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Abstract ables that have been assigned to particular registers before register
We show that register allocation can be viewed as solving a collec- allocation begins; two register names alias [37] when an assignment
tion of puzzles. We model the register file as a puzzle board and 1© ON€ register name can affect the value of the other.

the program variables as puzzle pieces; pre-coloring and register Ve have implemented a puzzle-based register allocator. Our
aliasing fit in naturally. For architectures such as x86, SPARC V8, register allocator has four steps:

and StrongARM, we can solve the puzzles in polynomial time, and 1. transform the program into alementary progranfusing the

we have augmented the puzzle solver with a simple heuristic for technique described in Section 2.2);

spilling. For SPEC CPU2000, the compilation time of our imple- 2t ” the el ¢ int llecti f |
mentation is as fast as that of the extended version of linear scan < Fahsform the elementary program into a cotiection of puzzies
used by LLVM, which is the JIT compiler in the openGL stack of (using the technique described in Section 2.2);
Mac OS 10.5. Our implementation produces x86 code that is of 3. do puzzle solving, spilling, and coalescing (using the tech-
similar quality to the code produced by the slower, state-of-the-art ~ niques described in Sections 3 and 4); and finally

iterated register coalescing of George and Appel with the exten- 4 transform the elementary program and the register allocation

sions proposed by Smith, Ramsey, and Holloway in 2004. result into assembly code (by implementingfunctions, -
. functions, and parallel copies using the technique described by
1. Introduction Hacket al.[23]).

Researchers and compiler writers have used a variety of abstrac- For SPEC CPU2000, our implementation is as fast as the ex-
tions to model register allocation, including graph coloring [18, 37], tended version of linear scan used by LLVM, which is the JIT
integer linear programming [2, 21], partitioned Boolean quadratic compiler in the openGL stack of Mac OS 10.5. We compare the
optimization [36, 24], and multi-commodity network flow [27].  x86 code produced by gcc, our puzzle solver, the version of lin-
These abstractions represent different tradeoffs between compila-ear scan used by LLVM [15], the iterated register coalescing algo-
tion speed and quality of the produced code. For example, linear rithm of George and Appel [18] with the extensions proposed by
scan [34] is a simple algorithm based on the coloring of interval smjth, Ramsey, and Holloway [37], and the partitioned Boolean
graphs that produces code of reasonable quality with fast compi- quadratic optimization algorithm [24]. The puzzle solver produces
lation time; iterated register coalescing [18] is a more complicated code that is, on average, faster than the code produced by extended
algorithm that, although slower, tends to produce code of better |inear scan, and of similar quality to the code produced by iterated
quality than linear scan. Finally, the Appel-George algorithm [2] register coalescing. Unsurprisingly, the exponential-time Boolean
achieves optimal spilling, with respect to a cost model, in worst- gptimization algorithm produces the fastest code.
case exponential time via integer linear programming. In the following section we define our puzzles and in Section 3
In this paper we introduce a new abstraction: register alloca- e show how to solve them. In Section 4 we present our approach
tion by puzzle solving. We model the register file as a puzzle board tg spilling and coalescing, and in Section 5 we discuss some opti-
and the program variables as puzzle pieces. The result is a collec-mjzations in the puzzle solver. We give our experimental results in

tion of puzzles with one puzzle per instruction in the intermedi- Section 6, and we discuss related work in Section 7. Finally, Sec-
ate representation of the source program. We will show that puz- tjon 8 concludes the paper.

zles are easy to use, that we can solve them efficiently, and that
they produce code that is competitive with state-of-the-art algo-
rithms. Specifically, we will show how for architectures such as 2. Puzzles
x86, SPARC V8, and StrongARM we can solve each puzzle in lin- A puzzle consists of &oard and a set opieces Pieces cannot
ear time in the number of registers, how we can extend the puzzle overlap on the board, and a subset of the pieces are already placed
solver with a simple heuristic for spilling, and hqwe-coloring on the board. Thehallengeis to fit the remaining pieces on the
andregister aliasindfit in naturally. Pre-colored variables are vari-  board.
We will now explain how to map a register file to a puzzle board
and how to map program variables to puzzle pieces. Every resulting
puzzle will be of one of the three types illustrated in Figure 1 or a
hybrid.

2.1 From Register File to Puzzle Board

The bank of registers in the target architecture determines the shape
of the puzzle board. Every puzzle board has a number of separate
[Copyright notice will appear here once "preprint’ option is removed.] areasthat each is divided into two rows efuaresWe will explain
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Figure 1. Three types of puzzles. ©
¢
in Section 2.2 why an area has exadtho rows. The register file /—SPARC V9, 8 quad-precision floating point registers—

may support aliasing and that determines the number of columns in

each area, the valid shapes of the pieces, and the rules for placing AX BX X DX

. " . AHAL| BHBL| cHcn| papL ~ BP SI DI Sp
the pieces on the board. We distinguish three types of puzzles: type-
0, type-1 and type-2, where the board of a type-i puzzle ias (d)
columns.
Type-0 puzzlesThe bank of registers used in PowerPC and the /——=x86, 8 integer registers, AX=EAX, SI=ESI, etc ——

bank of integer registers used in ARM are simple cases because
they do not support register aliasing. Figure 2(a) shows the puz- — - -
zle board for PowerPC. Every area has just one column that corre- Figure 2. Examples of register banks mapped into puzzle boards.
sponds to one of the 32 registers. Both PowerPC and ARM give a
type-0 puzzle for which the pieces are of the three kinds shown in

Figure 1. We can place an X-piece on any square in the upper row,
we can place a Z-piece on any square in the lower row, and we can
place a Y-piece on any column. It is straightforward to see that we

can solve a type-0 puzzle in linear time in the number of areas by
first placing all the Y-pieces on the board and then placing all the

32bits | EAX | EBX | ECX | EDX |

16 = = ] ]

8 bits [BE ]3] [BE]E] [ [T

32bits | EBP | EST | EDI | ESP ]

X-pieces and Z-pieces on the board. 16 bits =) s o] = ]
Type-1 puzzles Floating point registers in SPARC V8 and
ARM support register aliasing in that two 32-bit single precision Figure 3. General purpose registers of the x86 architecture

floating point registers can be combined to hold a 64-bit double

precision value. Figure 2(b) shows the puzzle board for the floating

point registers of SPARC V8. Every area has two columns that ) ) ] ] )

correspond to two registers that can be combined. For example,rule applies to size-2 Z-pieces. Solving type-2 puzzles remains an

SPARC V8 does not allow registers F1 and F2 to be combined; OPen problem. . _

thus, their columns are in separate areas. Both SPARC V8 and Hybrid puzzles. The x86 gives a hybrid of type-0 and type-

ARM give a type-1 puzzle for which the pieces are of the six kinds 1 puzzles. Figure 3 shows the integer-register file of the x86, and

shown in Figure 1. We define treizeof a piece as the number of ~ Figure 2(d) shows the corresponding puzzle board. The registers

squares that it occupies on the board. We can place a size-1 X-piecétX, BX, CX, DX give a type-1 puzzle, while the registeiBP, EST,

on any square in the upper row, a size-2 X-piece on the two upper EDI, ESP give a type-0 puzzle. We treat thX, EBX, ECX, EDX

squares of any area, a size-1 Z-piece on any square in the lowerr€gisters as special cases of ## BX, CX, DX registers; values in

row, a size-2 Z_piece on the two lower squares of any area, a Size_zEAX, EBX, ECX, EDX take up to 32 bits rather than 16 bits. Notice that )

Y-piece on any column, and a size-4 Y-piece on any area. Section 386 does not give a type-2 puzzle because even though we can fit

explains how to solve a type-1 puzzle in linear time in the number four 8-bit values into a 32-bit register, x86 does not provide register

of areas. names for the upper 16-bit portion of that register. For a hybrid of
Type-2 puzzles SPARC V9 [40, pp 36-40] supports two levels  type-1 and type-O puzzles, we first solve the type-0 puzzles and

of register aliasing: first, two 32-bit floating-point registers can be then the type-1 puzzles. _ _

combined to hold a single 64-bit value; then, two of these 64-  The floating point registers of SPARC V9 give a hybrid of a

bit registers can be combined yet again to hold a 128-bit value. type-2 and a type-1 puzzle because only half of the registers can be

Figure 2(c) shows the puzzle board for the floating point registers combined into quad precision registers.

of SPARC V9. Every area has four columns corresponding to four

registers that can be combined. SPARC V9 gives a type-2 puzzle for

which the pieces are of the nine kinds shown in Figure 1. The rules We map program variables to puzzle pieces in a two-step process:

for placing the pieces on the board are a straightforward extensionfirst we convert a source program into @ementary progranand

of the rules for type-1 puzzles. Importantly, we can place a size-2 then we map the elementary program into puzzle pieces.

X-piece on either the first two squares in the upper row of an area, = From a source program to an elementary program.\We can

or on the last two squares in the upper row of an area. A similar convert an ordinary program into alementary progrann three

2.2 From Program Variables to Puzzle Pieces
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L, —— (b) Figure 5. Mapping program variables into puzzle pieces.
01
iz (A = (Ag)) po: [0:L1]1=70
Pyt [(A)Ly. (Ag)Lsl =m(A)) From an elementary program to puzzle piecesA program
point [2] is a point between any pair of consecutive instructions.
L, Ly [ AL, =- For example, the program points in Figure 4(b) pse. .., pi1-
3= Pe: (Ags ALg) = (Ag, ALg) The collection of program points where a variablis alive consti-
Py (A3,3) = (Agcp3) cg7=ALg tutes itsive range The live ranges of programs in elementary form
P4t [(Agcg)Ly] = m(Ag,c3) p7: (A7.¢7) = (Agicq7) contain at most two program points. A variables said to bdive-in

pg: [(Ag.cg):Lyl = n(Ag.c7) at instructiory if its live range contains a program point that pre-
cedes; v is live-outat if v's live range contains a program point
that succeeds. For each instruction in an elementary program
we create a puzzle that has one piece for each variable that is live
in or live out ati (or both). The live ranges that end in the middle
become X-pieces; the live ranges that begin in the middle become
Z-pieces; and the long live ranges become Y-pieces. Figure 5 gives
an example of a program fragment that uses six variables, and it
shows their live ranges and the resulting puzzles.

