three figures:PP, SPandSW. The fig-
urePP is the amount of place-parallelism (for a maximum of
P places available) and describes how many places compute
in parallel. A value of 1 indicates that a computation is not
distributed, a value ofP is used for a computation that uses
all available places in parallel. The figureSPis the amount of

name LOC # IR PP SP SW OM OS

Series 87 2018 P 1 n/P 0 0
KMP 74 2407 1 1 m+ n 0 0
Reverse 96 3659 P 1 n/P P 2 n
Crypt 250 5759 1 P n/P 0 0
Crypt-2 220 5873 1 P n/P 0 0
SOR 70 1702 1 n n 0 0
DSOR 68 1742 P n/P n n n2

Table 2. Size (in lines of code (LOC) and number of nodes
in the intermediate representation (# IR) of the compiler) and
classification of parallelism for the benchmarks.

single-place parallelism, in other words, how many activities
are running in parallel at the same place. In particular, these
places will be able to access the same share of the global
partitioned address space. A value of 1 indicates that there
is only one activity per place involved in the computation.
Finally, the figureSWis the amount of sequential work that
each parallel activity performs. The product ofPP, SPand
SWgives the total amount of work required for the bench-
mark (for example,O(n2) for SOR and DSOR).

For communication, we give two figures.OM is the num-
ber of messages exchanged.OS is the sum of the size of
these messages. The figures for communication do not in-
clude initial distribution of the computation and data (which
for all parallel benchmarks can be done withOM (P ) mes-
sages transmittingOS(n/P ) data withP being the number
of places).

The ArrayBench benchmarks implement the following
algorithms:

Series: Calculates the firstn fourier coefficients of the
function (x + 1)x defined on the interval[0, 2]. Uses one
array-access cast in source code.

KMP : Sequential implementation of Knuth-Morris-Pratt
string searching algorithm (with pattern of sizem and string
of sizen). Uses six array-access casts in source code.

Reverse: Given an array distributed across places, re-
verses the order of the elements. Uses two array-access casts
in source code.

Crypt : Implements the IDEA symmetric blockcipher
(encrypt and decrypt) using integer increment operations to
iterate over a stream. Uses nine array-access casts in source
code.

Crypt-2 : Implements the IDEA symmetric blockcipher
(encrypt and decrypt) using region iterators to iterate over a
stream. Uses three array-access casts in source code.

SOR: Given a 2D array, performs successive over-relaxation [20]
of ann × n matrix. Uses two array-access casts in source
code.

DSOR: Given a 2D array, performs distributed successive
over-relaxation of ann × n matrix. Uses no array-access
casts.
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name entailment checks dynamic array-access casts
total max. without types with types

number size S L S L

Series 7324 24 12 23 2 2
KMP 11705 42 150 618 124 496
Reverse 48138 46 114 240 12 48
Crypt 24898 24 2684 9980 2591 9887
Crypt-2 65316 31 2684 9980 15 15
SOR 62488 95 192 1200 2 2
DSOR 105374 115 192 1200 0 0

Table 3. Numbers of dynamic checks required for the
benchmarks.

In summary, the seven benchmarks need 23 array-access
casts in a total of 865 lines of array-intensive code; that is
about one cast per 37 lines of code. Our compiler helps with
finding the places where casts are needed. We conclude that
a programmer needs insert only a few array-access casts to
make a program type check. Because the casts are infre-
quent, the effort required from the programmer to investigate
possible restructuring of the code to eliminate such casts—
should they be in performance-critical sections of the code—
is acceptable.

4.3 Measurements and Assessment

We collected our run-time measurements by instrumenting
the implementation of our X10 variant.

Table 3 table shows the number of dynamic checks re-
quired for the various benchmarks. We ran each benchmark
on two input sizes (marked as “S” for small input, and as “L”
for large input).

Using the classification scheme described earlier, the ma-
jority of the static type casts required for the ArrayBench
suite falls into the category (3), followed by casts in category
(1). Casts in category (1) are usually obvious to the program-
mer and have no runtime overhead. Determining that a cast
falls into category (2) or (3) is less obvious – the reason for
this is that there might be non-obvious ways to change the
structure or typing of the code which would allow the cast to
be eliminated.

Using the types, the compiler will verify that all array
accesses are in bounds and local using a decision procedure
that tries to determine subset relationships between symbolic
expressions. Note that the XTC-X10 compiler allows over-
loading of methods based on dependent typing, resulting in
many more invocations of the decision procedure than there
are static array accesses in the code. The heuristic used to de-
termine subset relationships that is implemented in our pro-
totype has exponential complexity. However, the problem
sizes are relatively small (up to 115 nodes in the symbolic
expression tree for ArrayBench). We expect this to continue
to be true even for larger benchmarks than the ones studied
since type checking can be done per method, and individ-

ual methods are unlikely to become extremely large. For the
size of the expressions studied in our experiments, the execu-
tion time of our heuristic is so fast that it cannot be properly
measured, especially given that the implementation is cur-
rently in Java where noise from the garbage collector and
JIT compiler interfere with measurements on that scale. The
total compile time of the ArrayBench benchmarks, including
parsing and compilation of 3.000 lines of core X10 runtime
libraries, is about 5s on a modern machine for a cold run of
the JVM.

