Type Inference for Place-Oblivious Objects

Riyaz Haque\(^1\) and Jens Palsberg\(^2\)

\(^1\) University of California, Los Angeles (UCLA)
rfhaque@cs.ucla.edu

\(^2\) University of California, Los Angeles (UCLA)
palsberg@ucla.edu

Abstract
In a distributed system, access to local data is much faster than access to remote data. As a help to programmers, some languages require every access to be local. A program in those languages can access remote data via first a shift of the place of computation and then a local access. To enforce this discipline, researchers have presented type systems that determine whether every access is local and every place shift is appropriate. However, those type systems fall short of handling a common programming pattern that we call place-oblivious objects. Such objects safely access other objects without knowledge of their place. In response, we present the first type system for place-oblivious objects along with an efficient inference algorithm and a proof that inference is P-complete. Our example language extends the Abadi-Cardelli object calculus with place shift and existential types, and our implementation has inferred types for some microbenchmarks.

1998 ACM Subject Classification D.3.1 Formal Definitions and Theory

Keywords and phrases parallelism, locality, types

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2015.999

1 Introduction

Places. A distributed system consists of multiple places of computation. At each place, a computation may store references to both local and remote data. Access to local data is much faster than access to remote data because a remote access may go across a network. Distributed languages largely agree on the syntax of local access while they differ on the syntax of remote access. Some distributed languages, such as Titanium [26, 12], use a uniform access syntax that works for both local and remote access. Such syntax is succinct yet can make run-time performance unpredictable when the programmer is uncertain about the location of data. Other languages, such as X10 [23, 6], require a remote access to be expressed as a place shift followed by a local access at the new place. The use of place shift is verbose yet enables a programmer to easily spot slow, remote data accesses, and enables a compiler to optimize local accesses. In this paper we study a core calculus with explicit place shift.

Place checks. Languages with explicit place shift require every access to be local. This can be enforced with a run-time check known as a place check. The place check compares the current place with the place of the accessed data. If those two places are equal, then computation proceeds normally, and otherwise the result is a run-time error. For example, if a place check fails in X10, then the X10 implementation throws a run-time exception called BadPlaceException. Place checks can degrade the overall run-time performance [5] and they defer discovery of “place bugs” until such bugs happen at run time. However, place checking can also be done statically. For example, researchers have presented static analyses...
and type systems [16, 5, 11, 4, 3, 15, 7, 24, 13] that determine whether every access is local. This has the potential to give programmers the best of both worlds: predictable performance and no place-check errors. Additionally, when a static technique can guarantee that a place check succeeds, an implementation can eliminate the run-time place check and thereby improve performance. Intuitively, the difference between static analysis and type checking in this context lies in their ambition levels. A static analysis tries to eliminate as many run-time place checks as possible, while a type system tries to eliminate all run-time place checks. In this paper we focus on type systems.

The challenge. We have identified a common programming pattern that we call place-oblivious objects. Such objects safely access other objects without knowledge of their place. We found uses of place-oblivious objects in 11 of the 13 X10 benchmarks that were considered by Lee and Palsberg [14].

Let us consider the following example written in a variant of Featherweight X10 [14]:

```java
class Example {
    public Unit f;
    ...
    public void m() {
        final Unit x = this.f;
        async(x.location) {
            final O1 e = x.g;
        }
    }
}
```

We assume that `Unit` is a class with a field `g` of type `O1`. Objects of class `Example` are place-oblivious. The reason is that the field `f` may at one time reference an object at place 1 and at another time reference an object at place 2. Still, method `m` successfully accesses the field `g` of objects in `f`, as follows. First, the body uses `final Unit x = this.f` to create an immutable reference `x`. This avoids trouble with any concurrent access that may change the contents of `f`. Second, the expression does a place shift `at(x.location)`, and finally a local access `x.g`.

In this paper, we will use an extension of the Abadi-Cardelli object calculus [1] rather than X10. We chose the Abadi-Cardelli object calculus because it has a succinct semantics and a small number of type rules, which makes it a good basis for study of algorithms and for detailed proofs. In our calculus, we can write an expression similar to the body of `m` in the following way:

```plaintext
open x = this.f in at(x.place) { x.g }
```

First, the expression uses `open`, which has the same semantics as `let` but which we will give a different type rule. The `open` expression creates an immutable reference `x = this.f` (like `final` does in the X10 code above), then does a place shift `at(x.place)`, and finally a local access `x.g`.

The type system must (i) assign `f` a type that is compatible with the types of the objects at place 1 and place 2, and (ii) determine that after the place shift, `x.g` is indeed a local access. We cannot simply give `f` a type that says that the place of `f` is unknown. Such a type would imply that the type system has no knowledge of the target of the place shift, hence no basis for knowing whether `x.g` is a local access. Place-oblivious objects occur frequently in
X10 code and yet previous work falls short of type inference for such objects, mainly because of a lack of a sensible type for \(f \).

Our results. We present the first type system for place-oblivious objects along with an efficient inference algorithm and a proof that inference is P-complete. Our type system is sound: a well-typed program is place safe, that is, every access is local. Our example language extends the Abadi-Cardelli object calculus [1] with place shift and existential types, and has no type annotations. Every value is an object, and every object resides permanently at a specific place. Places surface only during place shift. Our implementation has successfully inferred types for some microbenchmarks.

Our type system. We have two forms of type, namely (1) a pair of a usual object type and a place type, and (2) a *packed type*, which is just an object type. We give a packed type to a term whose evaluation potentially creates objects at different places. The idea of a packed type is to “forget” the place type. Intuitively, a packed type is a light-weight existential type [21, 22, 19]:

\[\exists \pi. (\text{object type, } \pi) \]

where the place type \(\pi \) cannot occur free in the object type. In contrast to most calculi with existential types, our calculus has no type annotations. In particular, we introduce a packed type via implicit *subtyping* from a usual type to a packed type, rather than with an explicit “pack” operation. Additionally, we eliminate a packed type via the an open construct. In the example above, we would use subtyping to give the objects at place 1 and place 2 the same packed type, and we would give \(f \) that packed type, too. Then the open construct assigns a fresh place Skolem constant \(X \) to \(x \), and finally we can successfully type check at \((x.\text{place})\{x.g\}\) because the two occurrences of \(x \) have the same place type \(X \).

Our inference algorithm. Our type inference algorithm is the first polynomial-time inference algorithm for existential types of which we are aware. The main technical challenge for type inference is to handle the type rule for the open construct. That rule introduces a place Skolem constant \(X \) for the unknown place of an object with a packed type, it assigns a type \(B \) to code that uses the packed object, and finally it requires \(X \not\in \Delta \) and \(\text{FV}(B) \subseteq \Delta \), where \(\Delta \) is a list of place Skolem constants used in enclosing open constructs. We handle those conditions with a novel technique. Our inference algorithm has two steps.

The first step of our algorithm transforms the type inference problem to a constraint-satisfiability problem. We show that those two problems are equivalent. Each constraint is of one of these five forms:

\[u \leq_O v \quad O \subseteq_O K \quad H \leq_H H \quad H \in_H K \quad H \neq_H \text{unkn} \]

where \(u, v \) are type expressions, \(O \) is an object-type variable, \(K \) is a finite set of place types, and \(H \) is a place type variable that must be assigned a place or \text{unkn}. Intuitively, \(\leq_O \) denotes subtyping, \(\subseteq_O \) denotes that the type denoted by \(O \) uses only places in \(K \), \(\leq_H \) denotes subtyping for place types, \(\in_H \) denotes set membership, and \(\neq_H \) denotes inequality. Palsberg showed in 1993 how to solve constraints of the form \(u \leq_O v \) in \(O(n^3) \) time [20]. The main new challenge are the constraints of the form \(O \subseteq_O K \). The problem is that a solution may assign \(O \) a deeply nested type and we need to know that every level uses only places in \(K \).
The second step of our algorithm performs a solution-preserving closure of the constraint set. We show that a closed constraint set is satisfiable if and only if it is well formed and consistent. We define closure with a novel set of Horn clauses, we define well formed to mean that each constraint of the form \(u \leq_O v \) has no top-level violation of subtyping, and we define consistent to mean that the constraints of the forms \(H \notin K \) and \(H \neq \text{unkn} \) have no obvious inconsistencies. The most time-consuming steps are the closure and the consistency check, which both take \(O(n^3) \) time. In total, our algorithm takes \(O(n^3) \) time.

The rest of the paper. In Section 2 we present our calculus and type system, and in Section 3 we discuss sixteen examples. In Section 4 we show that type inference is equivalent to a constraint-satisfiability problem, in Section 5 we present our type inference algorithm along with an example of how type inference works, in Section 6 we give further discussion of our results, and in Section 7 we give a detailed comparison with related work. Our paper states seven theorems; we prove one of them in the main body of the paper, five of them in the appendices of the full version of the paper, which is available from our website [9], while we leave one straightforward proof to the reader.

2 Our Language

We now present the syntax, operational semantics, and type system for our calculus.

Syntax. Here is the grammar for terms:

\[
\begin{align*}
a, b, c &:= s, x, y \quad \text{(variables)} \\
o &\quad \text{(object)} \\
a.l &\quad \text{(method call)} \\
a.l \leftarrow \varsigma(x) b &\quad \text{(method update)} \\
at(a.place) b &\quad \text{(at a’s place)} \\
at(\rho) b &\quad \text{(at place \(\rho \))} \\
open x = a in b &\quad \text{(let-binding)} \\
o &:= \left[l_i = \varsigma(x_i) b_i \right]_{i \in 1..n} \quad \text{(object, \(l_i \) distinct)} \\
v &:= at(\rho) o \quad \text{(value)} \\
\rho &\in \text{Places} \quad \text{(place constant)}
\end{align*}
\]

The first four productions are those of the Abadi-Cardelli object calculus [1]. Those four productions enable us to use variables, create objects, and do method call and method update. An object defines \(n \) methods named \(l_i \), for \(i \) between 1 and \(n \). In a method definition \(\varsigma(x_i) b \), the binder \(\varsigma \) binds a variable \(x_i \) which refers to the entire object, in analogy with self in Smalltalk and this in Java. Additionally, \(b \) is the body of the method; the method returns the value of \(b \). In a method call \(a.l \), the callee is the method \(l \) in object \(a \). A method update \(a.l \leftarrow \varsigma(x) b \) replaces the method \(l \) in object \(a \) with method \(\varsigma(x) b \).

Notice that methods have no parameters, aside from a name for the receiver object, so a method type is only about a return value, not parameters. Additionally, methods are written with a \(\varsigma \) rather than a \(\lambda \), and they can be updated, which means they can also work as fields, Abadi and Cardelli showed how to encode the \(\lambda \)-calculus into their calculus.

The last three productions provide our extension of the Abadi-Cardelli calculus. The fifth and sixth productions enable place shift, either to the place of an object \(a \) or to a place constant \(\rho \) from a finite set \(\text{Places} \). The last production enables us to open an object, i.e., to abstract the place of an object.
Term reduction judgment: \(\rho \vdash a \rightarrow a' \)

1. **(O-Obj)** \(\rho \vdash o \rightarrow at(\rho) o \)

2. **(O-Call-Cong)** \(\rho \vdash a \rightarrow a' \\
\rho \vdash a.l \rightarrow a'.l \)

3. **(O-Call-Comp)** \(\rho \vdash a \rightarrow a' \\
\rho \vdash o \equiv [li = \varsigma(x_i) bi \ i \in 1..n] \\
j \in 1..n \ \rho = \rho' \)

4. **(O-Call-Cong)** \(\rho \vdash o \rightarrow at(\rho) o \\
\rho \vdash o \rightarrow at(\rho) o \\
\rho \vdash o \rightarrow at(\rho) a' \\
\rho \vdash o \equiv [li = \varsigma(x_i) bi \ i \in 1..n] \\
j \in 1..n \ \rho = \rho' \)

5. **(O-Call-Comp)** \(\rho \vdash a \rightarrow a' \\
\rho \vdash a.l \equiv \varsigma(x) b \rightarrow a'.l \equiv \varsigma(x) b \\
\rho \vdash o \equiv [li = \varsigma(x_i) bi \ i \in 1..n] \\
j \in 1..n \ \rho = \rho' \)

6. **(O-Call-Comp)** \(\rho \vdash a \rightarrow a' \\
\rho \vdash a.l \equiv \varsigma(x) b \rightarrow a'.l \equiv \varsigma(x) b \\
\rho \vdash o \equiv [li = \varsigma(x_i) bi \ i \in 1..n] \\
j \in 1..n \ \rho = \rho' \)

7. **(O-Call-Comp)** \(\rho \vdash a \rightarrow a' \\
\rho \vdash a.l \equiv \varsigma(x) b \rightarrow a'.l \equiv \varsigma(x) b \\
\rho \vdash o \equiv [li = \varsigma(x_i) bi \ i \in 1..n] \\
j \in 1..n \ \rho = \rho' \)

8. **(O-Call-Comp)** \(\rho \vdash a \rightarrow a' \\
\rho \vdash a.l \equiv \varsigma(x) b \rightarrow a'.l \equiv \varsigma(x) b \\
\rho \vdash o \equiv [li = \varsigma(x_i) bi \ i \in 1..n] \\
j \in 1..n \ \rho = \rho' \)

9. **(O-Call-Comp)** \(\rho \vdash a \rightarrow a' \\
\rho \vdash a.l \equiv \varsigma(x) b \rightarrow a'.l \equiv \varsigma(x) b \\
\rho \vdash o \equiv [li = \varsigma(x_i) bi \ i \in 1..n] \\
j \in 1..n \ \rho = \rho' \)

Figure 1 Operational semantics.

Operational semantics. Figure 1 shows the small-step operational semantics. Every value is of the form \(at(\rho) o \), which is an object at place \(\rho \).

We use the notation \(b[x := a] \) to denote the application of a substitution \([x := a]\) to \(b \). As usual, \(b[x := a] \) denotes \(b \) with every free occurrence of \(x \) replaced with \(a \), assuming that (if needed) all local names in \(b \) have been renamed to avoid clashes with free names in \(a \).

We use the judgment \(\rho \vdash a \rightarrow a' \) to denote that at place \(\rho \), the term \(a \) takes a step to term \(a' \). The first five rules are variants of rules for the Abadi-Cardelli calculus. The differences are the addition of a place to each judgment and the conditions \(\rho = \rho' \) in
rules (S-Call-Comp) and (S-Update-Comp). Those conditions express place checks that an implementation must perform at every method call and every method update. For example, in rule (S-Call-Comp), the place check says that if we want to call a method in an object at place ρ', then we need ρ' to equal the current place ρ. In other words, the access is local. If the place check fails, then the method call or method update is stuck.

Notice that we could have written (S-Call-Comp) and (S-Update-Comp) in a simpler way by replacing ρ' with ρ and omitting the explicit condition $\rho = \rho'$. We prefer the explicit style that emphasizes the place check.

The next four rules express the semantics of place shift. In particular, rule (S-AtObject-Comp) expresses that the place of \texttt{at(ρ')o} is ρ', while rule (S-AtConst-Ret) expresses that if the body of a place shift has evaluated to a value, then we can return that value.

The final two rules express the semantics of \texttt{open}, which is the same as the semantics of standard \texttt{let}-binding. We will use a different type rule for \texttt{open} than the usual one for \texttt{let}.

We write $\rho \vdash a \to \ast a'$ if either $a = a'$, or $\rho \vdash a \to \ast a''$ and $\rho \vdash a'' \to a'$.

We say that a term a is stuck at place ρ if a is not a value and a cannot use the rules in Figure 1 to take a step at ρ. We say that a term a can go wrong at place ρ if for some a', we have $\rho \vdash a \to \ast a'$ and a' is stuck at ρ.

Notice that our notion of going wrong embodies the dual of a notion of place safety, which means that every access is local. The reason is that the semantics does place checks that leave the execution stuck if a check fails. Thus, if a term a cannot go wrong at place ρ, then we can know that every place check succeeds; hence that every access is local.

Type system. The goal of our type system is to guarantee that well-typed programs cannot go wrong. In particular, we want well-typed programs to be place safe. Accordingly, our type system has a static place check for each case where the semantics has a run-time place check. If a static place check fails, the result is a type error. Here is the grammar for types:

$$
A, B :\quad ([l_i : B_i \, i \in 1..n], \pi) \quad \text{(locality type)}
$$

$$
\pi :\quad X, Y \quad \text{(place Skolem constant)}
| \quad \text{unkn} \quad \text{(packed place)}
| \quad \rho \quad \text{(place type constant)}
$$

As shown above, a type in our system is a pair; the first part is the object type analogous to the standard Abadi-Cardelli object type and the second part is the place type π denoting the place where an object resides. Notice that an object type can be $[\]$ (that is, empty), which happens when $n = 0$. A place type can either be a constant (statically known), a place Skolem constant (statically unknown but immutable) or the special type unkn (unknown). Intuitively, unkn says that there exists some place where the object resides. We use the \texttt{open} construct in our calculus to convert this existential quantification into a place Skolem constant.

Give a type $A \equiv ([l_i : B_i \, i \in 1..n], \pi)$, we define its object component as $\text{obj}(A) = [l_i : B_i \, i \in 1..n]$ and its place component as $\text{pl}(A) = \pi$.

Place Skolem constants and unknown places. We assume that place Skolem constants are drawn from a countable set Skolems. We introduce the constant unkn where $\text{unkn} \notin \text{Skolems}$. We will use the syntactic sugar

$$
\text{packed} \; [l_i : B_i \, i \in 1..n] = ([l_i : B_i \, i \in 1..n], \text{unkn})
$$

which enables simpler definitions in the following.
Well-formedness:

\[\frac{FV(\pi) \subseteq \Delta}{\Delta \vDash_p \pi} \]
\[\frac{FV(A) \subseteq \Delta}{\Delta \vdash_{\pi} A} \]
\[\frac{\Delta \vdash_{\pi} \Gamma(x)}{\forall x \in dom(\Gamma)} \]

Subtyping:

\[\frac{A \leq B}{\pi \leq \pi'} \]

Type assignment:

\[\frac{\forall j \in 1..n \ \Delta; (\Gamma, x_j : A); \pi_c \vdash b_j : B_j \ \Delta \vdash_{\pi} A \equiv ([l_i : B_{i \in 1..n}], \pi)}{\Delta; \pi_c \vdash a : B} \]

\[\frac{\Delta; \pi_c \vdash a : A}{\Delta; \pi_c \vdash \text{at}(a, \text{place}) : B} \]

\[\frac{\Delta; \pi_c \vdash a : A}{\Delta; \pi_c \vdash \text{at}(\rho) : B} \]

\[\frac{\Delta; \pi_c \vdash a : A \ \Gamma; \pi_c \vdash b : B}{\Delta; \Gamma; \pi_c \vdash \text{open} x = a \text{ in } b : B} \]

Figure 2 Type rules.

Figure 2 shows three well-formedness rules, three subtyping rules, and nine type assignment rules. First we explain the well-formedness rules. Rule (W-Place), Rule (W-Type-Obj), and Rule (W-Env) ensure, respectively, that a place type, a locality type and the environment are well-formed with respect to a set of place Skolem constants \(\Delta \). Here, \(FV(A) \subseteq \Delta \), where \(A \equiv ([l_i : B_{i \in 1..n}], \pi) \), means that \(\Delta \vdash_p \pi \land \forall i \in 1..n : FV(B_i) \subseteq \Delta \).
Note that for every Δ, we have $\Delta \vdash_{p} \mathsf{unkn}$.

Next we explain the subtyping rules. Those rules rely on this definition of “width” subtyping for object types:

$$[l : B_i \mid i \in 1..n + k] \leq [l : B_i \mid i \in 1..n] .$$

Additionally, the subtyping rules rely on this definition of subtyping between place types:

$$\pi \leq \pi \quad \pi \leq \mathsf{unkn} \quad \mathsf{unkn} \leq \mathsf{unkn}$$

Notice that $\pi \leq \mathsf{unkn}$ can help establish a subtyping relationship between a locality type and its packed form, which we use to mask the place of an object. Rule (S-Ident) and Rule (S-Trans) are standard reflexivity and transitivity rules, while Rule (S-Obj) combines “width” subtyping rule for object types with subtyping for place types.

Finally we explain the type assignment rules. We use the judgment $\Delta; \Gamma; \pi_c \vdash a : A$ to denote that under the context $\Delta; \Gamma; \pi_c$, the term a has type A. In the context $\Delta; \Gamma; \pi_c$, we use Δ to denote a list of place Skolem constants, and we use Γ to denote a finite map from variables to types. We refer to π_c as the place context, that is, the type of the current place of execution.

The first rule Rule (T-Sub) is the standard subtyping rule. The next four type rules are variants of the type rules for the first-order type system for the Abadi-Cardelli object calculus. The main difference is in rules (T-Call) and (T-Update) that each contains the condition $\pi_c = \pi$, which is a type-level place check. The idea is that if the type-level place check succeeds, then the term-level place-check succeeds, too. For example, in rule (T-Call) the place check $\pi_c = \pi$ says that if we want to call a method in an object at a place with type π then we need π to equal the type π_c of the current place. In other words, the access is local. If the place check fails, then the program won’t type check. Also, Rule (T-Obj) contains the check $\Delta \vdash_T A$ to ensure that the resulting object type is well formed under Δ.

The next two rules type check place shift. In both cases, the type of current place is π_c yet shifts to be π in rule (T-AtObject) or ρ in rule (T-AtConst). Rule (T-Open) is a simplified version of the corresponding rule for full-blown existential types. It says that we can substitute a fresh place Skolem constant X for the (possibly unknown) place type of a as long as we ensure that X doesn’t escape the type of the body b. This allows us to treat the place of a in an abstract manner. Unlike most rules for existential types, we do not require a to have a packed type. This is merely a technical convenience; we can always use subtyping (Rule (S-Obj)) to get a packed type for a.

Finally, Rule (T-Prog) ensures that the initial Γ and π_c for a term are well-formed with respect to the initial Δ.

Type soundness. We use the standard technique of preservation and progress [21, 25] to prove type soundness. As a key step, we introduce the notion of place independence. A term a is place independent if and only if we have that

$$\text{if } \Delta; \Gamma; \pi_c \vdash a : A, \text{ then } \forall \pi : \Delta; \Gamma; \pi \vdash a : A.$$

We first show that values are place independent and use that to prove a standard substitution lemma, which in turn is the corner stone of the proof of preservation.

▶ **Theorem 1 (Soundness).** If $\emptyset; \emptyset; \rho \vdash a : A$, then a cannot go wrong at ρ.

Theorem 1 says that a well-typed program cannot go wrong, hence the program is place safe: every access is local. We prove Theorem 1 in Appendix A of the full version of the paper [9].
Type inference. Let 1 ∈ Places be the initial place of computation. The type inference problem is:

Given a term \(a \), does there exist a type \(A \) such that \(\emptyset; \emptyset; 1 \vdash a : A \)?

We will show how to do type inference in polynomial time.

Syntactic sugar. We will use a variant of Abadi and Cardelli’s encoding of let-expressions. Suppose \(s \) doesn’t occur free in \(a, b \), and define the following object \(o \) and syntactic sugar for \(\text{let} \):

\[
o \equiv [f = \varsigma(s) a, r = \varsigma(s) \, b[x := \text{at}(s.place) \, s.f]]
\]

\[
\text{let } x = a \text{ in } b \equiv o.r
\]

The idea of the encoding is to create an object \(o \) that facilitates the connection between \(a \) and \(b \). We store \(a \) in field \(f \) and we store \(b \) in field \(r \). Computation can now begin with a call to \(o.r \). The substitution \(b[x := \text{at}(s.place) \, s.f] \) replaces all references of \(x \) in \(b \) with accesses to \(s.f \). The main novel aspect is \(\text{at}(s.place) \) which ensures that \(s.f \) place checks. Intuitively, we store the result of \(a \) in field \(f \) at the current place, yet when the expression \(b \) references \(x \), the computation may have moved to a different place. The use of \(\text{at}(s.place) \) makes the access happen at the place where \(f \) is.

▶ **Theorem 2** (Derived Type Rule).

\[
(\text{T-Let}) \quad \Delta; \Gamma; \pi_c \vdash a : A \quad \Delta; (\Gamma, x : A); \pi_c \vdash b : B
\]

\[
\Delta \vdash_T A, B \quad \Delta \vdash_p \pi_c
\]

\[
\Delta; \Gamma; \pi_c \vdash \text{let } x = a \text{ in } b : B
\]

We prove Theorem 2 in Appendix B of the full version of the paper [9]. A key lemma is that \(\text{at}(s.place) \) \(s.f \) is place independent.

3 Examples

In this section we discuss several example programs that demonstrate key properties of our calculus. In Section 3.1 we kick off with four straightforward examples. In Section 3.2 we continue with four more advanced examples that remain within what can be handled by previous work. In Section 3.3 we finally get to eight examples of place-oblivious objects. For each example, we will either show the type produced by our inference algorithm, or we will discuss why the example has no type. Later in Section 5.4, we show how type inference works for one of the advanced examples. Our X10 versions of the examples are available from our website [9].

Let \(o_1 \) denote a closed value with type \(B_1 \), that is, for any \(\Delta, \Gamma \) and \(\pi_c \), we can derive \(\Delta; \Gamma; \pi_c \vdash o_1 : B_1 \).

3.1 Place safety with statically known places

An object can be dereferenced safely at its own (statically known) place of creation. A type system equipped with a local/non-local place analysis should be able to track this simplest form of place correlation.
Example 1.

\[
\begin{align*}
\text{at}(1) & \quad l &= \varsigma(s) \text{ at}(1) \ [r = \varsigma(s') \ o_1], \\
 & \quad m &= \varsigma(s) \text{ at}(1) \ s.l
\end{align*}
\]

The example is place safe since the outermost object, \(s \), is both allocated and always dereferenced at place 1. The place check in Rule (T-Call) for \(s.l \) succeeds and the program type checks; \(s \) has the type \(([l : \text{packed }[]], m : \text{packed }[]) \), 1).

Example 2.

\[
\begin{align*}
\text{at}(1) & \quad l &= \varsigma(s) \text{ at}(1) \ [r = \varsigma(s') \ o_1], \\
 & \quad m &= \varsigma(s) \text{ at}(1) \ s.l.r
\end{align*}
\]

Compared to Example 1, we have changed the body of \(m \) from \(s.l \) to \(s.l.r \). This is still place safe because the object returned in the body of \(l \) is also allocated at place 1. Thus for \(s.l.r \), the place check in both the uses of Rule (T-Call) succeeds and hence the program type checks; \(s \) has the type \(([l : ([r : \text{packed }[]]), m : \text{packed }[]], 1) \).

Example 3.

\[
\begin{align*}
\text{at}(1) & \quad l &= \varsigma(s) \text{ at}(1) \ [r = \varsigma(s') \ o_1], \\
 & \quad m &= \varsigma(s) \text{ at}(2) \ s.l
\end{align*}
\]

Compared to Example 1, we now change the body of \(m \) to instead execute at place 2. This fails since \(s \), allocated at place 1, is dereferenced at place 2. Thus the place check in Rule (T-Call) for \(s.l \) fails and the program does not type check.