We can now explain why each area of a puzzle board has exactly
two rows. We can assign a register both to one live range that ends
) o _in the middle and to one live range that begins in the middle. We
steps. First, we transform the source prqgram to static Sln_gle asslgnmode| that by p|acing an X_piece in the upper row and a Z_piece
ment (SSA) form [14]. We use a variation of SSA-form in which  right below in the lower row. However, if we assign a register to a
every basic block begins with @-function that renames the vari-  |ong live range, then we cannot assign that register to any other live
ables that are live coming in to the basic block. Second, we trans- range. We model that by placing with a Y-piece, which spath
form the SSA-form program into static single information (SSI) rows.
form [1]. In a program in SSI form, every basic block ends with  The sizes of the pieces are given by the types of the variables.
a m-function that renames the variables that are live going out of For example, for x86, an 8-bit variable with a live range that ends in
the basic block. (The name-assignment was coined by Bodik the middle becomes a size-1 X-piece, while a 16 or 32-bit variable
al. [5]. It was originally calledo-function in [1], andswitch op- with a live range that ends in the middle becomes a size-2 X-piece.
eratorsin [25].) Finally, we transform the SSI-form program into  similarly, an 8-bit variable with a live range that begins in the
an elementary program by inserting a parallel copy between eachmiddie becomes a size-1 Z-piece. while a 16 or 32-bit variable with
pair of consecutive instructions in a basic block. The para||e| copy alive range that ends in the middle becomes a size-2 Z_piece. An 8-
renames the variables that are live at that point. Appel and Georgept variable with a long live range becomes a size-2 Y-piece, while

used the idea of inserting parallel copies everywhere in their ILP- 3 16-bit variable with a long live range becomes a size-4 Y-piece.
based approach to register allocation [2]; they callegitmal live-
range splitting In summary, in an elementary program, every basic 2.3 Register Allocation and Puzzle Solving are Equivalent

block begins with ap-function, has a parallel copy between each g core register allocation problem, also knowspitl-free regis-
consecutive pair of instructions, and ends with-function. Fig- ter allocation is: given a progranP and a numbef of available

ure 4(a) shows a program, and Figure 4(b) gives the correspondingegisters, can each of the variablesiobe mapped to one of the
elementary program. In this paper we adopt the convention that ;- eqisters such that variables with interfering live ranges are as-
lower case letters denote variables that can be stored into a sing| igned to different registers?

register, and upper case letters denote variables that must be stored ™|, case some of the variables are pre-colored, we call the prob-

into a pair of registers. . . _ lemspill-free register allocation with pre-coloring
Ananian [1] gave a polynomial time algorithm for constructing

SSI form directly from a source program; we can perform the THEOREM1. (Equivalence) Spill-free register allocation with
remaining step of inserting parallel copies in polynomial time as pre-coloring for an elementary program is equivalent to solving
well. a collection of puzzles.

=
IS

Po: (Ag, cg) = P[(Ay, cg):Ly, (Ag, cg):Ls]
o =Cg, Ag

P1o: 0=0

P11* [()fLe“d] =n()

Figure 4. (a) Original program. (b) Elementary program.
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(b) (©)

(Program) p :=s;...s

n

] D D\D (Statement) s :=r|r:s
| | :I (Rule) r = X X
z z
Figure 6. Padding: (a) puzzle board, (b) pieces before padding, (c) X X X X \ X
pieces after padding. The new pieces are marked with stripes. z z z z\|z
v X y | X | X . X
Proof. See Appendix A. O z z z
Figure 9(a) shows the puzzles produced for the program in X | x X X X X
Figure 4 (b). > 1Y Z Y17
3. Solving Type-1 Puzzles >Z( . ZX 1Y 1 Y Y|y
Figure 8 shows our algorithm for solving type-1 puzzles. Our —
algorithmic notation is visual rather than textual. The goal of this X X X ‘ X X | x
section is to explain how the algorithm works and to point out Y 3 Z I Z Z 7|z

several subtleties. We will do that in two steps. First we will define
a visual language of puzzle solving programs that includes the
program in Figure 8. After explaining the semantics of the whole
language, we then focus on the program in Figure 8 and explain
how seemingly innocent changes to the program would make it
incorrect.

We will study puzzle-solving programs that work by completing

Figure 7. A visual language for programming puzzle solvers.

one area at a timeTo enable that approach, we may havead a X
puzzle before the solution process begins. If a puzzle has a set of
pieces with a total area that is less than the total area of the puzzle ;

board, then a strategy that completes one area at a time may get

stuck unnecessarily because of a lack of pieces. So, we pad sucthas a pattern consisting of just one square—namely, the square in
puzzles by adding size-1 X-pieces and size-1 Z-pieces, until thesethe top-right corner, and a strategy consisting of taking one size-1

two properties are met: (i) the total area of the X-pieces equals the X-piece and one size-2 Z-piece and placing the X-piece in the top-

total area of the Z-pieces; (ii) the total area of all the piecedis
whereK is the number of areas on the board. Note tb&dl area

includes also pre-colored squares. Figure 6 illustrates padding. It

is straightforward to see that a puzzle is solvable if and only if its
padded version is solvable. For simplicity, the puzzles in Figure 9
are not padded.

3.1 A\Visual Language of Puzzle Solving Programs

We say that an area ompletewhen all four of its squares are
covered by pieces; dually, an areaeimptywhen none of its four
squares are covered by pieces.

L . . a
The grammar in Figure 7 defines a visual language for program-
ming puzzle solvers: a program is a sequence of statements, and a

statement is either a ruteor a conditional statement: s. We now
informally explain the meaning of rules, statements, and programs.
Rules. A rule explains how to complete an area. We write a
rule as a two-by-two diagram with two facetspattern that is,
dark areas which show the squares (if any) that have to be filled in
already for the rule to apply; andstrategy that is, a description of

left corner and placing the Z-piece in the bottom row. If we apply
the rule to the area

and one size-1 X-piece and one size-2 Z-piece are available, then
the result is that the two pieces are placed in the area, and the rule
succeeds. Otherwise, if one or both of the two needed pieces are
not available, then the rule fails. We cannot apply the rule to the
rea

because the pattern of the rule does not match the area.
Statements.For a statement that is simply a rute we have
explained above how to applyto an arear where the pattern of

how to complete the area, including which pieces to use and wherematches:. For a conditional statement: s, we require all the rules

to put them. We say that the pattern of a roatchesan areau if
the pattern is the same as the already-filled-in squares Bbr a
ruler and an area where the pattern of matches:,

e the application of- to a succeedsif the pieces needed by the
strategy ofr are available; the result is that the pieces needed
by the strategy of are placed ir;

¢ the application of- to a fails otherwise.

For example, the rule

Register Allocation by Puzzle Solving

in r : s to have thesamepattern, which we call the pattern of: s.
For a conditional statement: s and an area where the pattern
of » : s matchess, the application of- : s to a proceeds by first
applyingr to q; if that application succeeds, then: s succeeds
(ands is ignored); otherwise the result of: s is the application of
stoa.

Programs. The execution of a program ...s, on a puzzleP
proceeds as follows:

e For each from 1 ton:

2007/11/30



First, it is imperative that in statement 7 our program prefers

N
w
IS
o
3

X X X X a size-2 X-piece over two size-1 X-pieces. Suppose we replace
i K 0 statement 7 with a statemertwhich swaps the order of the two
T 1% [ " 8 I rules in statement 7. The application of statengntan take us
( ) ) ( = | . ) from a solvable puzzle to an unsolvable puzzle, for example:
o . Z{» 1 T Tx solved — v By
Y Y T
(L) (L)
T x e x|l x]x Tx e x] e x]x stuck |2 lL]
(E e (BaebEs)
LA i Ax 14 <. X Because statement _7 _prefers_ a size-2_ X-piece over two size-1
( 1 R ) gy ) ( P N e R N gy ) X-pieces, the_ exam_ple is |mp035|b|_e. Notice that_ our program also
prefers the size-2 pieces over the size-1 pieces in statements 8-15;
15 . 1 el x o x [ <1 ex [ x and it prefers a size-4 Y-piece over two size-2 Y-pieces in statement
( Yol Y Y e Y e BB EREAE ) 15; all for reasons similar to our analysis of statement 7.

Second, it is critical that statements 7-10 come before state-
ments 11-14. Suppose we swap the order of the two subsequences
Figure 8. Our puzzle solving program of statements. The application of rule 11 can now take us from a
solvable puzzle to an unsolvable puzzle, for example:

* For each area of P such that the pattern af matchesu: solved] ¥ X X Y

— applys; toa

— if the application ofs; to a failed, then terminate the stuck —

entire execution and report failure

Example.Let us consider in detail the execution of the program Notice that the example uses an area in which two squares are
filled in. Because statements 7—10 come before statements 11-14,
x]x ( LB ) the example is impossible.
z z |* Z Third, it is crucial that statements 11-14 come before statement
15. Suppose we swap the order such that statement 15 comes before
e statements 11-14. The application of rule 15 can now take us from
a solvable puzzle to an unsolvable puzzle, for example:

on the puzz

Y X
The first statement has a pattern which matches only the first stuckl v | v M
area of the puzzle. So, we apply the first statement to the first area, 2 71 =
which succeeds and results in the following puzzle.
X | X Notice that the example uses an area in which one square is
7 A filled in. Because statements 11-14 come before statement 15, the

example is impossible.

The second statement has a patterh which matches only the Fourth, it is e.ssen.tial that in statement 11, the rules come in ex-
second area of the puzzle. So, we apply the second statement tGictly the order given in our program. Suppose we replace statement
the second area. The second statement is a conditional sta’[ement’Ll with a statemerit1 Wh'(.:h swaps the order of the first two rules
so we first apply the first rule of the second statement. That rule Of Statement 11. The application of statemeitan take us from a
fails because the pieces needed by the strategy of that rule are not®!Vaple puzzie to an unsolvable puzzle, for example:
available. We then move on to apply the second rule of the second » X
statement. That rule succeeds and completes the puzzle. solved I— 21

Time Complexity. It is straightforward to implement the appli-
cation of a rule to an area in constant time. A program executes X X

O(1) rules on each area of a board. So, the execution of a program stuck | v
on a board withK areas take® (K) time.

z

3.2 Our Puzzle Solving Program When we use the statement 11 given in our program, this situa-
Fi 8 sh | Vi hich has 15 _ tion cannot occur. Notice that our program makes a similar choice
lgure © shows our puzzie soling program, which has NUM- in statements 12—14; all for reasons similar to our analysis of state-

bered statements. Notice that the 15 statements have pairwise d|f-ment 11,

ferent patterns; each statement completes the areas with a particular

pattern. While our program may appear simple and straightforward, THeorem 2. (Correctness)A type-1 puzzle is solvable if and only
the ordering of the statements and the ordering of the rules in con-f our program succeeds on the puzzle.

ditional statements are in several cases crucial for correctness. We

will discuss four such subtleties. Proof. See Appendix B. O
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Py LA ] P, c] (LA ] * = BL,AX L e
P, p, | Pio:
jump Lcnd
Gy (b) (©)
Figure 9. (a) The puzzles produced for the program given in Figure 4(b). (b) An example solution. (c) The final program.
For an elementary prograf?, we generat¢P| puzzles, each of e S =empty
which we can solve in linear time in the number of registers. So, e For each puzzle, in a pre-order traversal of the dominator tree
we have COrO”ary 3. of the program:
COROLLARY 3. (Complexity) Spill-free register allocation with = while p is not solvable:
pre-coloring for an elementary prograr? and 2K registers is — choose and remove a piesefrom p, and for every
solvable inO(|P| x K) time. puzzlep’ that contains a variable in the family of s,
/ /
A solution for the collection of puzzles in Figure 9(a) is shown removes’ from p'.
in Figure 9 (b). » S’ = a solution ofp, guided byS
»S=9

4. Spilling and Coalescing

We now present our approach to spilling and coalescing. Figure 10 Figure 10. Register allocation with spilling and local coalescing
shows the combined step of puzzle solving, spilling, and coalesc-
ing.