Our prototype does not allow us to gather meaningful
runtime performance data for the generated code. XTC-X10
compiles the benchmarks into SSA-form which is currently
interpreted using a multi-threaded interpreter which is writ-
ten in Java and simulates a distributed runtime. While this
does not allow us to give specific speed-up data, it is pos-
sible to count the number of bounds and place checks that
a language without region types would have to perform and
compare it to the number of dynamic region and place casts
(which are equivalent to those bounds and place checks) in
the typed language. We do not distinguish between bounds
checks and place checks because for array locality, any
place check is effectively a bounds check for place-adjusted
bounds. Consequently, for some particular checks, the dis-
tinction would often not be possible.

As expected, the typed language always outperforms the
untyped language in terms of the total number of dynamic
checks required. For some benchmarks (KMP, Crypt), the
reduction that can be achieved is rather small – here, most
accesses had to be converted into casts of category (3). For
other benchmarks, only a handful of casts remain, and these
are often in code that is run only once. This is illustrated
by running the benchmarks with two different input sizes.
For Series, Crypt2, SOR and DSOR, the total number of
dynamic checks does not change if the problem size is in-
creased. The reason for this is that the casts here deal with
corner cases, such as initialization. Note that the particular
problem sizes chosen for the benchmarks are tiny – for ex-
ample, the smaller version of Crypt uses a stream of 128
bytes, SOR uses a 6x6 array, and Series computes 3 Fourier
coefficients. For larger benchmark sizes, the reduction in the
number of dynamic checks will clearly be more dramatic, as
shown by the respective second dynamic values.

The Crypt-2 benchmark deserves some further discus-
sion. The difference between Crypt and Crypt-2 is that most
casts were eliminated by replacing the integer-arithmetic
that was used to walk over the stream (i++) with iterators
over regions. These iterators are equivalent to the generators
of the ordered point list in the operational semantics of the
for statement in the core language. In particular, they are
guaranteed to yield only points that are inside of the region
(unlike thei++ statement which, if used in a loop, does not
have an obvious bound). Permitting the programmer to use
the (region-typed) iterators directly instead of afor loop al-
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lows preservation of the original structure of the code. Itera-
tors do have the disadvantage that there is an implicit check –
as part of the iterator logic, the iterator verifies that a next el-
ement actually exists. This check is a range check that could
be seen as a bounds check; however, the check of the itera-
tor is also similar to the bounds check performed by anyfor
loop. The numbers given for Crypt-2 do not include the test
performed by the iterator, just as the numbers in all bench-
marks do not include tests performed for the execution of
for loops.

In summary, when we run seven statically-typed bench-
marks with large inputs, the run-time system will in one case
execute no array-access casts at all, and in another case exe-
cute almost as many array-access casts as an execution that
checks all array accesses. The good news is that in most
of the cases, rather few dynamic array-access casts are ex-
ecuted. We conclude that the type system is successful in
achieving both better safety and better performance.

5. Future Work and Conclusion
In future work we will investigate how to type-check user-
defined distributions. We also plan to study richer constraint
systems that can represent the particularities of specific pro-
gramming idioms. Our existing X10 prototype already sup-
ports an extended constraint algebra beyond that used in the
core language. In particular, the algebra includes support for
arithmetic constraints. The extended algebra is needed in or-
der to type check common constructs in actual applications.
The underlying principles of the type system presented in
this paper are independent of the particular choice of con-
straint algebra, which we expect to evolve in step with the
power of constraint solvers and the needs of application de-
velopers.

Our core language may be a good starting point for other
foundational work on programming languages for multi-
core systems. Our type system contains an interesting mix
of dependent types and set constraints which may be more
broadly applicable. We have proved our type system sound
and shown via experiments that seven benchmarks can be
type checked after the insertion of a few array-access casts.
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A. Proof of Type Preservation
Here is the statement of Type Preservation (Theorem 1):

For a placeP , let Q ∈ {P, unknown}. If Ψ;ϕ; Γ;Q `
e : t, |= H : Ψ, andP ` (H, e)  (H ′, e′), then we have
Ψ′, t′ such thatΨ C Ψ′, Ψ′;ϕ; Γ;Q ` e′ : t′, |= H ′ : Ψ′,
andϕ ` t ≡ t′.

Proof. We proceed by induction on the structure of the
derivation ofΨ;ϕ; Γ;Q ` e : t. There are now twenty-
five subcases depending on which one of the type rules was
the last one used in the derivation ofΨ;ϕ; Γ;Q ` e : t.

In eight of those cases,e is a either a value or a variablex,
and hence(H, e) cannot take a step. We will now consider
each of the remaining seventeen cases.

• Rule (64): the derivation is of the form:

Ψ;ϕ; Γ;Q ` e1 : t1 → t2 Ψ;ϕ; Γ;Q ` e2 : t1
Ψ;ϕ; Γ;Q ` e1 e2 : t2

We now have three subcases depending on which rule
was used to make(H, e1 e2) take a step.
If Rule (1), that is,

P ` (H, e1) (H ′, e′1)
P ` (H, e1 e2) (H ′, e′1 e2)

was used to take a step, then we have from the in-
duction hypothesis that we haveΨ′ such thatΨ C Ψ′,
Ψ′;ϕ; Γ;Q ` e′1 : t1 → t2, and |= H ′ : Ψ′.
From Ψ C Ψ′ and Ψ;ϕ; Γ;Q ` e2 : t1 we have
Ψ′;ϕ; Γ;Q ` e2 : t1. FromΨ′;ϕ; Γ;Q ` e′1 : t1 → t2
andΨ′;ϕ; Γ;Q ` e2 : t1, and Rule (64), we conclude
Ψ′;ϕ; Γ;Q ` e′1 e2 : t2.
If Rule (2), that is,

