
Reverse Engineering of Real-Time Assembly Code

Jens Palsberg Matthew Wallace

Purdue University
Dept. of Computer Science

West Lafayette, IN 47907
{palsberg,wallacms}@cs.purdue.edu

Abstract

Much legacy real-time code is written in assembly language. Such code is often

crafted to meet stringent time and space requirements so the high-level intent of the

programmer may have been obscured. The result is code that is difficult to maintain

and reuse. In this paper we present a tool for reverse engineering of real-time Z86

assembly code, together with a tool for validation of the output. Our experimental

results are for a suite of commercial microcontrollers. For those benchmarks, our tool

does the bulk of the reverse-engineering work, leaving just a few undisciplined uses of

machine code to be handled manually. Our tool is designed to preserve programmer

intent to the largest extent possible. Thus, the reverse engineered program is easier to

understand and maintain than the original.

1 Introduction

1.1 Background

In most embedded systems, resource constraints play an important role. This is usually due
to economic considerations that may dictate the use of a cheap and impoverished processor.
Constraints on time, space, power, etc., can make it challenging to implement the desired
functionality. For example, it may be required that the handling of a certain event terminates
within one millisecond. If the event handler is programmed in C, then the programmer is
at the mercy of the C compiler—will it generate code that is fast enough? If the event
handler is programmed in assembly language, then it is easier to control the timing aspects,
but programming, maintenance, and reuse become harder. Todays real-time systems are
sometimes programmed using a hybrid approach: program in C, compile, and then hack the
output from the compiler.

Much legacy real-time code is written in assembly language. For the purposes of main-
tenance and reuse, it is desirable to create representations at a higher level of abstraction.
In this paper we focus on the following question.

Question: Can we automate the reverse engineering of real-time assembly code?

1

We are particularly interested in preserving programmer intent to the largest extent possible.
Our starting point is a suite of seven proprietary microcontroller systems. The code for

these systems were kindly provided to us by Greenhill Manufacturing, Ltd. [1]. Greenhill has
over a decade of experience producing environmental control systems for agricultural needs.
The microcontrollers were carefully handwritten in Z86 assembly language.

Our goal is to automate the reverse engineering of the seven microcontrollers into ZIL
(Z86 Intermediate Language). ZIL was designed by Naik and Palsberg [7] for use as an in-
termediate representation in compilers; they implemented a code-size-directed ZIL compiler.
As part of their work, Naik, Palsberg, and their colleagues reverse engineered two of the
microcontrollers by hand. It was a long and painful process and they decided that without
some level of automation, no further reverse engineering would be done.

1.2 Our results

We have implemented a tool for reverse engineering of real-time Z86 assembly code, together
with a tool for validation of the output. For six of the seven microcontrollers, our tool does
the bulk of the reverse-engineering work, leaving just a few undisciplined uses of machine
code to be handled manually. For those six benchmarks, we have successfully completed the
reverse engineering task by hand with a minimal effort. The seventh benchmark remains
problematic for us. Our tool is good at preserving programmer intent and, in our judgment,
the reverse engineered programs seem easier to understand and maintain than the originals.

The main problems that are solved by our reverse engineering tool are: (1) creation
of procedures and interrupt handlers with single entry and exit points, (2) declaration of
variables that can be used in the place of registers, and (3) introduction of formal parameters
to procedures. The basis for our validation tool is a Z86 assembly language interpreter [4]
and a ZIL interpreter. The main problems that are solved by our validation tool are: (i)
execution in a common environment of both Z86 assembly code and ZIL programs, and (ii)
managing the wide range of possible compilations of a ZIL program.

The ideas underlying our tools are applicable beyond Z86 and ZIL. Our results suggest
that reverse engineering of real-time assembly code can be automated to a large degree while
preserving programmer intent. It remains to be seen whether it is feasible to continue the
reverse engineering process to the level of, say, C. At the level of ZIL, our validation tool
gives some assurance that all possible compilations of the ZIL program have the desired
timing properties. Such an assurance is more difficult to get when targeting a higher-level
language.