Spilling. If the polynomial-time algorithm of Theorem 3 suc- Theorem 4 justifies our use of a spilling heuristic rather than an
ceeds, then all the variables in the program from which the puzzles 44orithm that solves the problem optimally. Figure 10 contains a
were gen_eratepl can be placed in registers. However, the algonthn\,vh”e_mop that implements the heuristic; a more detailed version
may fail, implying that the need for registers exceeds the number 15 code is given in Appendix D. It is straightforward to see that

of available registers. In that situation, the register allocator faces e heyristic visits each puzzle once, that it always terminates, and
the task of choosing which variables will be placed in registers and 5t when it terminates. all puzzles have been solved.

which variables will bespilled, that is, placed in memory. The goal When we choose and remove a piecéom a puzzlep, we

is to spill as few variables as possible. o use the “furthest-first” strategy of Belady [3] that was later used
We use a simple spilling heuristic. The heuristic is based on py poletto and Sarkar [34] in linear-scan register allocation. The

the observation that when we convert a progr&minto ele-  fthest-first strategy spills a family of variables whose live ranges

mentary form, each of”’s variables is represented byfamily extend the furthest.

of variablesin the elementary program. For example, the vari-  The total number of puzzles that will be solved during a run

able c in Figure 4(a) is represented by the family of variables ot oyr heuristic is bounded byP| + ||, where|P| denotes the

{cas, cs, ca, cor, €7, s, co} In Figure 4(b). When we spill a vari- — number of puzzles antF| denotes the number of families of

able in an elementary program, we choose to simultaneously spill \ariaples, that is, the number of variables in the source program.
all the variables in its family and thereby reduce the number of  cogjescing. Traditionally, the task of register coalescing is to
pieces in many puzzles at the same time. The problersgiéter assign the same register to the variabtes in a copy statement
allocation with pre-coloring and spilling of families of variables . _ y, thereby avoiding the generation of code for that statement.
is to perform register allocation with pre-coloring while spilling as  op, elementary program contains many parallel copy statements
few families of variables as possible. and therefore many opportunities for a form of register coalescing.
We use an approach that we chldtal coalescing The goal of
local coalescing is to allocate variables in the same family to the
same register, as much as possible. Local coalescing traverses the
dominator tree of the elementary program in pre-order and solves
Proof. See Appendix C. O each puzzle guided by the solution to @irevious puzzleas shown

THEOREM4. (Hardness) Register allocation with pre-coloring
and spilling of families of variables for an elementary program is
NP-complete.
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in Figure 10. In Figure 9(b), the numbers next to each puzzle denote Benchmark LoC asm btcode

the order in which the puzzles were solved. gcc | 176.gcc 224,099 | 12,868,208| 2,195,700
The pre-ordering has the good property that every time a puzzle plk | 253.perlbmk| 85,814 | 7,010,809 1,268,148
corresponding to statemeiis solved, all the families of variables gap | 254.gap 71,461 | 4256317 702,843

msa | 177.mesa 59,394 | 3,820,633| 547,825
vix | 255.vortex 67,262 | 2,714,588| 451,516
twf | 300.twolf 20,499 | 1,625,861 324,346
crf 186.crafty 21,197 | 1,573,423| 288,488

that are defined at program points that dominateave already
been given at least one location. The puzzle solver can then try
to assign to the piece that represents variabtbe same register

that was assigned to other variablesis family. For instance, in vpr | 175.vpr 17760 | 1081883 173475
Figure 4(b), when solving the puzzle formed by varialds, cs}, amp 188:ammp 13515 875.786 | 149.245
the puzzle solver tries to match the registers assigngd tndAs;. prs | 197.parser 11421 904,024 | 163,025
This optimization is possible becausk is defined at a program 9zp | 164.gzip 8,643 202,640 46,188
point that dominates the definition site df, and thus is visited bz2 | 256.bzip2 4,675 162,270 35,548
before. art 179.art 1,297 91,078 40,762

During the traversal of the dominator tree, the physical loca- eqgk | 183.equake 1,540 91,018 45,241
tion of each live variable is kept in a vector. If a spilled variable is mcf | 181.mcf 2.451 60,225 34,021

reloaded when solving a puzzle, it stays in registers until another — — -

puzzle, possibly many instructions after the reloading point, forces Figure 11. Benchmark characteristickoC: number of lines of C

it to be evicted again, in a way similar to the second-chance alloca- ¢0de.asm: size of x86 assembly programs produced by LLVM with

tion described by Traubt al.[39]. our algorithm (by_tes)btcode: program size in LLVM’s interme-
Figure 9(c) shows the assembly code produced by the puzzlediate representation (bytes).

solver for our running example. We have highlighted the instruc-

tions used to implement parallel copies. The x86 instructicitg;

swaps the contents of two registers.

6. Experimental Results

Experimental platform. We have implemented our register allo-
cator in the LLVM compiler framework [28], version 1.9. LLVM
T is the JIT compiler in the openGL stack of Mac OS 10.5. Our tests
5. Optimizations are executed on a 32-bit x86 Intel(R) Xeon(TM), with a 3.06GHz
We now describe three optimizations that we have found useful in cpu clock, 3GB of free memory and 512KB L1 cache running Red
our implementation of register allocation by puzzle solving for x86. Hat Linux 3.3.3-7.

Size of the intermediate representationAn elementary pro- Benchmark characteristics. The LLVM distribution provides
gram has many more variable names than an ordinary program;a broad variety of benchmarks: our implementation has compiled
fortunately, we do not have to keep any of these extra names. Ourand run over 1.3 million lines of C code. LLVM 1.9 and our puzzle
solver uses only one puzzle board at any time: given an instruction solver pass the same suite of benchmarks. In this section we will
1, variables alive before and aftérare renamed when the solver present measurements based on the SPEC CPU2000 benchmarks.
builds the puzzle that represeritsOnce the puzzle is solved, we  Some characteristics of these benchmarks are given in Figure 11.
use its solution to rewrité and we discard the extra names. The All the figures use short names for the benchmarks; the full names

parallel copy between two consecutive instructibnandis in the are given in Figure 11. We order these benchmarks by the number
same basic block can be implemented right after the puzzle repre-of non-empty puzzles that they produce, which is given in Figure 6.
sentingis is solved. Puzzle characteristics.Figure 12 counts the types of puzzles

Critical Edges and Conventional SSA-form.Before solving generated from SPEC CPU2000. A total of 3.45% of the puzzles
puzzles, our algorithm performs two transformations in the target have pieces of different sizes plus pre-colored areas so they exercise
control flow graph that, although not essential to the correctness of all aspects of the puzzle solver. Most of the puzzles are simpler:
our allocator, greatly simplify the elimination ¢f-functions and 5.18% of them are empty.e., have no pieces; 58.16% have only
w-functions. The first transformation, commonly described in com- pieces of the same size, and 83.66% have an empty board with no
piler text books, removes critical edges from the control flow graph. pre-colored areas.

These are edges between a basic block with multiple successors and As we show in Figure 6, 94.6% of the nonempty puzzles in
a basic block with multiple predecessors [8]. The second transfor- SPEC CPU2000 can be solved in the first try. When this is not
mation converts the target program into a variation of SSA-form the case, our spilling heuristic allows for solving a puzzle multiple
calledConventional SSA-fordCSSA) [38]. Programs in this form  times with a decreasing number of pieces until a solution is found.
have the following property: if two variablas andv. are related Figure 6 reports the average number of times that the puzzle solver
by a parallel copy, e.d. .., v1,...) = (..., v2,...), then the live had to be called per nonempty puzzle. On average, we solve each
ranges ofv; andwv. do not overlap. Hence, if these variables are nonempty puzzle 1.05 times.

spilled, the register allocator can assign them to the same memory  Three other register allocators.We compare our puzzle solver
slot. A fast algorithms to perform the SSA-to-CSSA conversion is with three other register allocators, all implemented in LLVM 1.9
given in [11]. These two transformations are enough to handle the and all compiling and running the same benchmark suite of 1.3
‘swap’ and ‘lost-copy’ problems pointed out by Briggsal. [8]. million lines of C code. The first is LLVM’s default algorithm,

Implementing o-functions and w-functions. The allocator which is an industrial-strength version of linear scan that uses
maintains a table with the solution of the first and last puzzles extensions by Wimmeet al. [41] and Evlogimenos [15]. The
solved in each basic block. These solutions are used to guide thealgorithm does aggressive coalescing before register allocation and
elimination of-functions andr-functions. During the implemen-  handles holes in live ranges by filling them with other variables
tation of parallel copies, the ability to swap register values is im- whenever possible. We use ELS (Extended Linear Scan) to denote
portant [7]. Some architectures, such as x86, provide instructions to this register allocator.
swap the values in registers. In systems where this is not the case, The second register allocator is the iterated register coalescing
swaps can be performed using xor instructions. of George and Appel [18] with extensions by Smith, Ramsey, and
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Figure 14. In both charts, the bars are relative to the puzzle solver;
shorter bars are better for the other algorith®ck size:Com-