P ` (H, e2) (H ′, e′2)
P ` (H, v e2) (H ′, v e′2)

was used to take a step, then we have from the in-
duction hypothesis that we haveΨ′ such thatΨ C Ψ′,
Ψ′;ϕ; Γ;Q ` e′2 : t1, and |= H ′ : Ψ′. From Ψ C Ψ′

andΨ;ϕ; Γ;Q ` e1 : t1 → t2 we haveΨ′;ϕ; Γ;Q `
e1 : t1 → t2. From Ψ′;ϕ; Γ;Q ` e1 : t1 → t2
andΨ′;ϕ; Γ;Q ` e′2 : t1, and Rule (64), we conclude
Ψ′;ϕ; Γ;Q ` e1 e

′
2 : t2.

If Rule (3), that is,

P ` (H, (λx : t.e)v) (H, e[x := v])

was used to take a step, then we have from Rule (61) that
Ψ;ϕ; Γ[x : t1];Q ` e : t2, so we pickΨ′ = Ψ and we
have from Lemma 1 thatΨ;ϕ; Γ;Q ` e[x := v] : t2.
• Rule (65): the derivation is of the form:

Ψ;ϕ; Γ;Q ` e1 : Πα : k.t1 Ψ;ϕ; Γ;Q ` e2 : t2
` t2 : k B W ϕ |= (constraint(k))[α := W ]

Ψ;ϕ; Γ;Q ` e1<e2> : t1[α := W ]
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We now have three subcases depending on which rule
was used to make(H, e1<e2>) take a step.
If Rule (4) or Rule (5) was used to take a step, then
the proof is similar to that given above for the case of
function application (Rule (1)); we omit the details.
If Rule (6), that is,

P ` (H, (lam α : k.e)<w>) (H, e[α := w])

was used to take a step, then we have from Rule (62)
thatΨ;ϕ ∧ constraint(k); Γ; unknown ` e : t. We pick
Ψ′ = Ψ. We pickα such thatα does not occur free inϕ.
Let ϕ′ = constraint(k). FromΨ;ϕ ∧ ϕ′; Γ;Q ` e : t
and Lemma 2, we haveΨ; (ϕ ∧ ϕ′)[α := W ]; Γ;Q `
e[α := W ] : t[α := W ], which is the same asΨ;ϕ ∧
(ϕ′[α := W ]); Γ;Q ` e[α := W ] : t[α := W ]. From
Ψ;ϕ ∧ (ϕ′[α := W ]); Γ;Q ` e[α := W ] : t[α := W ],
ϕ |= ϕ′[α := W ], and Lemma 3, we haveΨ;ϕ; Γ;Q `
e[α := W ] : t[α := W ].
• Rule (66): the derivation is of the form:

Ψ;ϕ; Γ[x : t1];Q ` e : t2 Q 6= unknown
Ψ;ϕ; Γ;Q ` λ•x : t1.e : t1 → t2

If Rule (7), that is,

P ` (H,λ•x : t1.e) (H,λx : t1.at(P){e})

was used to take a step, then fromQ ∈ {P, unknown}
andQ 6= unknown, we haveQ = P . From Rule (60)
we haveΨ;ϕ; Γ[x : t1]; unknown ` P : pl P . From
Ψ;ϕ; Γ[x : t1]; unknown ` P : pl P andΨ;ϕ; Γ[x :
t1];P ` e : t2 and Rule (81), we haveΨ;ϕ; Γ[x :
t1]; unknown ` at(P){e} : t2. From Ψ;ϕ; Γ[x :
t1]; unknown ` at(P){e} : t2 and Rule (61) we have
Ψ;ϕ; Γ;Q ` λx : t1.at(P){e} : t1 → t2.
• Rule (67): the derivation is of the form:

Ψ;ϕ ∧ constraint(k); Γ; here ` e : t here 6= unknown
Ψ;ϕ; Γ; here ` lam•α : k.e : Πα : k.t

If Rule (8), that is,

P ` (H, lam•α : k.e) (H, lam α : k.at(P){e})

was used to take a step, then we can prove thatΨ;ϕ; Γ; here `
lam α : k.at(P){e} : Πα : k.t in a manner similar to
the previous case of Rule (66); we omit the details.
• Rule (68): the derivation is of the form:

Ψ;ϕ; Γ;Q ` e : reg r

Ψ;ϕ; Γ;Q ` new t[e] : t[r]

We now have two subcases depending on which rule was
used to make(H, new t[e]) take a step.
If Rule (9) was used to take a step, then the proof is simi-
lar to that given above for the case of function application
(Rule (1)); we omit the details.