Related work on analyzing assembly code includes the safety checking of Xu, Miller, and
Reps [10], and the typed assembly language of Morrisett, Walker, Crary, and Glew [6, 5].
These papers do not attempt to do reverse engineering.

Rest of the paper. In Section 2 we survey the Z86 architecture and discuss the ZIL
language. In Section 3 we illustrate our tools and techniques with three examples. In
Section 4 we present our reverse engineering tool, and in Section 5 we present our validation
tool. In Section 6 we show our experimental results, and finally in Section 7 we conclude
with some directions for future work.

2

2 Z86 and ZIL

On the Z86E30 architecture [2], the register file is partitioned into banks, and the Register
Pointer (RP) designates a bank as the “current” or “working” bank. We can think of the
register file as a matrix of registers, with RP pointing to the current row. For that reason,
we sometimes refer to RP as the “row pointer.”

A register address is either global or RP-relative (for a register in the current bank); a
global address takes more space than an RP-relative address. With good data layout and
RP manipulation, potentially, many instructions can be executed faster than without using
RP. A significant fraction of the instructions used in real-world embedded programs qualifies
for such an optimization.

The Z86E30 has 256 8-bit registers organized into 16 banks of 16 registers each. Of
these, 236 are general-purpose, while the rest, namely, the first 4 registers in the 0th bank
and the 16 registers in the 15th bank, are special-purpose. All special-purpose registers in
the 0th bank and 12 of the special-purpose registers in the 15th bank are visible to the ZIL
programmer. The RP is itself a special-purpose register in the 15th bank that is invisible at
the ZIL level.

The Z86E30 lacks a data/stack memory; all variables must be stored in registers. Dis-
tributing global variables among the various banks in a manner that reduces the execution
time of the whole program is a major challenge [7].

A Z86 assembly instruction can address a register using an 8-bit or a 4-bit address. In
the former case, the high nibble of the 8-bit address represents the bank number and the low
nibble represents the register number within that bank. In the latter case, the high nibble
of RP represents the bank number and the 4-bit address represents the register number
within that bank. We shall refer to registers addressed using 4 and 8 bits as working and
non-working registers respectively.

The execution time of certain Z86 assembly instructions depends upon whether they
address registers using 4 or 8 bits. For instance, the binary add instruction add v1, v2

depends upon the value of RP: the execution time is 6 or 10 machine cycles depending on
whether RP points to the bank in which v1 and v2 are stored or not. Nearly 30–40% of the
instructions in our benchmark programs execute faster if they address registers using 4 bits.

ZIL [7] was designed to be a convenient intermediate language for a compiler that gener-
ates Z86 assembly code. A grammar for ZIL together with a few explanations are presented
in Appendix A. As part of the work presented in this paper, we extended ZIL with read-only
arrays and parameters to procedures. The new version of ZIL contains the old version as a
subset, so we will refer to the new version simply as ZIL.

There are three main differences between ZIL and Z86 assembly language. First, registers
are not used in ZIL. All data are stored in variables, of which there can be unboundedly many.
Second, ZIL has a simple type system with the types int, string, proc label, jump label, and
int[]. Intuitively, each label has one of the two label types, integer arrays have type int[],
strings have type string, and all other values are of type int. Third, in ZIL, statements are
organized into procedures and interrupt handlers with single entry and exit points. Thus,
jumping from one procedure to the middle of another is not allowed. A procedure may have
formal parameters; arguments can be passed either by value or by reference.

3

3 Examples

We now present three example programs, in both Z86 assembly and ZIL. Each example
illustrates one aspect of our reverse engineering tool.

3.1 Procedure splitting

The example in Figure 1 illustrates the need for splitting procedures. Based strictly on the
callees in the Z86 program, there are only two procedures. However, procedure P1 uses some
of P2’s code in its execution when it jumps to label P2A. We say that this label is contained
inside of procedure P2 because it comes after the label P2 and before the next label that is
the argument of a CALL instruction (or, in this case, the end of the program). We want each
statement to be contained in just one procedure. Since the jump statement inside procedure
P1 jumps to a label that is not contained inside the procedure, we call this a non-local jump.
Such jumps are not allowed in ZIL. Instead we turn this jump into a call, and make the label
into its own procedure. The process by which this is done is explained later in the paper;
the result is shown in Figure 1.

