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Abstract. Chaitin proved that register allocation is equivalent to graph
coloring and hence NP-complete. Recently, Bouchez, Brisk, and Hack
have proved independently that the interference graph of a program in
static single assignment (SSA) form is chordal and therefore colorable
in linear time. Can we use the result of Bouchez et al. to do register
allocation in polynomial time by first transforming the program to SSA
form, then performing register allocation, and finally doing the classical
SSA elimination that replaces φ-functions with copy instructions? In this
paper we show that the answer is no, unless P = NP: register allocation
after classical SSA elimination is NP-complete. Chaitin’s proof technique
does not work for programs after classical SSA elimination; instead we
use a reduction from the graph coloring problem for circular arc graphs.

1 Introduction

In Section 1.1 we define three central notions that we will use in the paper:
the core register allocation problem, static single assignment (SSA) form, and
post-SSA programs. In Section 1.2 we explain why recent results on programs
in SSA form might lead one to speculate that we can solve the core register
allocation problem in polynomial time. Finally, in Section 1.3 we outline our
result that register allocation is NP-complete for post-SSA programs produced
by the classical approach that replaces φ-functions with copy instructions.

1.1 Background

Register Allocation. In a compiler, register allocation is the problem of mapping
temporaries to machine registers. In this paper we will focus on:

Core register allocation problem:
Instance: a program P and a number K of available registers.
Problem: can each of the temporaries of P be mapped to one of the K
registers such that temporary variables with interfering live ranges are
assigned to different registers?



Notice that K is part of the input to the problem. Fixing K would correspond to
the register allocation problem solved by a compiler for a fixed architecture. Our
core register allocation problem is related to the kind of register allocation prob-
lem solved by gcc; the problem does not make assumptions about the number
of registers in the target architecture.

Chaitin et al. [8] showed that the core register allocation problem is NP-
complete by a reduction from the graph coloring problem. The essence of Chaitin
et al.’s proof is that every graph is the interference graph of some program.

SSA form. Static single assignment (SSA) form [21] is an intermediate represen-
tation used in many compilers, including gcc version 4. If a program is in SSA
form, then every variable is assigned exactly once, and each use refers to exactly
one definition. A compiler such as gcc version 4 translates a given program to
SSA form and later to an executable form.

SSA form uses φ-functions to join the live ranges of different names that rep-
resent the same value. We will describe the syntax and semantics of φ-functions
using the matrix notation introduced by Hack et al. [17]. Figure 1 (a) outlines
the general representation of a φ-matrix. And Figure 1 (c) gives the intuitive
semantics of the matrix shown in Figure 1 (b).

An equation such as V = φM , where V is a n-dimensional vector, and M
is a n×m matrix, contains n φ-functions such as ai ← φ(ai1, ai2, . . . aim). Each
possible execution path has a corresponding column in the φ-matrix, and adds
one parameter to each φ-function. The φ symbol works as a multiplexer. It will
assign to each element ai of V an element aij of M , where j is determined by
the actual path taken during the program’s execution.

All the φ-functions are evaluated simultaneously at the beginning of the basic
block where they are located. As noted by Hack et al. [17], the live ranges of
temporaries in the same column of a φ-matrix overlap, while the live ranges
of temporaries in the same row do not overlap. Therefore, we can allocate the
same register to two temporaries in the same row. For example, Figure 2 shows
a program, its SSA version, and the program after classical SSA elimination.
If the control flow reaches block 2 from block 1, φ(v11, v12) will return v11; v12

being returned otherwise. Variables i2 and v11 do not interfere. In contrast, the
variables v11 and i1 interfere because both are alive at the end of block 1.

Post-SSA programs. SSA form simplifies many analyses that are performed on
the control flow graph of programs. However, traditional instruction sets do not
implement φ-functions [10]. Thus, in order to generate executable code, com-
pilers have a phase called SSA-elimination in which φ-functions are destroyed.
Henceforth, we will refer to programs after SSA elimination as post-SSA pro-
grams.

The classical approach to SSA-elimination replaces the φ-functions with copy
instructions [1, 5, 7, 10, 18, 20]. For example, consider v1 = φ(v11, ..., v1m) in block
b. The algorithm explained by Appel [1] adds at the end of each block i that
precedes b, one copy instruction such as v1 = v1i.
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Fig. 1. (a) φ-functions represented as a matrix equation. (b) Matrix equation repre-
senting two φ-functions and three possible execution paths. (c) Control flow graph
illustrating the semantics of φ-functions.