If Rule (10), that is,

P ` (H, new t[R]) 

(H[l 7→ λp ∈ R.(default(t),distribute(R, p))], l)

wherel is fresh

was used to take a step, then we havee = R, so from
Rule (58) we haver = R. We defineΨ′ to be an exten-
sion of Ψ[l 7→ t[R]] such thatΨ C Ψ′ andΨ′ contains
suitable definitions for the labels used indefault(t); we
omit the details. LetH ′ be an extension ofH[l 7→ λp ∈
R.(default(t),distribute(R, p))] such thatH ′ contains
suitable definitions for the labels used indefault(t); we
omit the details. From Rule (59) we haveΨ′;ϕ; Γ;Q `
l : Ψ′(l). We finally need to show|= H ′ : Ψ′. From
the construction ofΨ′ andH ′ we have that they ex-
tend the domains ofΨ and H, respectively, with the
same labels. From|= H : Ψ we haveD(H) = D(Ψ),
so we concludeD(H ′) = D(Ψ′). Moreover, we have
R = D(λp ∈ R.(default(t),distribute(R, p))) and we
have Ψ′;ϕ; Γ;Q ` default(t) : t. Finally, for each
p ∈ R we haveH(l)(p).2 = distribute(R, p).
• Rule (69): the derivation is of the form:

Ψ;ϕ; Γ;Q ` y1 : t[r1] Ψ;ϕ; Γ;Q ` y2 : pt (σ, r2)
ϕ |= r2 ⊆t r1 ϕ |= σ ∈t r2 ϕ ` Q ≡ r1[@t(σ, r2)]

Ψ;ϕ; Γ;Q ` y1[y2] : t

If Rule (11), that is,

P ` (H, l[p]) (H,H(l)(p).1)
if l ∈ D(H) andp ∈ D(H(l)) andP = H(l)(p).2

was used to take a step, then we havey1 = l andy2 = p.
FromΨ;ϕ; Γ;Q ` l : t[r1] and Rule (59) we have that
r1 = R andΨ(l) = t[R]. We pick Ψ′ = Ψ and from
|= H : Ψ we haveΨ;ϕ; Γ;Q ` H(l)(p).1 : t.
• Rule (70): the derivation is of the form:

Ψ;ϕ; Γ;Q ` y1 : t[r1] Ψ;ϕ; Γ;Q ` y2 : pt (σ, r2)
ϕ |= r2 ⊆t r1 ϕ |= σ ∈t r2

ϕ ` Q ≡ r1[@t(σ, r2)] Ψ;ϕ; Γ;Q ` e : t
Ψ;ϕ; Γ;Q ` y1[y2] = e : t

We now have two subcases depending on which rule was
used to make(H, y1[y2] = e3) take a step.
If Rule (12) was used to take a step, then the proof
is similar to that given above for the case of function
application and Rule (1); we omit the details.
If Rule (13), that is,

P ` (H, l[p] = v) (H[l 7→ (H(l))[p 7→ (v,H(l)(p).2)]], v)
if l ∈ D(H) andp ∈ D(H(l)) andP = H(l)(p).2

was used to take a step, then we havey1 = l, y2 = p,
e = v. From Ψ;ϕ; Γ;Q ` l : t[r1] and Rule (59) we
have thatr1 = R andΨ(l) = t[R]. We haveΨ;ϕ; Γ;Q `
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v : t so we need to prove|= H[l 7→ (H(l))[p 7→
(v,H(l)(p).2)]] : Ψ. Froml ∈ D(H) we haveD(H[l 7→
(H(l))[p 7→ v]]) = D(H). Notice thatH(l)(p).2 =
H[l 7→ (H(l))[p 7→ (v,H(l)(p).2)]](l)(p).2. The re-
maining thing to prove is

Ψ;ϕ; Γ;Q ` (H[l 7→ (H(l))[p 7→ (v,H(l)(p).2)]])(l)(p).1 : t.

We have(H[l 7→ (H(l))[p 7→ (v,H(l)(p).2)]])(l)(p).1 =
v and we haveΨ;ϕ; Γ;Q ` v : t.
• Rule (71): the derivation is of the form:

Ψ;ϕ; Γ;Q ` e : t[r]
Ψ;ϕ; Γ;Q ` e.reg : reg r

We now have two subcases depending on which rule was
used to make(H, e.reg) take a step.
If Rule (14) was used to take a step, then the proof
is similar to that given above for the case of function
application and Rule (1); we omit the details.
If Rule (15), that is,

P ` (H, l.reg) (H,D(H(l))) if l ∈ D(H)

was used to take a step, then we have fromΨ;ϕ; Γ;Q `
l : t[r] and Rule (59) thatΨ(l) = t[r]. Moreover we have
thatr is of the formR. From|= H : Ψ andΨ(l) = t[R],
we haveD(H(l)) = R. We pick Ψ′ = Ψ and from
Rule (58) we concludeΨ;ϕ; Γ;Q ` D(H(l)) : reg R.
• Rule (72): the derivation is of the form:

Ψ;ϕ; Γ;Q ` y1 : t[r1] Ψ;ϕ; Γ;Q ` y2 : pt (σ, r2)
ϕ |= r2 ⊆t r1 ϕ |= σ ∈t r2

Ψ;ϕ; Γ;Q ` y1[@sy2] : pl r1[@t(σ, r2)]

If Rule (16), that is,

P ` (H, l[@sp]) (H,H(l)(p).2)
if l ∈ D(H) andp ∈ D(H(l))

was used to take a step, then we havey1 = l andy2 = p.
From Ψ;ϕ; Γ;Q ` l : t[r1] and Rule (59) we have
that r1 = R andΨ(l) = t[R]. From Ψ;ϕ; Γ;Q ` p :
pt (σ, r2) and Rule (57) we have thatσ = p. We have
H ′ = H and we pickΨ′ = Ψ. From |= H : Ψ we
haveH(l)(p).2 = distribute(R, p) andD(H(l)) = R.
From Rule (60) we have that we must showH(l)(p).2 ≡
r1[@t(σ, r2)]. We haver1[@t(σ, r2)] = R[@t(p, r2)].
We haveH(l)(p).2 = distribute(R, p). We also have
ϕ |= r2 ⊆t R andϕ ` p ∈t r2 so from Rule (53)
we haveϕ ` R[@t(p, r2)] ≡ distribute(R, p). We con-
cludeH(l)(p).2 = distribute(R, p) ≡ R[@t(p, r2)] =
r1[@t(σ, r2)], as desired.
• Rule (73): the derivation is of the form:

