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Abstract. For object-oriented programming, the Visitor pattern en-
ables the definition of a new operation on an object structure without
changing the classes of the objects. The price has been that the set of
classes must be fixed in advance, and they must each have a so-called
accept method. In this paper we demonstrate how to program visitors
without relying on accept methods and without knowing all classes of
the objects in advance. The idea, derived from related work on shape
polymorphism in functional programming, is to separate (1) accessing
subobjects, and (2) acting on them. In the object-oriented setting, re-
flection techniques support access to sub-objects, as demonstrated in our
Java class, Walkabout. It supports all visitors as subclasses, and they can
be programmed without any further use of reflection. Thus a program
using the Visitor pattern can now be understood as a specialized version
of a program using the Walkabout class.

1 Introduction

Design patterns [3] aim to make object-oriented systems more flexible. In partic-
ular, the Visitor pattern enables the definition of a new operation on an object
structure without changing the classes of the objects. Recent examples of uses
of the Visitor pattern include the Java Tree Builder (JTB) tool [13] and the
JJTree tool [11], which are frontends for the Java Compiler Compiler (JavaCC)
[11]. In both cases, the idea is that the user of the tool can write syntax-tree
operations as so-called visitors rather than changing and recompiling the syntax-
tree-node classes. The experience with the Visitor pattern is that many tasks
can conveniently be written as visitors.

A basic assumption of the Visitor pattern is that one knows the classes of
all objects to be visited. When the class structure changes, the visitors must be
rewritten. For example, if one is writing a grammar and is using JTB or JJTree
together with JavaCC, then changes to the grammar imply that the visitors
must change as well. This is the case even when the changes are in a part of the
grammar which is of no direct interest to a particular visitor.

Moreover, each of the classes must have a so-called accept method, which is
used to pass the name of the class back to the visitor through dynamic binding.

In this paper we demonstrate how to program visitors without knowing all
classes of the objects in advance, or relying on accept methods. The idea is to



separate (1) accessing subobjects, and (2) acting on them. We present the Java
class Walkabout which uses reflection to access the structure of the objects it
visits. All visitors are subclasses of Walkabout, and they can be programmed
without any further use of reflection. We can now write visitors that will inter-
act with arbitrary object structures. The classes of these objects need not change
at all. The generic Walkabout class traverses the object structure without per-
forming any actions. Actions appropriate to the different classes of objects can
then be introduced in subclasses to produce specific visitors.

An inflexible alternative to the Walkabout class may be possible in cases
where we are using the traditional Visitor pattern. From a description of the
classes of the objects to be visited, we can generate a class with the same behavior
as the Walkabout class. This approach is taken by the JTB tool. This is inflexible
because when the class structure changes, a new Walkabout-like class has to be
generated. With our new approach, the Walkabout class is the same for all
applications.

The walkabout approach raises a whole new range of potential applications.
For example, one could construct walkabouts that compute statistics associated
to all office bearers in an organisation, without having to adapt the program
to the current organisational structure. More generally, these techniques may
underpin a query language for object-oriented data-bases that is stable with
respect to changes in the underlying structure of the data-base. Thus, one could
extract the names of all files which reference a particular individual, or update all
occurrences of her address, without knowing the structure of the database itself.
The goal of supporting such applications is shared with Lieberherr’s adaptive
programming [8, 9, 12], but this requires new language constructs whereas we
are able to exploit the reflection capabilities of, say, Java 1.1.

Reflection introduces a significant performance penalty. One might say that
this is the price of complete flexibility (which may or may not be worth paying).
We are more optimistic, anticipating that future work will be able to auto-
matically support specialised walkabouts, analogous to visitors, that combine
efficiency in common cases without loss of generality. Some suggestions are con-
sidered in Section 5.

More generally, one can view programs constructed from walkabouts as ex-
ecutable specifications. Benchmarking can then be used to establish the chief
sources of inefficiency, for which specialised code can be constructed.