3.2 RP analysis

The example in Figure 2 shows how working registers are changed into variables. In this
program, the row pointer can be exactly determined at every point in the program. This
means that RP-relative references can easily be transformed into global references by multi-
plying the row pointer by 0x10 and adding the register that is specified. Since RP is 0x10,
then r1 becomes register 0x11. Since the programmer did not define a symbolic name for
this register, we just make up an arbitrary variable name, R11.

3.3 Adding parameters

In the example in Figure 3 the Z86 program first sets the row pointer to the first bank.
Then, values are loaded into registers 1 and 2 of this bank. Since the row pointer is 0x10,
this means that registers 0x11 and 0x12 are used. In the procedures these registers are
added together, storing the result in the first register. Control is returned to MAIN, and a
few statements later the row pointer is set to 0x20. This means that when P1 is called in the
next statement, it will be accessing different registers, 0x21 and 0x22, than in the first call.
It is important to capture this in the ZIL program. In the ZIL version, the SRP statements
are removed, because there is no register file into which to index. In order to access the
correct variables, we introduce formal parameters into P1. In the first call to P1, the local
variables var1 and var2 are passed as parameters. They are passed by reference to P1, as
designated by the “&” in front of each parameter. This means that var1 will contain the
sum of var1 and var2 after the call, which is the desired effect. In the next call the global
variables glob1 and glob2, which have presumably been assigned to in some other part of
the program, are passed as parameters. It is important to note that these variables have
a direct mapping to the original Z86 program. Anywhere that register 0x21 is used in the
original program, the variable glob1 will be used in the ZIL program.

4

// Z86 program:

MAIN:
.
.
CALL P1
CALL P2
.
JP MAIN

P1:
SUB r1, #2h
JP Z, P2A
LD r2, #20h
RET

P2:
ADD r1, #1h

P2A: LD r2, #10h
.
.
RET

// ZIL program:

int var1
int var2

MAIN {
START:

.

.
CALL P1
CALL P2
.
JP START

}

PROCEDURES
P1() {

SUB var1, 2h
JP Z, CALLP2
LD var2, 20h
JP END

CALLP2: CALL P2A
END: RET
}

P2() {
ADD var1, 1h
CALL P2A
RET

}

P2A() {
LD r2, 10h
.
.
RET

}

Figure 1: Procedure splitting

5

// Z86 program:

MAIN:
SRP #10h
LD IMR, #1h
LD r1, #0h
EI

LOOP: INC r1
.
.
CP r1, #0h
JP NEQ, LOOP

IRQVC0:
SRP #10h
LD r1, #0h
IRET

// ZIL Program:

int R11
IRQ 0 IRQVC0
MAIN {

SRP 10h
LDIMR, 1h
LD R11, 0h
EI

LOOP: INC R11
.
.
CP R11, 0h
JP NEQ, LOOP

}

HANDLERS:
IRQVC0 {

SRP 10h
LD R11, 0h
IRET

}

Figure 2: From registers to variables

6

// Z86 Program:

MAIN:
SRP #10
LD r1, #42h
LD r2, #23h
CALL P1
.
SRP #20
CALL P1
.
JP MAIN

P1:
ADD r1, r2
RET

// ZIL Program:

int glob1
int glob2
MAIN {
int var1
int var2
START:

LD var1, 42h
LD var2, 23h
CALL P1(var1, var2)
.
CALL P1(glob1, glob2)
.
JP START

}
PROCEDURES

P1(int &a, int &b) {
ADD a, b
RET

}

Figure 3: Adding parameters

7

4 Our Reverse Engineering Tool

There are three main tasks in creating an equivalent ZIL program from a Z86 program:
procedure splitting, RP analysis, and adding parameters.