Example 4.

\[
\begin{align*}
\text{at}(1) & \quad l &= \varsigma(s) \text{ at}(1) \ [r = \varsigma(s') \ o_1], \\
 & \quad m &= \varsigma(s) \text{ at}(2) \text{ at}(1) \ s.l
\end{align*}
\]

Compared to Example 3, the body of \(m \) starts execution at place 2 but immediately switches to place 1 and then evaluates \(s.l \). This is place safe and the place check in Rule (T-Call) succeeds; \(s \) gets the type \(([l : \text{packed }[]], m : \text{packed }[]) \), 1). Intuitively, \(\text{at}(2) \text{ at}(1) \ s.l \) is semantically equivalent to \(\text{at}(1) \ s.l \).

3.2 Place safety that can be checked by previous work

As long it can be inferred that two objects are created at the same place, one can be dereferenced safely while executing at the other’s (possibly abstract) place. A type system with a clever locality analysis can type check such programs.

Example 5.

\[
\begin{align*}
\text{at}(1) & \quad l &= \varsigma(s) \ [r = \varsigma(s') \ o_1], \\
 & \quad m &= \varsigma(s) \text{ at}(s.\text{place}) \ s.l.r
\end{align*}
\]

In this example, we allocate the body of \(l \) at the place of \(s \). Also, in the body of \(m \), we evaluate \(s.l.r \) at the (abstract) place of \(s \). It is valid to dereference \(s \) at its own place. Also, the access \(l.r \) is place safe since the body of \(l \) is allocated at \(s \)’s place. Hence the place checks in Rule (T-Call) for \(s.l.r \) succeed and the program type checks; \(s \) gets the type
(\([l : ([r : \text{packed } []], 1), m : \text{packed } []], 1)\). Note that even though \(s\)'s place is statically known (place 1), place safety analysis is actually independent of that; the program would still type check if \(at(1)\) is changed to \(at(0)\).

Example 6.

\[
\begin{align*}
\text{at}(1) & \quad l = \varsigma(s) [r = \varsigma(s') a_1], \\
& \quad m = \varsigma(s) \text{at}((s.l).\text{place}) \ s.p, \\
& \quad p = \varsigma(s) \ a_1
\end{align*}
\]

Here the body of field \(l\) is allocated at the same place as \(s\). Hence it is place safe to access \(s.p\) at \(l\)'s place. This program type checks; \(s\) has the type \(([l : ([], 1), m : \text{packed } []], 1)\).

Example 7.

\[
\begin{align*}
\text{at}(1) & \quad l = \varsigma(s) [r = \varsigma(s') a_1], \\
& \quad m = \varsigma(s) \text{let } f = s.l \in \text{at}(2) \text{at}((s.l).\text{place}) \ s.l.r
\end{align*}
\]

Here we want to evaluate \(s.l.r\) at \(l\)'s place. Similar to Example 6, this seems valid since the body of \(l\) is allocated at \(s\)'s place. However, this program fails to type check because \(s.l\) in \(\text{at}(s.l).\text{place}\) is first evaluated at place 2. Since \(s\) is created at place 1, the place check fails. Notice that Example 3 fails for the same reason.

Example 8.

\[
\begin{align*}
\text{at}(1) & \quad l = \varsigma(s) [r = \varsigma(s') a_1], \\
& \quad m = \varsigma(s) \text{let } f = s.l \text{ in } \text{at}(2) \text{at}(f.\text{place}) \ s.l.r
\end{align*}
\]

The problem in Example 7 is solved by introducing a \(\text{let}\)-expression to first ensure that \(s.l\) is evaluated at \(s\)'s place (place 1). Since \(f, l\) and \(s\) are at the same place, \(s.l.r\) can now be safely evaluated at \(f\)'s place. This program type checks; the type of \(s\) is \(([l : ([r : \text{packed } []], 1), m : \text{packed } []], 1)\).

3.3 Place safety for place-oblivious objects

In Examples 5–8, place safety is based upon the abstract place of an object and on that a field stays immutable once assigned. However, in Example 5, if we add the update \(s.l \leftarrow \varsigma(s') \text{at}(2) [r = \varsigma(s') a_1]\), then the program will fail since the contents of \(l\) is initially allocated at \(s\)'s place (place 1). This is restrictive in cases where a field might be assigned objects from different places, such as a server receiving objects from multiple nodes. We use subtyping to mask an object’s place and subsequently we use \(\text{open}\) to “reveal” it, and thereby we ensure that a field can be safely updated.

We now show eight examples of place-oblivious objects. First we show a program that embodies the main example in the introduction, and then we show two additional programs that adds the kind of update that we discussed in the previous paragraph. After that, we finish with five more advanced examples.

Example 9.

\[
\begin{align*}
\text{at}(1) & \quad l = \varsigma(s) \text{at}(1) [r = \varsigma(s') a_1], \\
& \quad m = \varsigma(s) \text{let } x = s.l \text{ in } \text{at}(x.\text{place}) \ x.r
\end{align*}
\]
Type Inference for Place-Oblivious Objects

This example is a place-oblivious object. The body of \(l\) returns an object created at place 1. In the body of \(m\), we first open the place of \(l\), essentially abstracting the place of field \(l\) as an unknown but immutable constant. We then proceed to access its field \(r\) at that place. Note that this is place safe since we are always accessing \(l\)'s fields at its own place (though without actually delving into what that place is.) Hence this example type checks; \(s\) has the type \([l: \text{packed} \ [r: \text{packed} \ []], m: \text{packed} \ []], 1\), \(x\) gets the type \([r: \text{packed} \ []], X\) and \(l\)'s body has the type \([r: \text{packed} \ []]\).

Example 10.

\[
\begin{align*}
\l & \equiv \varsigma(s) \ at(1) \ [r = \varsigma(s') \ o_1], \\
\m & \equiv \varsigma(s) \ open \ x = s.l in \ at(x.place) \ x.r \\
\] .\l & \equiv \varsigma(s) \ at(2) \ [r = \varsigma(s') \ o_1]
\end{align*}
\]

Extending Example 9, we now proceed to update the body of \(l\) with an object at place 2. This is still place safe since subtyping ensures that \(l\) is updated with a body that returns a packed object of the same type as the original method and we still access \(l\)'s fields only after opening its place. Thus this example type checks; \(s\) has the type \([l: \text{packed} \ [r: \text{packed} \ []], m: \text{packed} \ []], 1\), \(x\) gets the type \([r: \text{packed} \ []], X\) and \(l\)'s body retains the type \([r: \text{packed} \ []]\) before and after the update.

Example 11.

\[
\begin{align*}
\l & \equiv \varsigma(s) \ at(1) \ [r = \varsigma(s') \ o_1], \\
\m & \equiv \varsigma(s) \ at(s.l.place) \ s.l.r \\
\] .\l & \equiv \varsigma(s) \ at(2) \ [r = \varsigma(s') \ o_1]
\end{align*}
\]

This example is a variation of Example 10 in which we have inlined the definition of \(x\). In the expression \(at(s.l.place) \ s.l.r\), the method update may change the contents of \(s.l\) between the evaluation of \(s.l.place\) and the evaluation of \(s.l.r\). (The semantics in Section 2 is sequential but can be changed to a more general style of reduction that supports the described behavior.) The result can be a run-time place-check error. In the example, before the update, \(s.l\) contains an object at place 1, while after the change, \(s.l\) contains an object at place 2. The example fails to type check. The reason is that in the absence of \(open\) (as in Example 10), we have no sensible type for field \(l\). Example 10 shows how our approach uses \(open\) \(x = s.l\) explicitly to create an immutable reference that avoids the stated problem and helps make the example type check.

Example 12.

\[
\begin{align*}
open \ x & \equiv [r = \varsigma(s') \ o_1] \ in \\
open \ y & \equiv [r = \varsigma(s') \ o_1] \ in \\
[l] & \equiv \varsigma(s) \ at(x.place) \ y.r
\end{align*}
\]

Here we open two packed objects as different variables \(x\) and \(y\) and then try to access \(y\)'s field at \(x\)'s place. This example is place safe since both the packed objects are created at the same place. However, this program does not type check because upon opening, both \(x\) and \(y\) are assigned different place types, say \(X\) and \(Y\). While checking \(y.r\), the place check in Rule (T-Call) fails since the type system assumes that \(X \neq Y\).

Example 13.

\[
\begin{align*}
open \ x & \equiv o_1 \ in \\
let \ y & = \\
[l] & \equiv \varsigma(s) \ at(x.place) \ [r = \varsigma(s') \ o_1], \\
\m & \equiv \varsigma(s) \ let \ f = s.l \ in \ at(x.place) \ f.r \\
] & in \ y.m
\end{align*}
\]
This program is similar to examples 9 and 11. The only difference is that we now get an extended place context that includes a new place type \(X \) created by unpacking an object into \(x \). We allocate the body of \(l \) and access its fields at \(X \). Note that we still need the let-expression since \(s \) is not created at \(X \). The example type checks; assuming execution starts at place 1, \(s \) gets the type \(([l : ([r : \text{packed } []], X), m : \text{packed } []], 1) \).

Example 14.

\[
\begin{align*}
\text{let } f &= s.l \text{ in at}(x.place) f.q \\
\text{open } x &= o_1 \text{ in} \\
\text{open } y &= o_1 \text{ in} \\
[l] &= \varsigma(s) \text{ at}(y.place) [q = \varsigma(s') o_1], \\
m &= \varsigma(s) \text{ let } f = s.l \text{ in at}(x.place) f.q
\end{align*}
\]

This program is a variation of Example 13. Here we have an extended place context with two new type variables \(X \) and \(Y \) using two open expressions. This example fails to type check because we try to access an object created on place \(Y \) at the place \(X \). Note that like Example 12, this program is place safe.

Example 15.

\[
\begin{align*}
[l] &= \varsigma(s) [r = \varsigma(s') o_1], \\
m &= \varsigma(s) \text{ open } x = s.l \text{ in } x, \\
]_m.r
\]

In this program, the body of field \(m \) opens the place of field \(l \)'s object and returns the object with a new abstract place \(X \). By Rule (T-Open), \(X \) is not visible outside the scope of the open expression, hence subtyping assigns a packed type to \(m \)'s body. However, since an object with a packed type cannot be dereferenced, this example fails to type-check during dereferencing of field \(r \) in Rule (T-Call).

Example 16.

\[
\begin{align*}
\text{let } f &= s.l \text{ in } \text{at}(f.place) (f.q \leftarrow \varsigma(s') \text{ at}(s.place) s.m) \\
\text{open } x &= o_1 \text{ in} \\
\text{at}(1) ([l] &= \varsigma(s) \text{ at}(x.place) [q = \varsigma(z) [r = \varsigma(s') o_1]], \\
m &= \varsigma(s) \text{ at}(x.place) [r = \varsigma(s') o_1], \\
p &= \varsigma(s) \text{ let } f = s.l \text{ in at}(f.place) (f.q \leftarrow \varsigma(s') \text{ at}(s.place) s.m) \\
w &= \varsigma(s) o_1
\end{align*}
\]

Finally, a slightly more complicated example. The body of \(l \) is allocated at the abstract place \(X \) obtained by opening an object in variable \(x \). As can be seen, the bodies of \(q \) and \(m \) are also allocated at place \(X \). Thus it is place safe to update \(q \)'s body with \(m \)'s body at the place of \(l \). This example type checks. We do need a let-expression in the body of \(p \) for the reason mentioned earlier. Here \(s \) gets the type \(([l : ([g : \text{packed } []], X), m : \text{packed } []], p : \text{packed } []], 1) \).

4 From Types to Constraints

We show how to reduce type inference to a constraint-satisfiability problem.

We define \(K = \text{Places} \cup \text{Skolems} \cup \{\text{unkn}\} \).
Constraint systems. An ACD-system is a triple \((V, W, Q)\) where \(V\) is a finite set of variables (typically \(O\)) that each ranges over record types of the form \([l_i : B_i]_{i \in 1..n}\), where \(W\) is a finite set of variables (typically \(H\)) that each ranges over \(K\), and where \(Q\) is a finite set of constraints of the five forms:

\[
\begin{align*}
 u & \leq_O v \\
 O & \subseteq O \\
 H & \leq_H H \\
 H & \in_H K \\
 H & \neq_H \text{unkn}
\end{align*}
\]

where \(u, v\) are either \(O\) or \([l_i : (O_i, H_i)]_{i \in 1..n}\), and where \(K\) ranges over finite subsets of \(\mathcal{K}\). We can view a constraint \(H \neq_H \text{unkn}\) as a readable way to write \(H \in_H K \setminus \{\text{unkn}\}\). We overload \(Q\) and use \(Q\) to denote \((V, W, Q)\).

Suppose \(h\) is a mapping from \(V\) to record types of the form \([l_i : B_i]_{i \in 1..n}\), and from \(W\) to \(K\). Define \(\tilde{h}\) as:

\[
\begin{align*}
 \tilde{h}(O) & = h(O) \\
 \tilde{h}(H) & = h(H) \\
 \tilde{h}([l_i : (O_i, H_i)]_{i \in 1..n}) & = [l_i : (h(O_i), h(H_i))]_{i \in 1..n}
\end{align*}
\]

Let \(\tilde{h}(O) \subseteq K\) denote that for every subtree of the form \([l_i : B_i]_{i \in 1..n}\), \(\pi\) or \([l_i : B_i]_{i \in 1..n}, \text{unkn}\) in the syntax tree of \(\tilde{h}(O)\), \(\pi \in K\) (or \(\text{unkn} \in K\)). Given \(\tilde{h}(O) \subseteq K\), it is clear that \(\Delta \vdash_T \tilde{h}(O)\) where \(\Delta\) is the set of all place Skolem constants \(X\) such that \(X \in K\).

We say that \(h\) is a solution of \(Q\) if

\[
\begin{align*}
 u & \leq_O v \text{ in } Q : \quad \tilde{h}(u) \leq \tilde{h}(v) \\
 O & \subseteq_O K \text{ in } Q : \quad \tilde{h}(O) \subseteq K \\
 H_a & \leq_H H_b \text{ in } Q : \quad \tilde{h}(H_a) \leq \tilde{h}(H_b) \\
 H_a & \in_H K \text{ in } Q : \quad \tilde{h}(H_a) \in K \\
 H_a & \neq_H \text{unkn in } Q : \quad \tilde{h}(H_a) \neq \text{unkn}
\end{align*}
\]

Constraint generation. We now show how to map a term to a constraint system. For a term \(a\), we define an ACD-system \((V_a, W_a, Q_a)\). The set \(V_a\) consists of a variable \(O_a\) for each occurrence of a subterm \(c\) of \(a\), a variable \(O_{c,l}\) for each occurrence of a subterm \(c.l\) of \(a\) and a variable \(O_x^a\) for each bound variable \(x\). The set \(W_a\) consists of two variables \(H_c, H_c'\) for each occurrence of a subterm \(c\) of \(a\), variable \(H_{c,l}\) for each occurrence of a subterm \(c.l\) of \(a\) and a variable \(H_x^a\) for each bound variable \(x\). Intuitively, \(O_c\) and \(H_c\) denote respectively the type of the object part and place type of \(c\) “after” subtyping, \(O_{c,l}\) and \(H_{c,l}\) denote the object part and place type of \(c.l\) “before” subtyping and \(H_x^a\) is the place type of \(c\)'s place of evaluation. Additionally, \(O_x^a\) and \(H_x^a\) denote the two parts of the type that one could have declared for \(x\). We use the rules in Figure 3 to generate the set \(Q_a\). Specifically, we use judgments of the form \(\Delta, \Gamma \vdash a : Q_a\) to denote that for a term \(a\) in the context \((\Delta, \Gamma)\), we derive the constraint set \(Q_a\). Here, \(\Gamma\) is the domain of \(\Gamma\). For simplicity, we use \(u =_O v\) to denote the two constraints \(u \leq_O v\) and \(v \leq_O u\). Similarly, \(u =_H v\) denotes the two constraints \(u \leq_H v\) and \(v \leq_H u\).

Given a constraint solution \(h\) and an environment \(\Gamma\), we say that \(h\) extends \(\Gamma\), written \(h \triangleright \Gamma\), if and only if \(\forall x \in \text{dom}(\Gamma) : \Gamma(x) = (h(O_x), h(H_x))\).

Theorem 3 shows that we can think of typability of a term \(c\) in terms of satisfiability of \(Q_c\).
Theorem 3

\(\Gamma \vdash (\Delta, x) \vdash b : Q_b \quad o \equiv \text{open } x = a \text{ in } b \quad (X \notin \Delta) \)

\(\Delta; \Gamma \vdash a : Q_a \quad \Delta; (\Gamma, x) \vdash b : Q_b \quad o \equiv \text{at}(a, \text{place}) b \quad Q = Q_a \cup Q_b \cup \{ O_b \leq O_o \ H_b \leq H_o, \ H_a = a \leq H_a, H_a = H_a, H_a = H_a \} \)

\(\Delta; \Gamma \vdash at(a, \text{place}) b : Q \)

\(\Delta; \Gamma \vdash b : Q_b \quad \Delta; \Gamma \vdash (\Delta, X) ; (\Gamma, x) \vdash b : Q_b \quad o \equiv \text{open } x = a \text{ in } b \quad (X \notin \Delta) \)

\(\Delta; \Gamma \vdash c : Q_c \quad \text{and there exists a solution } h \text{ for } h \vdash \Gamma \quad \tilde{h}(\Delta) = \pi_c \land (\tilde{h}(O_c), \tilde{b}(H_c)) = C \).
We define three central notions that we use to solve ACD-systems: closure, consistency, and well-formedness. Then we state our algorithm, analyze its complexity, and give an example of how it works.

Theorem 5 shows how closure, consistency, and well-formedness together characterize the solvability of ACD-systems. Intuitively, the closure process makes all useful facts explicit, and if none of those facts contradict well-formedness or consistency, then the constraint system is satisfiable.

5.1 Closure, consistency, and well-formedness

We use \(N \) to range over the constraint elements of the form \([l_i : (O_i, H_i) \ i \in 1..n]\).

The closure of an ACD-system \(Q \) is the union of \(Q \) and the constraints that can be proved from constraints in \(Q \) using the rules in Figure 4. In some cases, a collection of constraints may enable multiple rules to be applied; the closure contains all conclusions that can be proved. The first two rules enable straightforward reasoning about constraints on object types, while the last four rules enable straightforward reasoning about constraints on place types. The remaining Rule (Closure-\(\subseteq O \)) addresses the challenge stated in Section 1, namely the constraints of the form \(O \subseteq O K \). As stated in Section 1, the challenge is that a solution to \(O \subseteq O K \) may assign \(O \) a deeply nested type and we need to know that every level
uses only places in K. Rule (Closure-\subseteq_O) brings possible problems to the top level by (1) propagating constraints of the form $O \subseteq_O K$ “downward” when possible and (2) generating place constraints along the way. This approach to connect reasoning about constraints on object types and constraints on place types is novel and powerful.

\section*{Theorem 4 (Closure Preserves Solutions).} An ACD-system and its closure have the same set of solutions.

We prove Theorem 4 in Appendix D of the full version of the paper [9].

We say that an ACD-system (V, W, Q) is well-formed if and only if for every constraint in Q of form $s \leq_O u$, where $s \equiv [\ldots]$ and $u \equiv [l : \ldots, \ldots]$, then $s \equiv [l : \ldots, \ldots]$. Intuitively, we require that if two record types are related by \leq_O and the right-hand side has an l field, then the left-hand side does as well. We have borrowed this notion of well-formedness from Palsberg’s paper [20].

We say that Q is consistent if and only if for any $s \in W$ and constraints in Q of the form $s \in_H K_1, \ldots, s \in_H K_n$, we have $(\bigcap_{i=1}^n K_i) \neq \emptyset$.

Intuitively, consistency ensures that we can solve all those n constraints. This notion of consistency is novel, and while it is simple, it is just what we need to complete our characterization of satisfiability (Theorem 5).

In Appendix E of the full version of the paper [9], we show how to map an ACD-system to an automaton M_s that represents a type t_{M_s} for a type variable $s \in (V \cup W)$. The construction of the automaton is an extension of the construction in Palsberg’s paper [20]. The following section shows an example of such an automaton. The automaton may have a cycle with at least one non-ε transition, in which case the automaton represents a recursive type, rather than a finite type as defined in Section 2. Our algorithm in Section 5.2 checks whether the automaton has such a cycle. We will use the notation $\lambda s : (V \cup N \cup W).t_{M_s}$ to denote a function that has a single argument s drawn from the set $(V \cup N \cup W)$, and which returns t_{M_s}.

\section*{Theorem 5 (Solvability Characterization).} A closed ACD-system (V, W, Q) is solvable with recursive types if and only if it is well-formed and consistent. If it is solvable, then $\lambda s : (V \cup N \cup W).t_{M_s}$ is a solution.

Theorem 5 shows that for a closed ACD-system, we can check for satisfiability with recursive types by checking well-formedness and consistency. We prove Theorem 5 in Appendix E of the full version of the paper [9].

\section*{5.2 Type inference algorithm}

Give a term a, we solve the type inference problem (stated in Section 2) with the following five-steps algorithm:

1. Use $\emptyset; \emptyset \vdash a : Q_a$ (Figure 3) to generate Q_a.
2. Map Q_a to \tilde{Q}_a (as defined in Theorem 3).
3. Close \tilde{Q}_a (Figure 4).
4. Check whether the closure of \tilde{Q}_a is well formed and consistent, and whether in the automata $t_{M_{Oa}}$ and $t_{M_{Ha}}$, every cycle has only ε-transitions.
5. If the checks in Step 4 all return Yes, then output $(t_{M_{Oa}}, t_{M_{Ha}})$ as the type of a, and otherwise output that a fails to type check.
Implementation. We have implemented our algorithm and run it on the programs in Section 3 and also some additional programs. In every case our implementation produced the expected result.

Correctness. Our algorithm is correct because (1) from Theorem 3 we have that the type inference problem is solvable if and only if the constraint set \(Q \) is solvable; (2) from Theorem 4 we have that \(Q \) is solvable if and only if the closure is solvable; (3) from Theorem 5 we have that the closure is solvable with recursive types if and only if the closure is well-formed and consistent; and (4) an automaton can represent an infinite type only via a cycle with at least one non-\(\epsilon \)-transition.

5.3 Time complexity

The following observation is helpful to establish a lower bound on our type inference problem. Our calculus is a conservative extension of the Abadi-Cardelli calculus with finite first-order types and no subtyping [1]. To see this, let \(\bar{a} \) range over terms in the Abadi-Cardelli calculus, that is, terms built from just variables, objects, method call, and method update. Additionally, let \(\bar{A}, \bar{B} \) range over types of the form \([l_1 : \bar{B}_1, l_n : \bar{B}_n]\). Finally, let judgments of the form \(\bar{\Gamma} \vdash AC \bar{a} : \bar{A} \) be those of the Abadi-Cardelli calculus with finite first-order types and no subtyping [1]. As a helper function, define \(ext \) to denote the function that maps a type environment \(\bar{\Gamma} \) and a place type \(\pi_c \) to a type environment that maps a name \(x \) in the domain of \(\bar{\Gamma} \) to \((\bar{\Gamma}(x), \pi_c) \).

\[\text{Theorem 6 (Conservative extension). } \bar{\Gamma} \vdash_{AC} \bar{a} : \bar{A} \text{ if and only if } \Delta, ext(\bar{\Gamma}, \pi_c), \pi_c \vdash \bar{a} : (\bar{A}, \pi_c).\]

The proof of Theorem 6 is straightforward: in each direction, do induction on the structure of the type derivation. Intuitively, the proof goes through easily because \(\Delta \) and \(\pi_c \) don’t change for terms in Abadi-Cardelli calculus.

We are now ready to state the complexity of the type inference problem.

\[\text{Theorem 7 (Complexity of Type Inference). The type inference problem is P-complete and solvable in } O(n^3) \text{ time, where } n \text{ is the size of the program.}\]

Proof. Let us first consider the lower bound. Palsberg [20] showed that type inference for the Abadi-Cardelli calculus with finite first-order types and no subtyping is P-hard. We can combine that result with conservative extension (Theorem 6) and get that type inference for our calculus is P-hard.

Let us then consider the upper bound. We need to consider the execution times of closure, check for well-formedness, check for consistency, and cycle detection. We will show that we can solve each of these problems in no worse than \(O(n^3) \) time.

We can bound the time to compute the closure of a constraint system by application of McAllester’s meta-complexity theorem [17, Theorem 1]. McAllester’s theorem says that if we have a set of closure rules \(R \), then we can map a constraint system \(D' \) to a closure \(D \) in time \(O(|D'| + |P_R(D')|) \), where \(P_R(D') \) is the set of all prefix firings in \(D' \) of rules in \(R \). We won’t recall the definition of prefix firings here but merely note that for our closure rules it is straightforward to show that \(|P_R(D')| = O(n^3) \). Additionally, it is straightforward to show that \(|D'| = O(n^2) \). In summary, \(O(|D'| + |P_R(D')|) = O(n^3) \).
\[
\begin{align*}
\text{O}_b & \leq \text{O}_o & \text{H}_b & \leq H \text{H}_o \\
\text{O}_a & = H \text{O}_a & H'_a & \in H \{X\} \\
\text{O}_c & \leq \text{O}_a, \{0,1,\text{unkn}\} & H_c & \in H \{0,1,\text{unkn}\} \\
& & H'_c & = H H'_a \\
& & H''_c & = H H''_a \\
\end{align*}
\]

\[
\begin{align*}
\text{O}_{x,1} & \leq \text{O}_b & \text{H}_{x,1} & \leq H \text{H}_b \\
& & H'_{x,1} & = H H''_b \\
& & H''_{x,1} & = H H''_{x,1} \\
& & H_{x,1} & \in H \{0,1,X\}
\end{align*}
\]

\[
\begin{align*}
\text{O}_{x,2} & \leq \text{O}_b \left[l : (\text{O}_{x,i}, \text{H}_{x,i}) \right] & \text{H}_{x,2} & \leq H \text{H}_{x,l} \\
\text{O}_{x,1} & \leq \text{O}_a \left[l : (\text{O}_o, \text{H}_o) \right] & H_{x,2} & = H H'_{x,2} \\
& & H'_{x,2} & = H H''_{x,2} \\
\end{align*}
\]

\[
\begin{align*}
\text{O}_x & \leq \text{O}_{x,1}, H_x & \leq H \text{H}_{x,1} \\
\text{O}_x & \leq \text{O}_{x,2}, H_x & \leq H \text{H}_{x,2} \\
\end{align*}
\]

\[
\begin{align*}
\left[l \leq \text{O}_o \right] & \leq H \text{H}_o
\end{align*}
\]

Figure 5 Constraints for the example program.

We can check well-formedness with a small variation of Palsberg’s algorithm [20] to check well-formedness of constraints for type inference for the Abadi-Cardelli calculus. Palsberg’s algorithm runs in \(O(n^2)\) time.

We can check consistency by computing \(O(n)\) intersections and unions of \(O(n)\) sets of \(O(n)\) elements. We represent each set as a bit vector and do the check in \(O(n^2)\) time.