Ψ;ϕ; Γ;Q ` e1 : reg r1 Ψ;ϕ; Γ;Q ` e2 : reg r2

Ψ;ϕ; Γ;Q ` e1 ∪s e2 : reg r1 ∪t r2

We now have three subcases depending on which rule
was used to make(H, e1 ∪s e2) take a step.
If Rule (17) or Rule (18) was used to take a step, then
the proof is similar to that given above for the case of
function application and Rule (1); we omit the details.
If Rule (19), that is,

P ` (H,R1 ∪s R2) (H,R1 ∪R2)

was used to take a step, then we have from Rule (58)
that we must showϕ ` R1 ∪t R2 ≡ R1 ∪ R2, which is
Rule (43).
• Rule (74): the derivation is of the form:

Ψ;ϕ; Γ;Q ` e1 : reg r1 Ψ;ϕ; Γ;Q ` e2 : reg r2

Ψ;ϕ; Γ;Q ` e1 ∩s e2 : reg r1 ∩t r2

We now have three subcases depending on which rule
was used to make(H, e1 ∩s e2) take a step.
If Rule (20) or Rule (21) was used to take a step, then
the proof is similar to that given above for the case of
function application and Rule (1); we omit the details.
If Rule (22), that is,

P ` (H,R1 ∩s R2) (H,R1 ∩R2)

was used to take a step, then we have from Rule (58)
that we must showϕ ` R1 ∩t R2 ≡ R1 ∩ R2, which is
Rule (45).
• Rule (75): the derivation is of the form:

Ψ;ϕ; Γ;Q ` e : reg r

Ψ;ϕ; Γ;Q ` e+s c : reg r +t c

We now have two subcases depending on which rule was
used to make(H, e+s c) take a step.
If Rule (23) was used to take a step, then the proof
is similar to that given above for the case of function
application and Rule (1); we omit the details.
If Rule (24), that is,

P ` (H,R+s c) (H,R+ c)

was used to take a step, then we have from Rule (58) that
we must showϕ ` R+t c ≡ R+ c, which is Rule (47).
• Rule (76): the derivation is of the form:

Ψ;ϕ; Γ;Q ` e : pt (σ, r)
Ψ;ϕ; Γ;Q ` e++sc : pt (σ ++tc, r +t c)

We now have two subcases depending on which rule was
used to make(H, e++sc) take a step.
If Rule (25) was used to take a step, then the proof
is similar to that given above for the case of function
application and Rule (1); we omit the details.
If Rule (26), that is,

P ` (H, p++sc) (H, p+ c)

was used to take a step, then we have from Rule (57) that
we must showϕ ` p++tc ≡ p+ c, which is Rule (51).
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• Rule (77): the derivation is of the form:

Ψ;ϕ; Γ;Q ` y1 : reg r Ψ;ϕ; Γ;Q ` y2 : pl π

Ψ;ϕ; Γ;Q ` y1 %s y2 : reg r %t π

If Rule (27), that is,

P ` (H,R %s P
′]) (H,R′)

whereR′ = { p ∈ R | distribute(R, p) = P ′ }

was used to take a step, then we have from Rule (58) that
we must showϕ ` r %s π ≡ R′, which is Rule (49).
• Rule (78): the derivation is of the form:

Ψ;ϕ; Γ;Q ` e1 : reg r Q 6= unknown
Ψ;ϕ ∧ (α ∈t r); Γ[x : pt (α, r)];Q ` e2 : int

Ψ;ϕ; Γ;Q ` for (x in e1){e2} : int
(α fresh)

We now have two subcases depending on which rule was
used to make(H, for (x in e1){e2}) take a step.
If Rule (28) was used to take a step, then the proof
is similar to that given above for the case of function
application and Rule (1); we omit the details.
If Rule (29), that is,

P ` (H, for (x in R){e2}) 
(H, ((lam•α : point(α ∈t R).λ•x : (α,R).e2)<c1>)c1; . . . ;

((lam•α : point(α ∈t R).λ•x : (α,R).e2)<cn>)cn; 0)

where order(R) = 〈c1, . . . , cn〉

was used to take a step, then we haver = R. From
Ψ;ϕ; Γ[x : pt (α,R)];Q ` e2 : t andQ 6= unknown
and Rule (66) we haveΨ;ϕ; Γ;Q ` λ•x : (α,R).e2 :
pt (α,R) → t. From Ψ;ϕ; Γ;Q ` λ•x : (α,R).e2 :
pt (α,R) → t and Rule (67) we haveΨ;ϕ; Γ;Q `
lam•α.λ•x : (α,R).e2 : Πα : point(α ∈t R).pt (α,R)→
t. From Rule (57) and the definition of order(R) we have
Ψ;ϕ; Γ;Q ` ci : pt (ci, R). From Ψ;ϕ; Γ;Q ` ci :
pt (ci, R) and Ψ;ϕ; Γ;Q ` lam•α.λ•x : (α,R).e2 :
Πα : point(α ∈t R).pt (α,R) → t and` (ci, R) :
point(α ∈t R) B ci andϕ |= constraint(point)[α :=
ci] and Rule (65) we haveΨ;ϕ; Γ;Q ` (lam•α.λ•x :
(α,R).e2)<ci> : pt (ci, R) → t[α := ci]. From
Ψ;ϕ; Γ;Q ` (lam•α.λ•x : (α,R).e2)<ci> : pt (ci, R)→
t[α := ci] andΨ;ϕ; Γ;Q ` ci : pt (ci, R) and Rule (64)
we haveΨ;ϕ; Γ;Q ` ((lam•α.λ•x : (α,R).e2)<ci>)ci :
t[α := ci]. From Rule (80) and Rule (56) we conclude