In this paper we concentrate on SSA programs whose control flow graphs
have the structure outlined in Figure 3 (a). The equivalent post-SSA programs,
generated by the classical approach to SSA-elimination, are given by the gram-
mar in Figure 3 (b). We will say that a program generated by the grammar in
Figure 3 (b) is a simple post-SSA program. For example, the program in Fig-
ure 2(c) is a simple post-SSA program. A simple post-SSA program contains a
single loop. Just before the loop, and at the end of it (see Figure 3 (b)), the pro-
gram contains copy instructions that correspond to the elimination of a φ-matrix
such as: 
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1.2 Programs in SSA-form have chordal interference graphs

The core register allocation problem is NP-complete and a compiler can trans-
form a given program into SSA form in cubic time [9]. Thus we might expect that
the core register allocation problem for programs in SSA form is NP-complete.
However, that intuition would be wrong, unless P = NP, as demonstrated by
the following result.

In 2005, Brisk et al. [6] proved that strict programs in SSA form have perfect
interference graphs; independently, Bouchez [4] and Hack [16] proved the stronger
result that strict programs in SSA form have chordal interference graphs. In a



int m(int p1, int p2) {
int v1 = p1;
int i = p2;
while (i < 10) {

i = i+1;
if (v1 > 11) break;
v1 = i+2;

}
return v1;

}

int v11 = p1;
int  i1 = p2;

i < 10

return v1;

int i2 = i + 1;
if (v1 > 11) break;
int v12 = i2 + 2;
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int m(int p1, int p2) {
int v11 = p1;
int i1 = p2;
int v1 = v11;
int i = i1;
while (i < 10) {

int i2 = i+1;
if (v1 > 11) break;
int v12 = i2+2;
v1 = v12;
i = i2;

}
return v1;

}

(a) (b) (c)

Fig. 2. (a) A program. (b) The same program in SSA form. (c) The program after
classical SSA elimination.

strict program, every path from the initial block to the use of a variable v passes
through a definition of v [7]. The proofs presented in [4, 16] rely on two well-
known facts: (i) the chordal graphs are the intersection graphs of subtrees in
trees [14], and (ii) live ranges in an SSA program are subtrees of the dominance
tree [16].

We can color a chordal graph in linear time [15] so we can solve the core
register allocation problem for programs in SSA form in linear time. Thus,
the transformation to SSA form seemingly maps an NP-complete problem to
a polynomial-time problem in polynomial time! The key to understanding how
such a transformation is possible lies in the following observation. Given a pro-
gram P , its SSA-form version P ′, and a number of registers K, the core register
allocation problem (P,K) is not equivalent to (P ′,K). While we can map a
(P,K)-solution to a (P ′,K)-solution, we can not necessarily map a (P ′,K)-
solution to a (P,K)-solution. The SSA transformation splits the live ranges of
temporaries in P in such a way that P ′ may need fewer registers than P .

Given that the core register allocation problem for programs in SSA form
can be solved in polynomial time and given that a compiler can do classical
SSA elimination in linear time, we might expect that the core register allocation
problem after classical SSA elimination is in polynomial time. In this paper we
show that also that intuition would be wrong!

1.3 Our Result

We prove that the core register allocation problem for simple post-SSA programs
is NP-complete. Our result has until now been a commonly-believed folk theorem
without a published proof. The recent results on register allocation for programs
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P ::= int m(int p1, . . . , int pK+1) {
int v11 = p1; . . . ; int v1K = pK ;
int i1 = pK+1;
int v1 = v11; . . . ; int vK = v1K ;
int i = i1;
while (i< C) {

int i2 = i+1;

S∗
v1 = v21; . . . ; vK = v2K ;
i = i2;

}
return v1;

}
S ::= int vj = i+C;
| vj = vk;
| if (vj > C) break;

C ranges over integer constants

(a) (b)

Fig. 3. (a) Control flow representation of simple SSA programs. (b) The grammar for
simple post-SSA programs.

in SSA form have increased the interest in a proof. Our result implies that the
core register allocation problem for post-SSA programs is NP-complete for any
language with loops or with jumps that can implement loops.

The proof technique used by Chaitin et al. [8] does not work for post-SSA
programs. Chaitin et al.’s proof constructs programs from graphs, and if we
transform those programs to SSA form and then post-SSA form, we can color
the interference graph of each of the post-SSA programs with just three colors.
For example, in order to represent C4, their technique would generate the graph
in the upper part of Figure 4 (b). The minimal coloring of such graph can be
trivially mapped to a minimal coloring of C4, by simply deleting node x. Figure 4
(a) shows the control flow graph of the program generated by Chaitin et al.’s
proof technique, and Figure 4 (c) shows the program in post-SSA form. The
interference graph of the transformed program is shown in the lower part of
Figure 4 (b); that graph is chordal, as expected.