The theoretical possibility of walkabouts was foreshadowed in [6] which was
inspired by the emergence of shape polymorphism in functional programming
[5, 1]. Shape polymorphism recognises that many common functions can be
applied to a wide variety of data structures. Closest to the Visitor pattern is
the higher-order function map. The high-level algorithm for map f is expressed
as: (1) find every datum, and (2) apply f to it. The challenge is to find all the
data using a single algorithm. The analogy extends further. Just as visitors can
be seen as specialised forms of walkabouts, polytypic programming [4, 10] can be
seen as a specialised form of shape polymorphism.

In the following section we review existing methods of visiting objects, and in



Section 3 we introduce walkabouts. In Section 4 we benchmark the performance
of the Walkabout class, and in Section 5 we explore possible specialisations of
walkabouts that relate them to the earlier techniques. Finally, in Section 6 we
discuss links to shape polymorphism in functional programming, and in Section 7
we supply conclusions and directions for future work.

2 Visitors

The Visitor pattern describes a mechanism for interacting with the internal
structure of composite objects that avoids frequent type casts or recompilation.
Its advantages will be illustrated by means of a running Java example, summing
an integer list.

2.1 First Approach: Instanceof and Type Casts.

The first attempt at summation in Figure 1 uses a simple list interface, with
summation given by a loop which uses instanceof to check if a given List-
object l is a Nil-object or a Cons-object. If it is a Cons-object, then the fields
are accessed via type casts, and the loop is repeated.

interface List {}

class Nil implements List {}

class Cons implements List {

int head;

List tail;

}

.....

List l; // The List-object we are working on.

int sum = 0; // Contains the sum after the loop.

boolean proceed = true;

while (proceed) {

if (l instanceof Nil)

proceed = false;

else if (l instanceof Cons) {

sum = sum + ((Cons) l).head; // Type cast!

l = ((Cons) l).tail; // Type cast!

}

}

.....

Fig. 1. Type Casts



The advantage of this code is that it can be written without touching the
classes Nil and Cons. The drawback is that the code constantly uses type casts
and instanceof to determine what class of object it is considering.

2.2 Second Approach: Dedicated Methods.

One can dismiss the above piece of code by simply saying: it is not object-
oriented! To access parts of an object, the classical approach is to use dedicated
methods which both access and act on the subobjects. For our running example,
we can insert sum methods into each of the classes in Figure 2.

interface List {

int sum();

}

class Nil implements List {

public int sum() {

return 0;

}

}

class Cons implements List {

int head;

List tail;

public int sum() {

return head + tail.sum();

}

}

Fig. 2. Dedicated Methods

We can now compute the sum of all components of a given List-object
l by writing l.sum(). The advantage of this code is that the type casts and
instanceof operations have disappeared, and that the code can be written in a
systematic way. The disadvantage is that every time we want to perform a new
operation on List-objects, say, compute the product of all integer parts, then
new dedicated methods have to be written for all the classes, and the classes
must be recompiled.

2.3 Third Approach: The Visitor Pattern.

The Visitor pattern lets us define a new operation on an object structure without
changing the classes of the objects on which it operates. Rather than writing
dedicated methods for each programming task and afterwards recompiling, the



idea is to insert a so-called accept method in each class which passes control
back to the visitor, which acts as a repository for the new methods. Code for
the running example is given in Figure 3.

interface List {

void accept(Visitor v);

}

class Nil implements List {

public void accept(Visitor v) {

v.visit(this);

}

}

class Cons implements List {

int head;

List tail;

public void accept(Visitor v) {

v.visit(this);

}

}

interface Visitor {

void visit(Nil x);

void visit(Cons x);

}

class SumVisitor implements Visitor {

int sum = 0;

public void visit(Nil x) {}

public void visit(Cons x) {

sum = sum + x.head;

x.tail.accept(this);

}

}

.....

SumVisitor sv = new SumVisitor();

l.accept(sv);

System.out.println(sv.sum);

.....

Fig. 3. Visitors

Each accept method takes a visitor as argument. Its purpose is to inform the
visitor of the object’s class, which is used to determine the appropriate visit

method. The interface Visitor declares a visit method for each of the basic



classes, which must be instantiated before use. Note that the visit methods
describe both the action to be performed, e.g. sum = sum + x.head; and also
the pattern of access, e.g. x.tail.accept(this); accesses the tail of the list.
The instance sv of a SumVisitor above shows how to compute and print the sum
of all components of a given List-object l.