We can check for cycles with at least one non-\(\epsilon\)-transition in \(O(n^2)\) time.

5.4 Example

We now demonstrate our technique on a variant of Example 9 from Section 3. Consider the following program,

\[
o \equiv \text{open } x = \text{at}(1) \left[l = \zeta(y) \right] \text{ in at}(x, \text{place}) x.l
\]

Figure 5 shows the generated constraint set for \(o\) and its subterms, assuming we start at place 0 and run on two places 0 and 1. We use the abbreviations \(a \equiv \text{at}(1) \left[l = \zeta(y) \right], c \equiv \left[l = \zeta(y) \right], b \equiv \text{at}(x, \text{place}) x.l\). Variables generated for the two instances of \(x\) are shown with the appropriate subscript.

We get the following closed set of constraints:

- \(\emptyset \leq O_{o,1} \leq O_{o,2} \leq O_{b,0} \leq O_{o,0} \)
- \(O_{a,0} \leq l \left[(O_{a,0}, H_{a,0}) \right] \leq O_{c,0} \leq O_{a,0} \leq O_{x,0} \leq O_{x,2} \)
- \(O_x \leq l \left[(O_x, H_x) \right] \leq O_{c,0} \leq O_{a,0} \leq O_{x,0} \leq O_{x,2} \leq O \left[l : (O_{x,1}, H_{x,1}) \right] \)
- \(O_{x,1} = O_{o,0}, O_x = O_{o,0}, O_y = O \left[l : (O_y, H_y) \right] \)
- \(H_x \leq H H_x \leq H H'_x \leq H H''_x \leq H H_{x,1} \)
- \(H_y \leq H H'_y \leq H H''_y \leq H H_{y,1} \leq H H_{x,1} \leq H H_b \leq H H_o \)
- \(H'_y \leq H H''_y \leq H H_{y,1} \leq H H_a \)
- \(H_y \leq H H_{y,1} \leq H H_{b,0} \)
- \(H_{y,1} = H H_{y,1}, H'_y = H H'_y, H''_y = H H''_y, H_{y,1} = H H_{y,1}, H_y = H H'_y = H H''_y \)
- \(H_{y,1}, H'_y, H''_y \in H \{1\} \in H \{1, \text{unkn}\} \)
- \(H_{x,1}, H_{y,1}, H_{z,1}, H_{x,1} \in H \{X\} \in H \{X, \text{unkn}\} \in H \{0,1,X\} \)
- \(H_{y,1}, H'_y, H''_y, H_{y,1} \in H \{0\} \in H \{0, \text{unkn}\} \)
- \(H_{y,1}, H_{x,1}, H_{y,0} \in H \{0,1, \text{unkn}\} \)
- \(H_{y,0}, H_{x,0} \in H \{1, \text{unkn}\} \)
It is straightforward to check that the constraint set is well-formed and consistent, hence solvable. The solution automaton is shown in Figure 6. For a detailed understanding of the automaton, please consult the appendices of the full version of the paper [9]. Here we merely note that for readability, we omit redundant and self ϵ-transitions from the figure. Also for each node, a so-called labeling function value is shown in superscript. Figure 7 shows the final type derivation for o. Note that the place check succeeds for the assigned types. Also note that since a is assigned a packed type, the program will still type check if the body of a is changed to evaluate to an object at a place other than 1.

6 Discussion

In addition to the algorithm for type inference with finite types in Section 5.2, we can also do type inference with recursive types, simply by omitting the test for finiteness in Step 4 of the algorithm.

We believe that our type system is sound both for the “functional” semantics of method update in Section 2 (Theorem 1) and also for an “imperative” semantics.

For simplicity, places are not values in our calculus, yet we see no major obstacle to work with places as values.

Our algorithm can be modified to apply to the variant of Featherweight X10 that we used in the example in Section 1, as we will explain now. The only step that needs modification is constraint generation; everything else stays unchanged. The needed modifications to the constraint generation rules in Figure 3 are rather modest. First, the rules for variables, calls, and at can stay essentially unchanged. Second, the rule for objects must be modified to work instead for classes and the new expression. Third, the rule for update must be modified to work instead for assignment and parameter passing. Fourth, the rule for open must be modified to work instead for final.
\(\emptyset; y : (T_C, 1); 1 \vdash [] : ([], 1) \quad ([], 1) \leq \text{packed } [] \)

\[
\begin{align*}
\emptyset; y : (T_C, 1); 1 & \vdash [] : \text{packed } [] \\
\emptyset; 1 & \vdash c : (T_C, 1) \\
&T_C, 1 \leq \text{packed } T_C \\
\emptyset; 0 & \vdash a : \text{packed } T_C \\
\emptyset; 0 & \vdash a : \text{packed } T_C \\
\emptyset; 0 & \vdash b : \text{packed } [] \\
X; x : (T_C, X); 0 & \vdash x_1 : (T_C, X) \quad X = X \\
X; x : (T_C, X); 0 & \vdash x_2 : (T_C, X) \\
X; x : (T_C, X); 0 & \vdash x.l : \text{packed } [] \\
\emptyset; 0 & \vdash a : \text{packed } T_C \\
\emptyset; 0 & \vdash a : \text{packed } T_C \\
\emptyset; 0 & \vdash b : \text{packed } [] \\
\emptyset; 0 & \vdash b : \text{packed } [] \\
\emptyset; 0 & \vdash a : \text{packed } [] \\
\end{align*}
\]

\textbf{Figure 7} Type derivation for the example program. Abbreviation: \(T_C \equiv [l : \text{packed } []] \).

\section{Related Work}

Our work builds and improves on previous work on type systems and type inference for distributed programs. Most of the previous work comes in two flavors: object oriented or based on \(\pi \)-calculus. While the underlying languages are rather different, the challenges for type inference are rather similar. For object-oriented languages the challenge is about local access to fields and methods, while for \(\pi \)-calculus the challenge is about local access to channels.

Figure 8 gives a ten-dimensional comparison of our paper and three previous papers. The first two papers by Sewell [24] and Lhoussaine [15] are based on \(\pi \)-calculus [18], while the paper by Chandra et al. [5] and our paper are based on object-oriented languages. Each of the four papers supports places and places checks, and has a construct for place shift to a constant place, such as \(\text{at}(\rho)b \) in our paper. The four papers agree on the semantics of place shift to a constant place.

The papers by Sewell [24] and Lhoussaine [15] have no notion of a place shift to a statically unknown place, such as \(\text{at}(x\,\text{place}) \) in our paper. Thus, one cannot express place-oblivious objects in their calculi. In contrast, the paper by Chandra et al. [5] and our paper both have notions of \(\text{at}(x\,\text{place}) \). One of the goals of the type system of Chandra et al. [5] is to track place correlation between objects. In particular, they provide an approach to determine whether two fields or expressions have the same place type. This enables successful type checking of several common programming patterns, yet leaves other open problems. In particular, the unification-based approach of Chandra et al. fails on place-oblivious objects. For example if a field \(f \) at one time references an object at place 1 and at another time references an object at place 2, and the two places 1 and 2 don’t unify.

The papers by Sewell [24] and Lhoussaine [15] are part of a long line of \(\pi \)-calculus-based work on location-aware computation that includes [11, 4, 3]. The calculi in those papers provide explicit language constructs for locations (which we call places) and agent migration. Notably, Hennessy and Riely [11] present an extension to the \(\pi \)-calculus with light-weight existential types for ensuring locality of channel communication in well-typed programs. Amadio et al. [4, 3] prove local deadlock-freedom (receptiveness) for a simplified version of the Hennessy-Riely calculus. Lhoussaine [15] presents an inference algorithm for a simplified
version of the Hennessy-Riely calculus.

The approach of Hennessy and Riely [11] differs from ours in significant ways. In particular, the Hennessy-Riely calculus treats locations as first-class values, and a programmer has to specify explicitly the dependence between a channel name \(r \) and a location \(l \). The resulting compound term, denoted \(r@l \), serves as an explicit constructor and destructor for an existential type. In contrast, our calculus is more concise in its treatment of existentials because we use implicit subtyping to introduce a form of existential type.

The calculus of Hennessy and Riely [11] can encode a place shift. An expression such as

\[
\text{at}(1) \text{at}(x.\text{place}) \ y.f, \hspace{1cm} \text{which is place safe if } x \text{ and } y \text{ are at the same place, can in the Hennessy-Riely calculus be emulated by:}
\]

\[
1\ll u?(((x, y)@d)go \ d.y!(f)_0).\ll
\]

The programmer has to use \((x, y)@d\) to specify that \(x \) and \(y \) are at the same location \(d \). In general, the programmer has to specify any place correlation between two channels. Such place correlation can be lost if channels are quantified separately. Our calculus uses place types to track such place correlation.

The calculi in the papers [11, 4, 3, 15] use existential types in a way that is substantially different from ours. In particular, in these calculi a term can have the type

\[
\exists r \ l : \text{loc}\{r : B\}
\]

our calculus quantifies the object location rather than its reference.

All four papers in Figure 8 support subtyping, though of somewhat different flavors. Sewell [24] specifies a subtyping order on channel capabilities that can distinguish local or global capabilities. Lhoussaine [15] specifies a “width” subtyping order in which a subtype defines at least the same channel names as any supertype. Finally, Chandra et al. [5] specifies a constraint-based subtype order that relates constrained types based on entailment of constraint sets. In contrast to our calculus, the calculi in the papers by Sewell [24] and Lhoussaine [15] cannot use subtyping to mask an object’s location. Such subtyping is possible in the calculus of Chandra et al. but isn’t fully supported by their type inference algorithm [5, Section 5].

All four papers in Figure 8 support type inference, though with completely different algorithms:
Among those four papers, only our paper has a type inference algorithm that runs in worst-case polynomial time. Sewell and Lhoussaine’s papers have no discussion or results about the complexity of their inference algorithms, while Chandra et al. states that their type inference problem is undecidable (and hence that their algorithm is incomplete).

Other related work. Liblit and Aiken presented a type system and a type inference algorithm that distinguishes between local and global data [16]. The goal of their type inference algorithm is to minimize the number of global pointers. The paper reports on an implementation for Titanium, an object-oriented language, but doesn’t consider place checks, place shift, or existential types.

The idea of a type of the form $\exists \pi. ([l_i : B_i]_{i=1..n}, \pi)$ stems from Jeffrey’s paper on a distributed object calculus [13]. Jeffrey’s calculus is a modification of the Gordon-Hankin concurrent object calculus [8] and is semantically quite different from our calculus. Intuitively, Jeffrey’s calculus is about “sending the computation”, while our calculus is about “sending the data.” Jeffrey’s calculus has no notion of place shift. Instead, it has a notion of remote spawn that superficially looks like a place shift, but more closely resembles a remote data fetch operation. Jeffrey’s paper doesn’t consider type inference.

The join-calculus of Fournet and Gonthier [7] has hierarchical virtual locations together with agents that can migrate between places. Their type system, however, has no notion of place checking, and the programmer has to control object distribution explicitly.

Henglein [10] presented algorithms for type inference for the Abadi-Cardelli calculus. His algorithms are faster than $O(n^3)$. However, his setting doesn’t require a consistency check. Our setting requires a consistency check that with our straightforward algorithm runs in $O(n^3)$. Hence, any improvement of our bound of $O(n^3)$ must in particular improve the algorithm for consistency check.

8 Conclusion

We have presented the first type system and inference algorithm for place-oblivious objects. We believe our algorithm can be useful for programming languages such as X10. In particular, our algorithm enables a language implementation to avoid run-time place checks for place-oblivious objects.

Our calculus of distributed objects may be of independent interest. In future work we hope to extend our type system and inference algorithm with more general notions of existential types. We also hope to extend our approach to handle distributed arrays. Finally, we hope to design a calculus that does open implicitly.

Acknowledgments. We thank Mohsen Lesani for a meticulous review of the soundness proof, and we thank John Bender, Matt Brown, Nikolay Laptev, and the ECOOP reviewers for numerous helpful suggestions.

A Proof of Type Soundness (Theorem 1)

In this appendix, we prove type soundness.

A.1 Helper Lemmas

Lemma 8 (Canonical Forms).
\[\Delta; \Gamma; \pi_c \vdash \nu : A, \text{then } \nu \equiv \text{at}(\rho) \ o. \]

Proof. Trivially true since there is only one possible form for a value.

Lemma 9 (Inversion).
1. If \(\Delta; \Gamma; \pi_c \vdash x : A \), then \(\exists A' \leq A \text{ such that } \Gamma(x) = A' \)
2. If \(\Delta; \Gamma; \pi_c \vdash [l_i = \varsigma(x_i) \ b_i^{i \leq 1..n}] : A \), then \(\exists A' \equiv ([l_i : B_i^{i \leq 1..n}], \pi_c) \leq A \text{ such that } \forall j \in 1..n, \Delta; \Gamma; x_j : A'_j; \pi_c \vdash b_j : B_j \text{ and } \Delta \vdash T A' \)
3. If \(\Delta; \Gamma; \pi_c \vdash a.l_j : B_j \), then \(\Delta; \Gamma; \pi_c \vdash a : ([l_i : B_i^{i \leq 1..n}], \pi), \pi = \pi_c \text{ and } B'_j \leq B_j \)
4. If \(\Delta; \Gamma; \pi_c \vdash a.l_j \equiv \varsigma(x) : b : A \), then \(\exists A' \equiv ([l_i : B_i^{i \leq 1..n}], \pi) \leq A \text{ such that } \Delta; \Gamma; \pi_c \vdash a : A' \text{ and } \Delta; \Gamma, x : A', \pi \vdash b : B_j \text{ and } \pi = \pi_c \)
5. If \(\Delta; \Gamma; \pi_c \vdash \text{at}(a.place) b : B \), then \(\exists B' \leq B \text{ such that } \Delta; \Gamma; \pi_c \vdash a : ([l_i : B_i^{i \leq 1..n}], \pi) \text{ and } \Delta; \Gamma; \pi \vdash b : B' \)
6. If \(\Delta; \Gamma; \pi_c \vdash \text{at}(\rho) a : B \), then \(\exists B' \leq B \text{ such that } \Delta; \Gamma; \rho \vdash b : B' \)
7. If \(\Delta; \Gamma; \pi_c \vdash \text{open} x = a \text{ in } b : B \), then \(\exists B' \leq B \text{ such that } \Delta; \Gamma; \pi_c \vdash a : A \text{ and for some } X \notin \Delta, (\Delta, X); (\Gamma, x : (\text{obj}(A), X)); \pi_c \vdash b : B' \text{ and } \Delta \vdash T B' \)

Proof. We prove this using induction on the derivation of \(\Delta; \Gamma; \pi_c \vdash a : A \). For each term, the typing derivation consists of either an application of Rule (T-Sub) or an application of the rule corresponding to the term’s syntactic form. Note that due to Rule (S-Trans), multiple applications of Rule (T-Sub) can be combined into a single application.

1. \(\Delta; \Gamma; \pi_c \vdash x : A \)
 - Using Rule (T-Sub), the derivation is of the form
 \[
 \begin{array}{c}
 \Delta; \Gamma; \pi_c \vdash x : B \quad B \leq A \\
 \hline
 \Delta; \Gamma; \pi_c \vdash x : A
 \end{array}
 \]
 By the induction hypothesis, \(\exists B' \leq B \text{ such that } \Gamma(x) = B' \) By Rule (S-Trans), \(B' \leq A \).
 Hence \(\exists B' \leq A \text{ such that } \Gamma(x) = B' \)
 - Using Rule (T-Var), the derivation is of the form
 \[
 \begin{array}{c}
 \Gamma(x) = A \\
 \hline
 \Delta; \Gamma; \pi_c \vdash x : A
 \end{array}
 \]
 By Rule (S-Ident), \(A \leq A \) and the result is evident from the derivation.
 Case proved.

2. \(\Delta; \Gamma; \pi_c \vdash [l_i = \varsigma(x_i) \ b_i^{i \leq 1..n}] : A \)
 - Using Rule (T-Sub), the derivation is of the form
 \[
 \begin{array}{c}
 \Delta; \Gamma; \pi_c \vdash [l_i = \varsigma(x_i) \ b_i^{i \leq 1..n}] : B \quad B \leq A \\
 \hline
 \Delta; \Gamma; \pi_c \vdash [l_i = \varsigma(x_i) \ b_i^{i \leq 1..n}] : A
 \end{array}
 \]
 By the induction hypothesis, \(\exists A' \equiv ([l_i : B_i^{i \leq 1..n}], \pi_c) \leq B \text{ such that } \forall j \in 1..n, \Delta; \Gamma, x_j : A'_j; \pi_c \vdash b_j : B_j \text{ and } \Delta \vdash T A' \).
 - By Rule (S-Trans), \(A' \leq A \).
 Hence \(\exists A' \equiv ([l_i : B_i^{i \leq 1..n}], \pi_c) \leq A \text{ such that } \forall j \in 1..n, \Delta; \Gamma, x_j : A'_j; \pi_c \vdash b_j : B_j \text{ and } \Delta \vdash T A' \).
Using Rule (T-Obj), the derivation is of the form

\[\forall j \in 1..n \; \Delta; \Gamma; \pi \vdash \text{at}(\text{a}.\text{place}) : B \]

\[\Delta; \Gamma; \pi \vdash a.l_j : B_j \]

By the induction hypothesis, \(A \leq A \) and the result is evident from the derivation.

Case proved.

3. \(\Delta; \Gamma; \pi \vdash a.l_j : B_j \)

Using Rule (T-Sub), the derivation is of the form

\[\Delta; \Gamma; \pi \vdash a.l_j : B \]

By the induction hypothesis, \(\Delta; \Gamma; \pi \vdash a : (\{l_i : B_i \; \text{for} \; i \leq 1..n\}, \pi) \), \(\pi = \pi_c \) and \(B_j \leq B \).

By Rule (S-Trans), \(B_j' \leq B_j \). Hence \(\Delta; \Gamma; \pi_c \vdash a : (\{l_i : B_i' \; \text{for} \; i \leq 1..n\}, \pi) \), \(\pi = \pi_c \) and \(B_j' \leq B_j \).

Using Rule (T-Call), the derivation is of the form

\[\Delta; \Gamma; \pi \vdash a.l_j : B_j \]

By Rule (S-Ident), \(B_j \leq B_j \) and the result is evident from the derivation.

Case proved.

4. \(\Delta; \Gamma; \pi \vdash a.l_j \equiv \varsigma(x) \; b : A \)

Using Rule (T-Sub), the derivation is of the form

\[\Delta; \Gamma; \pi \vdash a.l_j \equiv \varsigma(x) : B \]

By the induction hypothesis, \(\exists A' \equiv (\{l_i : B_i \; \text{for} \; i \leq 1..n\}, \pi) \leq B \) such that \(\Delta; \Gamma; \pi \vdash a : A' \) and \(\Delta; \Gamma; x : A' ; \pi \vdash b : B_j \) and \(\pi = \pi_c \). By Rule (S-Trans), \(A' \leq A \). Hence \(\exists A' \equiv (\{l_i : B_i \; \text{for} \; i \leq 1..n\}, \pi) \leq A \) such that \(\Delta; \Gamma; \pi \vdash a : A' \) and \(\Delta; \Gamma; x : A' ; \pi \vdash b : B_j \) and \(\pi = \pi_c \).

Using Rule (T-Update), the derivation is of the form

\[\Delta; \Gamma; \pi \vdash a.l_j \equiv \varsigma(x) : A \]

By Rule (S-Ident), \(a.l_j \equiv \varsigma(x) \; b : A \) and the result is evident from the derivation.

Case proved.

5. \(\Delta; \Gamma; \pi \vdash \text{at}(\text{a}.\text{place}) : B \)

Using Rule (T-Sub), the derivation is of the form

\[\Delta; \Gamma; \pi \vdash \text{at}(\text{a}.\text{place}) : B \]

By the induction hypothesis, \(\exists B' \leq A \) such that \(\Delta; \Gamma; \pi \vdash a : (\{l_i : B_i \; \text{for} \; i \leq 1..n\}, \pi) \) and \(\Delta; \Gamma; \pi \vdash b : B' \). By Rule (S-Trans), \(B' \leq B \). Hence \(\exists B' \leq B \) such that \(\Delta; \Gamma; \pi \vdash a : (\{l_i : B_i \; \text{for} \; i \leq 1..n\}, \pi) \) and \(\Delta; \Gamma; \pi \vdash b : B' \).

Using Rule (T-AtObject), the derivation is of the form

\[\Delta; \Gamma; \pi \vdash a : A \equiv (\{l_i : B_i \; \text{for} \; i \leq 1..n\}, \pi) \]

\[\Delta; \Gamma; \pi \vdash b : B \]

\[\Delta; \Gamma; \pi \vdash \text{at}(\text{a}.\text{place}) : B \]
By Rule (S-Ident), \(B \leq B \) and the result is evident from the derivation.

Case proved.

6. \(\Delta; \Gamma; \pi \vdash \text{at}(\rho) \ b : B \)

- Using Rule (T-Sub), the derivation is of the form

\[
\Delta; \Gamma; \pi \vdash \text{at}(\rho) \ b : A \quad A \leq B
\]

By the induction hypothesis, \(\exists B' \leq A \) such that \(\Delta; \Gamma; \rho \vdash b : B' \). By Rule (S-Trans), \(B' \leq B \). Hence \(\exists B' \leq B \) such that \(\Delta; \Gamma; \rho \vdash b : B' \).

- Using Rule (T-AtConst), the derivation is of the form

\[
\Delta; \Gamma; \rho \vdash b : B
\]

By Rule (S-Ident), \(B \leq B \) and the result is evident from the derivation.

Case proved.

7. \(\Delta; \Gamma; \pi \vdash \text{open} \ x = a \ in \ b : B \)

- Using Rule (T-Sub), the derivation is of the form

\[
\Delta; \Gamma; \pi \vdash \text{open} \ x = a \ in \ b : C \quad C \leq B
\]

By the induction hypothesis, \(\exists B' \leq C \) such that \(\Delta; \Gamma; \pi \vdash a : A \) and for some \(X \not\in \Delta \), \((\Delta, X); (\Gamma, x : (\text{obj}(A), X)); \pi \vdash b : B' \) and \(\Delta \vdash_T B' \). By Rule (S-Trans), \(B' \leq B \). Hence \(\exists B' \leq B \) such that \(\Delta; \Gamma; \pi \vdash a : A \) and for some \(X \not\in \Delta \), \((\Delta, X); (\Gamma, x : (\text{obj}(A), X)); \pi \vdash b : B' \) and \(\Delta \vdash_T B' \).

- Using Rule (T-Open), the derivation is of the form

\[
\Delta; \Gamma; \pi \vdash \text{open} \ x = a \ in \ b : B
\]

By Rule (S-Ident), \(B \leq B \) and the result is evident from the derivation.

Case proved.

Hence proved.

\[\blacktriangleright\]

Lemma 10 (Value Place Form).

\(\Delta; \Gamma; \pi \vdash \text{at}(\rho) \ o : ([l_i : B_i \ i \in [1..m]], \pi) \), then \(\pi = \rho \)

Proof. Let \(o \equiv [l_i = \varsigma(x_i) \ b_i \ i \in [1..n]] \).

By inversion (Lemma 9, case 6), \(\exists B' \leq ([l_i : B_i \ i \in [1..m]], \pi) \), such that \(\Delta; \Gamma; \rho \vdash o : B' \)

Also by inversion (Lemma 9, case 2), \(\exists A' \equiv ([l_i : B'_i \ i \in [1..m]], \rho) \leq B' \) such that \(\forall j \in 1..n, \Delta; \Gamma; x_j : A'_j ; \rho \vdash b_j : B_j \) and \(\Delta \vdash_T A' \)

Hence by Rule (T-AtObject),

\(\Delta; \Gamma; \rho \vdash o : ([l_i : B_i \ i \in [1..m]], \rho) \)

\(A' \leq B' \leq ([l_i : B_i \ i \in [1..m]], \pi) \) i.e.

\(([l_i : B'_i \ i \in [1..m]], \rho) \leq ([l_i : B_i \ i \in [1..m]], \pi) \)

The definition of \(\leq \) implies that

- \(m \leq n \)
- \(\forall i \in 1..m, B'_i = B_i \) and,
\[\pi = \rho \]

Hence proved.

\[\square \]

Lemma 11 (Environment Weakening).

If \(\Delta; \Gamma; \pi_c \vdash a : A \) and some \(y \not\in \text{dom}(\Gamma) \), then \(\Delta; (\Gamma, y : B); \pi_c \vdash a : A \)

Proof. We prove this using structural induction on the derivation of \(\Delta; \Gamma; \pi_c \vdash a : A \).

There are eight subcases.

- Rule (T-Var). The derivation is of the form
 \[\Gamma(x) = A \]
 \[\Delta; \Gamma; \pi_c \vdash x : A \]

 Since \(\Gamma(x) = A \), it follows that given \(\Gamma' \equiv (\Gamma, y : C) \), for some \(y \not\in \text{dom}(\Gamma) \), \(\Gamma'(x) = A \)

 Thus by Rule (T-Var),
 \[\Delta; (\Gamma, y : C); \pi_c \vdash x : A \]

 Case proved.

- Rule (T-Obj). The derivation is of the form
 \[\forall j \in 1..n \Delta; (\Gamma, x_j : A); \pi_c \vdash b_j : B_j \]
 \[\Delta; \Gamma; \pi_c \vdash \forall \Delta \equiv (\{\{l_i : B_i\}_{i \in 1..n}\}, \pi_c) \]

 By the induction hypothesis, \(\forall j \in 1..n \Delta; (\Gamma, x_j : A, y : C); \pi_c \vdash b_j : B_j \)

 for some \(y \not\in \text{dom}(\Gamma) \).

 Hence by Rule (T-Obj),
 \[\Delta; (\Gamma, y : C); \pi_c \vdash \forall \Delta \equiv (\{\{l_i : B_i\}_{i \in 1..n}\}, \pi_c) \]

 Case proved.

- Rule (T-Call). The derivation is of the form
 \[\Delta; \Gamma; \pi_c \vdash a : A \]
 \[j \in 1..n \Delta \equiv (\{\{l_i : B_i\}_{i \in 1..n}\}, \pi_c) \pi_c = \pi \]

 By the induction hypothesis, \(\Delta; (\Gamma, y : C); \pi_c \vdash a : A \)

 for some \(y \not\in \text{dom}(\Gamma) \).

 Hence by Rule (T-Call),
 \[\Delta; (\Gamma, y : C); \pi_c \vdash a, l_j : B_j \]

 Case proved.

- Rule (T-Update). The derivation is of the form
 \[\Delta; \Gamma; \pi_c \vdash a : A \]
 \[j \in 1..n \Delta \equiv (\{\{l_i : B_i\}_{i \in 1..n}\}, \pi_c) \pi_c = \pi \]

 By the induction hypothesis, \(\Delta; (\Gamma, x_j : A, y : C); \pi_c \vdash b_j : B_j \)

 for some \(y \not\in \text{dom}(\Gamma) \).

 Hence by Rule (T-Update),
\[\Delta; (\Gamma, y : C); \pi_e \vdash a. \ell_j \leftarrow \varsigma(x) \ b : A \]
Case proved.