We prove our result using a reduction from the graph coloring problem for
circular arc graphs, henceforth called simply circular graphs. A circular graph
can be depicted as a set of intervals around a circle (e.g. Figure 5 (a)). The
idea of our proof is that the live ranges of the variables in the loop in a simple
post-SSA program form a circular graph. From a circular graph and an integer
K we build a simple post-SSA program such that the graph is K-colorable if
and only if we can solve the core register allocation problem for the program and
K + 1 registers. Our reduction proceeds in two steps. In Section 2 we define the
notion of SSA-circular graphs and we show that the coloring problem for SSA-
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Fig. 4. (a) Chaitin et al.’s program to represent C4. (b) The interference graph of the
original program (top) and of the program in SSA form (bottom). (c) The program of
Chaitin et al. in SSA form.

circular graphs is NP-complete. In Section 3 we present a reduction from coloring
of SSA-circular graphs to register allocation for simple post-SSA programs. An
SSA-circular graph is a special case of a circular graph in which some of the
intervals come in pairs that correspond to the copy instructions at the end of
the loop in a simple post-SSA program. From a circular graph we build an SSA-
circular graph by splitting some arcs. By adding new intervals at the end of the
loop, we artificially increase the color pressure at that point, and ensure that
two intervals that share an extreme point receive the same color. In Section 4 we
give a brief survey of related work on complexity results for a variety of register
allocation problems, and in Section 5 we conclude.

Recently, Hack et al. [17] presented an SSA-elimination algorithm that does
not use move instructions to replace φ-functions. Instead, Hack et al.’s algorithm
uses xor instructions to permute the values of the parameters of the φ-functions
in a way that preserves both the semantics of the original program and the
chordal structure of the interference graph, without demanding extra registers.
As a result, register allocation after the Hack et al.’s approach to SSA elimination
is in polynomial time. In contrast, register allocation after the classical approach
to SSA elimination is NP-complete.

2 From circular graphs to SSA-circular graphs

Let N denote the set of positive, natural numbers {1, 2, 3, . . .}. A circular graph
is an undirected graph given by a finite set of vertices V ⊆ N × N , such that
∀d ∈ N : (d, d) 6∈ V and ∀(d, u), (d′, u′) ∈ V : d = d′ ⇔ u = u′. We sometimes
refer to a vertex (d, u) as an interval, and we call d, u extreme points. The set of
vertices of a circular graph defines the edges implicitly, as follows. Define

b : N ×N → finite unions of intervals of the real numbers

b(d, u) =
{

]d, u[ if d < u
]0, u[ ∪ ]d,∞[ if d > u.
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Fig. 5. (a) C5 represented as a set of intervals. (b) The set of intervals that represent
W = F(C5, 3). (c) W represented as a graph.

Two vertices (d, u), (d′, u′) are connected by an edge if and only if b(d, u) ∩
b(d′, u′) 6= ∅. We use V to denote the set of such representations of circular
graphs. We use max(V ) to denote the largest number used in V , and we use
min(V ) to denote the smallest number used in V . We distinguish three subsets
of vertices of a circular graph, Vl, Vi and Vz:

Vi = { (d, u) ∈ V | d < u }
Vl = { (d, u) ∈ V | d > u }
Vz = { (d, y) ∈ Vi | ∃(y, u) ∈ Vl }

Notice that V = Vi ∪ Vl, Vi ∩ Vl = ∅, and Vz ⊆ Vi.
Figure 5 (a) shows a representation of C5 = ({a, b, c, d, e}, {ab, bc, cd, de, ea})

as a collection of intervals, where a = (14, 7), b = (6, 9), c = (8, 11), d =
(10, 13), e = (12, 5), Vi = {b, c, d}, Vl = {a, e}, and Vz = ∅. Intuitively, when the
intervals of the circular graph are arranged around a circle, overlapping intervals
determine edges between the corresponding vertices.

An SSA-circular graph W is a circular graph with two additional properties:

∀(y, u) ∈Wl : ∃d ∈ N : (d, y) ∈Wz (1)
∀(d, u) ∈Wi \Wz : ∀(d′, u′) ∈Wl : u < d′ (2)

We use W to denote the set of SSA-circular graphs.
Let W be an SSA-circular graph. Property (1) says that for each interval

in Wl there is an interval in Wz so that these intervals share an extreme point
y. In Section 3 it will be shown that the y points represent copy instructions
used to propagate the parameters of φ-functions. Henceforth, the y points will
be called copy points. Figure 5 (b) shows W ∈ W as an example of SSA-circular
graph. Wl = {(18, 1), (21, 5), (22, 7)}, Wi = {(6, 9), (8, 11), (10, 13)} ∪Wz, and
Wz = {(15, 18), (12, 21), (14, 22)}. Notice that for every interval (y, u) ∈ Wl,
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there is an interval (d, y) ∈ Wz. Figure 5 (c) exhibits W using the traditional
representation of graphs.