Benchmark #puzzles| avg | max once parison of the maximum amount of bytes reserved on the stack.
gcc 476,649 1.03 4 457,572 Number of memory accessesComparison of the total static num-
perlbmk(plk) | 265,905 | 1.03 4 | 253,563 ber of load and store instructions inserted by each register allocator.
gap 158,757 | 1.05 4 153,394
mesa 139,537 | 1.08 9 125,169
vortex(vtx) 116,496 1.02] 4 | 113,880 Spill-code comparison The bottom half of Figure 14 compares
tc";’;’f'tfy(‘g’:z) gg'ggz 1'82 Z gg’ggi the number of load/store instructions in the assembly code. The
vor 36561 L1010 =167 puzzle solver inserts marginally fewer memory-access instructions
AMMBED) 33:381 107 5 31:853 than PBQP, 1.2% fewer memory-access instructions than E_IRC,
parser(prs) 31.668 | 1.04 1 30209 and 9.6% fewer memory-access instructions than extended Ilnear
92ip(9zp) 7550 | 1.06 3 6.360 scan (LL\_/M’s default). Note that although the puzzle solver spills
bzip2(bz2) 5.495 | 1.09 3 2.656 more variables than the other allocators, it removes only part of the
art 3552 | 1.08 ) 3174 live range of a spilled variable.
equake(eqk) 3365 | 1.11 3 2,788 Run-time comparison.Figure 15 compares the run time of the
mcf 2,404 1.05 3 2,120 code produced by each allocator. Each bar shows the average of five
| [ 1,401,793] 1.05 | 10 | 1,325,732 runs of each benchmark; smaller is better. The base line is the run

time of the code when compiled with gcc -O3 version 3.3.3. Note
Figure 13. Number of calls to the puzzle solver per nonempty puz- that the four allocators that we use (the puzzle solver, extended lin-
zle. #puzzles: number of nonempty puzzlegg andmax: average ear scan (LLVM's default), EIRC and PBQP) are implemented in
and maximum number of times the puzzle solver was used per puz-LLVM, while we use gcc, an entirely different compiler, only for
zle. once: number of puzzles for which the puzzle solver was used reference purposes. Considering all the benchmarks, the four allo-
only once. cators produce faster code than gcc; the fractions are: puzzle solver
0.944, extended linear scan (LLVM’s default) 0.991, EIRC 0.954
and PBQP 0.929. If we remove the floating point benchmauds,
msa, amp, art, eqk, then gcc -O3 is faster. The fractions are:
Holloway [37] for handling register aliasing. We use EIRC (Ex- puzzle Solver 1.015, extended linear scan (LLVM'’s default) 1.059,
tended Iterated Register Coalescing) to denote this register alloca-EIRC 1.025 and PBQP 1.008. We conclude that the puzzle solver

tor. produces better code that the other polynomial-time allocators, but
The third register allocator is based on partitioned Boolean worse code than the exponential-time allocator.
quadratic programming (PBQP) [36]. The algorithm runs in worst- Compile-time comparison.Figure 16 compares the register al-

case exponential time and does optimal spilling with respect to a location time and the total compilation time of the puzzle solver
set of Boolean constraints generated from the program text. We and extended linear scan (LLVM's default). On average, extended
use this algorithm to gauge the potential for how good a register linear scan (LLVM'’s default) is less than 1% faster than the puzzle
allocator can be. Lang Hames and Bernhard Scholz produced thesolver. The total compilation time of LLVM with the default alloca-
implementations of EIRC and PBQP that we are using. tor is less than 3% faster than the total compilation time of LLVM
Stack size comparisonThe top half of Figure 14 compares the  with the puzzle solver. We note that LLVM is industrial-strength
maximum amount of space that each assembly program reserves omand highly tuned software, in contrast to our puzzle solver.
its call stack. The stack size gives an estimate of how many different ~ We omit the compilation times of EIRC and PBQP because the
variables are being spilled by each allocator. The puzzle solver andimplementations that we have are research artifacts that have not
extended linear scan (LLVM's default) tend to spill more variables been optimized to run fast. Instead, we gauge the relative compi-
than the other two algorithms. lation speeds from statements in previous papers. The experiments
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Figure 18. Elementary graphs and other intersection graphs. RDV-

graphs are intersection graphs of directed lines on a tree [32].
. B Time of register assignment pass []Total compilation time

2.5
2 - eral program [12]. SSA-form programs have chordal interference
15 - graphs [6, 9, 23], and the interference graphs of SSI-form pro-
' grams are interval graphs [10]. We call the interference graph of
1 M an elementary program alementary grapfi33]. Each connected
component of an elementary graph is a clique substitutioRs;of
5 the simple path with three nodes. We construct a clique substitution
of P; by replacing each node @% by a clique, and connecting all
0 the nodes of adjacent cliques.
& “ o ) .
go § t;% ,\5’ gjv f & 35 ,;;3 QN@ Cf év\' 5 @<¥ &% Elementary graphs are a proper subset of interval graphs, which

are contained in the class of chordal graphs. Figure 18 illus-
trates these inclusions. Elementary graphs are ®istally Per-

Figure 16. Comparison between compilation time of the puzzle . . .
: , . fect Graphs[19], as we show in the proof of Lemma 8, given in
solver and extended linear scan (LLVM’s default algorithm). The an Appe%dsi')[c IL a trivially perfect grgph the size of the ?naximal

bars are relative to the puzzle solver; shorter bars are better for. : . .
extended linear scan. independent set equals the size of the number of maximal cliques.

Spill-free Register Allocation. Spill-free register allocation is
NP-complete for general programs [12] because coloring general

shown in [24] suggest that the compilation time of PBQP is be- 9graphs is NP-complete. However, this problem has a polynomial
tween two and four times the compilation time of extended iterated time solution for SSA-form programs [6, 9, 23] because chordal
register coalescing. The extensions proposed by Setitd. [37] graphs can be colored in polynomial time [4]. This result assumes
can be implemented in way that add less than 5% to the compilation &n architecture in which all the registers have the same size.

time of a graph-coloring allocator. Timing comparisons between ~_ Aligned 1-2-Coloring. Register allocation for architectures
graph coloring and linear scan (the core of LLVM'’s algorithm) span With type-1 aliasing is modeled by tfaigned 1-2-coloringprob-

a wide spectrum. The original linear scan paper [34] suggests thatlem. In this case, we are given a graph in which vertices are as-
graph coloring is about twice as slow as linear scan, while Traub Signed a weight of either 1 or 2. Colors are represented by numbers,
et al.[39] gives an slowdown of up to 3.5x for large programs, and €.9:0,1,...,2K — 1, and we say that the two numbeXs 2: + 1
Sarkar and Barik [35] suggests a 20x slowdown. From these ob- arealigned We define araligned 1-2-coloringo be a coloring that
servations we conclude that extended linear scan (LLVM's default) assigns each weight-two vertex two aligned colors. The problem
and our puzzle solver are approximately equally fast and that both Of finding an optimal 1-2-aligned coloring is NP-complete even for

are significantly faster than the other allocators. interval graphs [29]. _ S _
Pre-coloring Extension.Register allocation with pre-coloring
7 Related Work is equivalent to thepre-coloring extension problerfor graphs.

In this problem we are given a graph, an integerK and a
Register allocation is equivalent to graph coloring. We now discuss partial functiony that associates some verticesdfo colors. The
work on relating programs to graphs and on complexity results for challenge is to exteng to a total functiony’ such that (1), is
variations of graph coloring. Figure 19 summarizes most of the a proper coloring ofG and (2)¢’ uses less thai colors. Pre-

results. coloring extension is NP-complete for interval graphs [4] and even
Register allocation and graphs.The intersection graph of  for unitinterval graphs [31].
the live ranges of a program is calledterference graphFig- Aligned 1-2-coloring Extension. The combination of 1-2-

ure 17 shows the interference graph of the elementary programaligned coloring and pre-coloring extension is calkned 1-
in Figure 4(b). Any graph can be the interference graph of a gen- 2-coloring extensionWe show in the proof of Lemma 16, given
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Class of graphs

Program general SSA-form SSlI-form elementary
Problem general chordal interval elementary
ALIGNED 1-2- | NP-cpt[26] NP-cpt[4] NP-cpt [4] linear [TP]
COLORING

EXTENSION

ALIGNED 1-2- | NP-cpt[26] NP-cpt[29] NP-cpt[29] linear [TP]
COLORING

COLORING NP-cpt[26]  NP-cpt [4] NP-cpt [4] linear [TP]
EXTENSION

COLORING NP-cpt [26]  linear [16] linear [16] linear [16]

Figure 19. Algorithms and hardness results for graph coloring.
NP-cpt = NP-complete; TP = this paper.

in an Appendix, that this problem, when restricted to elementary

graphs, is equivalent to solving type-1 puzzles; thus, it has a poly-

nomial time solution.

8. Conclusion
In this paper we have introduced register allocation by puzzle

solving. We have shown that our puzzle-based allocator runs as

[9] Philip Brisk, Foad Dabiri, Jamie Macbeth, and Majid Sarrafzadeh.
Polynomial-time graph coloring register allocation. WWLS ACM
Press, 2005.

[10] Philip Brisk and Majid Sarrafzadeh. Interference graphs for
procedures in static single information form are interval graphs.
In SCOPESpages 101-110. ACM Press, 2007.

[11] Zoran Budimlic, Keith D. Cooper, Timothy J. Harvey, Ken Kennedy,
Timothy S. Oberg, and Steven W. Reeves. Fast copy coalescing and
live-range identification. I#PLDI, pages 25-32. ACM Press, 2002.

[12] Gregory J. Chaitin, Mark A. Auslander, Ashok K. Chandra, John
Cocke, Martin E. Hopkins, and Peter W. Markstein. Register
allocation via coloringComputer Language$:47-57, 1981.

[13] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Cliff
Stein. Introduction to AlgorithmsMcGraw-Hill, 2nd edition, 2001.

[14] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment
form and the control dependence grapfOPLAS 13(4):451-490,
1991.

[15] Alkis Evlogimenos. Improvements to linear scan register allocation.
Technical report, University of lllinois, Urbana-Champaign, 2004.

[16] Fanica Gavril. The intersection graphs of subtrees of a tree are exactly
the chordal graphslournal of CombinatoricB(16):46 — 56, 1974.

fast as the algorithm used in a industrial-strength JIT compiler [17] Fanica Gavril. A recognition algorithm for the intersection graphs of

and that it produces code that is competitive with state-of-the-art

algorithms. A compiler writer can easily model a register file as

a puzzle board, and straightforwardly transform a source program

into elementary form and then into puzzle pieces. For a compiler

that already uses SSA-form as an intermediate representation, the

extra step to elementary form is small. Our puzzle solver works for

architectures such as x86, SPARC V8, ARM, and PowerPC. Puzzle

solving for SPARC V9 (type-2 puzzles) remains an open problem.

Acknowledgments
Fernando Pereira was sponsored by the Brazilian Ministry of Ed-

directed paths in directed tred3iscrete Mathematicsl3:237 — 249,
1975.

[18] Lal George and Andrew W. Appel. Iterated register coalescing.
TOPLAS 18(3):300-324, 1996.

Martin Charles Golumbic. Trivially perfect graphsDiscrete
Mathematics24:105 — 107, 1978.

[20] Martin Charles Golumbic Algorithmic Graph Theory and Perfect
Graphs Elsevier, 1st edition, 2004.

[21] Daniel Grund and Sebastian Hack. A fast cutting-plane algorithm for
optimal coalescing. I'€ompiler Constructionvolume 4420, pages
111-115. Springer, 2007.