First is to split the code up into procedures with unique entry and exit points. The first
step in this process is to go through all of the instructions in the program and make a list of
all of the labels that are the argument of a CALL instruction. Each label that is CALLed
constitutes the beginning of a procedure. The end of that procedure is temporarily defined
as the instruction before the next label that is the argument of a CALL instruction. With
temporary procedure boundaries in place, we can check for jumps outside of the procedure
and procedures that overlap each other. Each label that is jumped to outside of its containing
procedure is then split off to form a new procedure. A CALL to the new procedure is added
to the original procedure; the location of the call is where the new procedure used to start.
In the procedure where the offending jump occurred, a new label is added to end of the
procedure. At this label, a CALL to the new procedure is added, followed by a jump to the
end of the current procedure. If a procedure “runs-over” into another procedure, then that
procedure is simply truncated at the overlap point and a CALL is inserted to the following
procedure.

The second task is to convert register references to variable references. The important
thing in this step is to make sure that a register is not split up into two abstract variables when
it is really intended to be “live” over several procedure calls. This is made more complicated
by the fact that registers can be specified using one of three addressing modes: global, RP-
relative, and indirect. Our tool successfully translates all global references, most RP-relative
references, and does not currently attempt to translate indirect references. Global references
are the easiest to deal with because they always refer to the same register. Translation
involves creating a variable for each register that is accessed via global addressing. To make
the new program as close to the original as possible, if the programmer has given a symbolic
name to a particular register (through .EQU directive), then that name is used as the variable
for that register.

Local addressing poses more of a problem because the register that is referenced is de-
pendent on the value of the row pointer (RP) register. In order to determine which register
is being referenced, and therefore which variable should be used, it is necessary to deter-
mine the possible values of RP at each instruction in the program. In order to collect this
information, we do a flow analysis which is polyvariant in the RP value. We use a style of
polyvariance which closely matches those studied by Agesen [3] and Schmidt [9], see also
[8]. Each procedure is characterized such that it either has the same RP value when it exits
as when it enters or it has another definite RP value when it exits. Once this informa-
tion has been collected, each instruction that uses RP-relative addressing is examined. If a
unique RP value has been determined at this instruction, the register is computed and the
corresponding variable is substituted.

If there are multiple possible RP values at an instruction, there is still a possibility that
this instruction can be translated. If a procedure is called from two program points that
each have different RP values, this will create a situation where the statements inside the
procedure have two possible RP values. By introducing parameter passing into ZIL, we can
take out the RP-relative references, thereby eliminating the problem of a polymorphic RP.

8

ZIL

Z86

trace[7] our
toolschedule

interrupt

Figure 4: Our validation tool

To do this translation, we create one formal parameter for each unique RP-relative reference.
Then, at the call site, the RP (which is known to be a unique value) is used to compute
which register would be referenced by the RP-relative references inside the procedure. The
variables corresponding to these registers are then inserted as parameters to the call. This is
repeated for each call site of the procedure in question. This mechanism does not translate
all RP-relative references, however. If the RP polymorphism was introduced by an if-else
type construct, where the RP is set to one value for a true branch and to another for a
false branch, the reference cannot be translated. These are left for the programmer to fix by
hand.

In addition to the three major tasks there is other minor work that the tool does. String
constants are created from the .ASCII directives in the Z86 program. These take the form
of LABEL: .ASCII ”String”. LABEL is taken as the name of the string constant in ZIL and
”String” is the value. Types are partially handled by the tool, but some work is left for the
programmer. All variables are assumed to be of type int, which is a valid assumption for all
but a few variables in the programs we have. Variables of type string and the label types
must be declared by hand. The rest of the work done by the tool is syntactic changes, such
as changing LD IMR, to LDIMR and removing SRP statements.

5 Our Validation Tool

The functionality of our validation tool is illustrated in Figure 4. The arrow from ZIL to
Z86 denotes the code-size-directed compiler presented by Naik and Palsberg [7]. We now
present our tool in more detail.