- **Rule (T-AtObject).** The derivation is of the form

\[
\Delta; \Gamma; \pi_c \vdash a : A \quad A \equiv \left([l_1 : B_1 \ldots l_n : B_n] ; \pi \right) \quad \Delta; \Gamma; \pi \vdash b : B
\]

\[
\Delta; \Gamma; \pi_c \vdash \text{at}(a.\text{place}) \ b : B
\]

By the induction hypothesis,
\[\Delta; (\Gamma, y : C); \pi_e \vdash a : A \text{ and,} \]
\[\Delta; (\Gamma, y : C); \pi \vdash b : B \]
for some \(y \not\in \text{dom}(\Gamma) \).
Hence by Rule (T-AtObject),
\[\Delta; (\Gamma, y : C); \pi_e \vdash \text{at}(a.\text{place}) \ b : B \]
Case proved.

- **Rule (T-AtConst).** The derivation is of the form

\[
\Delta; \Gamma; \rho \vdash b : B
\]

\[
\Delta; \Gamma; \pi_c \vdash \text{at}(\rho) \ b : B
\]

By the induction hypothesis,
\[\Delta; (\Gamma, y : C); \rho \vdash b : B \]
for some \(y \not\in \text{dom}(\Gamma) \).
Hence by Rule (T-AtConst),
\[\Delta; (\Gamma, y : C); \pi_e \vdash \text{at}(\rho) \ b : B \]
Case proved.

- **Rule (T-Open).** The derivation is of the form

\[
\Delta; \Gamma; \pi_c \vdash a : A
\]

\[
(\Delta, X) ; (\Gamma, x : \text{obj}(A), X) ; \pi_e \vdash b : B
\]

\[X \not\in \Delta \quad \Delta \vdash T B \]

\[
\Delta; \Gamma; \pi_c \vdash \text{open } x = a \text{ in } b : B
\]

By the induction hypothesis,
\[\Delta; (\Gamma, y : C); \pi_e \vdash a : A \text{ and,} \]
\[(\Delta, X); (\Gamma, x : \text{obj}(A), X), y : C) ; \pi_e \vdash b : B \]
Hence, by Rule (T-Open),
\[\Delta; (\Gamma, y : C); \pi_e \vdash \text{open } x = a \text{ in } b : B \]
Case proved.

- **Rule (T-Sub).** The derivation is of the form

\[
\Delta; \Gamma; \pi_e \vdash a : A \quad A \leq B
\]

\[
\Delta; \Gamma; \pi_e \vdash a : B
\]

By the induction hypothesis,
\[\Delta; (\Gamma, y : C); \pi_e \vdash a : A \]
for some \(y \not\in \text{dom}(\Gamma) \).
Hence by Rule (T-Sub),
\[\Delta; (\Gamma, y : C); \pi_e \vdash a : B \]
Case proved.
Thus environment weakening is proved.

Lemma 12 (Bound Weakening).
If $\Delta; (\Gamma, y : C); \pi_c \vdash a : A$ and $C' \leq C$, then $\Delta; (\Gamma, y : C'); \pi_c \vdash a : A$

Proof. We prove this using structural induction on the derivation of $\Delta; (\Gamma, y : C); \pi_c \vdash a : A$.
There are eight subcases.

Rule (T-Var). The derivation is of the form

\[
\frac{\Gamma(x) = A}{\Delta; (\Gamma, y : C); \pi_c \vdash x : A}
\]

There are two possibilities:
- If $y = x$, then since $\Gamma(y) = C$, $\Delta; (\Gamma, y : C'); \pi_c \vdash y : C'$
 By Rule (T-Var), $\Delta; (\Gamma, y : C'); \pi_c \vdash y : C'$
 Since $C' \leq C$, by Rule (T-Sub) we get,
 $\Delta; (\Gamma, y : C'); \pi_c \vdash y : C'$

- If $y \neq x$, then $\Gamma(x) = A$ and thus, trivially from the Rule (T-Var), we get $\Delta; (\Gamma, y : C'); \pi_c \vdash x : A$
 Case proved.

Rule (T-Obj). The derivation is of the form

\[
\forall j \in 1..n \quad \Delta; (\Gamma, y : C, x_j : A); \pi_c \vdash b_j : B_j
\]

By the induction hypothesis, $\forall j \in 1..n$
$\Delta; (\Gamma, y : C', x_j : A); \pi_c \vdash b_j : B_j$
Hence by Rule (T-Obj),
$\Delta; (\Gamma, y : C'); \pi_c \vdash [l_i = \varsigma(x_i) b_i \mid i \in 1..n] : A$
Case proved.

Rule (T-Call). The derivation is of the form

\[
\Delta; (\Gamma, y : C); \pi_c \vdash a : A \
\Delta; (\Gamma, y : C, x : A); \pi \vdash b : B_j
\]

By the induction hypothesis,
$\Delta; (\Gamma, y : C'); \pi_c \vdash a : A$
Hence by Rule (T-Call),
$\Delta; (\Gamma, y : C'); \pi_c \vdash a.l_j : B_j$
Case proved.

Rule (T-Update). The derivation is of the form

\[
\Delta; (\Gamma, y : C); \pi_c \vdash a : A \
\Delta; (\Gamma, y : C, x : A); \pi \vdash b : B_j
\]

By the induction hypothesis,
$\Delta; (\Gamma, y : C'); \pi_c \vdash a : A$
and,
$\Delta; (\Gamma, x : A, y : C'); \pi \vdash b : B_j$
Hence by Rule (T-Update),
\[\Delta; (\Gamma, y : C'); \pi_c \vdash a.l_j \leftarrow \varsigma(x) \ b : A \]
Case proved.

Rule (T-AtObject). The derivation is of the form
\[\Delta; (\Gamma, y : C'); \pi_c \vdash a : A \]
\[A \equiv ([b : B \vdash (\pi)] \Delta; (\Gamma, y : C); \pi \vdash b : B) \]
\[\Delta; (\Gamma, y : C); \pi_c \vdash \text{at}(a, \text{place}) b : B \]
By the induction hypothesis,
\[\Delta; (\Gamma, y : C'); \pi_c \vdash a : A \text{ and,} \]
\[\Delta; (\Gamma, y : C'); \pi \vdash b : B \]
Hence by Rule (T-AtObject),
\[\Delta; (\Gamma, y : C'); \pi_c \vdash \text{at}(a, \text{place}) b : B \]
Case proved.

Rule (T-AtConst). The derivation is of the form
\[\Delta; (\Gamma, y : C'); \rho \vdash b : B \]
\[\Delta; (\Gamma, y : C); \rho \vdash \text{at}(\rho) b : B \]
By the induction hypothesis,
\[\Delta; (\Gamma, y : C'); \rho \vdash b : B \]
Hence by Rule (T-AtConst),
\[\Delta; (\Gamma, y : C'); \pi_c \vdash \text{at}(\rho) b : B \]
Case proved.

Rule (T-Open). The derivation is of the form
\[\Delta; (\Gamma, y : C); \pi_c \vdash a : A \]
\[(\Delta, X); (\Gamma, y : C'; x : \text{obj}(A), X); \pi_c \vdash b : B \]
\[X \notin \Delta \quad \Delta \vdash_T B \]
\[\Delta; (\Gamma, y : C); \pi_c \vdash \text{open } x = a \text{ in } b : B \]
By the induction hypothesis,
\[\Delta; (\Gamma, y : C'); \pi_c \vdash a : A \text{ and,} \]
\[(\Delta, X); (\Gamma, y : C'; x : \text{obj}(A), X); \pi_c \vdash b : B \]
Hence, by Rule (T-Open),
\[\Delta; (\Gamma, y : C'); \pi_c \vdash \text{open } x = a \text{ in } b : B \]
Case proved.

Rule (T-Sub). The derivation is of the form
\[\Delta; (\Gamma, y : C); \pi_c \vdash a : A \]
\[A \leq B \]
\[\Delta; (\Gamma, y : C); \pi_c \vdash a : B \]
By the induction hypothesis,
\[\Delta; (\Gamma, y : C'); \pi_c \vdash a : A \]
Hence by Rule (T-Sub),
\[\Delta; (\Gamma, y : C'); \pi_c \vdash a : B \]
Case proved.

Thus bound weakening is proved.
Lemma 13 (Type Context Weakening).
If $\Delta; \Gamma; \pi_c \vdash a : A$ then given some $Y \notin \Delta$, $\Delta, Y; \Gamma; \pi_c \vdash a : A$

Proof. Straightforward induction on typing derivations in Figure 2. The only interesting case is Rule (T-Open) where the derivation is of the form

$$\Delta; \Gamma; \pi_c \vdash \Delta \vdash_T B \quad X \notin \Delta \vdash open x = a \ in \ b : B$$

Choose a Y such that $Y \notin \Delta$ and $Y \neq X$
Then by the induction hypothesis, $\Delta, Y; \Gamma; \pi_c \vdash a : A$ and,
$\Delta, X, Y; (\Gamma, x : (\text{obj}(A), X)); \pi_c \vdash b : B$
Also, $X \notin (\Delta, Y)$ and $\Delta \vdash_T B$
Thus by Rule (T-Open),
$\Delta, Y; \Gamma; \pi_c \vdash open x = a \ in \ b : B$
Hence proved. ▷

Lemma 14 (Place Context Irrelevance).
If $\Delta; \Gamma; \pi_c \vdash v : A$, then $\Delta; \Gamma; \pi \vdash v : A$

Proof. Since a value has only one form $\text{at}(\rho)$ o, its type derivation of is of the form:

$$\Delta; \Gamma; \rho \vdash o : B \quad \Delta; \Gamma; \pi_c \vdash \text{at}(\rho) \ o : B$$

By this derivation, B is clearly independent of π_c (the current place of execution of o being ρ).
Hence from Rule (T-AtConst), we can write $\Delta; \Gamma; \pi \vdash \text{at}(\rho) \ o : B$
Thus place context irrelevance is proved. ▷

Lemma 15 (Type Substitution).
If $\Delta, Y; \Gamma; \pi_c \vdash a : A$ and some place type π_y such that $\Delta \vdash_T \pi_y$, then $\Delta; \Gamma[Y := \pi_y]; \pi_c[Y := \pi_y] \vdash a : A[Y := \pi_y]$

Proof. We prove this using structural induction on the derivation of $\Delta, Y; \Gamma; \pi_c \vdash a : A$. There are eight subcases.

- Rule (T-Var). The derivation is of the form

$$\Gamma(x) = A \quad (\Delta, Y); \Gamma; \pi_c \vdash x : A$$

Let $\Gamma' \equiv \Gamma[Y := \pi_y]$
Then $\Gamma'(x) = A[Y := \pi_y]$
Hence, by Rule (T-Var),
$\Delta; \Gamma'[Y := \pi_y]; \pi_c[Y := \pi_y] \vdash x : A[Y := \pi_y]$
Case proved.

- Rule (T-Obj). The derivation is of the form
\[\forall j \in 1..n \quad \Delta, \Gamma ; x_j : A; \pi ; \vdash b_j : B_j \]

\[\Delta, \Gamma \vdash \pi \quad A \equiv (l_i : B_i \in \mathbb{E}^{1..n}, \pi) \]

\[\Delta, \Gamma ; \pi \vdash [l_i = \varsigma(x_i) \ b_i \in \mathbb{E}^{1..n}] : A \]

By the induction hypothesis, \(\forall j \in 1..n \)

\[\Delta : (\Delta, x_j : A)[Y := \pi_y]; \pi_c[Y := \pi_y] ; \vdash b_j : B_j[Y := \pi_y] \quad i.e., \]

\[\Delta : (\Gamma[Y := \pi_y], x_j : A[Y := \pi_y]); \pi_c[Y := \pi_y] ; \vdash b_j : B_j[Y := \pi_y] \]

Also, since \(\Delta \vdash \pi \), \(\Delta \vdash A[Y := \pi_y] \)

Hence by Rule (T-Call),

\[\Delta : \Gamma[Y := \pi_y]; \pi_c[Y := \pi_y] ; \vdash [l_i = \varsigma(x_i) b_i \in \mathbb{E}^{1..n}] : ([l_i : B_i[Y := \pi_y] \in \mathbb{E}^{1..n}], \pi_c[Y := \pi_y]) \]

i.e.

\[\Delta : \Gamma[Y := \pi_y]; \pi_c[Y := \pi_y] ; \vdash [l_i = \varsigma(x_i) b_i \in \mathbb{E}^{1..n}] : A[Y := \pi_y] \]

Case proved.

Rule (T-Call). The derivation is of the form

\[\Delta, \Gamma ; \pi \vdash a : A \quad j \in 1..n \quad A \equiv (l_i : B_i \in \mathbb{E}^{1..n}, \pi) \quad \pi_c = \pi \]

\[\Delta, \Gamma ; \pi \vdash a l_j : B_j \]

By the induction hypothesis,

\[\Delta : \Gamma[Y := \pi_y]; \pi_c[Y := \pi_y] ; \vdash a : A[Y := \pi_y] \quad i.e., \]

\[\Delta : \Gamma[Y := \pi_y]; \pi_c[Y := \pi_y] ; \vdash a : ([l_i : B_i[Y := \pi_y] \in \mathbb{E}^{1..n}], \pi[Y := \pi_y]) \]

Also, since \(\pi_c = \pi \),

\[\pi_c[Y := \pi_y] = \pi[Y := \pi_y] \]

Hence by Rule (T-Call),

\[\Delta : \Gamma[Y := \pi_y]; \pi_c[Y := \pi_y] ; \vdash a l_j : B_j[Y := \pi_y] \]

Case proved.

Rule (T-Update). The derivation is of the form

\[\Delta, \Gamma ; \pi \vdash a : A \quad \Delta, \Gamma, x : A ; \pi \vdash b : B_j \quad j \in 1..n \quad A \equiv (l_i : B_i \in \mathbb{E}^{1..n}, \pi) \quad \pi_c = \pi \]

\[\Delta, \Gamma ; \pi \vdash a l_j = \varsigma(x) b : A \]

By the induction hypothesis,

\[\Delta : \Gamma[Y := \pi_y]; \pi_c[Y := \pi_y] ; \vdash a : A[Y := \pi_y] \quad i.e., \]

\[\Delta : (\Gamma[Y := \pi_y], x : A[Y := \pi_y]); \pi[Y := \pi_y] ; \vdash b : B_j[Y := \pi_y] \]

Also by the induction hypothesis,

\[\Delta : (\Gamma[Y := \pi_y], x : A[Y := \pi_y]); \pi[Y := \pi_y] ; \vdash b : B_j[Y := \pi_y] \]

Also, since \(\pi_c = \pi \),

\[\pi_c[Y := \pi_y] = \pi[Y := \pi_y] \]

Hence by Rule (T-Update),

\[\Delta : \Gamma[Y := \pi_y]; \pi_c[Y := \pi_y] ; \vdash a l_j = \varsigma(x) b : A[Y := \pi_y] \]

Case proved.

Rule (T-AtObject). The derivation is of the form

\[\Delta, \Gamma ; \pi \vdash a : A \quad A \equiv (l_i : B_i \in \mathbb{E}^{1..n}, \pi) \quad \Delta, \Gamma ; \pi \vdash b : B \]

\[\Delta, \Gamma ; \pi \vdash at(a \text{ place}) b : B \]

By the induction hypothesis,
Lemma 16

Term Substitution

\[\Delta, \Gamma[Y := \pi_y]; \pi_c[Y := \pi_y] \vdash a : A[Y := \pi_y] \text{ i.e.} \]
\[\Delta, \Gamma[Y := \pi_y]; \pi_c[Y := \pi_y] \vdash a : (\{l_i : B_i[Y := \pi_y] \text{ i.e.} \}, \pi[Y := \pi_y]) \]

Also by the induction hypothesis,
\[\Delta, \Gamma[Y := \pi_y]; \pi[Y := \pi_y] \vdash b : B[Y := \pi_y] \]
Hence by Rule (T-AtObject),
\[\Delta, \Gamma[Y := \pi_y]; \pi_c[Y := \pi_y] \vdash \text{at}(a, \text{place}) b : B[Y := \pi_y] \]
Case proved.

- Rule (T-AtConst). The derivation is of the form

\[\frac{\Delta, \Gamma[Y := \pi_y]; \pi(Y := \pi_y) \vdash b : B \quad \Delta, \Gamma; \rho \vdash \text{at}(\rho) b : B}{\Delta, \Gamma; \pi_c \vdash \text{open } x = a \text{ in } b : B} \]

By the induction hypothesis,
\[\Delta, \Gamma[Y := \pi_y]; \rho[Y := \pi_y] \vdash b : B[Y := \pi_y] \text{ i.e.} \]
\[\Delta, \Gamma[Y := \pi_y]; \rho \vdash b : B[Y := \pi_y] \]
Hence by Rule (T-AtConst),
\[\Delta, \Gamma[Y := \pi_y]; \pi_c[Y := \pi_y] \vdash \text{at}(\rho) b : B[Y := \pi_y] \]
Case proved.

- Rule (T-Open). The derivation is of the form

\[\frac{\Delta, \Gamma[Y := \pi_y]; \pi_c[Y := \pi_y] \vdash a : A \quad \Delta \not\vdash \Delta, \Gamma[X] \vdash B}{\Delta, \Gamma; \pi_c \vdash \text{open } x = a \text{ in } b : B} \]

By the induction hypothesis,
\[\Delta, \Gamma[Y := \pi_y]; \pi_c[Y := \pi_y] \vdash a : A[Y := \pi_y] \]
Also, \[X[Y := \pi_y] \equiv X, \text{ since } X \text{ is new} \]
Hence using the induction hypothesis again, \(\Delta, \Gamma[X(Y := \pi_y)]; \pi_c[Y := \pi_y] \]
\[\vdash b : B[Y := \pi_y] \]
Lastly, \(\Delta \vdash B[Y := \pi_y] \text{ and since } \Delta \vdash \pi_y, \]
\[\Delta \vdash B[Y := \pi_y] \]
Hence, by Rule (T-Open),
\[\Delta, \Gamma[Y := \pi_y]; \pi_c[Y := \pi_y] \vdash \text{open } x = a \text{ in } b : B[Y := \pi_y] \]
Case proved.

- Rule (T-Sub). The derivation is of the form

\[\frac{\Delta, \Gamma; \pi_c \vdash a : A \quad A \leq B}{\Delta, \Gamma; \pi_c \vdash a : B} \]

By the induction hypothesis,
\[\Delta, \Gamma[Y := \pi_y]; \pi_c[Y := \pi_y] \vdash a : A[Y := \pi_y] \]
Since \(A \leq B, A[Y := \pi_y] \leq B[Y := \pi_y] \)
Hence by Rule (T-Sub),
\[\Delta, \Gamma[Y := \pi_y]; \pi_c[Y := \pi_y] \vdash a : B[Y := \pi_y] \]
Case proved.

Hence type substitution is proved.

\[\blacksquare \]

Lemma 16 (Term Substitution).
If $\Delta; (\Gamma, y : C); \pi_c \vdash a : A$ and $\Delta; \Gamma; \pi_c \vdash c : C$ such that c is independent of its place context, then $\Delta; \Gamma; \pi_c \vdash a[y := c] : A$.

Proof. We prove this using structural induction on the derivation of $\Delta; (\Gamma, y : C); \pi_c \vdash a : A$. There are eight subcases. We follow the Barendregt variable convention that in a given term all bound variables are chosen to be different from the free variables.

Rule (T-Var). The derivation is of the form

$$\Gamma(x) = A$$

$$\Delta; (\Gamma, y : C); \pi_c \vdash x : A$$

There are two possibilities

- If $y = x$, then $x[y := c] \equiv c$ and, $\Gamma(x) = A = \Gamma(y) = C$ and, $\Delta; \Gamma; \pi_c \vdash c : C$ is given in the lemma statement.

- If $y \neq x$, then $x[y := c] \equiv x$ and the result trivially holds from the Rule (T-Var). Case proved.

Rule (T-Obj). The derivation is of the form

$$\forall j \in 1..n \quad \Delta; (\Gamma, x_j : A, y : C); \pi_c \vdash b_j : B_j$$

$$\Delta \vdash A \equiv ([l_i : B_i]_{i \in 1..n}, \pi)$$

$$\Delta; (\Gamma, y : C); \pi_c \vdash [l_i = \varsigma(x_j) b_i]_{i \in 1..n} : A$$

By environment weakening (Lemma 11)

$$\Delta; (\Gamma, x_j : A); \pi_c \vdash c : C, \forall j \in 1..n$$

By the induction hypothesis, $\forall j \in 1..n$

$$\Delta; (\Gamma, x_j : A); \pi_c \vdash b_j[y := c] : B_j$$

Hence by Rule (T-Obj),

$$\Delta; \Gamma; \pi_c \vdash [l_i = \varsigma(x_j) b_i]_{i \in 1..n}[y := c] : A$$

i.e.

$$\Delta; \Gamma; \pi_c \vdash a.l_j[y := c] : B_j$$

Case proved.

Rule (T-Call). The derivation is of the form

$$\Delta; (\Gamma, y : C); \pi_c \vdash a : A$$

$$\Delta; (\Gamma, x_j : A, y : C); \pi_c \vdash b_j : B_j$$

$$\Delta \vdash A \equiv ([l_i : B_i]_{i \in 1..n}, \pi) \quad \pi_c = \pi$$

$$\Delta; (\Gamma, y : C); \pi_c \vdash a.l_j : B_j$$

By the induction hypothesis,

$$\Delta; \Gamma; \pi_c \vdash a[y := c] : A$$

Hence by Rule (T-Call),

$$\Delta; \Gamma; \pi_c \vdash (a[y := c])l_j : B_j$$

i.e.

$$\Delta; \Gamma; \pi_c \vdash a.l_j[y := c] : B_j$$

Case proved.

Rule (T-Update). The derivation is of the form

$$\Delta; (\Gamma, y : C); \pi_c \vdash a : A$$

$$\Delta; (\Gamma, x : A, y : C); \pi \vdash b : B_j$$

$$j \in 1..n \quad A \equiv ([l_i : B_i]_{i \in 1..n}, \pi) \quad \pi_c = \pi$$

By the induction hypothesis,

$$\Delta; \Gamma; \pi_c \vdash a.l_j [\varsigma(x) b] : A$$
By environment weakening (Lemma 11)
\[\Delta; (\Gamma, x : A); \pi_c \vdash c : C \]
Thus by the induction hypothesis,
\[\Delta; (\Gamma, x : A); \pi \vdash b[y := c] : B \]
Hence by Rule (T-Update),
\[\Delta; \Gamma; \pi_c \vdash (a[y := c])j \leftarrow \varsigma(x) b[y := c] : A \] i.e.
\[\Delta; \Gamma; \pi_c \vdash (a.l_j \leftarrow \varsigma(x) b)[y := c] : A \]
Case proved.

Rule (T-AtObject). The derivation is of the form
\[\Delta; (\Gamma, y : C); \rho \vdash b : B \]
\[\Delta; (\Gamma, y : C); \pi \vdash c : C \]
Since \(c \) is independent of its place context,
\[\Delta; \Gamma; \pi \vdash c \vdash c : C \]
Again by the induction hypothesis,
\[\Delta; \Gamma; \pi \vdash b[y := c] : B \]
Hence by Rule (T-AtObject),
\[\Delta; \Gamma; \pi_c \vdash (at(a[y := c].place) b)[y := c] : B \] i.e.
\[\Delta; \Gamma; \pi_c \vdash (at(a.place) b)[y := c] : B \]
Case proved.

Rule (T-AtConst). The derivation is of the form
\[\Delta; (\Gamma, y : C); \pi_c \vdash a : A \]
\[\Delta; (\Gamma, y : C); \pi \vdash b : B \]
By the induction hypothesis,
\[\Delta; \Gamma; \pi \vdash b[y := c] : B \]
Hence by Rule (T-AtConst),
\[\Delta; \Gamma; \pi_c \vdash (at(a.y := c) b)[y := c] : B \] i.e.
\[\Delta; \Gamma; \pi_c \vdash (at(a.place) b)[y := c] : B \]
Case proved.

Rule (T-Open). The derivation is of the form
\[\Delta; (\Gamma, y : C); \pi_c \vdash a : A \]
\[\Delta; (\Gamma, x : (\text{obj}(A), X), y : C); \pi_c \vdash b : B \]
\[X \notin \Delta \] i.e.
\[\Delta; \Gamma; \pi_c \vdash \text{open} x = a \text{ in } b : B \]
By the induction hypothesis,
\[\Delta; \Gamma; \pi_c \vdash a[y := c] : A \]
By type context weakening (Lemma 13),
\[(\Delta, X); \Gamma; \pi_c \vdash c : C \]
Then by environment weakening (Lemma 11),
\((\Delta, X); (\Gamma, x: (\text{obj}(A), X)); \pi_c \vdash c : C\)

Lastly, by the induction hypothesis again,
\((\Delta, X); (\Gamma, x: (\text{obj}(A), X)); \pi_c \vdash b[y := c] : B\)

Hence, by Rule (T-Open),
\[\Delta; \Gamma; \pi_c \vdash \text{open } x = a[y := c] \text{ in } b[y := c] : B\]
i.e.
\[\Delta; \Gamma; \pi_c \vdash \text{open } x = a \text{ in } b[y := c] : B\]

Case proved.

Rule (T-Sub). The derivation is of the form
\[\Delta; (\Gamma, y : B); \pi_c \vdash a : A\]
and
\[\rho \vdash a \rightarrow a'\]

then,
\[\vdash_p (\emptyset, \Gamma, \rho, a', A)\]

Proof. Given \(\vdash_p (\emptyset, \Gamma, \rho, a, A)\), we prove this using structural induction on the derivation of \(\emptyset; \Gamma; \rho \vdash a : A\). The subcases are based on the typing rules in Figure 2 and semantic rules in Figure 1. Of these, there are two subcases where \(a\) is either a value or a variable and hence cannot take a step. We consider the remaining subcases.

Rule (T-Obj). The derivation is of the form
\[\forall j \in 1..n \quad \emptyset; (\Gamma, x_j : A); \rho \vdash b_j : B_j \quad \emptyset; \Gamma; \rho \vdash \text{at } A \equiv ([b_j : B_j[i \in 1..n]], \rho)\]

We have only one subcase, Rule (O-Obj), using which \([l_i = \varsigma(x_i) b_i[i \in 1..n]]\) can take a step.