(19]

ucation under grant number 218603-9. We thank Lang Hames and [22] Sebastian Hack and Gerhard Goos. Optimal register allocation for

Bernhard Scholz for providing us with their implementations of
EIRC and PBQP. We thank do Dias, Glenn Holloway, Ayee Kan-

SSA-form programs in polynomial timelnformation Processing
Letters 98(4):150-155, 2006.

nan Goundan, Stephen Kou, Jonathan Lee, Todd Millstein, Norman [23] Sebastian Hack, Daniel Grund, and Gerhard Goos. Register allocation

Ramsey, and Ben Titzer for helpful comments on a draft of the pa-
per.

References

[1] Scott Ananian. The static single information form. Master’s thesis,
MIT, September 1999.

[2] Andrew W. Appel and Lal George. Optimal spilling for CISC
machines with few registers. BLDI, pages 243-253. ACM Press,
2001.

[3] L. Belady. A study of the replacement of algorithms of a virtual
storage computefBM System Journab:78-101, 1966.

[4] M Bir6, M Huijter, and Zs Tuza. Precoloring extension. l:interval
graphs. IrDiscrete Mathematicpages 267 —279. ACM Press, 1992.

[5] Rastislav Bodik, Rajiv Gupta, and Vivek Sarkar. ABCD: eliminating
array bounds checks on demand PinDI, pages 321-333, 2000.

[6] Florent Bouchez. Allocation de registres et vidage e#nmire.
Master’s thesis, ENS Lyon, 2005.

[7] Florent Bouchez, Alain Darte, Christophe Guillon, and Fabrice
Rastello. Register allocation: What does the np-completeness proof
of chaitin et al. really prove? or revisiting register allocation: Why
and how. InLCPC, pages 283-298, 2006.

[8] Preston Briggs, Keith D. Cooper, Timothy J. Harvey, and L. Taylor

for programs in SSA-form. II€C, pages 247-262. Springer-Verlag,
2006.

[24] Lang Hames and Bernhard Scholz. Nearly optimal register allocation
with PBQP. InJMLC, pages 346-361. Springer, 2006.

[25] Richard Johnson and Keshav Pingali. Dependence-based program
analysis. IPLDI, pages 78-89, 1993.

[26] Richard M Karp. Reducibility among combinatorial problems. In
Complexity of Computer Computatiopsges 85-103. Plenum, 1972.

[27] David Ryan Koes and Seth Copen Goldstein. A global progressive
register allocator. 1#PLDI, pages 204—-215. ACM Press, 2006.

[28] Chris Lattner and Vikram Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. GO, pages
75-88, 2004.

[29] Jonathan K. Lee, Jens Palsberg, and Fernando M. Q. Pereira. Aliased
register allocation for straight-line programs is np-complete. In
ICALP, 2007.

[30] Daniel Marx. Parameterized coloring problems on chordal graphs.
Theoretical Computer Sciencgs1(3):407-424, 2006.

[31] Daniel Marx. Precoloring extension on unit interval grapbiscrete
Applied Mathematicsl54(6):995 — 1002, 2006.

[32] Clyde L. Monma. Intersection graphs of paths in a tréeurnal of
Combinatorial Theory Series,B1(2):141 — 181, 1986.

Simpson. Practical improvements to the construction and destruction [33] Fernando Magno Quintao Pereira and Jens Palsberg. Register alloca-

of static single assignment forrSPE 28(8):859-881, 1998.

Register Allocation by Puzzle Solving

tion by puzzle solving, 2007. http://compilers.cs.ucla.edu/fernando/

10 2007/11/30



projects/ puzzles/.

[34] Massimiliano Poletto and Vivek Sarkar.
allocation. TOPLAS 21(5):895-913, 1999.

[35] Vivek Sarkar and Rajkishore Barik. Extended linear scan: an alternate
foundation for global register allocation. [@C, pages 141-155.
LCTES, 2007.

[36] Bernhard Scholz and Erik Eckstein. Register allocation for irregular
architectures. 'SCOPESpages 139-148. LCTES, 2002.

[37] Michael D. Smith, Norman Ramsey, and Glenn Holloway. A
generalized algorithm for graph-coloring register allocatiorPILDI,
pages 277-288, 2004.

[38] Vugranam C. Sreedhar, Roy Dz ching Ju, David M. Gillies, and Vatsa
Santhanam. Translating out of static single assignment forrBA®
pages 194-210. Springer-Verlag, 1999.

[39] Omri Traub, Glenn H. Holloway, and Michael D. Smith. Quality and
speed in linear-scan register allocation. AhDI, pages 142-151,
1998.

[40] David L. Weaver and Tom GermondThe SPARC Architecture
Manual Prentice Hall, 1st edition, 1994.

[41] Christian Wimmer and Hanspeter Mossenbock. Optimized interval
splitting in a linear scan register allocator. EE, pages 132-141.
ACM, 2005.

[42] Mihalis Yannakakis and Fanica Gavril. The maximum k-colorable
subgraph problem for chordal graphsformation Processing Letters
24(2):133 - 137, 1987.

Linear scan register

A. Proof of Theorem 1

We will prove Theorem 1 for register banks that give type-1 puz-
zles. Theorem 1 states:

(Equivalence) Spill-free register allocation with pre-
coloring for an elementary program is equivalent to solving
a collection of puzzles.

In Section A.1 we define three key concepts that we use in the

proof, namely aligned 1-2-coloring extension, clique substitution of

P3, and elementary graph. In Section A.2 we state four key lemmas

and show that they imply Theorem 1. Finally, in four separate
subsections, we prove the four lemmas.

A.1 Definitions

We first state again a graph-coloring problem that we mentioned in

Section 7, namely aligned 1-2-coloring extension.

ALIGNED 1-2-COLORING EXTENSION

Instance a number of color@ K, a weighted graply:, and
a partial aligned 1-2-coloring of G. Problem: Extendy
to an aligned 1-2-coloring df'.

We use the notatioi2K, G, ¢) to denote an instance of the
aligned 1-2-coloring extension problem. For a vertexf G, if
v € dom(y), then we say that is pre-colored

Next we define the notion of aelique substitution ofPs. Let
Hy be a graph withn verticesvq,vs, ..., v, and let Hy, Hs,
..., H, ben disjoint graphs. Theomposition grapj20] H =
Hy[H1, Hs, ..., H,] is formed as follows: for all < 4,5 < n,
replace vertex; in Hy with the graphH; and make each vertex of
H; adjacent to each vertex @f; wheneverw; is adjacent ta; in
Hy. Figure 20 shows an example of composition graph.

Ps is the path with three nodes, e.¢{z, v, 2}, {zy, yz}). We
define a clique substitution d?; asPx v,z = Ps[Kx, Ky, Kz],
where eachi s is a complete graph wit[5| nodes.

DEFINITION 5. A graphG is an elementary graph if and only if
every connected component®is a clique substitution aPs.
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Figure 20. Example of a composition graph (taken from [20]).

A.2  Structure of the Proof
We will prove the following four lemmas.

e Lemma 6: Spill-free register allocation with pre-coloring for an
elementary progran® is equivalent to the aligned 1-2-coloring
extension problem for the interference graphof

e Lemma 13: An elementary program has an elementary interfer-
ence graph.

e Lemma 15: An elementary graph is the interference graph of an
elementary program.

e Lemma 16: Aligned 1-2-coloring extension for a clique substi-
tution of P; is equivalent to puzzle solving.

We can now prove Theorem 1:

Proof. From Lemmas 6, 13, and 15 we have that spill-free register
allocation with pre-coloring for an elementary program is equiva-

lent to aligned 1-2-coloring extension for elementary graphs. From
Lemma 16 we have that aligned 1-2-coloring extension for elemen-
tary graphs is equivalent to solving a collection of puzzles. O

A.3 From register allocation to coloring

LEMMA 6. Spill-free register allocation with pre-coloring for an
elementary progranP is equivalent to the aligned 1-2-coloring
extension problem for the interference graphfof

Proof. Chaitinet al.[12] have shown that spill-free register alloca-
tion for a programP is equivalent to coloring the interference graph
of P, where each color represents one physical register. To extend
the spill-free register allocation to an architecture with a type-1 reg-
ister bank, we assign weights to each variable in the interference
graph, so that variables that fit in one register are assigned weight
1, and variables that fit in a register-pair are assigned weight 2. To
include pre-coloring, we defing(v) = r, if vertexv represents a
pre-colored variable, and colerepresents the register assigned to
this variable. Otherwise, we let(v) be undefined. O

A.4 Elementary programs and graphs

We will show in three steps that an elementary program has an
elementary interference graph. We first give a characterization of
cligue substitutions oP; (Lemma 8). Then we show that a graph
G is an elementary graph if and only @& has anelementary in-
terval representatiofilLemma 10). Finally we show that the inter-

11 2007/11/30



ference graph of an elementary program has an elementary intervalA.4.2 A Characterization of Elementary Graphs

representation and therefore is an elementary graph (Lemma 13).

A.4.1 A Characterization of Clique Substitutions of Ps

We will give a characterization of a clique substitution &f in
terms of forbidden induced subgraphs. Given a gi@ph (V, E),
we say thatd = (V’, E’) is an induced subgraph 6fif V' C V/
and, given two vertices andu in V', wv € E’ if, and only
if, wv € E. Given a graphF', we say thatG is F-free if none
of its induced subgraphs is isomorphic ko In this case we say
that F' is a forbidden subgraph off. Some classes of graphs

We recall the definitions of amtersectiongraph and arinterval
graph [20, p.9]. LetS be a family of nonempty sets. The intersec-
tion graph ofS is obtained by representing each sefihy a vertex
and connecting two vertices by an edge if and only if their corre-
sponding sets intersect. Anterval graph is an intersection graph
of a family of subintervals of an interval of the real numbers.

A rooted treeis a directed tree with exactly one node of in-
degree zero; this node is calledot. Notice that there is a path
from the root to any other vertex of a rooted tree. The intersection
graph of a family of directed vertex paths in a rooted tree is called

can be characterized in terms of forbidden subgraphs, that is, a,goted directed vertex path grapbr RDV[32]. A polynomial time

set of graphs that cannot be induced in any of the graphs in that

class. In this section we show that any grak,y,z has three
forbidden subgraphs: (i, the simple path with four nodes; (ii)
C4, the cycle with four nodes, and (iiBK, the graph formed by

three unconnected nodes. These graphs are illustrated in Figure 21,

along with the bipartite grapks .1, known asthe claw The claw
is important because it is used to characterize many classes o

graphs. For example, the interval graphs that do not contain any

induced copy of the claw constitute the class of the unit interval
graphs [20, p. 187]. A key step of our proof of Lemma 10 shows

that elementary graphs are claw-free.