Validation of a reverse-engineered program amounts to ensuring that the reverse-engineered
program and the original have the same behavior. In general, this is a difficult problem. It
would not be feasible to track all of the register changes for both programs. However, if
we can limit the number of registers we track, the problem is made significantly easier. We

9

0,3; 2,48; 2,56; 2,48; 2,56; 0,1; 3,98
Enter IRQ 0
1,4; 0,2
Enter IRQ 1
0,0; 0,2
Exit IRQ 1
0,1
Exit IRQ 0
2,48

Figure 5: Trace before reordering

0,3; 2,48; 2,56; 2,48; 2,56; 0,1; 3,98;
2,48; 1,4; 0,2; 0,1; 0,0; 0,2
Enter IRQ 0
Enter IRQ 1
Exit IRQ 1
Exit IRQ 0

Figure 6: Trace after reordering

observe that the function of a microcontroller is to give input to and receive output from
devices that are attached to it. For the Z86 microprocessor, there are 4 registers (named
P0-P4, also called port registers) that are reserved for this I/O. Since a microcontroller’s
functionality is wholly described by the input and output on these ports, it is reasonable to
say that two programs are the same if they produce the same values in the port registers.

We have created two simulators, one for Z86 assembly and one for ZIL. These simulators
execute each instruction of the given program and keep a store of the registers that would
be present in an actual microprocessor. Each time a new value is written to one of the port
registers, the number of the register and the value that was written is outputted to produce
an execution trace. For two programs, one in ZIL and one in Z86, if their execution traces
are identical, then we get some assurance that they have the same behavior.

Requiring exact matching of execution traces is actually a bit strict. It is possible that two
programs will produce the same output, but that output might be ordered slightly differently.
This is because these programs are heavily driven by interrupts, which may occur at any
point in the program. We simulate interrupts that would normally be triggered by devices
attached to the microcontroller by specifying fixed times at which interrupts occur. This
specification is given in the form of 4 integers. These integers represent a modulo time for
each interrupt, for example:

543 // Fire Interrupt 0 every 543 cycles
32 // Fire Interrupt 1 every 32 cycles
-1 // Don’t fire Interrupt 2
42 // Fire Interrupt 3 every 42 cycles

Any time the current number of cycles that have been executed is a multiple of the number
specified, that interrupt is triggered. Whether the interrupt is actually handled still depends

10

on whether the interrupt’s bit in the interrupt mask register (IMR) is enabled. Only 4
interrupts must be specified because IRQ 4 and 5 are triggered by the processor’s real-time
clock. This clock is handled by our simulators.

Even if the intervals for Z86 and ZIL programs are set to be the same, interrupts can
occur at different program points, because there are slight timing differences between Z86
and ZIL. These differences arise because in the Z86 processor, certain instructions have
variable execution time depending on whether global or RP-relative register addressing is
used. Since there are no registers in ZIL, this variability cannot be exactly modeled. We
have achieved fairly good timing parity by simply choosing randomly between the slow and
fast versions of each instruction when this variability would be present in the Z86.

In order to account for difference in where interrupts occur, along with the values for
the port register, each execution trace contains statements to show when interrupts are
entered and exited. An example of this trace is given in Figure 5. These statements are then
used to reorder the execution trace such that all port values that occur while executing the
main program are listed first, followed by values that occurred while executing each of the
interrupt handlers. Finally the order in which interrupts occurred is listed. An of example
of the reordered trace is shown in Figure 6. If, after this reordering, two traces are the same,
then programs which generated them are also the same. This reordering works because the
exact timing of the communications on the port registers does not matter, only that the
values occur in the same order. Since the programmer cannot know in advance where in
the program an interrupt will occur, the exact placement of values that occur in interrupt
handlers cannot be considered to describe the program. Thus we can consider values written
to port registers inside an interrupt handler to be local to that handler and analyze them
separately.

In practice, this technique of reordering does not usually have to be used. Because the
timing in between Z86 and ZIL remains relatively close, interrupts do not generally cause
traces that should be the same to be different. So, most programs can be validated simply
by directly comparing the output of the two simulators using diff or some similar tool.
We have implemented the reordering technique as a separate tool that can be optionally
used if differences between the two programs are believed to be caused by interrupt timing
differences.

6 Experimental Results

6.1 Benchmark characteristics

For our experiments, we have used the seven microcontrollers provided by Greenhill Manu-
facturing, Ltd. We have also used a small example program (Example) that was used as a
running example by Naik and Palsberg [7]. Some characteristics of our benchmark programs
are presented in Figure 7. Figure 7 also shows similar numbers for the reverse-engineered
ZIL programs.