We thus get,
\[\rho \vdash [l_i = \varsigma(x_i) b_i[i \in 1..n]] \rightarrow \text{at } (\rho) [l_i = \varsigma(x_i) b_i[i \in 1..n]]\]

From the statement of the theorem we have,
\[\emptyset; \Gamma; \rho \vdash [l_i = \varsigma(x_i) b_i[i \in 1..n]] : A\]

Hence by Rule (T-AtConst),

\[\text{Corollary 17 (Value Substitution).}\]

If \(\emptyset; (\Gamma, y : B); \pi_c \vdash a : A\) and \(\Delta; \Gamma; \pi_c \vdash v : B\), then \(\Delta; \Gamma; \pi_c \vdash a[y := v] : A\)

Proof. By place context irrelevance (Lemma 14), \(v\) is independent of its place context. Thus by term substitution (Lemma 16), \(\Delta; \Gamma; \pi_c \vdash a[y := v] : A\). □

A.2 Preservation, Progress and Soundness

\[\text{Theorem 18 (Type Preservation).}\]

If,
\[\vdash_p (\emptyset, \Gamma, \rho, a, A)\]

then,
\[\vdash_p (\emptyset, \Gamma, \rho, a', A)\]

Proof. Given \(\vdash_p (\emptyset, \Gamma, \rho, a, A)\), we prove this using structural induction on the derivation of \(\emptyset; \Gamma; \rho \vdash a : A\). The subcases are based on the typing rules in Figure 2 and semantic rules in Figure 1. Of these, there are two subcases where \(a\) is either a value or a variable and hence cannot take a step. We consider the remaining subcases.

We thus get,
\[\rho \vdash [l_i = \varsigma(x_i) b_i[i \in 1..n]] \rightarrow \text{at } (\rho) [l_i = \varsigma(x_i) b_i[i \in 1..n]]\]

From the statement of the theorem we have,
\[\emptyset; \Gamma; \rho \vdash [l_i = \varsigma(x_i) b_i[i \in 1..n]] : A\]

Hence by Rule (T-AtConst),
We have two subcases based on the rule that was used to take a step.

Case proved.

- Rule (T-Call). The derivation is of the form

\[\emptyset, \Gamma; \rho \vdash a : A \quad j \in 1..n \quad A \equiv ([l_i : B_i \backslash i \in 1..n], \pi) \quad \pi = \rho \]

\[\emptyset, \Gamma; \rho \vdash a.l_j : B_j \]

Since \(\emptyset \vdash \Gamma \) and \(\emptyset \vdash \rho \), \(\emptyset \vdash (\emptyset, \rho, a, A) \).

We have two subcases based on the rule that was used to take a step.

- If Rule (O-Call-Cong), we get,

\[\rho \vdash a \rightarrow a' \]

\[\rho \vdash a.l_j \rightarrow a'.l_j \]

By the induction hypothesis,

\[\vdash_p (\emptyset, \Gamma, \rho, a', A) \]

i.e. \(\emptyset, \Gamma; \rho \vdash a' : A \).

Hence by Rule (T-Call),

\[\emptyset, \Gamma; \rho \vdash a'.l_j : B_j \]

i.e. \(\vdash_p (\emptyset, \Gamma, \rho, a'.l_j, B_j) \)

- If Rule (O-Call-Comp), we get,

\[o \equiv [l_i = \varsigma(x_i) \ b_i \ i \in 1..n] \]

\[\rho \vdash (at(\rho') \ o).l_j \rightarrow b_j[x_j := at(\rho') \ o] \]

The type derivation for \((at(\rho') \ o).l_j\) is

\[\emptyset, \Gamma, \rho \vdash at(\rho') \ o : A \quad A \equiv ([l_i : B_i \ \backslash i \in 1..n], \pi) \quad \pi = \rho \]

\[\emptyset, \Gamma; \rho \vdash (at(\rho') \ o).l_j : B_j \]

By inversion (Lemma 9, case 6),

\[\exists A' \leq A \text{ such that } \emptyset, \Gamma; \rho' \vdash o : A' \]

Again by inversion (Lemma 9, case 2),

\[\exists A'' \equiv ([l_i : B_i' \ \backslash i \in 1..n], \rho') \leq A' \text{ such that } \forall j \in 1..n, \emptyset, \Gamma; x_j : A''; \rho' \vdash b_j : B_{j}' \text{ and } \emptyset \vdash A'' \]

Hence by Rule (T-Obj), \(\emptyset, \Gamma; \rho' \vdash o : A'' \)

Thus by Rule (T-AtConst), \(\emptyset, \Gamma; \rho' \vdash at(\rho') \ o : A'' \)

Thus by value substitution (Corollary 17)

\[\emptyset, \Gamma; \rho' \vdash b_j[x_j := at(\rho') \ o] : B_j' \]

Since \(A'' \leq A' \leq A \), by Rule (S-Trans),

\[([l_i : B_i' \ \backslash i \in 1..n], \rho') \leq ([l_i : B_i \ \backslash i \in 1..n], \pi) \]

Hence \(\pi = \rho' \) and since \(\pi = \rho, \rho = \rho' \)

Also, \(m \leq n \) and \(\forall j \in 1..m, B_{j}' = B_{j} \)

Hence \(\emptyset, \Gamma; \rho \vdash b_j[x_j := at(\rho') \ o] : B_j \)

Since \(\emptyset \vdash \Gamma \) and \(\emptyset \vdash_p \rho \),

\[\vdash_p (\emptyset, \Gamma, \rho, b_j[x_j := at(\rho') \ o], B_j) \]

Case proved.

- Rule (T-Update). The derivation is of the form
We have two subcases based on the rule that was used to take a step.

= If Rule (O-Update-Cong), we get,

\[\rho \vdash a \rightarrow a' \]
\[\rho \vdash a.l_j \ll \varsigma(x) b \rightarrow a'.l_j \ll \varsigma(x) b \]

By the induction hypothesis,
\[\vdash\mathcal{P} (\emptyset, \Gamma, \rho, a', A) \]
\[i.e. \emptyset; \Gamma; \rho \vdash a': A \]

Hence by Rule (T-Update),
\[\emptyset; \Gamma; \rho \vdash a'.l_j \ll \varsigma(x) b : A \]
\[i.e. \vdash\mathcal{P} (\emptyset, \Gamma, \rho, a'.l_j \ll \varsigma(x) b, A) \]

= If Rule (O-Update-Comp), we get,

\[o \equiv [i = \varsigma(x_i) b_i] \ll \ll j \equiv [i = \varsigma(x_i) b_i] \ll j = \varsigma(x) b] \]
\[j \in 1..n \quad \rho = \rho' \]
\[\rho \vdash (at(\rho')) o.l_j \ll \varsigma(x) b \rightarrow at(\rho') o' \]

The type derivation for \((at(\rho') o).l_j \ll \varsigma(x) b\) is

\[\emptyset; \Gamma; \rho \vdash (\rho') o : A \quad \emptyset; (\Gamma, x : A); \pi \vdash b : B_j \]
\[\pi = \rho \quad A \equiv ([i : B_i] \ll j) \]

\[\emptyset; \Gamma; \rho \vdash (at(\rho')) o.l_j \ll \varsigma(x) b : A \]

By inversion (Lemma 9, case 6),
\[\exists A' \leq A \text{ such that } \emptyset; \Gamma; \rho' \vdash o : A' \]

Again by inversion (Lemma 9, case 2),
\[\exists A'' \equiv ([i : B_i] \ll j) \ll j \leq A' \text{ such that } \emptyset \vdash_T A'' \]

and \(\forall i \in 1..n, \emptyset; (\Gamma, x_i : A''); \rho' \vdash b_i : B_i'

i.e. \(\forall i \in 1..n/\{j\}, \emptyset; (\Gamma, x_i : A'''); \rho' \vdash b_i : B_i'

Moreover, \(\emptyset; (\Gamma, x : A); \pi \vdash b : B_j \]

Since \(A'' \leq A' \leq A\), by bound weakening (Lemma 12), \(\emptyset; (\Gamma, x : A'''); \pi \vdash b : B_j \]

Also, by definition of \(\leq\), \(B_j = B_j'\) and \(\pi = \rho' \)

Hence \(\emptyset; (\Gamma, x : A'''); \rho' \vdash b : B_j' \)

Hence by Rule (T-Obj) and Rule (T-Sub),
\[\emptyset; \Gamma; \rho' \vdash [i = \varsigma(x_i) b_i] \ll j, l_j = \varsigma(x) b] : A \]

i.e. \(\emptyset; \Gamma; \rho' \vdash o' : A \)

So by Rule (T-AtConst),
\[\emptyset; \Gamma; \rho' \vdash at(\rho') o' : A \]

Since \(\emptyset \vdash_E \Gamma\) and \(\emptyset \vdash_p \rho, \)
\[\vdash\mathcal{P} (\emptyset, \Gamma, \rho, at(\rho') o', A) \]

Case proved.

= Rule (T-AtObject). The derivation is of the form

\[\emptyset; \Gamma; \rho \vdash a : A \quad A \equiv ([i : B_i] \ll j) \]
\[\emptyset; \Gamma; \pi \vdash b : B \]

Since \(\emptyset \vdash_E \Gamma\) and \(\emptyset \vdash_p \rho, \)
\[\vdash\mathcal{P} (\emptyset, \Gamma, \rho, a, A) \]

We have two subcases based on the rule that was used to take a step.
If Rule (O-AtObject-Cong), we get,
\[
\frac{\rho \vdash \text{a} \rightarrow \text{a}' }{\rho \vdash \text{at(a.place)} \ b \rightarrow \text{at(a'}\text{.place}) \ b}
\]

By the induction hypothesis,
\[
\vdash \rho \ (\emptyset, \Gamma, \rho, \text{a}', \text{A})
\]

i.e. \(\emptyset; \Gamma; \rho \vdash \text{a}' : \text{A}\)

Hence by Rule (T-AtObject),
\[
\emptyset; \Gamma; \rho \vdash \text{at(a'.$place) b : B}
\]

i.e. \(\vdash \rho \ (\emptyset, \Gamma, \rho, \text{at(a'\text{.place) b, B})}\)

If Rule (O-AtObject-Comp), we get,
\[
\frac{\rho \vdash \text{a} \rightarrow \text{a}' }{\rho \vdash \text{at((a'\text{.place}) o).place) b \rightarrow \text{at(a'}\text{.place}) \ b}}
\]

The type derivation for \(\text{at((a'\text{.place}) o).place) b}\) is
\[
\frac{\emptyset; \Gamma; \rho \vdash \text{a} \rightarrow \text{a}' \quad \emptyset; \Gamma; \rho \vdash \text{b} : \text{B} \quad \text{A} \equiv ([l_{i} : \text{B}_{i} \Rightarrow \text{a}_{i} \Rightarrow \text{v}_{i}]) \quad \pi}{}
}{\emptyset; \Gamma; \rho \vdash \text{at((a'\text{.place}) o).place) b : \text{B}}}
\]

Since \(\text{at(a'}\text{.place})\ \text{o}\) is a value, by value place form (Lemma 10), \(\pi = \text{a}'\).

Hence \(\emptyset; \Gamma; \rho' \vdash \text{b} : \text{B}\)

Therefore, by Rule (T-AtConst),
\[
\emptyset; \Gamma; \rho \vdash \text{at(a'}\text{.place) b : B\ i.e. \vdash \rho \ (\emptyset, \Gamma, \rho, \text{at(a'}\text{.place) b, B})}\)

Case proved.

Rule (T-AtConst). The derivation is of the form
\[
\frac{\emptyset; \Gamma; \rho' \vdash \text{b} : \text{B} }{\emptyset; \Gamma; \rho \vdash \text{at(a'}\text{.place) b : B}}
\]

Since \(\emptyset \vdash \rho; \Gamma\) and \(\emptyset \vdash \rho'\), \(\vdash \rho \ (\emptyset, \Gamma, \rho', \text{b, B})\).

We have two subcases based on the rule that was used to take a step.

If Rule (O-AtConst-Cong), we get,
\[
\frac{\rho' \vdash \text{b} \rightarrow \text{b}' }{\rho \vdash \text{at(a'}\text{.place) b \rightarrow \text{at(a'}\text{.place}) \ b}}
\]

By the induction hypothesis,
\[
\vdash \rho \ (\emptyset, \Gamma, \rho', \text{b}', \text{B})\ i.e. \emptyset; \Gamma; \rho' \vdash \text{b}' : \text{B} \]

Hence by Rule (T-AtConst),
\[
\emptyset; \Gamma; \rho \vdash \text{at(a'}\text{.place) b'} : \text{B}
\]

i.e. \(\vdash \rho \ (\emptyset, \Gamma, \rho, \text{at(a'}\text{.place) b', B})\).

If Rule (O-AtConst-Ret), we get,
\[
\frac{\rho \vdash \text{at(a'}\text{.place) v \rightarrow v} }{\rho \vdash \text{v : B}}
\]

The type derivation for \(\text{at(a'}\text{.place) v}\) is
\[
\frac{\emptyset; \Gamma; \rho' \vdash \text{v} : \text{B} }{\emptyset; \Gamma; \rho \vdash \text{at(a'}\text{.place) v : B}}
\]

By place context irrelevance (Lemma 14)
We have two subcases based on the rule that was used to take a step.

Case proved.

\[\emptyset \vdash \emptyset \]

Since \(\emptyset \vdash \emptyset \Gamma \) and \(\emptyset \vdash \emptyset \rho, \emptyset (\emptyset, \Gamma, \rho, a, A) \).

We have two subcases based on the rule that was used to take a step.

If Rule (O-Open-Cong), we get,

\[\emptyset \vdash a \rightarrow a' \]

\[\emptyset \vdash \text{open } x = a \text{ in } b \rightarrow \text{open } x = a' \text{ in } b \]

By the induction hypothesis,

\[\emptyset \vdash a \rightarrow a' \text{ i.e. } \emptyset \Gamma; \rho \vdash a' \]

Hence by Rule (T-Open),

\[\emptyset \Gamma; \rho \vdash \text{open } x = a' \text{ in } b : \]

i.e. \(\emptyset \vdash (\emptyset, \Gamma, \rho, \text{open } x = a' \text{ in } b, B) \)

If Rule (O-Open-Comp), we get,

\[\emptyset \vdash \text{at}(\rho') o \in b \]

The type derivation for \(\text{open } x = \text{at}(\rho') o \text{ in } b \) is

\[\emptyset \vdash X; (\Gamma, x : (\text{obj}(A), X)); \rho \vdash b : B \]

By inversion (Lemma 9, case 6),

\[\exists \emptyset \emptyset' \leq A \text{ such that } \emptyset \Gamma; \rho' \vdash o : A' \]

Again by inversion (Lemma 9, case 2),

\[\exists \emptyset' \emptyset'' \leq A' \text{ such that } \forall j \in 1..n, \emptyset \Gamma; x_j : A'' ; \rho' \vdash b_j : B'' j \text{ and } \emptyset \vdash A'' \]

Hence by Rule (T-Obj), \(\emptyset \Gamma; \rho' \vdash o : A'' \)

Thus by Rule (T-AtConst), \(\emptyset \Gamma; \rho \vdash \text{at}(\rho') o : A'' \)

Let \(\text{obj}(A) = \{ l_i : B_i \}_{i \in 1..m} \)

Let \(C \equiv \{ l_i : B_i \}_{i \in 1..m}, \rho' \).

Since \(A'' \leq A' \leq A \), we have

1. \(m \leq n \) and
2. \(\forall j \in 1..m, B'' j = B_j \)

By definition of \(\leq \), \(A'' \leq C \)

Hence by Rule (T-Sub),

\[\emptyset \Gamma; \rho \vdash \text{at}(\rho') o : C \text{ i.e. } \]

\[\emptyset \Gamma; \rho \vdash \text{at}(\rho') o : \{ l_i : B_i \}_{i \in 1..m}, \rho' \]

Next, we have \(\emptyset \vdash \rho' \) and

\[X; (\Gamma, x : (\text{obj}(A), X)); \rho \vdash b : B \text{ i.e. } \]

\[X; (\Gamma, x : (\{ l_i : B_i \}_{i \in 1..m}, X)); \rho \vdash b : B \]

Hence by type substitution (Lemma 15)
Similar to type preservation, we prove this using structural induction on the derivation of $\emptyset (\Gamma, x : ([l_i : B_{i \in 1..m}], X))[X := \rho']; \rho[X := \rho'] \vdash b : B[X := \rho']$

Since X is new,

$\Gamma[X := \rho'] \equiv \Gamma$,

$([l_i : B_{i \in 1..m}], X)[X := \rho'] \equiv ([l_i : B_{i \in 1..m}], \rho')$,

$\rho[X := \rho'] \equiv \rho$

Also $B[X := \rho'] \equiv B$, since $\emptyset \vdash_p B$

Thus, $\emptyset (\Gamma, x : ([l_i : B_{i \in 1..m}], \rho')); \rho \vdash b : B$

Thus by value substitution (Appendix 17)

$\emptyset; \Gamma; \rho \vdash b[x := at(\rho') a] : B$

Case proved.

Rule (T-Sub). The derivation is of the form

$$\emptyset; \Gamma; \rho \vdash a : A \quad A \leq B$$

$\emptyset; \Gamma; \rho \vdash a : B$

Since $\emptyset \vdash_p \Gamma$ and $\emptyset \vdash_p \rho$, $\vdash_p (\emptyset, \Gamma, \rho, a, A)$.

If $\rho \vdash a \rightarrow a'$,

then by the induction hypothesis,

$\vdash_p (\emptyset, \Gamma, \rho, a', A)$

i.e. $\emptyset; \Gamma; \rho \vdash a' : A$

Hence by Rule (T-Sub),

$\emptyset; \Gamma; \rho \vdash a' : B$

i.e. $\vdash_p (\emptyset, \Gamma, \rho, a', B)$

Case proved.

Hence type preservation is proved.

Theorem 19 (Type Progress).

If, $\vdash_p (\emptyset, \emptyset, \rho, a, A)$ then, a is not stuck at ρ.

Proof. Similar to type preservation, we prove this using structural induction on the derivation of $\emptyset; \emptyset; \rho \vdash a : A$. The subcases are based on the typing rules in Figure 2 and semantic rules in Figure 1. In two subcases a is a value and hence the theorem is trivially true. In another subcase, a is a variable; this case does not apply since $\Gamma \neq \emptyset$. We consider only the remaining subcases. The important ones are those for method invocation Rule (T-Call) and method update Rule (T-Update). In both the cases, a static place check ensures that the program can take a step in a place-safe manner during execution.

Rule (T-Obj). The derivation is of the form

$$\forall j \in 1..n \quad \emptyset; (\emptyset, x_j : A); \rho \vdash b_i : B_i \quad \emptyset \vdash_p A \quad A \equiv ([l_i : B_{i \in 1..n}], \rho)$$

$\emptyset; \emptyset, \rho \vdash [l_i = \varsigma(x_i) b_i \in 1..n] \quad A$

By Rule (O-Obj),

$[l_i = \varsigma(x_i) b_i \in 1..n]$ takes a step to the value $at(\rho)$ $[l_i = \varsigma(x_i) b_i \in 1..n]$

Case proved.

Rule (T-Call). The derivation is of the form

$$\emptyset; \emptyset, \rho \vdash a : A \quad j \in 1..n \quad A \equiv ([l_i : B_{i \in 1..n}], \pi) \quad \pi = \rho$$

$\emptyset; \emptyset, \rho \vdash a[l_j := B_j]$

Since $\emptyset \vdash_p \emptyset$ and $\emptyset \vdash_p \pi, \vdash_p (\emptyset, \emptyset, \rho, a, A)$
If a is not a value, then by the induction hypothesis, $\rho \vdash a \rightarrow a'$. Consequently, by Rule (O-Call-Cong),

$$\rho \vdash a.l_j \rightarrow a'l_j$$

If a is a value, then by canonical-forms (Lemma 8) and value place form (Lemma 10), $a \equiv \text{at}(\rho') o$ and $\pi = \rho'$, where $o \equiv [l_i = \varsigma(x_i) b_i \, \forall i \in 1..n]$. Also, $\pi = \rho$ and $\pi = \rho'$

Thus, $\rho = \rho'$. This is the static place check.

So by Rule (O-Call-Comp),

$$\rho \vdash (\text{at}(\rho') o).l_j \rightarrow b_j[x_j := \text{at}(\rho') o]$$

Case proved.

- Rule (T-Update). The derivation is of the form

$$\nu, \rho \vdash a : A \quad \nu, (\emptyset, x : A); \rho \vdash b : B_j \quad j \in 1..n$$

$$A \equiv [l_i : B_i \, \forall i \in 1..n], \pi = \rho$$

$$\emptyset ; \rho \vdash a.l_j \leftarrow \varsigma(x) b : A$$

Since $\emptyset \vdash_E \emptyset$ and $\emptyset \vdash_p \pi$, $\vdash_p (\emptyset, \emptyset, \rho, a, A)$

If a is not a value, then by the induction hypothesis, $\rho \vdash a \rightarrow a'$

Consequently, by Rule (O-Update-Cong),

$$\rho \vdash a.l \leftarrow \varsigma(x) b \rightarrow a'.l \leftarrow \varsigma(x) b$$

If a is a value, then by canonical-forms (Lemma 8) and value place form (Lemma 10), $a \equiv \text{at}(\rho') o$ and $\pi = \rho'$, where $o \equiv [l_i = \varsigma(x_i) b_i \, \forall i \in 1..n]$.

Replacing l_j in o with $\varsigma(x)$ b we get a new object,

$$o' \equiv [l_i = \varsigma(x_i) b_i \, \forall i \in 1..n], \quad l_j = \varsigma(x) b$$

Also, $\pi = \rho$ and $\pi = \rho'$

Thus, $\rho = \rho'$. This is the static place check.

So by Rule (O-Update-Comp),

$$\rho \vdash (\text{at}(\rho') o).l_j \leftarrow \varsigma(x) b \rightarrow \text{at}(\rho') o'$$

Case proved.

- Rule (T-AtObject). The derivation is of the form

$$\emptyset, \emptyset, \rho \vdash a : A \quad A \equiv [l_i : B_i \, \forall i \in 1..n], \pi \equiv \pi$$

$$\emptyset, \emptyset, \rho \vdash \text{at}(a\text{.place}) b : B$$

Since $\emptyset \vdash_E \emptyset$ and $\emptyset \vdash_p \pi$, $\vdash_p (\emptyset, \emptyset, \rho, a, A)$

If a is not a value, then by the induction hypothesis, $\rho \vdash a \rightarrow a'$

Consequently, by Rule (O-AtObject-Cong),

$$\rho \vdash \text{at}(a\text{.place}) b \rightarrow \text{at}(a'\text{.place}) b$$

If a is a value, then by canonical-forms (Lemma 8),

$$a \equiv \text{at}(\rho') o$$

So by Rule (O-AtObject-Comp),

$$\rho \vdash \text{at}((\text{at}(\rho') o)\text{.place}) b \rightarrow \text{at}(\rho') b$$

Case proved.

- Rule (T-AtConst). The derivation is of the form

$$\emptyset, \emptyset, \rho' \vdash b : B$$

$$\emptyset, \emptyset, \rho \vdash \text{at}(\rho') b : B$$
Since $\emptyset \vdash E$ and $\emptyset \vdash p$, $\vdash (\emptyset, \emptyset, b, B)$

If b is not a value, then by the induction hypothesis, $\rho \vdash b \rightarrow b'$

Consequently, by Rule (O-AtConst-Cong),

$\rho \vdash at(\rho') b \rightarrow at(\rho') b'$

If b is a value, then by Rule (O-AtConst-Ret)

$\rho \vdash at(\rho') v \rightarrow v$

Case proved.

Rule (T-Open). The derivation is of the form

$\emptyset, \emptyset \vdash a : A \quad X ; (\emptyset, x : (obj(A), X)) ; \rho \vdash b : B$

$X \not\in \emptyset \quad \emptyset \vdash \rho \vdash \emptyset$

Since $\emptyset \vdash E$ and $\emptyset \vdash p$, $\vdash (\emptyset, \emptyset, a, A)$

If a is not a value, then by the induction hypothesis, $\rho \vdash a \rightarrow a'$

Consequently, by Rule (O-Open-Cong),

$\rho \vdash open x = a \ in \ b \rightarrow open x = a' \ in \ b$

If a is a value, then by canonical-forms (Lemma 8),

$a \equiv at(\rho') o$, where $o \equiv [l_i = c(x_i) b_i \ i \in \{1..n\}]$

So by Rule (O-Open-Comp),

$\rho \vdash open x = at(\rho') o \ in \ b \rightarrow b[x := at(\rho') o]$

Case proved.

Rule (T-Sub). The derivation is of the form

$\emptyset, \emptyset, \rho \vdash a : A \quad A \leq B$

$\emptyset, \emptyset, \rho \vdash a : B$

Since $\emptyset \vdash E$ and $\emptyset \vdash p$, $\vdash (\emptyset, \emptyset, a, A)$

If a is not a value, then by the induction hypothesis, $\rho \vdash a \rightarrow a'$

If a is a value, then the result holds trivially from the theorem statement.

Case proved.

Hence progress is proved.

Now we are ready to prove Theorem 1, which we restate here for convenience.

Theorem 1 (Type Soundness). If $\vdash (\emptyset, \emptyset, p, a, A)$, then a cannot go wrong at ρ.

Proof. Suppose a can go wrong at ρ. This means that for some a', we have $\rho \vdash a \rightarrow^* a'$

and a' is stuck at ρ. However by type preservation (Theorem 18) and induction on the number of execution steps, we have $\vdash (\emptyset, \emptyset, p, a', A)$. Thus by progress (Theorem 19), a' is not stuck at ρ. Contradiction.
Proof of the Derived Type Rule for let (Theorem 2)

This section describes the proof of the derived type rule for the let syntactic sugar

Lemma 20. \(\text{at}(x.\text{place}) \ x.f \) is place independent.

Proof. We need to show that if \(\Delta; (\Gamma, x : A); \pi_c \vdash \text{at}(x.\text{place}) \ x.f : B \), then \(\forall \pi : \Delta; (\Gamma, x : A) ; \pi \vdash \text{at}(x.\text{place}) \ x.f : B \)

Let \(\Gamma' = \Gamma, x : A \).

By inversion (Lemma 9, case 5), \(\exists B' \leq B \) such that
\[
\Delta; (\Gamma, x : A); \pi_c \vdash x : ([l_i : B_i \ i \in 1..n], \pi_x) \quad \text{(1)}
\]
where by inversion (Lemma 9, case 1),
\[
A \leq ([l_i : B_i \ i \in 1..n], \pi_x) \quad \text{and} \quad \Gamma'(x) = A
\]
Hence by Rule (T-Var) and Rule (T-Sub), for any \(\pi_c \),
\[
\Delta; (\Gamma, x : A); \pi \vdash x : ([l_i : B_i \ i \in 1..n], \pi_x)
\]

From (1) and (2) and Rule (T-Sub),
\[
\forall \pi : \Delta; (\Gamma, x : A) ; \pi \vdash \text{at}(x.\text{place}) \ x.f : B
\]
Hence proved.

Theorem 2 (Let Type Derivation).

\[
\Delta; \Gamma; \pi_c \vdash a : A \quad \Delta; (\Gamma, x : A); \pi_c \vdash b : B \\
\Delta \vdash_T A, B \quad \Delta \vdash_p \pi_c \\
\Delta; \Gamma; \pi_c \vdash \text{let} \ x = a \ \text{in} \ b : B \\
\]

Proof. Define \(A_0 \equiv ([f : A, r : B], \pi_c) \).

Clearly \(\Delta \vdash_T A_0 \), since \(\Delta \vdash_T A, B \) and \(\Delta \vdash_p \pi_c \) — (1)

We have \(\Delta; \Gamma; \pi_c \vdash a : A \).