Ψ;ϕ; Γ;Q ` ((lam•α.λ•x : (α,R).e2)<c1>)c1; . . . ;

((lam•α.λ•x : (α,R).e2)<cn>)cn; 0 : int.

• Rule (79): the derivation is of the form:

Ψ;ϕ; Γ[x : pl α];Q ` e : int Q 6= unknown
Ψ;ϕ; Γ;Q ` forallplaces x{e} : int

(α fresh)

If Rule (30), that is,

P ` (H, forallplaces x{e}) 
(H, ((lam•α : place.λ•x : pl α.e)<P1>)P1; . . . ;

((lam•α : place.λ•x : pl α.e)<Pn>)Pn; 0)

whereplaces = 〈P1, . . . , Pn〉

was used to take a step, then we can prove thatΨ;ϕ; Γ; here `
((lam•α : place.λ•x : pl α.e)<P1>)P1; . . . ; ((lam•α :
place.λ•x : pl α.e)<Pn>)Pn; 0) : int in a fash-
ion similar to the case forfor-loops and Rule (78) and
Rule(29); we omit the details.
• Rule (80): the derivation is of the form:

Ψ;ϕ; Γ;Q ` e1 : t1 Ψ;ϕ; Γ;Q ` e2 : t2
Ψ;ϕ; Γ;Q ` e1; e2 : t2

We now have two subcases depending on which rule was
used to make(H, e1; e2) take a step.
If Rule (31) was used to take a step, then the proof
is similar to that given above for the case of function
application and Rule (1); we omit the details.
If Rule (32), that is,

P ` (H, v; e) (H, e)

was used to take a step, then we pickΨ′ = Ψ and we
haveΨ;ϕ; Γ;Q ` e : t2.
• Rule (81): the derivation is of the form:

Ψ;ϕ; Γ;Q ` y : pl π Ψ;ϕ; Γ;π ` e : t
Ψ;ϕ; Γ;Q ` at(y){e} : t

We now have two subcases depending on which rule was
used to make(H, at(x){e}) take a step.
If Rule (33), that is,

P ′ ` (H, e) (H ′, e′)
P ` (H, at(P ′){e}) (H, at(P ′){e′})

was used to take a step, then we have thaty = P ′. From
Rule (60) we have thatπ = P ′. So, we can apply the
induction hypothesis toΨ;ϕ; Γ;π ` e : t and get that
Ψ;ϕ; Γ;π ` e′ : t. From Rule (81) we conclude that
Ψ;ϕ; Γ;Q ` at(y){e′} : t.
If Rule (34), that is,

P ` (H, at(P ′){v}) (H, v)

was used to take a step, then we haveH ′ = H and we
pick Ψ′ = Ψ. We also havee = v. FromΨ;ϕ; Γ;π ` v :
t and Lemma 4, we haveΨ;ϕ; Γ; here ` v : t.
• Rule (82): the derivation is of the form

Ψ;ϕ; Γ; here ` e : t ϕ ` t ≡ t′

Ψ;ϕ; Γ; here ` e : t′

From the induction hypothesis we haveΨ′, t′′ such that
Ψ C Ψ′, Ψ′;ϕ; Γ;Q ` e′ : t′′, |= H ′ : Ψ′, and
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ϕ ` t ≡ t′′. Fromϕ ` t ≡ t′ andϕ ` t ≡ t′′ and
Rule (37) and Rule (36), we haveϕ ` t′ ≡ t′′. From
Rule (82) we conclude thatΨ;ϕ; Γ; here ` e′ : t′.

�

B. Proof of Progress
Here is the statement of Progress (Theorem 2):

For a placeP , letQ ∈ {P, unknown}. If Ψ; true; ∅;Q `
e : t and|= H : Ψ, then(H, e) is not stuck at placeP .

Proof. We proceed by induction on the structure of the
derivation ofΨ; true; ∅;Q ` e : t. There are now twenty-
five subcases depending on which one of the type rules was
the last one used in the derivation ofΨ; true; ∅;Q ` e : t.

In seven of those cases, the derivation is of the form:
Ψ; true; ∅;Q ` v : t. wherev is a value, hence(H, v) is
not stuck at placeP . The derivation cannot be of the form:
Ψ; true; ∅;Q ` x : t because Rule (63) cannot apply. We
will now consider each of the remaining seventeen cases.