11

Number of Number of Number of Number of
Program Z86 instructions ZIL instructions Z86 callees ZIL procedures
CTurk 642 648 30 34
Gturk 800 836 35 49
ZTurk 750 778 35 47
DRop 531 514 25 27
Rop 516 500 26 27
Fan 1124 1268 36 39
Serial 195 187 9 10
Example 53 52 6 9

Figure 7: Benchmark characteristics

After After After
Program procedure splitting RP analysis adding parameters
CTurk 146 15 10
GTurk 178 25 20
ZTurk 163 18 14
DRop 83 2 2
Rop 81 2 2
Fan 329 10 6
Serial 24 0 0
Example 18 0 0

Figure 8: Number of 4-bit addresses to be resolved

Number of Number of Number of
Program parameters added call sites that pass parameters procedures with parameters
CTurk 6 3 1
GTurk 4 2 1
ZTurk 4 2 1
DRop 0 0 0
Rop 0 0 0
Fan 1 5 1
Serial 0 0 0
Example 0 0 0

Figure 9: Adding parameters to procedures

12

6.2 Measurements

Figure 8 shows the number of 4-bit addresses to be resolved after each of the three stages
our reverse engineering tool.

Figure 9 shows the number of parameters added, the number of call sites that pass
parameters, and the total number of procedures with parameters.

The benchmarking was run on an Athlon XP 1700 with 512 MB of DDR RAM using
Debian GNU/Linux, kernel version 2.4.17. For all programs the time to run the reverse
engineering tool was well under 1 second. At least 75% of this time was spent outputting
the code.

6.3 Assessment

After running the original code through the reverse-engineering tool, there was still some
work to be done to get the code running correctly. The biggest task was changing indirect
addresses into parameters or some other appropriate abstraction. The *Turk programs each
required about 5 of these types of changes, the Fan program required about 20 and the rest
did not need this work done. Also the way that strings were handled had to be changed. In
the Z86 programs a string was manipulated by loading the address in ROM where the string
was stored into a register, then using indirect addressing to read a character at a time. ZIL
supports a similar concept, but instead of ROM addresses, ZIL uses variables of type string.
Also in Z86 there is a load-and-increment instruction, which is often used for strings. In ZIL
this must be changed to a load, then an increment of the string variable. This work could
possibly be automated, but we decided against it because it is possible for a programmer to
use this same type of construct in Z86 to load generic data, rather than a string. We wanted
the translation to always be correct, so that the programmer would only have to fix what
the translator could not handle, not go back and fix its mistakes. Overall the work left to
be done on each program was minimal. The Serial and *Rop programs had no more than
3 lines that needed to be changed, and the rest of the programs did not require more than
about 30 changes total.

The biggest gain in effort saved definitely came from the RP analysis, as suggested by
Figure 8. This step reduced the work in most of the programs to a manageable level, and
completely eliminated RP-relative addressing for some. The addition of formal parameters
produced a less dramatic reduction, but was still worthwhile. While the number of RP-
relative references that were eliminated was quite small, it is important that we were able to
capture the programmer’s intent to pass parameters using RP-relative addressing. Further-
more, parameter passing was quite useful in translating the remaining parts of the programs
in cases where indirect addressing was used.

To validate the output of the reverse-engineered programs, we ran them through our
validation tool. The Z86 simulator runs at 4-5 times what the speed of the actual Z86
processor would be. Most programs needed about 10 minutes of Z86 processor time to go
through all of their functions.

For all of the programs, except Fan and Example, the traces were identical without re-
ordering. For Example, the traces were identical after reordering. Further work is needed to
complete the reverse engineering of Fan.

13

7 Conclusion and Future Work

Reverse engineering of real-time assembly code can be automated to a large degree while
preserving programmer intent.

A key idea for further improvement is to implement liveness analysis. There are several
instances in our test suite where the programmer has pushed a register onto the stack using
RP-relative addressing so that register can be used locally in the procedure and then popped
off before returning. This is done because RP-relative addressing is faster than global ad-
dressing and it can not be known by the programmer whether that register is being used
at the time or not. This idea is accommodated perfectly by local variables in procedures in
ZIL. Currently the tool makes all variables global and ignores these pushes and pops. By
analyzing this type of construct, the analysis could be made more precise and better preserve
the programmer’s intent.