By environment weakening (Lemma 11), we get
\[
\Delta; (\Gamma, s : A_0); \pi_c \vdash a : A
\]
We also have \(\Delta; (\Gamma, x : A); \pi_c \vdash b : B \)

Thus by environment weakening (Lemma 11), we get
\[
\Delta; (\Gamma, x : A, s : A_0); \pi_c \vdash b : B
\]

By Rule (T-Call) and Rule (T-AtObject), we get
\[
\Delta; (\Gamma, s : A_0); \pi_c \vdash a(\text{place}) \ s.f : A
\]
Moreover, by Lemma 20, \(a(\text{place}) \ s.f \) is independent of its place context.

Hence by (3), (4) and term substitution (Lemma 16),
\[
\Delta; (\Gamma, s : A_0); \pi_c \vdash b[x := a(\text{place}) \ s.f] : B
\]

From (1), (2), (5) and Rule (T-Obj),
\[
\Delta; \Gamma; \pi_c \vdash o : A_0
\]
Eventually from Rule (T-Call),
\[
\Delta; \Gamma; \pi_c \vdash o.r : B, \ \text{i.e.}, \ \\
\Delta; \Gamma; \pi_c \vdash \text{let} \ x = a \ \text{in} \ b : B.
\]
Thus proved.
C Proof that links Types and Constraints (Theorem 3)

In this section we prove that every solution to a constraint system has an equivalent type derivation and vice-versa.

We start with a few helper lemmas.

Lemma 21 (Well-formedness of typing derivations).

Given \(\vdash_p (\Delta; \Gamma; \pi_c, c, C) \), \(\Delta \vdash_T C \)

Proof. We prove this using induction on the structure of the typing derivation \(\Delta; \Gamma; \pi_c \vdash c : C \). There are eight cases:

- Rule (T-Var). The derivation is of the form
 \[
 \Gamma(x) = C \\
 \Delta; \pi_c \vdash x : C
 \]
 Since \(\Delta \vdash_E \Gamma, \Delta \vdash_T C \). Case proved.

- Rule (T-Obj). The derivation is of the form
 \[
 \forall j \in 1..n \Delta; (\Gamma, x_j : C); \pi_c \vdash b_j : B_j \\
 \Delta \vdash_T C \equiv ([l_i : B_i, i \in 1..n], \pi) \\
 \Delta; \pi_c \vdash [l_i = \zeta(x) b_j, i \in 1..n] : C
 \]
 Obvious from the typing derivation. Case proved.

- Rule (T-Call). The derivation is of the form
 \[
 \Delta; \Gamma; \pi_c \vdash a : A \quad j \in 1..n \quad A \equiv ([l_i : B_i, i \in 1..n], \pi) \\
 \Delta; \pi_c \vdash a.l_j : B_j
 \]
 By the induction hypothesis, \(\Delta \vdash_T A \). Hence \(\Delta \vdash_T B_j \). Case proved.

- Rule (T-Update). The derivation is of the form
 \[
 \Delta; \Gamma; \pi_c \vdash a : C \quad \Delta; (\Gamma, x_j : C); \pi \vdash b_j : B_j \\
 C \equiv ([l_i : B_i, i \in 1..n], \pi) \\
 \Delta; \pi_c \vdash a.l_j \equiv \zeta(x) b : C
 \]
 Straightforward from the induction hypothesis. Case proved.

- Rule (T-AtObject). The derivation is of the form
 \[
 \Delta; \Gamma; \pi_c \vdash a : A \quad A \equiv ([l_i : B_i, i \in 1..n], \pi) \\
 \Delta; \Gamma; \pi_c \vdash \text{at(a.place)} b : C
 \]
 From the first induction hypothesis, \(\Delta \vdash_T A \). Hence \(\Delta \vdash_p \pi \). Thus from the second induction hypothesis, \(\Delta \vdash_T C \). Case proved.

- Rule (T-AtConst). The derivation is of the form
 \[
 \Delta; \Gamma; \pi_c \vdash b : C \\
 \Delta; \Gamma; \pi_c \vdash \text{at(a.place)} b : C
 \]
 \(\Delta \vdash_E \Gamma \) and \(\Delta \vdash_p \rho \). Hence from the induction hypothesis, \(\Delta \vdash_T C \). Case proved.
Rule (T-Open). The derivation is of the form

\[\Delta, \Gamma; \pi \vdash a : A \]
\[(\Delta, X); (\Gamma, x : \text{obj}(A), X)); \pi \vdash b : C \]
\[X \notin \Delta \quad \Delta \vdash_T C \]
\[\Delta, \Gamma; \pi \vdash \text{open } x = a \text{ in } b : C \]

Obvious from the typing derivation. Case proved.

Rule (T-Sub). The derivation is of the form

\[\Delta, \Gamma; \pi \vdash a : A \]
\[A \leq C \]
\[\Delta, \Gamma; \pi \vdash a : C \]

From the induction hypothesis, \(\Delta \vdash_T A \). Since \(A \leq C \), \(\Delta \vdash_T C \). Case proved.

Hence proved.

\[\trianglelefteq \]

Lemma 22 (Well-formedness of typing context).

Given \(\vdash_P (\Delta, \Gamma, \pi_c, c, C) \), then for every typing derivation of the form \(\Delta'; \Gamma'; \pi' \vdash a : A \) in the typing derivation of \(c, \vdash_P (\Delta', \Gamma', \pi', a, A) \)

Proof. We show that for every judgment of the form \(\Delta; \Gamma; \pi \vdash c : C \), the result holds for all the derivations in its premise. In case of Rule (T-Var) the only typing derivation is that of the variable itself and hence the result is evident from the lemma statement itself. There are seven remaining cases.

Rule (T-Obj). The derivation is of the form

\[\forall j \in 1..n \quad \Delta; (\Gamma, x_j : C); \pi \vdash b_j : B_j \]
\[\Delta \vdash_T C \]
\[C \equiv ([l_i : B_i ; i \in 1..n], \pi) \]
\[\Delta, \Gamma; \pi \vdash [l_i = \varsigma(x_i) b_i ; i \in 1..n] : C \]

\[\Delta \vdash_E \Gamma \text{ and } \Delta \vdash_P \pi_c. \text{ Also, } \Delta \vdash_T C. \]
Hence \(\forall j \in 1..n, \Delta \vdash_E (\Gamma, x_j : C) \).
Hence \(\forall j \in 1..n, \vdash_P (\Delta, (\Gamma, x_j : C), \pi_c, b_j, B_j) \). Case proved.

Rule (T-Call). The derivation is of the form

\[\Delta; \Gamma; \pi \vdash a : A \quad j \in 1..n \quad A \equiv ([l_i : B_i ; i \in 1..n], \pi) \quad \pi_c = \pi \]
\[\Delta, \Gamma; \pi \vdash a.l_j : B_j \]
\[\Delta \vdash_E \Gamma \text{ and } \Delta \vdash_P \pi_c. \text{ Hence } \vdash_P (\Delta, \Gamma, \pi_c, a, A). \]
Case proved.

Rule (T-Update). The derivation is of the form

\[\Delta; \Gamma; \pi \vdash a : C \quad \Delta; (\Gamma, x : C); \pi \vdash b : B_j \quad j \in 1..n \]
\[C \equiv ([l_i : B_i ; i \in 1..n], \pi) \quad \pi_c = \pi \]
\[\Delta, \Gamma; \pi \vdash a.l_j \equiv \varsigma(x) b : C \]
\[\Delta \vdash_E \Gamma \text{ and } \Delta \vdash_P \pi_c. \text{ Hence } \vdash_P (\Delta, \Gamma, \pi_c, a, C) \]
Hence from Lemma 21, \(\Delta \vdash_T C \).
Thus \(\Delta \vdash_E (\Gamma, x : C) \). Since \(\pi_c = \pi \), \(\Delta \vdash_P \pi_c \).
Hence \(\vdash_P (\Delta, (\Gamma, x : C), \pi, b, B_j) \)
Case proved.

- Rule (T-AtObject). The derivation is of the form

\[
\Delta; \pi_c \vdash a : A \quad \Delta; \pi_c \vdash b : C
\]

\[
\Delta; \pi_c \vdash \text{at}(a, \text{place}) : b : C
\]

\[\Delta \vdash E\ \Gamma\ \text{and}\ \Delta \vdash \rho \pi_c\ \text{Hence}\ \vdash P(\Delta, \Gamma, \pi_c, a, A)\]

Hence from Lemma 21, \[\Delta \vdash T\] i.e. \[\Delta \vdash \rho \pi_c\] Hence \[\vdash P(\Delta, \Gamma, \pi, b, C)\]

Case proved.

- Rule (T-AtConst). The derivation is of the form

\[
\Delta; \rho \vdash b : C
\]

\[
\Delta; \pi_c \vdash \text{at}(\rho) : b : C
\]

\[\Delta \vdash E\ \Gamma\ \text{and}\ \Delta \vdash \rho \pi_c\ \text{Hence}\ \vdash P(\Delta, \Gamma, \rho, b, C)\]

Case proved.

- Rule (T-Open). The derivation is of the form

\[
\Delta; \Gamma; \pi_c \vdash a : A
\]

\[
(\Delta, X) ; (\Gamma, x : \text{obj}(A), X) ; \pi_c \vdash b : C
\]

\[
X \notin \Delta \quad \Delta \vdash T C
\]

\[\Delta \vdash E\ \Gamma\ \text{and}\ \Delta \vdash \rho \pi_c\ \text{Hence}\ \vdash P(\Delta, \Gamma, \rho, b, C)\]

Case proved.

- Rule (T-Sub). The derivation is of the form

\[
\Delta; \pi_c \vdash a : A \quad A \leq C
\]

\[\Delta; \pi_c \vdash a : C\]

\[\Delta \vdash E\ \Gamma\ \text{and}\ \Delta \vdash \pi_c\ \text{Hence}\ \vdash P(\Delta, \Gamma, \pi_c, a, A)\]

Case proved.

Hence proved.

We now prove Theorem 3. We restate the theorem here for convenience.

Theorem 3 (From Types to Constraints).

\(\vdash P(\Delta, \Gamma, \pi_c, c, C)\) if and only if \(\Delta; \Gamma \vdash c : Q_c\) and there exists a solution \(h\) for

\[
\tilde{Q}_c = Q_c \cup \left\{ \bigcup_{y \in \Gamma} O_y \subseteq O, H_y \in H D \cup \text{unkn} \right\} \cup \{H'_c \in H D\} \quad \text{(where} \ D \equiv \Delta \cup \text{Places})
\]

such that

\(h \triangleright \Gamma\).
\[\tilde{\Gamma} = \text{dom}(\Gamma), \]
\[\tilde{h}(H'_x) = \pi_c, \text{ and} \]
\[(\tilde{h}(O_c), \tilde{h}(H_c)) = C. \]

Proof. We first prove that if a solution \(h \) for the set of constraints \(\tilde{Q}_c \) exists, then \(\vdash_P (\Delta, \Gamma, \pi_c, c, C) \). We do this using induction on \(\Delta; \tilde{\Gamma} \vdash c : \tilde{Q}_c \).

Rule (C-Var) when \(c \equiv x \)
\(h \triangleright \Gamma \). Hence \(\Gamma(x) = (h(O_x), h(H_x)) \).
Also, \(\forall y \in \tilde{\Gamma}, \tilde{h}(O_y) \subseteq \{ \Delta \cup \text{Places} \cup \text{unkn} \} \) and \(\tilde{h}(H_y) \in \{ \Delta \cup \text{Places} \cup \text{unkn} \} \). Hence \(\Delta \vdash_{E} \Gamma \).
Similarly, \(\tilde{h}(H'_x) \in \Delta \cup \text{Places} \). Hence \(\Delta \vdash_P \pi_c \).
Let \((\tilde{h}(O^*_x), \tilde{h}(H^*_x)) = C \). Since \(O_x \leq O^*_x \) and \(H_x \leq H^*_x \), \(\Gamma(x) \leq C \)
Thus by Rule (T-Var) and Rule (T-Sub),
\[\Delta; \Gamma; \pi_c \triangleright x : C \]
Hence by Rule (T-Prog), \(\vdash_P (\Delta, \Gamma, \pi_c, x, C) \)
Case proved.

Rule (C-Obj) when \(c \equiv \{ l_i = \zeta(x_i) b_i \ | \ i \in \{1..n\} \} \)
Let \(\{ l_i : (h(O_{b_i}), h(H_{b_i})) \ | \ i \in \{1..n\} \} = \{ l_i : B_i \ | \ i \in \{1..n\} \} \),
\(C = (\tilde{h}(O_{\{l_i = \zeta(x_i) b_i \ | \ i \in \{1..n\}\}}), \tilde{h}(H_{\{l_i = \zeta(x_i) b_i \ | \ i \in \{1..n\}\}})) \) and
\(\tilde{h}(H'_{\{l_i = \zeta(x_i) b_i \ | \ i \in \{1..n\}\}}) = \pi_c \)
Clearly, by Rule (C-Obj), \(\{ \{ l_i : B_i \ | \ i \in \{1..n\} \}, \pi_c \} \leq C \)
\[\forall j \in 1..n, B_j = (\tilde{h}(O_{b_j}), \tilde{h}(H_{b_j})), \]
\[\tilde{h}(O_{x_j}) = \{ l_i : B_i \ | \ i \in \{1..n\} \} \]
\[\tilde{h}(H_{x_j}) = \tilde{h}(H'_{\{l_i = \zeta(x_i) b_i \ | \ i \in \{1..n\}\}}) = \pi_c \neq \text{unkn} \]
Thus, \(\forall j \in 1..n, h \triangleright (\Gamma, x_j : (\{ l_i : B_i \ | \ i \in \{1..n\} \}, \pi_c)) \)
\[\forall j \in 1..n, \tilde{h}(O_{x_j}) \subseteq \{ \Delta \cup \text{Places} \cup \text{unkn} \} \]
\[\forall y \in (\Gamma, x_j), \tilde{h}(O_y) \subseteq \{ \Delta \cup \text{Places} \cup \text{unkn} \} \] and \(\tilde{h}(H_y) \in \{ \Delta \cup \text{Places} \cup \text{unkn} \} \)
Thus, for all terms \(b_j, j \in 1..n \), with the bound variable \(x_j \), using the induction hypothesis,
\(\vdash_P (\Delta, (\Gamma, x_j : (\{ l_i : B_i \ | \ i \in \{1..n\} \}, \pi_c)), \pi_c, b_j, B_j) \)
\[\Delta; \Gamma; \pi_c \vdash b_j : B_j \]
Also, \(\Delta \vdash_T (\{ l_i : B_i \ | \ i \in \{1..n\} \}, \pi_c) \)
Hence by Rule (T-Obj) and Rule (T-Sub),
\[\Delta; \Gamma; \pi_c \vdash [l_i = \zeta(x_i) b_i \ | \ i \in \{1..n\}] : C \]
Also, \(\Delta \vdash_E \Gamma \) and \(\Delta \vdash_P \pi_c \).
Hence, \(\vdash_P (\Delta, \Gamma, \pi_c, [l_i = \zeta(x_i) b_i \ | \ i \in \{1..n\}], C) \)
Case proved.

Rule (C-Call) when \(c \equiv a.l_j \)
Since \(h \) is a solution of \(\tilde{Q}_{a,l_j} \), it is also a solution of \(\tilde{Q}_a \).
From Rule (C-Call), \(h(H'_a) = h(H_a) = \pi_c \)
Also from Rule (C-Call), \(h(H'_a) = h(H_a) \). Hence \(h(H_a) \neq \text{unkn} \)
Let \(h(O_a) = \{ l_i : B_i \ | \ i \in \{1..n\} \} \) and \(h(H_a) = \pi \)
Also \(h \triangleright \Gamma, \tilde{\Gamma} = \text{dom}(\Gamma) \) and \(\forall y \in \tilde{\Gamma}, \tilde{h}(O_y) \subseteq \{ \Delta \cup \text{Places} \cup \text{unkn} \} \) and \(\tilde{h}(H_y) \in \{ \Delta \cup \text{Places} \cup \text{unkn} \} \)
\(\{ \Delta \cup \text{Places} \cup \text{unkn} \} \) and \(\tilde{h}(H'_{a.l_j}) \in \Delta \cup \text{Places} \) i.e. \(\tilde{h}(H'_a) \in \Delta \cup \text{Places} \)

Thus, by the induction hypothesis,
\[\vdash_p (\Delta, \Gamma, \pi_c, a, ([l_i : B_i \in \mathbb{E}^{1..n}], \pi)) \]
i.e. \(\Delta ; \Gamma ; \pi_c \vdash a : ([l_i : B_i \in \mathbb{E}^{1..n}], \pi) \)

Also \(b(H_a) = \pi \Rightarrow b(H'_a) = \pi_c \)

Thus, by Rule (T-Call), \(\Delta ; \Gamma ; \pi_c \vdash a.l_j : B_j \)

Let \(\tilde{h}(O_{a.l_j}), \tilde{h}(H_{a.l_j}) = C \)

By Rule (C-Call), since \(O_a \leq_{O} [l_j : (O_{a.l_j}, H_{a.l_j})] \), \(O_{a.l_j} \leq_{O} O_a.l_j \) and \(H_{a.l_j} \leq_{H} H_{a.l_j} \), \(B_j \leq C \)

Thus, by Rule (T-Sub), \(\Delta ; \Gamma ; \pi_c \vdash a.l_j : C \)

Also since \(\Delta \vdash \Gamma \) and \(\Gamma \vdash_p \pi_c \), \(\vdash_c (\Delta, \Gamma, \pi_c, a.l_j, C) \)

Case proved.

Rule (C-Update) when \(c \equiv a.l_j \leftarrow \varsigma(x) \) \(b \)

Since \(h \) is a solution of \(Q_{a.l_j \leftarrow \varsigma(x)} b \), it is also a solution of \(Q_a \).

From Rule (C-Update), \(h(H'_a) = h(H'_{a.l_j \leftarrow \varsigma(x)} b) = \pi_c \)

Also from Rule (C-Update), \(h(H'_a) = h(H_a) \). Hence \(h(H_a) \neq \text{unkn} \)

Let \(b(H_a) = [l_i : B_i \in \mathbb{E}^{1..n}] \) and \(h(H_a) = \pi \)

Also \(b(\Gamma), \Gamma = \text{dom}(\Gamma) \) and \(\forall y \in \Gamma, \tilde{h}(O_y) \subseteq \{ \Delta \cup \text{Places} \cup \text{unkn} \} \) and \(\tilde{h}(H_y) \in \{ \Delta \cup \text{Places} \cup \text{unkn} \} \) and \(\tilde{h}(H'_{a.l_j \leftarrow \varsigma(x)} b) \in \Delta \cup \text{Places} \) i.e. \(\tilde{h}(H'_a) \in \Delta \cup \text{Places} \)

Hence using the first induction hypothesis,
\[\vdash_p (\Delta, \Gamma, \pi_c, a, ([l_i : B_i \in \mathbb{E}^{1..n}], \pi)) \]
i.e. \(\Delta ; \Gamma ; \pi_c \vdash a : ([l_i : B_i \in \mathbb{E}^{1..n}], \pi) \), \(\Delta \vdash \Gamma \) and \(\Gamma \vdash_p \pi_c \)

From Lemma 21, \(\Delta \vdash \Gamma ([l_i : B_i \in \mathbb{E}^{1..n}], \pi) \)

Hence, by the definition of place types, \(\tilde{h}(O_a) \subseteq \Delta \cup \text{Places} \cup \text{unkn} \) and \(\tilde{h}(H_a) \in \Delta \cup \text{Places} \)

Moreover, since \(O_a \leq [l_j : (O_b, H_b)] \)

\(\tilde{h}(O_a) \leq [l_j : (\tilde{h}(O_b), \tilde{h}(H_b))] \)

Since, \([l_i : B_i \in \mathbb{E}^{1..n}] \leq [l_j : B_j] \), \(B_j = (\tilde{h}(O_b), \tilde{h}(H_b)) \)

Also, from Rule (C-Update),
\[\tilde{h}(H'_a) = \tilde{h}(H'_{a.l_j \leftarrow \varsigma(x)} b) = \pi_c \]
\[\tilde{h}(O_a) = [l_i : B_i \in \mathbb{E}^{1..n}] \) and \(\tilde{h}(H_a) = \pi \)

\(\tilde{h}(O_a) \subseteq \Delta \cup \text{Places} \cup \text{unkn} \) and \(\tilde{h}(H_a) \in \Delta \cup \text{Places} \)

Thus, \(b(\Gamma), x : ([l_i : B_i \in \mathbb{E}^{1..n}], \pi) \)

\(\forall y \in 1..n, \Gamma, x = \text{dom}(\Gamma, x : ([l_i : B_i \in \mathbb{E}^{1..n}], \pi)) \)

Also, \(\forall y \in (\Gamma, x), \tilde{h}(O_y) \subseteq \{ \Delta \cup \text{Places} \cup \text{unkn} \} \) and \(\tilde{h}(H_y) \in \{ \Delta \cup \text{Places} \cup \text{unkn} \} \)

Lastly, since \(\tilde{h}(H'_a) = \tilde{h}(H_a), \pi_c = \pi \)

Hence, \(\tilde{h}(H'_a) = \pi \) i.e. \(\tilde{h}(H'_a) \in \Delta \cup \text{Places} \)

Thus by the second induction hypothesis, for subterm \(b \) with bound variable \(x \),
\[\vdash_p (\Delta, \Gamma, x : ([l_i : B_i \in \mathbb{E}^{1..n}], \pi)), b, B_j \]
i.e. \(\Delta ; \Gamma ; x : ([l_i : B_i \in \mathbb{E}^{1..n}], \pi) ; \pi \vdash b : B_j \)

Hence by Rule (T-Update),
\[\Delta ; \Gamma ; \pi_c \vdash a.l_j \leftarrow \varsigma(x) \) \(b : ([l_i : B_i \in \mathbb{E}^{1..n}], \pi) \)

Let \(\tilde{h}(O_{a.l_j \leftarrow \varsigma(x)} b), \tilde{h}(H_{a.l_j \leftarrow \varsigma(x)} b) \) \(C \)

By Rule (C-Update), since \(O_a \leq_{O} O_{a.l_j \leftarrow \varsigma(x)} b \) and \(H_a \leq_{H} H_{a.l_j \leftarrow \varsigma(x)} b \), \(([l_i : B_i \in \mathbb{E}^{1..n}], \pi) \leq C \)

Thus, by Rule (T-Sub), \(\Delta ; \Gamma ; \pi_c \vdash a.l_j \leftarrow \varsigma(x) \) \(b : C \)

Also since \(\Delta \vdash \Gamma \) and \(\Gamma \vdash_p \pi_c \),
\[\vdash_p (\Delta, \Gamma, \pi_c, a.l_j \leftarrow \varsigma(x) \) \(b : C \) \]
Case proved.

- Rule (C-AtObject) when \(c \equiv \text{at}(a, \text{place}) \) \(b \)
 Since \(h \) is a solution of \(Q_{\text{at}(a, \text{place})} b \), it is also a solution of \(Q_b \).
 By Rule (C-AtObject), \(\tilde{h}(H_a) \not\equiv \text{unkn} \)
 Let \(h(H_a) = \pi \) and \(\tilde{h}(O_a) = [l_i : B_i i \in 1..n] \).
 Let, \(\tilde{h}(H'_a) = \tilde{h}(H'_{\text{at}(a, \text{place})} b) = \pi_c \)
 Also \(h \triangleright \Gamma, \bar{\Gamma} = \text{dom}(\Gamma) \) and \(\forall y \in \bar{\Gamma}, \tilde{h}(O_y) \subseteq \{\Delta \cup \text{Places} \cup \text{unkn}\} \) and \(\tilde{h}(H_y) \in \{\Delta \cup \text{Places} \cup \text{unkn}\} \) and \(\tilde{h}(H'_a) \in \Delta \cup \text{Places} \)
 Thus by the first induction hypothesis,
 \(\vdash_p (\Delta, \Gamma, \pi_c, a, ([l_i : B_i i \in 1..n], \pi)) \)
 i.e. \(\Delta; \Gamma; \pi_c \triangleright a : ([l_i : B_i i \in 1..n], \pi) \).
 We have, \(\tilde{h}(H'_a) = \tilde{h}(H_a) = \pi \)
 Since \(\tilde{h}(H_a) \in \Delta \cup \text{Places} \), \(\tilde{h}(H'_a) \in \Delta \cup \text{Places} \)
 Also, since \(h \) is a solution of \(Q_{\text{at}(a, \text{place})} b \), it is also a solution of \(Q_b \).
 Let \(B = (\tilde{h}(O_b), \tilde{h}(H_b)) \)
 Thus by the second induction hypothesis,
 \(\vdash_p (\Delta, \Gamma, \pi, b, B) \) i.e. \(\Delta; \Gamma; \pi \vdash b : B \).
 Thus by Rule (T-AtObject),
 \(\Delta; \Gamma; \pi_c \vdash \text{at}(a, \text{place}) \) \(b : B \)
 Lastly, let \(C = (\tilde{h}(O_{\text{at}(a, \text{place})} b), \tilde{h}(H_{\text{at}(a, \text{place})} b)) \)
 By Rule (C-AtObject), since \(O_b \subseteq O_{\text{at}(a, \text{place})} b \) and \(H_b \subseteq H_{\text{at}(a, \text{place})} b \), \(B \leq C \)
 Thus, by Rule (T-Sub), \(\Delta; \Gamma; \pi_c \vdash \text{at}(a, \text{place}) \) \(b : C \)
 Also since \(\Delta \vdash E \) \(\Gamma \) and \(\Delta \vdash p \) \(\pi_c \),
 \(\vdash_p (\Delta, \Gamma, \pi_c, \text{at}(a, \text{place}) b, C) \)
 Case proved.

- Rule (C-AtConst) when \(c \equiv \text{at}(\rho) \) \(b \)
 Since \(h \) is a solution of \(Q_{\text{at}(\rho)} b \), it is also a solution of \(Q_b \).
 Let \(B = (\tilde{h}(O_b), \tilde{h}(H_b)) \)
 Moreover, \(\tilde{h}(H'_b) = \rho \) i.e. \(\tilde{h}(H'_b) \in \Delta \cup \text{Places} \)
 Also \(h \triangleright \Gamma, \bar{\Gamma} = \text{dom}(\Gamma) \) and \(\forall y \in \bar{\Gamma}, \tilde{h}(O_y) \subseteq \{\Delta \cup \text{Places} \cup \text{unkn}\} \) and \(\tilde{h}(H_y) \in \{\Delta \cup \text{Places} \cup \text{unkn}\} \)
 Thus by the induction hypothesis,
 \(\vdash_p (\Delta, \Gamma, \rho, b, B) \) i.e. \(\Delta; \Gamma; \rho \vdash b : B \).
 Thus by Rule (T-AtConst),
 \(\Delta; \Gamma; \pi_c \vdash \text{at}(\rho) \) \(b : B \)
 Lastly, let \(C = (\tilde{h}(O_{\text{at}(\rho)} b), \tilde{h}(H_{\text{at}(\rho)} b)) \)
 By Rule (C-AtConst), since \(O_b \subseteq O_{\text{at}(\rho)} b \) and \(H_b \subseteq H_{\text{at}(\rho)} b \), \(B \leq C \)
 Thus, by Rule (T-Sub), \(\Delta; \Gamma; \pi_c \vdash \text{at}(\rho) \) \(b : C \)
 Also since \(\Delta \vdash E \) \(\Gamma \) and \(\Delta \vdash p \) \(\pi_c \),
 \(\vdash_p (\Delta, \Gamma, \pi_c, \text{at}(\rho) b, C) \)
 Case proved.