• Rule (64): the derivation is of the form:

Ψ; true; ∅;Q ` e1 : t1 → t2 Ψ; true; ∅;Q ` e2 : t1
Ψ; true; ∅;Q ` e1 e2 : t2

From the induction hypothesis, we have that(H, e1), (H, e2)
are not stuck at placeP . If (H, e1) can take a step at
placeP , then(H, e1 e2) can also take a step at placeP
using Rule (1). Ife1 is a value and(H, e2) can take a
step at placeP , then also(H, e1 e2) can take a step at
placeP using Rule (2). Ife1, e2 are both values, then we
have from Lemma 5 thate1 is of the formλx : t.e, so
(H, e1 e2) can take a step at placeP using Rule (3).
• Rule (65): the derivation is of the form:

Ψ; true; ∅;Q ` e1 : Πα : k.t1 Ψ; true; ∅;Q ` e2 : t2
` t2 : k B W true |= (constraint(k))[α := W ]

Ψ; true; ∅;Q ` e1<e2> : t1[α := W ]

From the induction hypothesis, we have that(H, e1) is
not stuck at placeP . If (H, e1) can take a step at place
P , then(H, e1<e2>) can take also a step at placeP using
Rule (4). If e1 is a value and(H, e2) can take a step at
placeP , then(H, e1<e2>) can also take a step at place
P using Rule (5). Ife1, e2 are both values, then we have
from Lemma 5 thate1 is of the formlam α : k.e, and we
have from` t2 : k B W and Lemma 5 thate2 is of the
formw, so(H, e1<e2>) can take a step using Rule (6).
• Rule (66): the derivation is of the form:

Ψ; true; ∅[x : t1];Q ` e : t2 Q 6= unknown
Ψ; true; ∅;Q ` λ•x : t1.e : t1 → t2

From Rule (7) we have thatλ•x : t1.e can take a step.
• Rule (67): the derivation is of the form:

Ψ;ϕ ∧ constraint(k); Γ;Q ` e : t Q 6= unknown
Ψ;ϕ; Γ; here ` lam•α : k.e : Πα : k.t

From Rule (8) we have that lam•α : k.e can take a step.
• Rule (68): the derivation is of the form:

Ψ; true; ∅;Q ` e : reg r

Ψ; true; ∅;Q ` new t[e] : t[r]

From the induction hypothesis we have that(H, e) is not
stuck at placeP . If (H, e) can take a step at placeP ,
then(H, new t[e]) can also take a step at placeP using
Rule (9). Ife is a value, then we have from Lemma 5 that
e is of the formR, so(H, new t[e]) can take a step using
Rule (10).
• Rule (69): the derivation is of the form:

Ψ; true; ∅;Q ` y1 : t[r1] Ψ; true; ∅;Q ` y2 : pt (σ, r2)
true |= r2 ⊆t r1 ϕ |= σ ∈t r2 ϕ ` Q ≡ r1[@t(σ, r2)]

Ψ; true; ∅;Q ` y1[y2] : t

We have thaty1, y2 must be values and we have from
Lemma 5 thaty1 is of the forml, l ∈ D(Ψ) andy2 is of
the formp. Further we have thatQ = P , sinceunknown
is not equivalent to anything other than itself. Lett[R]
denoteΨ(l). Froml ∈ D(Ψ) and|= H : Ψ, we have that
l ∈ D(H) andR = D(H(l)). We haver1 = R. From
the type rule for point constants, we have thatr2 is of the
form R′ and thatp ∈ R′. We have true|= R′ ⊆t R.
From true |= R′ ⊆t R, we haveR′ ⊆ R, hence
p ∈ R′ ⊆ R. FromH |= Ψ we havedistribute(R, p) =
H(l)(p).2. From Rule (57) we haveσ = p. We conclude
P = r1[@t(σ, r2)] = distribute(R, p) = H(l)(p).2. So,
(H, e1[e2]) can take a step using Rule (11).
• Rule (70): the derivation is of the form:

Ψ; true; ∅;Q ` y1 : t[r1] Ψ; true; ∅;Q ` y2 : pt (σ, r2)
true |= r2 ⊆t r1 true |= σ ∈t r2

true` Q ≡ r1[@t(σ, r2)] Ψ; true; ∅;Q ` e : t
Ψ; true; ∅;Q ` y1[y2] = e : t

We have thaty1, y2 must be values and we have from
Lemma 5 thaty1 is of the form l, l ∈ D(Ψ) and y2

is of the formp. Further we have thatQ = P , since
unknown is not equivalent to anything other than itself.
From the induction hypothesis we have that(H, e) is
not stuck at placeP . If (H, e) can take a step at place
P , then (H, y1[y2] = e) can also take a step at place
P using Rule (12). Suppose now thate is a value. The
proof thaty1[y2] = e can take a step at placeP using
Rule (13) is similar to that given above for the case of
array lookup (Rule (69)), because Rule (11) has the same
side condition; we omit the details.
• Rule (71): the derivation is of the form:

Ψ; true; ∅;Q ` e : t[r]
Ψ; true; ∅;Q ` e.reg : reg r

From the induction hypothesis we have that(H, e) is
not stuck. If (H, e) can take a step at placeP , then
(H, e.reg) can also take a step using Rule (14). Ife is
a value, then(H, e.reg) can take a step using Rule (15).
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• Rule (72): the derivation is of the form:

Ψ; true; ∅;Q ` y1 : t[r1] Ψ; true; ∅;Q ` y2 : pt (σ, r2)
true |= r2 ⊆t r1 true |= σ ∈t r2

Ψ; true; ∅;Q ` y1[@sy2] : pl r1[@t(σ, r2)]