K3’1: The Claw

Cy

Figure 21. Some special graphs.

We start our characterization by describing the class of the
Trivially Perfect Graphq19]. In a trivially perfect graph, the size
of the maximal independent set equals the size of the number of
maximal cliques.

THEOREM 7. (Golumbic [19]) A graphd is trivially perfect if and
only if G contains no induced subgraph isomorphicig or P;.

The next lemma characterizé®x,y,z in terms of forbidden
subgraphs.

LEMMA 8. A graphG is a clique substitution oP; if and only if
G contains no induced subgraph isomorphiaig, P,, or 3K7.

Proof. (=) Let G be a clique substitution aP;, and letG be of
the form Px y, z. Let us first show that7 is trivially perfect. Note
that G contains either one or two maximal cliguesdfcontains
one maximal clique, we have thatis of the formP; y,y, and the
maximal independent set has size 1GIfcontains two maximal
cliques, those cliques must BEU Y and X U Z. In this case, the
maximal independent set has two vertices, namely an element of
X —Y and an elementof — Y. So,G is trivially perfect, hence,
by Theorem 7,G does not contain eithef’s nor P, as induced
subgraphs. Moreover, the maximum independent sék bés size
one or two; thereforeg(; cannot contain an induceds’; .

(«) If G is C4-free andPy-free, thenG is trivially perfect, by
Theorem 7. Becaus§' is 3K -free, its maximal independent set
has either one or two nodes. @ is unconnected, we have that
G consists of two unconnected cliques; thGs= Px g v. If G is
connected, it can have either one or two maximal cliques. In the first
case, we have th&@' = Py y . In the second, let these maximal
cliques beC andCs>. We have thatG = Pc, —c,,c1nC2,Co—C1 -
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algorithm for recognizing RDV graphs was described in [17]. The
family of RDV graphs includes the interval graphs, and is included
in the class of chordal graphs. An example of RDV graph is given
in Figure 22.

f root
a a
l\ |
° T
//9 e
e

—_—

(©)
Figure 22. (a) Directed tred". (b) Paths orY". (c) Corresponding
RDV graph.

b
r
() ()

Following the notation in [17], we let = {77, ...,7,} denote
a set ofn directed paths in a rooted trde The RDV graph that
corresponds td. is G = ({v1,...,vn}, E), wherev,v; € E if
and only ifv; N 7; # 0. We call L the path representationf G.
Becausel" is a rooted tree, each intervahas a well-defined start
point begin(v), and a well-defined end poirtid (v): begin(v) is
the point ofv closest to the root df’, andend(7) is the point ofo
farthest from the root.

Given a connected grapi = (V, E), the distancebetween
two vertices{u,v} C V is the number of edges in the shortest
path connecting to v. Thediameterof G is the maximal distance
between any two pairs of vertices 6f. A key step in the proof
of Lemma 10 below (Claim 3) shows that the diameter of any
connected component of an elementary graph is at thost

We defineelementary interval representatias follows:

DEFINITION 9. A graphG has anelementary interval representa-
tion if:

1. G'isa RDV graph.

2. Ifuv € E, thenbegin(u) = begin(v), or end () = end (7).

3. Ifuv € E,thenu Cvorv C .

Lemma 10 shows that any elementary graph has an elementary
interval representation.
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LEMMA 10. A graphG is an elementary graph if, and only iy
has an elementary interval representation.

Proof. (<) We first prove six properties @¥:

e Claim 1: Ifa,b,c € V,ab € E, bc € E andac ¢ E, then we
have(a U ¢) C b in any path representation 6f.

e Claim 2:G is Py-free.

e Claim 3: LetC = (V¢, Ec) be a connected component of
G. Givena,b € V¢ such thatab ¢ Ec, then3v such that
av € Ec andbv € Ec.

e Claim 4:G is claw-free.

e Claim 5: Every connected component@fis 3K, -free.

e Claim 6:G is Cy-free.

Proof of Claim 1. Let us first show that¢ a. If b C @, then,
from ac ¢ E we would havebe ¢ E, which is a contradiction.
Given thateb € E andb ¢ @ we have thatt C b. By symmetry,
we have that C b. We conclude thata U ) C b.

Proof of Claim 2. Assumé& ' contains four vertices, y, z and
w that induce the patfizy, yz, zw} in G. From Claim 1 we have
(zUZ) C 5, in particular,z C 3. Similarly we havey Uw) C Z;
in particular,y C z. S0,y = z. Fromzw € E andy = z, we have
yw € E, contradicting that the s€tr, y, z, w} induces a path in
G.

Proof of Claim 3. From Claim 2 we have thatis P,-free, so

y € Y, we lety = abed. And for anyz € Z, we letz = cd. It
is straightforward to show that the interval representation meets the
requirements of Definition 9.

Let us then show thaf' has an elementary interval representa-
tion. For each connected componéht1 < ¢ < K of G, letT; be
the rooted tree that underlies its directed path representation, and
letroot; be its root. Build a rooted treég asroot UT;,1 < i < K,
whereroot is a new node not in any;, and letroot be adjacent
to eachroot; € T;. The directed paths on each branchlbmeet
the requirements in Lemma 10 and thus constitute an elementary
interval representation. O

Lemma 10 has a straightforward corollary that justifies one of
the inclusions in Figure 18.

COROLLARY 11. An elementary graph is a unit interval graph.

Proof. Let us first show that a clique substitution Bf is a unit
interval graph. Let be an integer. Give’x vy, z, we define a unit
interval graphl in the following way. For anyr € X — Y, let
Z = [i,i+ 3];foranyy € (Y — (X U 2)),lety = [i + 2,:¢ + 5];
and foranyz € Z — Y, letz = [i + 4,i + 7]. Those intervals
represenPx y,z and constitute a unit interval graph.

By the definition of elementary graphs we have that every con-
nected component af is a clique substitution of’s. From each
connected componegt we can build a unit interval graph and then

any minimal-length path between two connected vertices contains assemble them all into one unit interval graph that repreggnts]

either one or two edges. We hawgh € V¢ soa, b are connected,
and we haveib ¢ E¢, so we must have a minimal-length path
{av, vb} for some vertex.

Proof of Claim 4. LetL be G's directed path representation.
Suppose’ contains four vertices:, y, z, w that induce the claw
{zy, zz, zw}. Without loss of generality, we assurheyin(T) =
begin(y). Becaus&s is an RDV-graph, we must havwed () =
end(z). However,z andw interfere, yetw cannot share the start-
ing point with z, or it would interfere withy, nor camw share its
end point withz, or it would interfere withz. So, the claw is im-
possible.

Proof of Claim 5. LetC = (V¢, Ec) be a connected com-
ponent ofG. Assume, for the sake of contradiction, that there are
three verticea, b, ¢} € Ve such thatub ¢ Ec, ac ¢ Ec and
bc ¢ Ec. From Claim 3 we have that there exists a vergixthat
is adjacent taz andb. Likewise, we know that there exists a ver-
tex vy that is adjacent té andc. From Claim 1 we have that in
any path representation 6f, (@ U b) C va,. We also know that
(bUT) C Tpe. Thereforep C (Tap N Tpa), SOVabse € Ec, hence
eithervgs C Tpe OF Tpe C Tgp. If the first case holds{a, b, ¢, vie }
induces a claw inG, which is impossible, given Claim 4. In the
second casda, b, ¢, vqp } induces a claw.

Proof of Claim 6. By definition, RDV graphs are chordal graphs,
which areC} free.

Finally, we prove that every connected componentofs a
clique substitution of’;. By Lemma 8, a minimal characterization
of clique substitutions ofs in terms of forbidden subgraphs con-
sists ofCy, P4, and3K;. G is Cy-free, from Claim 6, and~ is
Py-free, from Claim 2. Any connected component@®fis 3K;-
free, from Claim 5.

(=) Let G be a graph withK connected components, each of
which is a clique substitution oPs. Let Px,y,z be one ofG’s
connected components. We first prove tRaty,z has an elemen-
tary interval representation. L&t be a rooted tree isomorphic to
P, = ({a,b,c,d}, {ab, bc, cd}), and leta be its root. We build an
elementary grapl p, isomorphic toPx v,z using intervals o'
We letvivs ... v, denote the directed path that starts at node
and ends at node,,. We build an elementary interval representa-

tion of Px v,z as follows: for anyz € X, we letz = ab. For any
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A.4.3 Anelementary program has an elementary
interference graph

Elementary programs were first introduced in Section 2.2. In that

section we described how elementary programs could be obtained

from ordinary programs via live range splitting and renaming of

variables; we now give a formal definition of elementary programs.
Program points and live ranges have been defined in Section

2.2. We denote the live range of a variabley LR (v), and we let

def (v) be the instruction that defines A programP is strict [11]

if every path in the control-flow graph aP from the start node

to a use of a variable passes through one of the definitions of

v. A program P is simpleif P is a strict program in SSA-form

and for any variable of P, LR(v) contains at most one program

point outside the basic block that contaifi§ (v). For a variabley

defined in a basic blocB in a simple program, we defingli(v)

to be either the unique instruction outsidethat usesB, or, if

v is used only inB, the last instruction inB that usesy. Notice

that becaus# is simple,L R(v) consists of the program points on

the unique path frondef (v) to kili(v). Elementary programs are

defined as follows:

DEFINITION 12. A program produced by the grammar in Fig-

ure 23 is in elementary form if, and only if, it has the following

properties:

1. P. is a simple program;

2. if two variablesu,v of P. interfere, then eitherdef (u)
def (v), or kill(u) = kill(v); and

3. if two variablesu,v of P. interfere, then eitherlL R(u) C
LR(v), or LR(v) C LR(u).

We can produce an elementary program from a strict program:

¢ insertp-functions at the beginning of basic blocks with multiple
predecessors;

e insert w-functions at the end of basic blocks with multiple
SUCCEeSsSors;

e insert parallel copies between consecutive instruction in the
same basic block; and
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P = S(L ¢(m,n)i* n(p,q)* E
L = Lstart7L17L27~~-7Lend
v V1,V2,...
r = AX, AH, AL, BX, . ..
0 = o
| v
| r
S = Lstart : 7(p,q)
FE = Leng @ halt
7 = o=o0
V(n) =V(n)
7(p, q) = M(p,q) = 7V(q)
¢(n,m) = V(n) = ¢M(m,n)
V(n) = (01,---,0n)
M(m,n) Vi(n): L1,..,Vin(n) : Ly,

Figure 23. The grammar of elementary programs.

e rename variables at every opportunity given byhiinctions,
w-functions, and parallel copies.