The advantage is that one can write code that manipulates objects of existing
classes without recompiling those classes, provided that all objects must have an
accept method.

In summary, the Visitor pattern combines the advantages of the two other
approaches, as represented in the following table:

Frequent Frequent
type casts? recompilation?

Instanceof and type casts Yes No
Dedicated methods No Yes
The Visitor pattern No No

3 Walkabouts

We now demonstrate how to program visitors without relying on accept methods.
The chief conceptual difference from the visitors is that the default access pattern
is supplied by a generic class Walkabout: only the actions performed at each
object need to be supplied. This expresses the insight that visitors proceed by
finding each datum, and then acting on it, much as a general mapping algorithm
in functional programming does.

The default access pattern is determined by reflection, which is used to de-
termine the internal structure of an object, specifically its fields, which are then
visited in sequence. Reflection can also be used to determine the class of an
object, which eliminates the need for accept methods.

The Walkabout class has just one method, visit, which takes an argument of
type Object. Replacing the reflection code with pseudo-code yields the informal
description of the class in Figure 4.

class Walkabout {

void visit(Object v) {

if ( v != null )

if (this has a public visit method for the class of v)

this.visit(v);

else if (v is not of primitive type)

for (each field f of v)

this.visit(v.f);

}

}

Fig. 4. Walkabout Pseudo-code



When the general visit method is invoked, it will first try to invoke a visit

method for the class of the argument. If no such method is found, and the
argument is an object, then the general visit method will be invoked on each of
the fields of the argument.

The full Java code for the class is presented in Figure 5. All visitors are
subclasses of Walkabout that extend it with visitmethods for particular classes,
with no need for further use of reflection.

class Walkabout {

void visit(Object v) {

if ( v != null ) {

Object [] os = {v};

Class vClass = v.getClass();

Class [] cs = {vClass};

try { this.getClass().getMethod("visit",cs).invoke(this,os); }

catch (java.lang.NoSuchMethodException e) {

if (!((v instanceof Number) |

(v instanceof Byte) | (v instanceof Short) |

(v instanceof Character) | (v instanceof Boolean))) {

java.lang.reflect.Field [] vFields = vClass.getFields();

for (int i=0; i<vFields.length; i++) {

try { this.visit(vFields[i].get(v)); }

catch (java.lang.IllegalAccessException e1) {;}

// Cannot happen.

}

}

}

catch (java.lang.Exception e) {;} // Cannot happen.

}

}

}

Fig. 5. The Walkabout class

A walkabout for computing and printing the sum of all components of a
given List-object l is given in Figure 6. Let us compare this walkabout with
the corresponding visitor in figure 3.

– The customised Visitor interface has been replaced with the general
Walkabout class.

– The basic classes (for lists) are here defined exactly as in the first approach
since there are no accept methods to worry about.

– Even so, the customised walkabout actually is simpler than the correspond-
ing visitor in two ways.

– First, there is no visit method for Nil in class SumWalkabout. Such a



method is unnecessary because class Walkabout will determine that Nil has
no fields.

– Second, and more fundamental, is that the indirection caused by accept

in x.tail.accept(this); has been replaced by the direct recursive call
this.visit(x.tail);

interface List {}

class Nil implements List {}

class Cons implements List {

int head;

List tail;

}

class SumWalkabout extends Walkabout {

int sum = 0;

public void visit(Cons x) {

sum = sum + x.head;

this.visit(x.tail);

}

}

.....

SumWalkabout sw = new SumWalkabout();

sw.visit(l);

System.out.println(sw.sum);

.....