We have thaty1, y2 must be values and we have from
Lemma 5 thaty1 is of the form l, l ∈ D(Ψ) and y2

is of the form p. The proof thaty1[@sy2] can take a
step at placeP using Rule (16) is similar to that given
above for the case of array lookup and Rule (69), because
Rules (11) and (13) have a stronger side condition; we
omit the details.
• Rule (73): the derivation is of the form:

Ψ; true; ∅;Q ` e1 : reg r1 Ψ; true; ∅;Q ` e2 : reg r2

Ψ; true; ∅;Q ` e1 ∪s e2 : reg r1 ∪t r2

From the induction hypothesis we have that(H, e1), (H, e2)
are not stuck at placeP . If (H, e1) can take a step at place
P , then(H, e1∪se2) can also take a step at placeP using
Rule (17). Ife1 is a value and(H, e2) can take a step at
placeP , then(H, e1 ∪s e2) can also take a step at place
P using Rule (18). Ife1, e2 are both values, then we have
from Lemma 5 thate1 is of the formR1 and thate2 is of
the formR2, so(H, e1 ∪s e2) can take a step at placeP
using Rule (19).
• Rule (74): the derivation is of the form:

Ψ; true; ∅;Q ` e1 : reg r1 Ψ; true; ∅;Q ` e2 : reg r2

Ψ; true; ∅;Q ` e1 ∩s e2 : reg r1 ∩t r2

From the induction hypothesis we have that(H, e1), (H, e2)
are not stuck at placeP . If (H, e1) can take a step at place
P , then(H, e1∩se2) can also take a step at placeP using
Rule (20). Ife1 is a value and(H, e2) can take a step at
placeP , then(H, e1 ∩s e2) can also take a step at place
P using Rule (21). Ife1, e2 are both values, then we have
from Lemma 5 thate1 is of the formR1 and thate2 is of
the formR2, so(H, e1 ∩s e2) can take a step at placeP
using Rule (22).
• Rule (75): the derivation is of the form:

Ψ; true; ∅;Q ` e : reg r

Ψ; true; ∅;Q ` e+s c : reg r +t c

From the induction hypothesis we have that(H, e) is not
stuck at placeP . If (H, e) can take a step at placeP , then
(H, e+sc) can also take a step at placeP using Rule (23).
If e is a value, then we have from Lemma 5 thate is of the
form R, so(H, e +s c) can take a step at placeP using
Rule (24).
• Rule (76): the derivation is of the form:

Ψ; true; ∅;Q ` e : pt (σ, r)
Ψ; true; ∅;Q ` e++sc : pt (σ ++tc, r +t c)

From the induction hypothesis we have that(H, e) is not
stuck at placeP . If (H, e) can take a step at placeP ,

then(H, e ++sc) can also take a step at placeP using
Rule (25). Ife is a value, then we have from Lemma 5
thate is of the formp, so(H, e ++sc) can take a step at
placeP using Rule (26).
• Rule (77): the derivation is of the form:

Ψ; true; ∅;Q ` y1 : reg r Ψ; true; ∅;Q ` y2 : pl π

Ψ; true; ∅;Q ` y1 %s y2 : reg r %t π

We have thaty1, y2 must be values and we have from
Lemma 5 thaty1 is of the formR andy2 is of the form
P ′. So, (H, y1 %s y2) can take a step at placeP using
Rule (27).
• Rule (78): the derivation is of the form:

Ψ; true; ∅;Q ` e1 : reg r Q 6= unknown
Ψ; (α ∈t r); ∅[x : pt (α, r)];Q ` e2 : int

Ψ; true; ∅;Q ` for (x in e1){e2} : int
(α fresh)

From the induction hypothesis we have that(H, e1)
is not stuck at placeP . If (H, e1) can take a step at
placeP , then (H, for (x in e1){e2}) can also take a
step at placeP using Rule (28). Ife1 is a value, then
we have from Lemma 5 thate1 is of the formR, so
(H, for (x in e1){e2}) can take a step at placeP using
Rule (29).
• Rule (79): the derivation is of the form:

Ψ;ϕ; Γ[x : pl α];Q ` e : int Q 6= unknown
Ψ;ϕ; Γ; here ` forallplaces x{e} : int

(α fresh)

We have thatforallplaces x{e} can take a step using
Rule (30).
• Rule (80): the derivation is of the form:

Ψ; true; ∅;Q ` e1 : t1 Ψ; true; ∅;Q ` e2 : t2
Ψ; true; ∅;Q ` e1; e2 : t2

From the induction hypothesis we have that(H, e1) is
not stuck at placeP . If (H, e1) can take a step at place
P , then(H, e1; e2) can also take a step at placeP using
Rule (31). Ife1 is a value, then(H, e1; e2) can take a step
at placeP using Rule (32).
• Rule (81): the derivation is of the form:

Ψ; true; ∅;Q ` y : pl π Ψ; true; ∅;π ` e : t
Ψ; true; ∅;Q ` at(y){e} : t

We have thaty must be a value and we have from
Lemma 5 thaty must be of the formP ′. From the
induction hypothesis we have that(H, e) is not stuck
at placeP ′. If (H, e) can take a step at placeP ′,
then (H, at(y){e}) can take a step at placeP using
Rule (33). Ife is a value, then(H, at(y){e}) can take a
step at placeP using Rule (34).
• Rule (82): the derivation is of the form

Ψ; true; ∅;Q ` e : t true` t ≡ t′

Ψ; true; ∅;Q ` e : t′
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From the induction hypothesis we have thate is not stuck
at placeP .

�
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