An elementary progran® generated by the grammar 23 is a

Index Live Range Instruction

7,1 ?)1 = e

7 Vv o= e

n n

b1 ] Uppr = °

thtm l ] Ynem =

7’n+m+1 l vn+1
Unrom *= Untm
byt om+1 ] Unsmse1 = ¢
7’n+2m+p l ] Un+m+p =

T, =
n+2m+p+1 l n+m+1
Zn+2m+2p = Un+m+p
Zn+2m+2p+l =Y
7’2n+2m+2p =

Figure 24. An elementary program representing a clique substitu-
tion of Ps.

sequence of basic blocks. A basic block, which is named by a def(v) to kill(v). Those vertices are all in the same basic block,

label L, is a sequence of instructions, starting witkpdunction
and ending with ar-function. We assume that a prografhhas
two special basic blockd: s+ and L., 4, Which are, respectively,
the first and last basic blocks to be visited duriRl execution.
Ordinary instructions either define, or use, one operand, as#n
v1. An instruction such as; = e defines one variable but does

not use a variable or register. Parallel copies are represented a

(U1, oy vn) = (U, ..., 00).

In order to split the live range of variables, elementary programs
use p-functions andr-functions. p-functions are an abstraction
used in SSA-form to join the live ranges of variables. An assign-
ment such as:

(V1y -+ 5vn) = @[(Vity .y Un1) P L1,y (Vimy -« oy Unm) @ Lim]

containsn ¢-functions such as; <« ¢(vs1 @ L1, ..., Vim : Lim).
The ¢ symbol works as a multiplexer. It will assign to each
the value inv;;, wherej is determined byL;, the basic block
last visited before reaching the assignment. Notice that these
assignments happen in parallel, thatis, all the variahlgs. . , vn;
are simultaneously copied into the variablgs. . . , v,,.

The =w-functions were introduced in [25] with the name of
swicth nodesThe namer-node was established in [5]. The
nodes, orr-functions, as we will call them, are the dual ¢f
functions. Whereas the latter has the functionality of a variable
multiplexer, the former is analogous to a demultiplexer, that per-

possibly excepttill(v). So every vertex on that path dominates
the later vertices on the path, henE&(v) determines a directed
path inTp. So, G is an RDV-graph. Given a variable, we let
begin(LR(v)) = def (v), and we letend (LR(v)) = kill(v). The
second and third requirements in Lemma 10 follow immediately
from the second and third requirements in Definition 12. O

%.5 An elementary graph is the interference graph of an

elementary program

In this section we show in two steps that any elementary graph is
the interference graph of some elementary program.

LEMMA 14. A clique substitution of?; is the interference graph
of an instruction sequence.

Proof. Let G = Px.y,z be a clique substitution aPs. Letm =
|X|, n =1|Y]|andp = |Z|. We build a sequence @(m + n + p)

iNstructionsiy, . . . ia(m+n+p) that usem + n + p variables, such
that each instruction either defines or uses one variable:
ij v; = e forjel.n
Tntj Upyj = @ forj e 1.m
in+m+]’ ° = Un4j forj €l.m
Z'n+2m+j Un+m+j = ° fij S 1..p
Int2mipts ® = Untm+j forjel.p
Int2m+2ptj o = v forjel.n

forms a parallel assignment depending on the execution path takengigyre 24 illustrates the instructions. It is straightforward to show

Consider, for instance, the assignment below:
[(v11, .. (Vimy ooy Unm) ¢ Ln] = (v, ..., 0n)

which represents: w-nodes such a&;1 : L1, ..., Vim : Lp) «—
m(v;). This instruction has the effect of assigning to each variable
vi; : Lj the value inv; if control flows into blockL;. Notice
that variables alive in different branches of a basic block are given
different names by the-function that ends that basic block.

.,Unl)tLh..

LEMMA 13. An elementary program has an elementary interfer-
ence graph.

Proof. Let P be an elementary program, lét = (V, E) be P’s
interference graph, and Ik be P’s dominator tree. We first prove
that for any variables, LR(v) determines a directed path .
Recall thatL R(v) consists of the vertices on the unique path from
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that Px v,z is the interference graph of the instruction sequence.
O

LEMMA 15. An elementary graph is the interference graph of an
elementary program.

Proof. Let G be an elementary graph and et, ..., C, be the
connected components 6f EachC; is a clique substitution aPs
so from Lemma 14 we have that eaChis the interference graph of
an instruction sequenae. We build an elementary prografwith

n + 2 basic blocks:Bstart, B1, ..., Bn, Bend, SUCh thatBsiart
contains a single jump t®,, eachB; consists ofs; followed by a
single jump toB;+1, for1 < ¢ < n — 1, andB,, consists ofs,,
followed by a single jump td3.,q. The interference graph of the
constructed program iS.
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have that the pieces have a total sizel&f and that the total size
of the X-pieces is equal to the total size of the Z-pieces.

It is straightforward to see th& is injective and surjective, so
F is a bijection. It is also straightforward to see tifatand F~*
both execute irD (K) time.

LEMMA 16. Aligned 1-2-coloring extension for a clique substitu-

Figure 25. Example of padding. Square nodes represent vertices of tion of P’ is equivalent to puzzle solving.

weight two, and the other nodes represent vertices of weight one.

A.6 From Aligned 1-2-coloring to Puzzle Solving

Proof. First we reduce aligned 1-2-coloring extension to puzzle
solving. Let(2K, G, ¢) be an instance of the aligned 1-2-coloring
extension problem wher@ is a clique substitution oPs. Via the
linear-time operation of padding, we can assume thas 2K-
balanced. Use the linear-time reductighto construct a puzzle

We now show that aligned 1-2-coloring extension for clique sub- 72K G, »). Suppose(2K, G, ¢) has a solution. The solution

reductions. Our proof is in two steps: first we show how to simplify
the aligned 1-2-coloring extension problem pgddinga graph,
and then we show how to map a graph to a puzzle.

place all the pieces on the board. Conversely, supfqgé, G, )
has a solution. The solution places the remaining pieces on the
board, and we can then uge " to define an aligned 1-2-coloring

Padding of puzzles has been defined in Section 3. A similar of ¢ which extends.

concept applies to clique substitutionsBf. We say that a graph
Px.v,z is 2K-balanced if (1) the weight of X equals the weight
of Z, and (2) the weigh U Y is 2K . We padPx.y,z by letting

Second we reduce puzzle solving to aligned 1-2-coloring/Aet
be a puzzle and use the linear-time reductn' to construct an
instance of the aligned 1-2-coloring extension problem' (P) =

X', Z' be sets of fresh vertices of weight one such that the padded (2K, G, ), whereG is a clique substitution of?s. SupposeP

graph P xuxy,y,(zuz 1S 2K-balanced. It is straightforward to

has a solution. The solution places all pieces on the board, and

see that padding executes in linear time. Figure 25 shows an ex-ywe can then useF~! to define an aligned 1-2-coloring f

ample of padding. The original graph has two maximal cliques:

Kx U Ky with weight 5 andKy U Kz with weight 4. We use

which extendsp. Conversely supposg ! (P) has a solution. The
solution extendg to an aligned 1-2-coloring @, and we can then

square nodes to denote vertices of weight two. After the padding, yse £ to place all the pieces on the board. 0

each maximal clique of the resulting graph has weight 6.

It is straightforward to see that for any partial aligned 1-2-
coloring ¢ whose domain is a subset &f U Y U Z, we have that
(2K, Px,v,z, p) is solvable ifand only if2K, P xux),y,(zuz'), ¢)
is solvable.

We now define a bijectiotF from the aligned 1-2-coloring ex-
tension problem fo2 K -balanced clique substitutions 8% to puz-
zle solving. We will view a board witli( areas as a 2-dimensional
2 x 2K table, in which the'th area consists of the squares with
indices(1, 21), (1, 2¢ 4+ 1), (2,2¢) and(2, 2¢ + 1).

Let (2K, G, ) be an instance of the aligned 1-2-coloring exten-
sion problem, wheré/ is a2 K-balanced clique substitution é%.

We define a puzzléF (2K, G, ¢) with K areas and the following
pieces:

* Vv € X, weight ofv is one: a size-1 X-piece. {(v) is defined
and p(v) = 1, then the piece is placed on the squétei),
otherwise the piece is off the board.

e Vv € X, weight ofv is two: a size-2 X-piece. lp(v) is defined
andy(v) = {2i,2¢ + 1}, then the piece is placed on the upper
row of areai, otherwise the piece is off the board.

e Yu € Y, weight ofv is one: a size-2 Y-piece. If(v) is defined
andy(v) = 1, then the piece is placed on the squdfies) and
(2, 1), otherwise the piece is off the board.

* Vv € Y, weight ofv is two: a size-4 Y-piece. Ip(v) is defined
andp(v) = {2¢,2¢ + 1}, then the piece is placed on area
otherwise the piece is off the board.

* Vv € Z, weight ofv is one: a size-1 Z-piece. {§(v) is defined

and p(v) = 1, then the piece is placed on the squézei),
otherwise the piece is off the board.

* Vv € Z, weight ofv is two: a size-2 Z-piece. p(v) is defined
andp(v) = {2, 2i + 1}, then the piece is placed on the lower
row of areai, otherwise the piece is off the board.

Given thatp is a partial aligned 1-2-coloring @¥, we have that the
pieces on the board don’t overlap. Given tGais 2 K -balanced, we
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B. Proof of Theorem 2
Theorem 2 states:

(Correctness)A type-1 puzzle is solvable if and only if
our program succeeds on the puzzle.

We first show that an application of a rule from the algorithm
given in Figure 8 preserves solvability of a puzzles.

LEMMA 17. (Preservation)LetP be a puzzle and léte {1,...,15}
be the number of a statementin our program. Fer {11, 12, 13, 14},
suppose every area @f is either complete, empty, or has just one
square already filled in. Fof = 15, suppose every area &f is ei-
ther complete or empty. Letbe an area ofP such that the pattern
of statement matches. If P is solvable, then the application of
statement to a succeeds and results in a solvable puzzle.

Proof. We begin by outlining the proof technique that we will use
for eachi € {1,...,15}. Notice that statementcontains a rule
for each possible strategy that can be used to completet S
be a solution ofP. Given thatS completess, it is straightforward
to see that the application of statemerib a succeeds, although
possibly using a different strategy th&nLet P’ be the result of the
application of statemeritto a. To see tha®’ is a solvable puzzle,
we do a case analysis on (1) the strategy used by completen
and (2) the strategy used by statemigntcomplete:. For each case
of (1), we analyze the possible cases of (2), and we show that one
can rearrangé into S’ such thatS’ is a solution ofP’. Let us now
do the case analysis itself. If statemeéig a conditional statement,
then we will usei.n to denote thex*" rule used in statement

it = 1. The areaa can be completed in just one way. S9,
uses the same strategy as statement 1 to comgpldtenceS is a
solution of P’.

i € {2,3,4,5}. The proof is similar to the proof far= 1, we
omit the details.

i = 7. The areau can be completed in two ways. & uses
the strategy of rule 7.1 to complete then statement 7 uses that
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strategy, too, henc8 is a solution of the resulting puzzle.$fuses

the strategy of rule 7.2 to complete we have two cases. Either
statement 7 uses the strategy of rule 7.2, too, in which Sasea
solution of P’. Otherwise, statement 7 uses the strategy of rule 7.1,
in which case we can creaf# from S in the following way. We
swap the two size-2 X-pieces used 8yto completea, with the
size-2 X-piece used by statement 7 to comptet€o illustrate the
swap, here are excerptsBf S, P’, S’ for a representative.

a

. IESREINEY

X X[X

It is straightforward to see th&' is a solution ofP’.