Fig. 6. SumWalkabout

4 Performance Measurements

The running example with Lists is a slightly simplified version of our benchmark
program. The full program has a third implementation of List, namely a class
Link which in its basic form looks like this:

class Link implements List {

boolean color;

List li;

}

To test the efficiency of the code produced by the various programming styles,
we wrote a procedure which produces a list of length 2000 with alternating Cons



and Link cells. We still want to compute the sum of all the integer components.
In each program we repeat the summation 100 times. The following run times
were obtained on a Sun Ultra 1, model 170E, 167-MHz UltraSPARC, 2.1-Gbyte
7200 F/W SCSI-2 disk, and 128-Mbyte Memory. The compilation and execution
of the Java code was done with Sun’s JDK 1.1.3.

Approach Run-time
Construction of list only 0.68 s
type casts 1.18 s
dedicated methods 0.99 s
Visitor 1.17 s
Walkabout 4 min 59.93 s

These results show that the use of reflection imposes a significant performance
penalty which we will now discuss. In passing, notice that the extra control flow
caused by the Visitor is no slower than the use of instanceof and type casts.

5 From Walkabout to Visitors

We now explain how a program using the Visitor pattern can be understood as a
specialized version of a program using the Walkabout class. We will explore two
related avenues: one leads to the Visitor pattern as described in Section 1, and
another leads to a variant which is used, for example, in the Java Tree Builder
tool [13]. The specialization of class Walkabout is in two steps.

Step 1: Which classes of objects will be visited?

Suppose that the object structure to be visited only contains objects of classes
C1, . . . , Cn and that Ci has fields fi1, . . . , fimi

. This knowledge can be used to
specialize class Walkabout to the more efficient version in Figure 7.

Notice the use of type casts and instanceof. These play the role formerly
played by getFields(), to allow access to fields even though no visit method
is specified for the class of the current object. Thus the code contains fewer uses
of reflection than the original Walkabout class, and is therefore faster. On the
other hand, it is more rigid than the original Walkabout because it will ignore
objects of unrecognised class.

Suppose next that the programmer of the subclass of Walkabout supplies a
visit method for all of the classes C1, . . . , Cn, so that no default action has to
be supplied in the walkabout itself. Then none of the “else” branches in the
visit method of class Walkabout will ever be executed, and so can be deleted
to obtain the class in Figure 8.

Step 2: Accept methods to determine the class of the argument

Both outcomes from Step 1 hide a use of reflection in the description this has

a public visit method for the class of v, as explained in Section 3. The



class Walkabout {

void visit(Object v) {

if ( v != null )

if (this has a public visit method for the class of v)

this.visit(v);

else if (v instanceof C1) {

this.visit(((C1) v).f11);

...

this.visit(((C1) v).f1m1
);

}

else ...

else if (v instanceof Cn) {

this.visit(((Cn) v).fn1);

...

this.visit(((Cn) v).fnmn
);

}

}

}

Fig. 7. Walkabout for Fixed Classes

class Walkabout {

void visit(Object v) {

if ( v != null )

if (this has a public visit method for the class of v)

this.visit(v);

}

}

Fig. 8. Walkabout with no Default Action

problem is to invoke the visit method for the right class. Of course, if the
compiler could determine the class then reflection would be unnecessary, but in
general recursive calls to visit the compiler can only infer the class Object.

One way of getting rid of the use of reflection is to use type casts, just as in the
long piece of code shown in Step 1. The elegant alternative is to have a method
accept in each of the classes C1, . . . , Cn that simply invokes the visit method,
as illustrated in Section 2. Then v.accept(this); calls the visitor (this) on v

with dynamic binding ensuring that the visitor knows the class of v.
Combining this with the specialisation of Step 1 leaves two possibilities.

A: In the former case, some subclasses of Walkabout may not have a visit

method for some of the classes C1, . . . , Cn so that some default behaviour
is required, similar to the else clauses in Step 1. The class Walkabout then
takes the form in Figure 9. Notice that the type casts and instanceof dis-
appear because of the dynamic binding. Such a class is used in the Java Tree
Builder tool [13].