- Rule (C-Open) when \(c \equiv \text{open} \) \(x = a \) \(in \) \(b \)
 Let \(\tilde{h}(O_a), \tilde{h}(H_a) = A \)
 By Rule (C-Open), \(\tilde{h}(O_a) = \tilde{h}(O_x) = \text{obj}(A) \)
 Also, \(\tilde{h}(H'_a) = \tilde{h}(H'_{\text{open} x=a in b}) \) and \(\tilde{h}(H'_{\text{open} x=a in b}) \in \Delta \cup \text{Places} \), \(\tilde{h}(H'_a) \in \Delta \cup \text{Places} \)
 Case proved.
Thus if the constraints for a term form, \(\Delta; \Gamma; \pi_c; a, A \) i.e \(\Delta; \Gamma; \pi_c \vdash a : A \)
Also, \(\tilde{h}(H_c) = X \)

Moreover, since \(\Delta \) is a solution of \(Q_{\text{open } x = a \text{ in } b} \), it is a solution of \(Q_b \).
Let \(((\tilde{h}(O_{\text{open } x = a \text{ in } b}), \tilde{h}(H_{\text{open } x = a \text{ in } b})) = (\tilde{h}(O_b), \tilde{h}(H_b)) = B \)

Thus using the second induction hypothesis, for subterm \(b \) with bound variable \(x \),
\(\vdash_p ((\Delta, X); (\Gamma, x : (\text{obj}(A), X)); \pi_c, b; B) \)
i.e. \(\Delta, X); (\Gamma, x : (\text{obj}(A), X)); \pi_c \vdash b : B \)
Also, evidently, \(X \notin \Delta \).

Lastly, \(\tilde{h}(H_b) \in \{ \Delta \cup \text{Places} \cup \text{unkn} \} \) and \(\tilde{h}(O_b) \in \{ \Delta \cup \text{Places} \cup \text{unkn} \} \) i.e., \(\Delta \vdash_T B \)

Hence by Rule (T-Open),
\(\Delta; \Gamma; \pi_c \vdash \text{open } x = a \text{ in } b : B \)

Lastly, let \(C = (\tilde{h}(O_{\text{open } x = a \text{ in } b}), \tilde{h}(H_{\text{open } x = a \text{ in } b})) \)
By Rule (C-Open), since \(O_b \leq O_{\text{open } x = a \text{ in } b} \) and \(H_b \leq H_{\text{open } x = a \text{ in } b} \), \(B \leq C \)

Thus, by Rule (T-Sub), \(\Delta; \Gamma; \pi_c \vdash \text{open } x = a \text{ in } b : C \)
Also since \(\Delta \vdash_p \Gamma \) and \(\Delta \vdash_p \pi_c \),
\(\vdash_p (\Delta, \Gamma, \pi_c, \text{open } x = a \text{ in } b, C) \)
Case proved.

Thus if the constraints for a term \(c \) are solvable, the type of \(c \) is derivable.

We now prove that if \(\vdash_p (\Delta, \Gamma, \pi_c, c, C) \) is derivable then there exists a solution \(h \) for the \(\tilde{h}_c \).

Given, \(\vdash_p (\Delta, \Gamma, \pi_c, c, C) \), let \(\Delta; \Gamma; \pi_c \vdash c : C \) be the minimal typing derivation i.e. a derivation with exactly one application of Rule (T-Var) for every subterm involving the occurrence of a variable \(x \), Rule (T-Obj) for every subterm \([l_i = \varsigma(x_i)]_{i \in 1..n} \), Rule (T-Call) for every subterm \(a.l_j \), Rule (T-Update) for every subterm \(a.l_j = \varsigma(x) \text{ in } b \), Rule (T-AtObject) for every subterm \(at(a, \text{place}) \text{ in } b \), Rule (T-AtConst) for every subterm \(at(p) \text{ in } b \) and Rule (T-Open) for every subterm \(\text{open } x = a \text{ in } b \). Also all applications of the Rule (T-Sub) for any subterm are contracted into one single application of that rule using the transitivity property of subtyping (Rule (S-Trans)). We first construct \(h \) for a typing derivation of the form, \(\Delta; \Gamma; \pi_c \vdash c : C \) as follows:

- For all free variables \(x \) in \(c \) define \(\Gamma(x) = (h(O_x), h(H_x)) \)
- For all bound variables \(x \) in \(c \), find the derivation of the form \(\Delta'; (\Gamma', x : A); \pi \vdash b : B \) corresponding to one of the rules Rule (T-Obj), Rule (T-Update) or Rule (T-Open), where \(x \) is bound and define \(A = (h(O_x), h(H_x)) \)
- For every subterm \(a \) of \(c \), with a derivation of the form \(\Delta'; \Gamma'; \pi \vdash a : A \) build the constraint derivation using rules in Figure 3 of the form, \(\Delta'; \text{dom}(\Gamma') \vdash a : \tilde{Q_a} \) such that,
 \(A = (h(O_a), h(H_a)) \) and \(h(H_a) = \pi \)
- For every subterm \(a.l_j \) of \(c \), find the unique application of the Rule (T-Call) of the form \(\Delta'; \Gamma'; \pi \vdash a.l_j : B_j \) and assign \(B_j = (h(O_{a.l_j}), h(H_{a.l_j})) \)
The construction of \(h \) clearly implies that \(h \triangleright \Gamma \) and \(\tilde{h} = dom(\Gamma) \) for every \(\Gamma, \tilde{h} \) in the constraint (and typing) derivation of all subterms of \(c \). We first prove that \(h \) is a solution to \(Q_c \). We do this by showing that each individual set of constraints generated corresponding to the typing derivation of a subterm of \(c \) is satisfied and hence the entire constraint set is satisfied. For each subterm of \(c \), we generate constraints corresponding to the following seven forms of terms and their typing derivations:

- \(x \). The judgment in the last derivation is of the form \(\Delta'; \Gamma'; \pi' \vdash x : A \) by construction of \(h \), we have, \(\Gamma'(x) = (\tilde{h}(O_x), \tilde{h}(H_x)) \) in one of the rules Rule (T-Obj), Rule (T-Update) or Rule (T-Open), where \(x \) is bound. Also by construction, \(A = (\tilde{h}(O_x^\pi), \tilde{h}(H_x^\pi)) \). The typing derivation of \(x \) would be arrived at by the unique application of Rule (T-Var) followed by at most one application of Rule (T-Sub). Hence, \(\Gamma'(x) \leq A \) i.e. \(\tilde{h}(O_x) \leq \tilde{h}(O_x^\pi) \) and, \(\tilde{h}(H_x) \leq \tilde{h}(H_x^\pi) \). Case proved.

- \([l_i = \varsigma(x_i) \ b_i \ i \in \{1..n\}] \). The judgment in the last derivation is of the form \(\Delta'; \Gamma'; \pi' \vdash [l_i = \varsigma(x_i) \ b_i \ i \in \{1..n\}] : A \).

 This has been derived from a unique application of Rule (T-Obj), where the premise of the derivation is \(\forall j \in 1..n, \Delta'; \Gamma'; x_j : ([l : B_i \ i \in \{1..n\}], \pi') \vdash b_j : B_j \).

 By construction, \(\forall j \in 1..n, (\tilde{h}(O_{x_j}), \tilde{h}(H_{x_j})) = ([l : B_i \ i \in \{1..n\}], \pi') \) and \((\tilde{h}(O_{b_j}), \tilde{h}(H_{b_j})) = B_j \).

 Also in the premise, \(\Delta' \vdash \pi' \ (\forall j : B_i \ i \in \{1..n\}, \pi') \), hence \(\tilde{h}(O_{x_j}) \subseteq \Delta' \cup \text{Places} \cup \{\text{unkn}\} \).

 Also by construction, \(\tilde{h}(H'_{\overset{|}{l_i} = \varsigma(x_i) \ b_i \ i \in \{1..n\}}) = \pi' \) and \(\tilde{h}(H_{b_j'}) = \pi' \).

 Lastly, \(A \) is derived by at most one application of Rule (T-Sub) after the application of Rule (T-Obj), and hence \(([l_i : B_i \ i \in \{1..n\}], \pi') \leq A \).

 By construction, \(A = (\tilde{h}(O_{\{l_i = \varsigma(x_i) \ b_i \ i \in \{1..n\}})), \tilde{h}(H_{\{l_i = \varsigma(x_i) \ b_i \ i \in \{1..n\}}})) \).

 Thus, \(\forall j \in 1..n, \tilde{h}(O_{x_j}) = \{l_i : (\tilde{h}(O_{b_j}), \tilde{h}(H_{b_j})) i \in \{1..n\}\} \)

 \(\tilde{h}(O_{x_j}) \subseteq \Delta' \cup \text{Places} \cup \{\text{unkn}\} \)

 \(\tilde{h}(H'_{\overset{|}{l_i} = \varsigma(x_i) \ b_i \ i \in \{1..n\}}) = \tilde{h}(H_{x_j}) \)

 \(\tilde{h}(H'_{\overset{|}{l_i} = \varsigma(x_i) \ b_i \ i \in \{1..n\}}) = \tilde{h}(H_{b_j}) \)

 \([l_i : (\tilde{h}(O_{b_j}), \tilde{h}(H_{b_j})) i \in \{1..n\}] \leq \tilde{h}(O_{\{l_i = \varsigma(x_i) \ b_i \ i \in \{1..n\}}}) \) and \(\tilde{h}(H'_{\overset{|}{l_i} = \varsigma(x_i) \ b_i \ i \in \{1..n\}}) \leq \tilde{h}(H_{\{l_i = \varsigma(x_i) \ b_i \ i \in \{1..n\}}}) \)

 Case proved.

- \(a.l_j \). The judgment in the last derivation is of the form \(\Delta'; \Gamma'; \pi' \vdash a.l_j : A \).

 This is derived from a unique application of Rule (T-Call) where the premise of the derivation is \(\Delta'; \Gamma'; \pi' \vdash a : ([l : B_i \ i \in \{1..n\}], \pi) \).

 Hence by construction, \((\tilde{h}(O_a), \tilde{h}(H_a)) = ([l : B_i \ i \in \{1..n\}], \pi) \).

 Also by construction, \(B_j = (\tilde{h}(O_{a.l_j}), \tilde{h}(H_{a.l_j})) \).

 Also, \(\tilde{h}(H'_{\overset{|}{l} = \varsigma(x_i) \ b_i \ i \in \{1..n\}}) = \pi' \) and \(\tilde{h}(H'_{\overset{|}{l} = \varsigma(x_i) \ b_i \ i \in \{1..n\}}) \).

 Since, \(\pi = \pi' \), \(\tilde{h}(H_a) = \tilde{h}(H_{a.l_j}) \).

 Lastly, \(A \) is derived by at most one application of Rule (T-Sub) after the application of Rule (T-Call), and hence \(B_j \leq A \).

 By construction, \(A = (\tilde{h}(O_{a.l_j}), \tilde{h}(H_{a.l_j})) \).

 Thus, \(\tilde{h}(O_a) \leq \{l_j : (\tilde{h}(O_{a.l_j}), \tilde{h}(H_{a.l_j}))\} \)

 \(\tilde{h}(H_a) = \tilde{h}(H_{a.l_j}) \)

 \(\tilde{h}(H'_{\overset{|}{l} = \varsigma(x_i) \ b_i \ i \in \{1..n\}}) \)
\[\hat{h}(O_{a,ij}) \leq \hat{h}(O_{a,ij}) \]
\[\hat{h}(H_{a,ij}) \leq \hat{h}(H_{a,ij}) \]

Case proved.

- \(a.l_j \leftarrow \zeta(x) b \). The judgment in the last derivation is of the form \(\Delta'; \Gamma'; \pi' \vdash \ a.l_j \leftarrow \zeta(x) b : A \).
This is derived from a unique application of Rule (T-Update) where the first premise of the derivation is \(\Delta'; \Gamma'; \pi' \vdash \ a : ([l_i : B_i] \ i \in [1..n], \pi) \)
By construction,
\[\hat{h}(O_a) = [l_i : B_i] \ i \in [1..n], \]
\[\hat{h}(H_a) = \pi, \]
\[\hat{h}(H''_a) = \pi', \]

Also, \(\hat{h}(H'_{a,l_j \leftarrow \zeta(x) b}) = \pi' \),
The second premise of the derivation is \(\Delta'; \Gamma', x : ([l_i : B_i] \ i \in [1..n], \pi); \pi \vdash \ b : B_j \)
Also, \(\hat{h}(O_a) = [l_i : B_i] \ i \in [1..n] \) and \(\hat{h}(H_a) = \pi \)
Also, \(B_j = (\hat{h}(O_b), \hat{h}(H_b)) \) and \(\hat{h}(H''_b) = \pi \)
Since, \(\pi = \pi', \hat{h}(H_a) = \hat{h}(H''_a) \)
Lastly, \(A \) is derived by at most one application of Rule (T-Sub) after the application of Rule (T-Update), and hence \(([l_i : B_i] \ i \in [1..n], \pi) \leq A \)
By construction,
\[A = (\hat{h}(O_{a,l_j \leftarrow \zeta(x) b}), \hat{h}(H_{a,l_j \leftarrow \zeta(x) b})) \]

Thus,
\[\hat{h}(O_a) \leq \hat{h}(O_{a,l_j \leftarrow \zeta(x) b}) \]
\[\hat{h}(H_a) \leq \hat{h}(H_{a,l_j \leftarrow \zeta(x) b}) \]
\[\hat{h}(O_a) \leq [l_i : (\hat{h}(O_b), \hat{h}(H_b))] \]
\[\hat{h}(O_a) = \hat{h}(O_b) \]
\[\hat{h}(H_a) = \hat{h}(H_b) \]
\[\hat{h}(H'_{a,l_j \leftarrow \zeta(x) b}) = \hat{h}(H''_a) \]
\[\hat{h}(H'_{a,l_j \leftarrow \zeta(x) b}) = \hat{h}(H''_a) \]
\[\hat{h}(H_a) = \hat{h}(H''_a) \]
Case proved.

- \(\text{at}(a.place) b \). The judgment in the last derivation is of the form \(\Delta'; \Gamma'; \pi' \vdash \text{at}(a.place) b : A \).
This is derived from a unique application of Rule (T-AtObject) where the first premise of the derivation is \(\Delta'; \Gamma'; \pi' \vdash \ a : ([l_i : B_i] \ i \in [1..n], \pi) \)
By Lemma 22, \(\vdash_p (\Delta', \Gamma', \pi', a, ([l_i : B_i] \ i \in [1..n], \pi)) \)
Hence by Lemma 21, \(\Delta' \vdash_T ([l_i : B_i] \ i \in [1..n], \pi) \) i.e. \(\Delta' \vdash_p \pi \)
By construction, \((\hat{h}(O_a), \hat{h}(H_a)) = ([l_i : B_i] \ i \in [1..n], \pi) \) and \(\hat{h}(H''_a) = \pi' \)
Also, \(\hat{h}(H_{\text{at}(a.place)} b) = \pi' \)
Also by construction, \(\hat{h}(H_a) = \pi \)
The second premise of the derivation is \(\Delta'; \Gamma'; \pi \vdash \ b : B \)
Hence, \(B = (\hat{h}(O_b), \hat{h}(H_b)) \) and \(\hat{h}(H''_b) = \pi \)
Lastly, \(A \) is derived by at most one application of Rule (T-Sub) after the application of Rule (T-AtObject), and hence \(B \leq A \)
By construction,
\[A = (\hat{h}(O_{\text{at}(a.place)} b), \hat{h}(H_{\text{at}(a.place)} b)) \]

Thus,
Thus, given \(\vdash c \in \Delta \); \(\Gamma \).
Also, \(\Delta \); \(\Gamma \).

Then, the second premise of the derivation is
\[
\Delta'; \Gamma'; \rho \vdash \text{at}(\rho) \ b : A.
\]
This is derived from a unique application of Rule (T-AtConst) where the premise of the derivation is \(\Delta'; \Gamma'; \rho \vdash \text{at}(\rho) \ b : B \)
By construction, \(B = (\hat{h}(O_b), \text{at}(\rho)) \) and \(\hat{h}(H_b) = \rho \)
Lastly, \(A \) is derived by at most one application of Rule (T-Sub) after the application of Rule (T-AtConst), and hence \(B \leq A \)
By construction, \(A = (\hat{h}(O_{\text{at}(\rho)}), \hat{h}(H_{\text{at}(\rho)})) \)
Thus,
\[
\begin{align*}
\hat{h}(O_b) & \leq \hat{h}(O_{\text{at}(\rho)}), \\
\hat{h}(H_b) & \leq \hat{h}(H_{\text{at}(\rho)}), \\
\hat{h}(H'_b) & \in \rho
\end{align*}
\]
Case proved.

Then, \(\text{open } x = a \text{ in } b \). The judgment in the last derivation is of the form \(\Delta'; \Gamma'; \rho' \vdash \text{open } x = a \text{ in } b : A \).
This is derived from a unique application of Rule (T-AtObject) where the first premise of the derivation is \(\Delta'; \Gamma'; \rho' \vdash a : A' \)
By construction, \(\hat{h}(O_b) = \text{obj}(A') \) and \(\hat{h}(H_x) = X \)
Also, \(\hat{h}(H'_b) = \rho' \)
The second premise of the derivation is
\[
\Delta'; \Gamma', x : \text{obj}(A'), X); \rho' \vdash b : B
\]
By construction, \(\hat{h}(O_b) = \text{obj}(A') \) and \(\hat{h}(H_x) = X \)
Also, \(B = (\hat{h}(O_b), \text{at}(\rho)) \) and \(\hat{h}(H'_b) = \rho' \)
Also, \(\Delta'; \Gamma' \vdash B \). Hence \(\hat{h}(O_b) \subseteq \Delta' \cup \text{Places} \cup \{ \text{unkn} \} \) and \(\hat{h}(H_b) \in \Delta' \cup \text{Places} \cup \{ \text{unkn} \} \)
Lastly, \(A \) is derived by at most one application of Rule (T-Sub) after the application of Rule (T-Open), and hence \(B \leq A \)
By construction, \(A = (\hat{h}(O_{\text{open } x = a \text{ in } b}), \hat{h}(H_{\text{open } x = a \text{ in } b})) \)
Thus,
\[
\begin{align*}
\hat{h}(O_b) & \leq \hat{h}(O_{\text{open } x = a \text{ in } b}), \\
\hat{h}(H_b) & \leq \hat{h}(H_{\text{open } x = a \text{ in } b}), \\
\hat{h}(O_a) & = \hat{h}(O_x), \\
\hat{h}(H_x) & \subseteq \{ X \}, \\
\hat{h}(H'_{\text{open } x = a \text{ in } b}) & = \hat{h}(H'_b), \\
\hat{h}(H'_{\text{open } x = a \text{ in } b}) & = \hat{h}(H'_b), \\
\hat{h}(O_b) & \subseteq \{ \Delta' \cup \text{Places} \cup \{ \text{unkn} \} \}, \\
\hat{h}(H_b) & \subseteq \{ \Delta' \cup \text{Places} \cup \{ \text{unkn} \} \}
\end{align*}
\]
Case proved.

Thus, given \(\vdash p \ (\Delta, \Gamma, \pi_c, c, C) \), the individual set of constraints generated for each subterm of \(c \) is solvable. Hence the complete set of constraints generated for \(c \) i.e. \(Q_c \) is solvable.
Lastly, since $\Delta \vdash E \Gamma, \forall y \in \text{dom}(\Gamma), \tilde{h}(O_y) \subseteq \Delta \cup \text{Places} \cup \text{unkn}$ and $\tilde{h}(H_y) \in \Delta \cup \text{Places} \cup \text{unkn}$. Also, since $\Delta \vdash \pi_c, \tilde{h}(H'_c) \in \Delta \cup \text{Places}$.

Hence Q_c is solvable. Also by construction $C = (\tilde{h}(O_c), \tilde{h}(H_c))$ and $\tilde{h}(H'_c) = \pi_c$.

This completes the proof. \[\square\]
Proof of Constraint Closure Equivalence (Theorem 4)

Constraint closure equivalence (Theorem 4) states that, an ACD-system and its closure have the same set of solutions.

Proof. Given an ACD-system and its solution, we iteratively build the closure using rules in Figure 4 and proving that the additional constraints introduced at each point are still solvable. There are seven cases.

1. **Rule (Closure-≤O-1)**

 \[
 u \leq_O v \quad v \leq_O w \quad u, v, w \in \{O, N\} \\
 \Rightarrow u \leq_O w
 \]

 Since \(\tilde{h}(u) \leq \tilde{h}(v)\) and \(\tilde{h}(v) \leq \tilde{h}(w)\), hence by definition, \(\tilde{h}(u) \leq \tilde{h}(w)\)

2. **Rule (Closure-≤O-2)**

 \[
 u \leq_O [l_i : (O_h, H_h) \; \forall i \in \{1..n\}] \\
 \forall l_i = l'_i, O_h = O_h', H_h = H_h' \Rightarrow u \leq_O [l'_i : (O_h', H_h') \; \forall i \in \{1..n\}] \quad u \in \{O, N\}
 \]

 Let \(\tilde{h}(u) = [l''_i : B''_i \; \forall i \in \{1..k\}]\).
 By definition of \(\leq\),
 \(\forall l''_i = l_i, \tilde{h}(O_h) = \text{obj}(B''_i)\) and \(\tilde{h}(H_h) = \text{pl}(B''_i)\)
 Also, \(\forall l''_i = l'_i, \tilde{h}(O_h') = \text{obj}(B''_i)\) and \(\tilde{h}(H_h') = \text{pl}(B''_i)\)
 Hence \(\forall l_i = l'_i, \tilde{h}(O_h) = \tilde{h}(O_h')\) and \(\tilde{h}(H_h) = \tilde{h}(H_h')\)

3. **Rule (Closure-≤O)**

 \[
 O_a \leq_O [l_i : (O_h, H_h) \; \forall i \in \{1..n\}] \\
 O_a \leq_O K \\
 \Rightarrow \forall O_h, H_h \subseteq O \subseteq K
 \]

 By definition, \(\forall \alpha \in D(\tilde{h}(O_a)), \tilde{h}(O_a)(\alpha) \in \{O \cup K\}\)
 Moreover, \(\forall i \in 1..n\),
 \(\forall \beta \in D(\tilde{h}(O_h)), \tilde{h}(O_h)(\beta) = \tilde{h}(O_a)(l_i \beta)\)
 i.e. \(\forall \beta \in D(\tilde{h}(O_h)), \tilde{h}(O_h)(\beta) \in \{O \cup K\}\)
 Similarly, \(\forall i \in 1..n, \tilde{h}(H_h) \subseteq K\)

4. **Rule (Closure-≤H)**

 \[
 H_a \leq_H H_b, H_b \leq_H H_c \\
 \Rightarrow H_a \leq_H H_c
 \]

 Since \(\tilde{h}(H_a) \leq \tilde{h}(H_b)\) and \(\tilde{h}(H_b) \leq \tilde{h}(H_c)\), \(\tilde{h}(H_a) \leq \tilde{h}(H_c)\)

5. **Rule (Closure-≠H)**

 \[
 H_a \in_H K, \; \text{unkn} \notin K \\
 \Rightarrow H_a \notin_H \text{unkn}
 \]

 Since \(\tilde{h}(H_a) \in K\), \(\tilde{h}(H_a) \neq \text{unkn}\)

6. **Rule (Closure-∈H-1)**

 \[
 H_a \leq_H H_b, H_b \in_H K \\
 \Rightarrow H_b \in_H \{K \cup \text{unkn}\}
 \]

 Since \(\tilde{h}(H_a) \in K\), \(\tilde{H}(H_a) \neq \text{unkn}\)
\[\tilde{h}(H_a) \leq \tilde{h}(H_b) \text{ and } \tilde{h}(H_a) \in K \]

By definition of \(\leq \), \(\tilde{h}(H_b) = \tilde{h}(H_a) \) or \(\tilde{h}(H_b) = \text{unkn} \) i.e. \(\tilde{h}(H_b) \in \{K \cup \text{unkn}\} \)

- Rule (Closure-\(\in H \)-2)

\[
\frac{h_a \leq_H h_b \quad h_b \in_H K \quad h_b \neq_H \text{unkn}}{h_a \in_H K}
\]

Since \(\tilde{h}(H_b) \in K \) and \(\tilde{h}(H_b) \neq \text{unkn} \),

\[\tilde{h}(H_a) = \tilde{h}(H_b) \neq \text{unkn} \]

Hence, \(\tilde{h}(H_a) \in K \)

Thus given an ACD-system and its solution, the same solution satisfies any additional constraints introduced by the closure rules.

Conversely, given the solution for a closed ACD-system, it is obvious that the original set of constraints also has the same solution since it has fewer constraints than the closure. Thus constraint closure equivalence is proved. \(\blacksquare \)
E Proof of Type Inference (Theorem 5)

E.1 Types As Trees

Recall that for any type, we define its object component as follows:

- \(\text{obj}([l_i : B_i \, i \in 1..n], \pi) = [l_i : B_i \, i \in 1..n] \) and,
- \(\text{obj}(\text{packed} [l_i : B_i \, i \in 1..n]) = [l_i : B_i \, i \in 1..n] \)

Moreover, given a type \(A \), we also define its place component as follows:

- \(p(A) = \pi \) if \(A \equiv ([l_i : B_i \, i \in 1..n], \pi) \)
- \(p(A) = \text{unkn} \) if \(A \equiv \text{packed} [l_i : B_i \, i \in 1..n] \)

It is obvious that, \(p(A) \in \mathcal{K} \)

Now we define types in terms of edge-labeled regular trees.

Every place type \(k \in \mathcal{K} \) can be represented by the function \(t_k : \varepsilon \rightarrow k \)

Clearly, for any \(k, k' \in \mathcal{K}, k = k' \iff t_k = t_{k'} \).

Define \(k < k' \equiv (k = k' \vee k' = \text{unkn}) \). Analogously, \(t_k \leq t_{k'} \equiv (t_k = t_{k'} \lor t_{k'} : \varepsilon \rightarrow \text{unkn}) \)

Consider now the alphabet \(\Sigma = \{ \mathcal{O} \} \cup \mathcal{K} \). Let \(\omega \) denote a (possibly infinite) set of method names. Also let \(p^\omega \) be a set such that for all \(l \in \omega \Rightarrow p^l \in p^\omega \). Let \(\omega^* \) be the set of finite-sized strings over \(\omega \). Finally define\(\omega^*p^\omega = \{ \alpha p^l \mid \alpha \in \omega^* \land p^l \in p^\omega \} \).