Also, our tool cannot analyze interrupt handlers without some programmer intervention.
Since interrupts can occur at any point in the program, if RP-relative addressing is used
inside an interrupt handler, it is not possible for our tool to know what the possible values
of the RP are without further analysis. In addition to knowing the RP at every point in the
program, it is necessary to know the IMR. In this way, we can track only the RP values that
occur while a particular handler is enabled. In practice, the RP almost always seems to be
limited to a single value while a handler is enabled.

Finally, indirect addressing poses a problem. In order to know which register a statement
that uses indirect addressing is accessing, the tool must know what the value of the register
containing the indirect address is. This leads to a more general flow analysis problem, similar
to the RP analysis. Combined with the liveness analysis, we plan to implement a “local”
flow analysis for each occurrence of indirect addressing. In most cases the register being
addressed is assigned to in the 2 or 3 statements preceding, so we expect this will not slow
down the analysis significantly.

Acknowledgments. We thank James Rose for rewriting the Z86 version of cturk into
ZIL. We thank Dennis Brylow for help in numerous situations. Palsberg is supported by a
National Science Foundation Information Technology Research Award number 0112628.

References

[1] Greenhill Manufacturing. http://www.greenhillmfg.com.

[2] Zilog, Inc. http://www.zilog.com.

[3] Ole Agesen. The Cartesian product algorithm. In Proceedings of ECOOP’95, Seventh

European Conference on Object-Oriented Programming, pages 2–26. Springer-Verlag
(LNCS 952), 1995.

[4] Dennis Brylow, Niels Damgaard, and Jens Palsberg. Static checking of interrupt-driven
software. In Proceedings of ICSE’01, 23rd International Conference on Software Engi-

neering, pages 47–56, Toronto, May 2001.

14

[5] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard Samuels, Frederick
Smith, David Walker, Stephanie Weirich, and Steve Zdancewic. Talx86: A realistic
typed assembly language. Presented at 1999 ACM Workshop on Compiler Support for
System Software, May 1999.

[6] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system F to typed
assembly language. In Proceedings of POPL’98, 25th Annual SIGPLAN–SIGACT Sym-

posium on Principles of Programming Languages, pages 85–97, 1998.

[7] Mayur Naik and Jens Palsberg. Compiling with code-size constraints. In LCTES’02,

Languages, Compilers, and Tools for Embedded Systems joint with SCOPES’02, Soft-

ware and Compilers for Embedded Systems, Berlin, Germany, June 2002. To appear.

[8] Jens Palsberg and Christina Pavlopoulou. From polyvariant flow information to inter-
section and union types. Journal of Functional Programming, 11(3):263–317, May 2001.
Preliminary version in Proceedings of POPL’98, 25th Annual SIGPLAN–SIGACT Sym-
posium on Principles of Programming Languages, pages 197–208, San Diego, California,
January 1998.

[9] David Schmidt. Natural-semantics-based abstract interpretation. In Proceedings of

SAS’95, International Static Analysis Symposium. Springer-Verlag (LNCS 983), Glas-
gow, Scotland, September 1995.

[10] Zhichen Xu, Barton P. Miller, and Thomas Reps. Safety checking of machine code. In
Proceedings of ACM SIGPLAN 2000 Conference on Programming Language Design and

Implementation, pages 70–82, 2000.

Appendix A: ZIL

The grammar for ZIL is shown in Figure 10. It is an extended version of the grammar given
in [7], as explained below.

In ZIL, variables can be declared globally, locally to the main program, or locally to any
procedure or interrupt handler. There are 16 predefined global variables in ZIL: P0, P1, P2,
P3, FLAGS, T0, T1, P01M, P2M, P3M, TMR, PRE0, PRE1, IMR, IPR, IRQ

These correspond to special purpose registers defined in Z86. P0-P4 are located in Bank
0 of the register file and the rest are located in Bank 15.