B: In the latter case, all subclasses of Walkabout have a visit method for all of



the classes C1, . . . , Cn which will be invoked directly by the accept methods.
Thus, no code in class Walkabout is needed, and it can be written as an
interface, like the interface named Visitor in Figure 3.

class Walkabout {

void visit(C1 v) {

this.accept(v.f11);

...

this.accept(v.f1m1
);

}

...

void visit(Cn v) {

this.accept(v.fn1);

...

this.accept(v.fnmn
);

}

}

Fig. 9. Walkabout with Accept Methods

Ideally, one would like to avoid reflection where specialised code is supplied,
but retain the ability to invoke it in exceptional cases. Perhaps partial evaluation
[7] could be used to eliminate the reflection where specialised code exists. We
have not yet investigated this.

6 Shape Polymorphism

The Walkabout class is inspired by novel techniques for functional programming
with recursive data types. In the standard approaches, each inductive data type,
for example, list or tree, requires its own functions for traversal, typically de-
scribed by pattern-matching. For example, to apply a function f to each entry
in a list one applies listmap f to the whole list, where listmap is defined by

listmap f nil = nil

listmap f cons(h, t) = cons(f h, listmap f t)

The mapping of f across a binary tree requires a different pattern-matching
algorithm, with actions on leaves and nodes.

The first attempt to regularise this situation was made in Charity [2]. Each
data type constructor F , used to construct, say, a new tree type, induced the
compiler to construct code for a suite of combinators, such as mapF for the cor-
responding data structures, sparing the programmer from writing the pattern-
matching definitions themselves, at the cost of writing the appropriate annota-
tions for type constructors.



From this developed shape polymorphic programming [5, 1]. It shares the same
goals as Charity, but uses parametrically polymorphic algorithms, instead of
type-based specialisation. That is, the run-time code for, say, mapping is the
same for lists and trees, instead of being specialised according to the type. The
algorithms are not based on pattern-matching, but using information stored
within the data structure to determine where the data is stored.

In shape polymorphic programming, the means of locating the data in a
data structure, or shape, is separated from the description of the action to be
performed on each datum found. Code reuse arises since the means of locating
the data can be described in general terms that applies to arbitrary tree types,
by including a little more information than usual at each node of the tree.

In another related development, polytypic programming [4, 10] has eliminated
the need for constructor annotations in Charity by improved type inference
techniques, on which code specialisation is based. That is, polytypic program-
ming is a principled form of ad hoc polymorphism in that the compiler uses type
inference to determine the appropriate choice of algorithm. The primary appli-
cation domain appears to be compiler-construction techniques, many of whose
algorithms are tree-based.

Of course, the specialised polytypic programs execute faster than the generic
shape polymorphic ones, so the challenge is to automate the specialisation of
shape polymorphic programs to their polytypic counterparts.

The striking analogy with visitors was first noted in [6], and is here put to
good effect. Walkabouts correspond to shape polymorphic programs. In partic-
ular, the high level mapping algorithm

– find all data,

– act on each one.

is very similar to the high-level walkabout algorithm

– find all objects,

– act at each one.

The main difference is the ability to manipulate state in the latter. (But even
this difference can be minimised using state monads.)

It is this observation that lead to the Walkabout class. More precisely, the
Walkabout class corresponds to map identity as it does not perform any action
on the objects encountered. Conversely, map f corresponds to a sub-class of
Walkabout which only acts to update fields by f .

Like shape polymorphic programs, walkabouts are completely generic, but
must extract a little more information from their arguments (using reflection)
to succeed. Like polytypic programs, visitors use class (or type) information to
specialise their code. The challenge in both domains is to automate the code
specialisation, so as to combine the benefits of parametricity and efficiency.



7 Conclusion

The Walkabout class improves upon earlier implementations of the Visitor pat-
tern as it is able to act on arbitrary object trees. This uniform action is achieved
by reflection techniques which allow the class and fields of an arbitrary object to
be determined. As Java 1.1 supports reflection, we have been able to implement
Walkabout as a class of some 20 lines.

The inspiration for walkabouts was supplied by shape polymorphic (func-
tional) programs, such as mapping.

Executing code that uses the Walkabout class is slow, but one can imagine a
partial evaluation technique which automatically produces efficient Visitor code.
Other objectives include extending Walkabout to handle array objects and object
graphs.
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