1 € {8,9,10}. The proof is similar to the proof for = 7, we
omit the details.

i = 11. The areas can be completed in three ways.dfuses
the strategy of rule 11.1 or of rule 11.3 to completethe proof
proceeds in a manner similar to the proof foe= 7, we omit the
details. IfS uses the strategy of rule 11.2 to completeve have

two cases. Either statement 11 uses the strategy of rule 11.2, too,

in which casesS is a solution ofP’. Otherwise, statement 11 uses
the strategy of rule 11.1, and now we have several of subcasges of
Because of the assumption that all area®ddre either complete,

no squares already filled in. So, when our program succee@ on
the result is a solution to the puzzle. O

As a collary we get the following complexity result.

LEMMA 18. The aligned 1-2-coloring extension problem for an
elementary graphG is solvable inO(C x K), whereC is the
number of connected componenthfand 2K is the number of
colors.

Proof. Let (2K, G, ) be an instance of the aligned 1-2-coloring
extension problem for whicld7 is an elementary graph. We first
list the connected components &f in linear time [13]. All the
connected components 6f are clique substitutions aPs. Next,
for each connected component, we have from Lemma 16 that we
can reduce the aligned 1-2-coloring extension problem to a puzzle
solving problem in linear time. Finally, we run our linear-time
puzzle solving program on each of those puzzles (Theorem 2). The
aligned 1-2-coloring extension problem is solvable if and only if all
those puzzles are solvable. The total running time@({€' x K).

O

C. Proofof Theorem 4

Theorem 4Hardness)states:

Register allocation with pre-coloring and spilling of
families of variables for an elementary program is NP-
complete.

We reduce this problem to the maximal K-colorable subgraph
of a chordal graph, which was proved to be NP-complete by Yan-
nakakis and Gavril [42]. The key step is to show that any chordal

empty, or has just one square already filled in, the following subcase graph is the interference graph of a program in SSA form. We first
IS the most dlf'flcult; the Other Subcases are easier and Omltted. Herqjeﬁne a convenient representation of chordal graphsl Suppose we

are excerpts oP, S, P’, S'.

a

SOE0
? Y
ERjaajs
X X
s |y Y
z z
= —ain
z
Z —
X X
s YIY
z z

It is straightforward to see th&' is a solution ofP’.

i € {12,13,14}. The proof is similar to the proof far = 11,
we omit the details.

1 = 15. The proof is similar to the proof for = 11, with a

have a tred” and a familyl” of subtrees of". We say thatT’, V) is
aprogram-like decompositioififor for all o € V' we have that (1)

the root ofs has one successor. (2) each leatdias zero or one
successor, (3) each vertex Bfis the root of at most one element

of V, (4) a vertex ofT" is the leaf of at most one element &f in
which case it is not the root of any subtree, and (5) each element of
V' contains at least one edge. For each subtreeV’, we identify
root, as the vertex of that is closest to the root @f.

In order to prove that any chordal graph has a program like
decomposition, we rely on the concept mite tree decomposi-
tion [30]. Given a nice tred’, for each vertexr € T we denote
by K, the union of all the subtrees that touchT satisfies the fol-
lowing properties: (1) Every node has at most two children. (2)

If z € T has two childreny,z € T, thenK, = K, = K..In
this casey is called goint vertex. (3) Ifz € T has only one child,

y € T, thenK, = K, U{u},or K, = K, \ {u}. @) Ifz €T
has no children, thelk,. is reached by at most one subtree, and

total of 28 subcases. All the subcases turn out to be easy because is called aleaf node. Figure 26 (b) shows a nice tree decompo-

of the assumption that all areas®fare either complete or empty.
We omit the details. O

We can now prove Theorem Z6rrectness.

Proof. Suppose first tha® is a solvable puzzle. We must show that
our program succeeds @1, that is, all the 15 statements succeed.

sition produced for the graph in Figure 26 (a). The program like
decomposition is given in Figure 26 (c).

LEMMA 19. A graph is chordal if and only if it has a program like
tree decomposition.

Proof. «<: immediate.
=-: A graph is chordal if and only if it hasgicetree decompo-

From Lemma 17 and induction on the statement number we havesition [30]. Given a chordal graph, and its nice tree decomposition,

that indeed all 15 statements succeed.
Conversely, supposP is a puzzle and that our program suc-

we build aprogram likedecomposition as follows:
(1) the only nodes that have more than one successor are the joint

ceeds orP. Statements 1-4 complete all areas with three squaresnodes. If a joint node is the root of a subtree, replicate Let v’

already filled in. Statements 5-10 complete all areas with two

be the replicated node. Add the predecesserad the predecessor

squares already filled in. Statements 11-14 complete all areas withof v/, and let the unique predecessondie’. Now, v’ is the root
one square already filled in. Statement 15 completes all areas withof any subtree that contains

Register Allocation by Puzzle Solving
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(2) this is in accordance to the definition of nice tree, for joint nodes THEOREM 23. The maximal aligned 1-2-coloring extension prob-
are never leaves of subtrees. lem for elementary graphs is NP-complete.

(3) If there isv € T such thatv is the root ofo,, 0, € V,
then replicatev. Let v" be the replicated node in such a way that
K, = K, \ {z}. Add the predecessor ofas the predecessor of
v’, and let the unique predecessondfev’. Now, v’ is the root of
any subtree that reachesother tharo,,.

(4) If there isv € T such thatv is the leaf ofo,,0, € V,
then replicatev. Let v" be the replicated node in such a way that
K, = K, \ {z}. Add the sucessor aof as the successor of,
and let the unique successorwbev’. Now, v’ is the leaf of any D. Pseudocode
subtree that reaches excepto,.

(5) If there is a subtree that only spans one node, replicate that nodeThe algorithm given in Figure 27 is an expansion of the program
as was done in (1). presented in Figure 10. Important characteristics of our register

0 assignment phase are:

Proof. The problem of finding the maximum induced subgraph of a
chordal graph that i& colorable is NP-complete [42]. We combine
this result with Lemmas 20 and 22 for the proof of this theorém.

The proof of Theorem 4 is a corollary of Theorem 23:

Proof. Follows from Theorem 23. O

e the size of the intermediate representation is kept small, i.e,
at any moment the register allocator keeps at most one puzzle
board in memory;

e the solution of a puzzle is guided by the solution of the last
puzzle solved;

We next define simple notions sfatemenandprogramthat are
suitable for this paper. We ugeto range over program variables.
A statement is defined by the grammar:

(Statementy (definition ofv)

(use ofv)

= v =
| =v . . :
| skip ¢ parallel copies between two consecutive instructiqnandis
in the same basic block can be implemented after the puzzle
for 42 is solved. To implement a parallel copy means to insert

copies/swaps to transfer a solution found t@o i-;

A program is a tree-structured flow chart of a particular simple
form: a program is a paif7, ¢) whereT is a finite tree,{ maps
each vertex of” with zero or one successor to a statement, and each

variablev is defined exactly once and the definitiorvaflominates * we record the locations of variables at the beginning and at

the end of each basic block in tables called Head and Tail.

all uses ofv. Notice that a program is in strict SSA form.

The interference graplof a program(7, ¢) is an intersection
graph of a family of subtree¥ of 7. The family of subtrees
consists of one subtree, called thes range per variablev in the

These recordings guide the elimination@ffunctions andr-
functions.

The variableL in Figure 27 is a mapping of registers to variables.

program; the live range is the subtree of the finite tree induced by For instance/[v] = r denotes that registeris holding the value

the set of paths from each use®to the definition ofv. Notice

of variablev.

that a live range consists of both vertices and edges (and not, asis  Once all the basic blocks have been visited, our register allo-
more standard, edges only). That causes no problem here becausgator procedes to implemegtfunctions andr-functions. We use
we don't allow a live range to end in the same node as another live pasically the technique described by Haskal. [22]; however,

range begins.

From a chordal grapltz presented as a finite tréB and a
program-like family of subtree®’, we construct a prografic =
(T, £), where for each subtreec V', we define/(root, )tobe “v, =",
and for each subtree € V, and a leafn of o, we define

£(n)tobe“= v[. Figure 26(d) shows the program that corresponds

to the tree in Figure 26 (c).
LEMMA 20. G is the interference graph df.

Proof. For allo € V, the live range ob, in Piso. O

In Section 4 we introduced families of variables in an elemen-

tary program. This concept is formally defined as:

DEFINITION 21. Let Ps to be a strict program, and |e®. to be the
corresponding elementary program. Given a variable P;, the
setQ, of all the variables inP. produced from the renaming of
is called the family of variables.

We emphasize that the union of the live ranges of all the vari-

ables in a familyQ,, is topologically equivalent to the live range of
v. We state this fact as Lemma 22.

LEMMA 22. Let Ps be a strict program, and leP. be the elemen-
tary program derived fromP;. Letv and u be two variables of
Ps, and let@, and Q. be the corresponding families of variables
in P.. The variablesv and u interfere if, and only if, there exists
v’ € Q, andu’ € @, suchthat’ andu’ interfere.

Proof. Follows from definition 21. O

Register Allocation by Puzzle Solving

the presence of aliasing complicates the algorithm. We are cur-
rently writing a technical report describing the subtleties of SSA-
elimination after register allocation.
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Figure 26. A chordal graph represented as a program.
e S =empty;
¢ [ = undefined for all registers;
¢ For each basic block in a pre-order traversal of the dominator
tree of the program:
= For each instruction € b:
1. if 4 is the first instruction ob:
— Headp] = L;
2. Letp be a puzzle build from live-in, live-out and vari-
ables in:.
3. whilep is not solvable:
— choose and remove a piecdrom p; assigh a mem-
ory address tw;
4. S’ = a solution ofp, guided by S.
5. UpdateL with the variables tha$' places on the board.
6. if there is instructior’ € b that precede&
— implement the parallel copy betweéhand using
S ands’.
7.8=9;
8. if i is the last instruction of:
— Tail[b] = L;
Figure 27. The color assignment pass.
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