Each ZIL routine (procedure or interrupt handler) has a single entry point and a single
exit point. Each procedure has a single ret instruction and each interrupt handler has a
single iret instruction. A jump from one routine to an instruction within another routine is
not allowed.

New features in ZIL are as follows. Procedures may define formal parameters which may
be passed by value or by reference. Formal parameters are considered to be local to the
procedure, but may be passed to other procedures. ZIL also introduces array datatypes.
These are statically defined arrays that can hold integer values. Arrays must be initialized
with data when defined and immutable. The syntax is similar to Java. Arrays may be
referenced into using integer constants or variables.

15

The ZIL instructions are, essentially, Z86E30 instructions, except that they operate on
variables instead of registers.

Goal ::= (GlobalDef)* "MAIN" MainBlock "PROCEDURES" (ProcDef)*

"HANDLERS" (HandlerDef)*

GlobalDef ::= ConstDef | VarDef

ConstDef ::= "static" "final" Type Id "=" Literal

VarDef ::= Type Variable

Type ::= "int" | "string" | "proc_label" | "jump_label" | "int[]"

ProcDef ::= Label "(" (ParamList)? ")" ProcedureBlock

ParamList ::= ParamDef ("," ParamDef)*

ParamDef ::= Type ("&")? Id

HandlerDef ::= Label "(" ")" HandlerBlock

MainBlock ::= "{" (VarDef)* (Stmt)* "}"

ProcedureBlock ::= "{" (VarDef)* (Stmt)* (Label ":")? "RET" "}"

HandlerBlock ::= "{" (VarDef)* (Stmt)* (Label ":")? "IRET" "}"

Stmt ::= (Label ":")? Instruction

Instruction ::= ArithLogic1aryOPC Variable

| ArithLogic2aryOPC Variable "," Expr

| CPUControl1aryOPC Expr

| CPUControl0aryOPC

| "LD" Variable "," LDExpr

| "DJNZ" Variable "," Label

| "JP" (Condition ",")? LabelExpr

| "CALL" LabelExpr (ArgList)?

| "preserveIMR" "{" (Stmt)* (Label ":")? "}"

LDExpr ::= "@" Id | Expr | "LABEL" Label

Expr ::= "!" Expr | "(" Expr "&" Expr ")" | "(" Expr "|" Expr ")"

| Prim

Prim ::= Id | IntLiteral | ArrayReference

ArrayReference ::= Id "[" IntLiteral "]" | Id "[" Id "]"

LabelExpr ::= Label | "@" Variable

ArgList ::= "(" Id ("," Id)* ")"

Variable ::= Id

Label ::= Id

ArithLogic1aryOPC ::= "CLR" | "COM" | "DA" | "DEC" | "INC" | "POP" | "PUSH"

| "RL" | "RLC" | "RR" | "RRC" | "SRA" | "SWAP"

ArithLogic2aryOPC ::= "ADC" | "ADD" | "AND" | "CP" | "OR" | "SBC"

| "SUB" | "TCM" | "TM" | "XOR"

CPUControl0aryOPC ::= "CLRIMR" | "CLRIRQ" | "EI" | "DI" | "HALT" | "NOP"

| "RCF" | "SCF" | "STOP" | "WDH" | "WDT"

CPUControl1aryOPC ::= "ANDIMR" | "ANDIRQ" | "LDIMR" | "LDIPR" | "LDIRQ"

| "ORIMR" | "ORIRQ" | "TMIMR" | "TMIRQ"

Condition ::= "F" | "C" | "NC" | "Z" | "NZ" | "PL" | "MI" | "OV"

| "NOV" | "EQ" | "NE" | "GE" | "GT" | "LE" | "LT" | "UGE"

| "ULE" | "ULT" | "UGT" | "GLE"

Literal ::= IntLiteral | StrLiteral | ArrayLiteral

IntLiteral ::= <HEX_H> | <BIN_B> | <DEC_D>

StrLiteral ::= <STRING_CONSTANT>

ArrayLiteral ::= "{" IntLiteral ("," IntLiteral)* "}"

Id ::= <IDENTIFIER>

Figure 10: The ZIL grammar

16