Consider then a partial function,
\[
t_o : (\omega^* \cup \omega^*p^\omega) \rightarrow \Sigma,
\]

such that the domain \(D(t_o) \) is nonempty and prefix-closed and given some \(\alpha \in D(t_o) \):

- if \(\alpha \in \omega^* \), then \(t_o(\alpha) = O \)
- if \(\alpha \in \omega^*p^\omega \), then \(t_o(\alpha) \in \mathcal{K} \) and,
- if \(t_o(\alpha) = O \) then of \(\in D(t_o) \Leftrightarrow \alpha p^l \in D(t_o) \) for some \(l \in \omega \), \(p^l \in p^\omega \)

Every object component \([l_i : B_i \, i \in 1..n]\) can thus be expressed in terms of a function \(t_o \)

where

- \(D(t_o) = \{ \varepsilon \} \cup \{ l_1 \alpha \mid \alpha \in D(\text{obj}(B_i)) \} \cup ... \cup \{ l_n \alpha \mid \alpha \in D(\text{obj}(B_i)) \} \cup \{ p^1, ..., p^n \} \)
- \(t_o(\varepsilon) = O \)
- \(\forall B_i, t_o(l_i \alpha) = \text{obj}(B_i)(\alpha) \)
- \(\forall B_i, t_o(p_i) = t_{pl}(B_i)(\varepsilon) \)

Each object component is essentially an edge-labeled regular tree. The domain for each component is the regular set of strings \(\in (\omega^* \cup \omega^*p^\omega) \). Each string represents a path from the root to an object component or a place type.

Next we define,

- If \(\alpha \in \omega^*, \quad [l_i : B_i \, i \in 1..n] \Downarrow \alpha = t_o \) such that if \(\alpha \beta \in D([l_i : B_i \, i \in 1..n]), \) then \(\beta \in D(t_o) \) and \(t_o(\beta) = [l_i : B_i \, i \in 1..n](\alpha \beta) \)
- If \(\alpha \in \omega^*p^\omega, \quad [l_i : B_i \, i \in 1..n] \Downarrow \alpha = t_k \mid t_o(\alpha) = k \)

If \(D([l_i : B_i \, i \in 1..n] \Downarrow \alpha) \neq \emptyset, \) then \([l_i : B_i \, i \in 1..n] \Downarrow \alpha \) is called a subterm of \([l_i : B_i \, i \in 1..n] \).

A subterm represents a distinct subtree of an object component. Every object component is regular since it has finitely many distinct subterms.

It is immediately obvious that

- \([l_i : B_i \, i \in 1..n] \Downarrow l_i = \text{obj}(B_i) \)
- \([l_i : B_i \, i \in 1..n] \Downarrow p^l = t_{pl}(B_i) \)

Given \(\alpha \in \omega^*, \quad ([l_i : B_i \, i \in 1..n] \Downarrow \alpha) \Downarrow \beta = [l_i : B_i \, i \in 1..n] \Downarrow \alpha \beta \)

Let \(\mathcal{T} \) denote the set of all object components and place types. Any \(t \in \mathcal{T} \) is finite if its domain \(D(t) \) is a finite set.

It is also obvious that, for any object component \(t, \quad t \subseteq O K \equiv \forall \alpha \in D(t), t(\alpha) \in \{ \mathcal{O} \} \cup K. \)
Lastly, given two object components, \(\text{obj}(A) \) and \(\text{obj}(B) \), we say \(\text{obj}(A) \leq \text{obj}(B) \) if and only if \(\forall \ell \in \omega \),
If \(l, p' \in \mathcal{D}(\text{obj}(B)) \) then
- \(l, p' \in \mathcal{D}(\text{obj}(A)) \),
- \(\text{obj}(A) \downarrow l = \text{obj}(B) \downarrow l \) and,
- \(\text{obj}(A) \downarrow p' = \text{obj}(B) \downarrow p' \)

If \(\text{obj}(A) \leq \text{obj}(B) \), then \(\mathcal{D}(\text{obj}(B)) \subseteq \mathcal{D}(\text{obj}(A)) \)
Also, \(\text{obj}(A) = \text{obj}(B) \Leftrightarrow \text{obj}(A) \leq \text{obj}(B) \land \text{obj}(B) \leq \text{obj}(A) \)

\[\text{Lemma 23} \]

\[\text{E.2 From Constraints to Automata} \]

Given an ACD-system \((\mathcal{V}, \mathcal{W}, \mathcal{Q})\), we define an automaton \(\mathcal{M} \) as:

\[\mathcal{M} = (S, \Sigma_i, \Sigma_e, s_0, \delta, \ell, \lambda) \]

where:
- a finite set of states \(S = \mathcal{V} \cup \mathcal{W} \cup N \)
- \(\Sigma_i = \{\ell\} \cup \omega \cup \Sigma^2 \) is the input alphabet
- \(\Sigma_e = \{O\} \cup K \) is the label alphabet
- \(s_0 \in S \) is the start state of \(\mathcal{M} \)
- \(\delta : S \times \Sigma_i \rightarrow S \) is the transition function
- \(\ell : S \rightarrow \Sigma_e \) is the labeling function and,
- \(\lambda : \{2^K - \{\emptyset\}\} \rightarrow K \), is a place selector function that returns an arbitrary element of the input set.

Let \(s, u, v, w \in S \). Then the transition function \(\delta \) is defined as follows:
- \(\delta(s, \ell) = s \)
- if \(s \leq_O u \) in \(\mathcal{Q} \), then \(\delta(s, \ell) = u \)
- for every \(s \) in \(\mathcal{Q} \), where \(s \equiv [l_i : (u_i, v_i) \ i \in 1..n] \), for all \(i \), define
 - \(\delta(s, l_i) = u_i \)
 - \(\delta(s, p^l) = v_i \)

The labeling function is defined as follows:
- if \(s \in \mathcal{V} \cup N \), then \(\ell(s) = O \)
- if \(s \in \mathcal{W} \), then \(\ell(s) = \lambda(K_s) \) for some \(K_s \) such that,
 - if \(s \leq_H s' \) in \(\mathcal{Q} \) for some \(s' \in \mathcal{W} \), then \(\ell(s) \leq \ell(s') \)

Intuitively, we want to assign a value to each variable in \(\mathcal{W} \) from a (non-empty) set of allowable ones; this selected value, however, for every \(s \leq_H u \), the chosen values for \(s \) and \(u \) should satisfy the \(\leq_H \) constraint.

For every \(s \in S \), let \(\mathcal{M}_s \) be an automaton with start state \(s \). We write \(s \overset{\alpha}{\rightarrow} u \) to denote that \(\mathcal{M}_s \) can move from state \(s \) to \(u \) under input \(\alpha \). All states of \(\mathcal{M}_s \) are accept states. The language accepted by \(\mathcal{M}_s \) is a set of strings \(\alpha \) such that \(s \overset{\alpha}{\rightarrow} u \) for some \(u \in S \). Let \(\mathcal{L}(s) \) be that language. Clearly \(\mathcal{L}(s) \) is non-empty since \(s \overset{\ell}{\rightarrow} s \) and prefix-closed since all states are accept states.

Given an automaton \(\mathcal{M}_s \) with start state \(s \), define the term function \(t_{\mathcal{M}_s} : \mathcal{L}(s) \rightarrow \Sigma_\ell \) such that for every \(\alpha \in \mathcal{L}(s) \) where \(s \overset{\alpha}{\rightarrow} u \) for some \(u \in S \), \(t_{\mathcal{M}_s}(\alpha) = \ell(u) \).

\[\text{Lemma 23 (Term function denotes type).} \]

For an ACD-system \((\mathcal{V}, \mathcal{W}, \mathcal{Q})\),
given an automaton \(\mathcal{M}_s \) with start state \(s \), \(t_{\mathcal{M}_s} \in T \)

Proof. There are two cases.
1. $s \in W$. By construction, $\ell(s) = k \in K$. Also by construction the only allowable transition from s is $s \xrightarrow{\ell} s$. This is clearly equivalent to the place type, $t_k : \varepsilon \rightarrow k$. Thus $t_{M_s} \in T$.

2. $s \in V \cup N$. Let $u \in V$ and $v \in W$. By construction $s \xrightarrow{\ell} s$ exists. Also if $s \xrightarrow{\alpha} u$ and $u \xrightarrow{\beta} w$, then obviously $s \xrightarrow{\alpha \beta} w$. Lastly by construction $s \xrightarrow{\ell} u \iff s \xrightarrow{\ell'} v$. Thus, $\D(t_{M_s}) = \mathcal{L}(s)$

$$\mathcal{D}(t_{M_s}) = \{\varepsilon\} \cup \{\alpha | \alpha \in \mathcal{L}(u), \forall s \xrightarrow{\ell} u\} \cup \{\ell', \forall s \xrightarrow{\ell'} v\}$$

Also,

- $t_{M_s}(\varepsilon) = \mathcal{O}$ since $\ell(s) = \mathcal{O}$
- $t_{M_s}(\alpha) = t_{M_s}(\alpha) = \ell(u), \forall s \xrightarrow{\ell} u, u \xrightarrow{\ell} w$
- $t_{M_s}(\ell') = t_{M_s}(\ell) = \ell(v), \forall s \xrightarrow{\ell} v$ since $v \in W$

Moreover, by construction, if $s \xrightarrow{\ell} s'$ for $\alpha \in \omega^*$, then $s' \in V \cup N$ i.e. $\ell(s') = \mathcal{O}$. Similarly, if $s \xrightarrow{\beta} s'$ for $\beta \in \omega^* \rho^\omega$, then $s' \in W$ i.e. $\ell(s') = K$. Since every state is an accept state, $\mathcal{L}(s)$ is prefix-closed. Thus $\mathcal{L}(s)$ represents the regular language $\omega^* \cup \omega^* \rho^\omega$; an edge-labeled regular tree with s as the root. Hence t_{M_s} represents an object component of the form $t_o : (\omega^* \cup \omega^* \rho^\omega) \rightarrow \Sigma_\ell$. Hence $t_{M_s} \in T$.

Thus proved.

\hspace{1cm} \blacktriangleright

Theorem 24 (Representation of Constraint Solution). Given an ACD-system (V, W, Q) and its solution h, there exists an M_s such that for every state s

1. if $s \in W$, $t_{M_s} : \varepsilon \rightarrow \tilde{h}(s)$. Also, for every $s \leq_H u \in Q, u \in W, t_{M_s} \leq t_{M_u}$. Moreover, for each $s \in H K \in Q, t_{M_s}(\varepsilon) \in K$. Lastly, if $s \neq H$ unkn, $t_{M_s}(\varepsilon) \neq$ unkn

2. if $s \in V \cup N$ and $s \xrightarrow{\ell} u$ then $\tilde{h}(s)(\alpha) = \ell(u)$. Additionally if $u \in V$, then $\tilde{h}(s) \downarrow \alpha \leq \tilde{h}(u)$

3. if $s \in V, s \leq_O K$ and $s \xrightarrow{\ell} u$ then $\tilde{h}(s)(\alpha) = \ell(u) \in \{O \cup K\}$.

Proof. For every s construct the automaton M_s with the place selector function $\lambda : \{k\} \rightarrow k$.

Now define the labeling function as:

- $\ell(s) = \mathcal{O}$, if $s \in V \cup N$
- $\ell(s) = \lambda(\tilde{h}(s))$, if $s \in W$.

1. Consider $s \in W$. The only possible transition from s is $s \xrightarrow{\ell} s$. By construction, $\ell(s) = \tilde{h}(s)$. Hence $t_{M_s} : \varepsilon \rightarrow \tilde{h}(s)$. Also, since \tilde{h} is a solution, for every $s \leq_H u \in Q$, $\tilde{h}(s) \leq \tilde{h}(u)$. Hence, $t_{M_s} \leq t_{M_u}$. Moreover, for each $s \in H K \in Q, \tilde{h}(s) \in K$ i.e. $t_{M_s}(\varepsilon) \in K$. Also, $\tilde{h}(s) \neq$ unkn i.e. $t_{M_s}(\varepsilon) \neq$ unkn

2. Consider $s \in V \cup N$ and $s \xrightarrow{\ell} u$. We prove this part by induction on the number of transitions. If number of transitions is zero, then $u = s$ and $\alpha = \varepsilon$. Since, $\tilde{h}(s)$ is an object component, $\tilde{h}(s)(\varepsilon) = O = \ell(s)$.

Next we assume that the theorem holds for $s \xrightarrow{\ell} u$. Depending on the next transition from u, we consider the following cases:

- Consider $u \xrightarrow{\ell} v$. There are two possibilities.
 - If $u \in V \cup N$, then by induction hypothesis $u \leq_O v$ in Q. Hence $\tilde{h}(u) \leq \tilde{h}(v)$. By the induction hypothesis, $\tilde{h}(s)(\alpha) = \ell(u) = \mathcal{O}$. Since $\ell(v) = \mathcal{O}$, $\tilde{h}(s)(\alpha \varepsilon) = \tilde{h}(s)(\alpha) = \mathcal{O} = \ell(v)$. Also by the induction hypothesis, $\tilde{h}(s) \downarrow \alpha \leq \tilde{h}(u)$. Hence, $\tilde{h}(s) \downarrow \alpha \varepsilon = \tilde{h}(s) \downarrow \alpha \leq \tilde{h}(u) \leq \tilde{h}(v)$.
 - If $u \in W$, then by the induction hypothesis $\tilde{h}(s)(\alpha) = \ell(u) = \tilde{h}(u)$. Moreover, since the only possible transition from u is $u \xrightarrow{\ell} u, v = u$. Hence $\tilde{h}(s)(\alpha \varepsilon) = \ell(u) = \ell(v)$.

Consider $u \supseteq v$. By construction, $\ell(u) = \ell(v) = \emptyset$. Since $u \in V$, $\alpha \in \omega^*$. By the induction hypothesis, $h(s)(\alpha) = \ell(u) = \emptyset$ and $h(s) \downarrow \alpha \leq \tilde{h}(u)$. Hence $D(\tilde{h}(u)) = \mathcal{L}(u) \subseteq \mathcal{D}(\tilde{h}(s) \downarrow \alpha)$. Since $l \in \mathcal{L}(u)$, $l \in \mathcal{D}(\tilde{h}(s) \downarrow \alpha)$ i.e. $\alpha \in \mathcal{D}(\tilde{h}(s))$. Also, $\tilde{h}(u) \downarrow l = \tilde{h}(v)$. Moreover, $\tilde{h}(u)\downarrow(l) = \ell(v)$. Hence by definition of \downarrow and \leq, $\tilde{h}(s)(\alpha)l = \ell(v)$. Also, $\tilde{h}(s) \downarrow \alpha = (\tilde{h}(s) \downarrow \alpha) \downarrow l = \tilde{h}(u) \downarrow l = \tilde{h}(v)$.

Consider $u \supseteq v$. By construction, $\ell(u) = \emptyset$. By the induction hypothesis, $h(s)(\alpha) = \ell(u) = \emptyset$ and $\tilde{h}(s) \downarrow \alpha \leq \tilde{h}(u)$. Hence $D(\tilde{h}(u)) = \mathcal{L}(u) \subseteq \mathcal{D}(\tilde{h}(s) \downarrow \alpha)$. Since $p^l \in \mathcal{L}(u)$, $p^l \in \mathcal{D}(\tilde{h}(s) \downarrow \alpha)$ i.e. $\alpha p^l \in \mathcal{D}(\tilde{h}(s))$. Also, by case (1) above, $\ell(v) = \tilde{h}(v)$. Moreover, $\tilde{h}(u)(p^l) = \ell(v) = \tilde{h}(v)$. Hence by definition of \downarrow and \leq, $\tilde{h}(s)(\alpha p^l) = \ell(v)$. Given an ACD-system $(\mathcal{V}, \mathcal{W}, \mathcal{Q})$, and a place selector function λ, we define the labeling function ℓ^*, as follows:

- if $s \in \mathcal{V} \cup N$ in \mathcal{Q}, then $\ell^*(s) = \emptyset$
- if $s \in \mathcal{W}$ and $s \in H K_1, ..., K_n$, then given $\mathcal{K}_s = \mathcal{K} \cap \left\{ \bigwedge_{i=1}^n K_i \right\}$
 - $\ell^*(s) = \text{unkn}$, if $\text{unkn} \in \mathcal{K}_s$
 - $\ell^*(s) = \lambda(\mathcal{K}_s)$, otherwise

Lemma 25 (Consistency and closure imply place equivalence).

Given a closed, consistent ACD-system $(\mathcal{S}, \mathcal{V}, \mathcal{W}, \mathcal{Q})$, such that for any $s, u \in \mathcal{W}$, if $s \leq_H u \in \mathcal{Q}$ and t_{M_1}, t_{M_2}, with the labeling function ℓ^*, then $t_{M_1} \leq t_{M_2}$.

Proof. Consistency implies that for all $s \in \mathcal{W}$ and $s \in H K_1, ..., K_n$, $\left\{ \bigwedge_{i=1}^n K_i \right\} \neq \emptyset$

Hence,
\[\mathcal{K}_s = \mathcal{K} \cap \left\{ \bigwedge_{i=1}^n K_i \right\} \neq \emptyset \]

Suppose $s \leq_H u \in \mathcal{Q}$. Since the ACD-system is consistent, $\mathcal{K}_s, \mathcal{K}_u \neq \emptyset$. Based on the values of \mathcal{K}_s and \mathcal{K}_u, there are two possibilities:

- $\text{unkn} \in \mathcal{K}_u$. In this case, $\ell^*(u) = \text{unkn}$. Thus $t_{M_2} : \ell \rightarrow \text{unkn}$. Also, since $\mathcal{K}_s \neq \emptyset$, $\ell^*(s)$ is defined. Hence $t_{M_1} \leq t_{M_2}$.
- $\text{unkn} \notin \mathcal{K}_u$. Hence by Rule (Closure-\neq_H), $u \neq H \text{unkn}$.

Let $s \in H K_{x_1}, K_{x_2}, ..., K_{x_k}$ and $u \in H K_{u_1}, K_{u_2}, ..., K_{u_m}$.

By Rule (Closure-$H-1$),
\[u \notin \left\{ K_{x_1} \cup \text{unkn}, \{ K_{x_2} \cup \text{unkn}, ..., \{ K_{x_k} \cup \text{unkn}, \mathcal{K} \right\} \]

Also, by Rule (Closure-$H-2$),
\[s \in H K_{u_1}, K_{u_2}, ..., K_{u_m}, \{ \mathcal{K} \cup \text{unkn} \} \]

Hence,
\[\mathcal{K}_s = \mathcal{K} \cap \left\{ \bigwedge_{i=1}^k K_{x_i} \right\} \cap \left\{ \bigwedge_{i=1}^m K_{u_i} \right\}, \text{where } \text{unkn} \notin \mathcal{K}_s \]

Similarly, $\mathcal{K}_u = \mathcal{K} \cap \left\{ \bigwedge_{i=1}^k K_{x_i} \cup \text{unkn} \right\} \cap \left\{ \bigwedge_{i=1}^m K_{u_i} \right\}$

Since $\text{unkn} \notin \mathcal{K}_u$, we can equivalently write,
\[\mathcal{K}_u = \mathcal{K} \cap \left\{ \bigwedge_{i=1}^k K_{x_i} \right\} \cap \left\{ \bigwedge_{i=1}^m K_{u_i} \right\} \]

Thus a term function represents the solution.
1062 Type Inference for Place-Oblivious Objects

Thus $K_s = K_u$. Hence $l^\ast(s) = l^\ast(u)$.

Thus $t_{M_s} = t_{M_u}$ i.e. $t_{M_s} \leq t_{M_u}$.

Hence proved.

Lemma 26. Let (V, W, Q) be an ACD-system. Suppose $s \leq_O [l : (v, w), \ldots]$. Then

$M_s \downarrow l = t_{M_s}$

$M_s \downarrow p^i = t_{M_s}$

Proof. Let $u = [l : (v, w), \ldots]$. By the construction of the automaton, we would get $s \xrightarrow{\cdot} u$, $u \xrightarrow{l} v$, $u \xrightarrow{p^i} w$. Thus $t_{M_s} \downarrow \varepsilon = t_{M_s} = t_{M_u}$. Also by construction, $l, p^i \in L(u)$. Therefore,

$t_{M_s} \downarrow l = t_{M_s}$ and $t_{M_s} \downarrow p^i = t_{M_s}$. Thus $t_{M_s} \downarrow l = t_{M_u}$ and $t_{M_s} \downarrow p^i = t_{M_u}$.

Lemma 27. Let (V, W, Q) be a closed ACD-system. For some l, such that $l, p^i \in L(s)$ and $l, p^i \in L(s')$, if $s \leq_O s'$, then

$M_s \downarrow l = t_{M_s} \downarrow l$

$M_s \downarrow p^i = t_{M_s} \downarrow p^i$

Proof. By construction, since $l, p^i \in L(s)$ and $l, p^i \in L(s')$, $s \leq_O [l : (v, w), \ldots]$ and $s' \leq_O [l : (v', w'), \ldots]$. By Lemma 26, $M_s \downarrow l = t_{M_s}$ and $M_s \downarrow l = t_{M_s}$. Due to the Rule (Closure-\leq_O-1), $s \leq_O [l : (v', w'), \ldots]$. Thus due to Rule (Closure-\leq_O-2), $v =_O v'$. Hence, $M_s \downarrow l = t_{M_s}$ i.e. $t_{M_s} \downarrow l = t_{M_s}$. Similarly, $M_s \downarrow p^i = t_{M_s} \downarrow p^i$.

Lemma 28. Let (V, W, Q) be a closed ACD-system. For any $s \in V$ given $s \xrightarrow{\alpha} u$ and $s \leq_O K$ in Q.

If $u \in V \cup N$, then there exists an $s' \in V$ such that $s \xrightarrow{\alpha} s'$, $s' \xrightarrow{\cdot} u$ and $s' \leq_O K$

If $u \in W$, then $u \in_H K$

Proof. We do this by induction on number of transitions. If number of transitions is zero, then $u = s$ and $\alpha = \varepsilon$ and the result is given in the lemma statement itself. Otherwise assume the lemma is true for some $s \xrightarrow{\alpha} u$. Then,

If $u \in V$. Assume there exists $s' \in V$ such that $s \xrightarrow{\omega} s'$, $s' \xrightarrow{\cdot} u$ and $s' \leq_O K$. The only possible transition from u is:

$u \xrightarrow{\cdot} u'$, $u' \in V \cup N$. Since $s' \xrightarrow{\cdot} u$ and $u \xrightarrow{\cdot} u'$, we get $s' \xrightarrow{\cdot} u'$. Moreover, $s \xrightarrow{\alpha} s'$ implies that $s \xrightarrow{\omega} s'$. Clearly the lemma then holds for $s \xrightarrow{\omega} u'$ since $s \xrightarrow{\omega} s'$, $s' \xrightarrow{\cdot} u'$ and $s' \leq_O K$

If $u \in N$. Assume there exists $s' \in V$ such that $s \xrightarrow{\omega} s'$, $s' \xrightarrow{\cdot} u$ and $s' \leq_O K$. The possible transitions from u are:

$u \xrightarrow{\cdot} u'$, $u' \in V \cup N$. Since $s' \xrightarrow{\cdot} u$ and $u \xrightarrow{\cdot} u'$, we get $s' \xrightarrow{\cdot} u'$. Moreover, $s \xrightarrow{\alpha} s'$ implies that $s \xrightarrow{\omega} s'$. Again, clearly $s \xrightarrow{\omega} s'$, $s' \xrightarrow{\cdot} u'$ and $s' \leq_O K$

$u \xrightarrow{l} u'$. In this case, $u' \in V$. Moreover, $s' \xrightarrow{\cdot} u$ corresponds to the constraint $s' \leq_O u$ in Q. Thus by Rule (Closure-\leq_O), $u' \leq_O K$. Moreover, $u' \xrightarrow{l} u'$. Thus $s \xrightarrow{l} u'$, $u' \xrightarrow{l} u'$ and $u' \leq_O K$

$u \xrightarrow{p^i} u'$. In this case, $u' \in W$. Moreover, $s' \xrightarrow{\cdot} u$ corresponds to the constraint $s' \leq_O u$ in Q. Thus by Rule (Closure-\leq_O), $u' \in_H K$

If $u \in W$. Then $u \in_H K$. Since the only possible transition from u is $u \xrightarrow{\cdot} u$, the result holds trivially from the induction hypothesis.

Thus proved.

Now we are ready to prove Theorem 5, which we copy here for convenience.
Theorem 5 (Solvability Characterization). A closed ACD-system \((V, W, Q)\) is solvable with recursive types if and only if it is well-formed and consistent. If it is solvable, then \(\lambda s : (V \cup N \cup W). t_{M_s}\) is a solution.

Proof. Clearly if \(Q\) is solvable it is well-formed and consistent. Assume now that \(Q\) is well-formed and consistent. Let the labeling function for \(t_{M_s}\) be \(\ell^*\). To show that \(t_{M_s}\) is a solution, we need to prove that:

1. If \(s \leq_O u\), then \(t_{M_s} \leq t_{M_u}\). For some \(l, p^l \in \mathcal{L}(u)\), we have to first show that \(l, p^l \in \mathcal{L}(s)\). By construction, \(u \leq_O [l : (v, w), ...]\). If \(s \in V\), then by Rule (Closure-\(\leq_O\)-1), \(s \leq_O [l : (v, w), ...]\). Thus by Lemma 26, \(t_{M_s} \downarrow l = t_{M_u}\) and \(t_{M_s} \downarrow p^l = t_{M_u}\) i.e. \(l, p^l \in \mathcal{L}(s)\). If \(s \in N\), then again by Rule (Closure-\(\leq_O\)-1), \(s \leq_O [l : (v, w), ...]\) and since \(Q\) is well-formed, \(l, p^l \in \mathcal{L}(s)\). Lastly, by Lemma 27, \(t_{M_s} \downarrow l = t_{M_u} \downarrow l\) and \(t_{M_s} \downarrow p^l = t_{M_u} \downarrow p^l\). Thus by definition of \(\leq\), \(t_{M_s} \leq t_{M_u}\).

2. If \(s \leq_H u\), then \(t_{M_s} \leq t_{M_u}\). From Lemma 25.

3. If \(s \in_H K\) then \(t_{M_s}(\varepsilon) \in K\). Holds due to the definition of the labeling function \(\ell^*\).

4. If \(s \not\in_H \text{unkn}\) then \(t_{M_s}(\varepsilon) \neq \text{unkn}\). Holds due to the definition of consistency and the labeling function \(\ell^*\).

5. If \(s \subseteq_O K\), then \(\forall \alpha \in \mathcal{L}(s), t_{M_s}(\alpha) \in \{O \cup K\}\). Obviously, for \(s \overset{\alpha}{\rightarrow} u, u \in V \cup N, \ell^*(u) = O\) and hence, \(t_{M_s}(\alpha) = O\). If \(s \overset{\alpha}{\rightarrow} u, u \in W\), then by Lemma 28, \(u \in_H K\). Hence by the definition of the labeling function, \(\ell^*(u) \in K\), and hence \(t_{M_s}(\alpha) \in K\).

Thus proved. ▶