Let n = |Vl|. We will now define a mapping F on pairs (V,K):

F : V ×N →W
F(V,K) = Vi ∪ G(Vl,K,max(V ))

G : V ×N ×N → V
G({ (di, ui) | i ∈ 1..n },K,m) = { (m+ i,m+K + i) | i ∈ 1..K − n } (3)

∪ { (m+K + i, i) | i ∈ 1..K − n } (4)
∪ { (di,m+ 2K + i) | i ∈ 1..n } (5)
∪ { (m+ 2K + i, ui) | i ∈ 1..n } (6)

Given V , the function F splits each interval of Vl into two nonadjacent intervals
that share an extreme point: (d, y) ∈Wz, and (y, u) ∈Wl. We call those intervals
the main vertices. Given V , the function F also creates 2(K − n) new intervals,
namely K − n pairs of intervals such that the two intervals of each pair are
nonadjacent and share an extreme point: (d, y) ∈ Wz, and (y, u) ∈ Wl. We call
those intervals the auxiliary vertices. Figures 5 (b) and 5 (c) represent F(C5, 3),
and Figure 6 outlines the critical points between m = max(V ) and K − n.

Lemma 1. If V is a circular graph and min(V ) > K, then F(V,K) is an SSA-
circular graph.

Proof. Let W = F(V,K). Notice first that W is a circular graph because the
condition min(V ) > K ensures that rules (4) and (6) define vertices that don’t
share any extreme points. To see that W is an SSA-circular graph let us consider
in turn the two conditions (1) and (2). Regarding condition (1), Wl consists of the
sets defined by (4), (6), while Wz consists of the sets defined by (3), (5), and for
each (y, u) ∈Wl, we can find (d, y) ∈Wz. Regarding condition (2), we have that
if (d, u) ∈Wi \Wz and (d′, u′) ∈Wl, then u ≤ max(V ) < max(V ) +K + 1 ≤ d′.

ut



Lemma 2. If W = F(V,K) is K-colorable, then two intervals in Wz ∪Wl that
share an extreme point must be assigned the same color by any K-coloring of W .

Proof. Let c be a K-coloring of W . Let v1 = (d, y) and v2 = (y, u) be a pair
of intervals in Wz ∪Wl. From the definition of F(V,K) we have that those two
intervals are not connected by an edge. The common copy point y is crossed by
exactly K − 1 intervals (see Figure 6). Each of those K − 1 intervals must be
assigned a different color by c so there remains just one color that c can assign
to v1 and v2. Therefore, c has assigned the same color to v1 and v2. ut

Lemma 3. Suppose V is a circular graph and min(V ) > K. We have V is
K-colorable if and only if F(V,K) is K-colorable.

Proof. Let Vl = { (di, ui) | i ∈ 1..n } and let m = max(V ).
First, suppose c is a K-coloring of V . The vertices of Vl form a clique so c

must use |Vl| colors to color Vl. Let n = |Vl|. Let {x1, . . . , xK−n} be the set of
colors not used by c to color Vl. We now define a K-coloring c′ of F(V,K):

c′(v) =


c(v) if v ∈ Vi
xi if v = (m+ i,m+K + i), i ∈ 1..K − n
xi if v = (m+K + i, i), i ∈ 1..K − n
c(di, ui) if v = (di,m+ 2K + i), i ∈ 1..n
c(di, ui) if v = (m+ 2K + i, ui), i ∈ 1..n

To see that c′ is indeed a K-coloring of F(V,K), first notice that the colors of
the main vertices don’t overlap with the colors of the auxiliary vertices. Second,
notice that since min(V ) > K, no auxiliary edge is connected to a vertex in Vi.
Third, notice that since c is a K-coloring of V , the main vertices have colors
that don’t conflict with their neighbors in Vi.

Conversely, suppose c′ is aK-coloring of F(V,K). We now define aK-coloring
c of V :

c(v) =
{
c′(v) if v ∈ Vi
c′(di,m+ 2K + i) if v = (di, ui), i ∈ 1..n

To see that c is indeed a K-coloring of V , notice that from Lemma 2 we have
that c′ assigns the same color to the intervals (di,m+ 2K + i), (m+ 2K + i, ui)
for each i ∈ 1..n. So, since c′ is a K-coloring of F(V,K), the vertices in Vl have
colors that don’t conflict with their neighbors in Vi. ut

Lemma 4. Graph coloring for SSA-circular graphs is NP-complete.

Proof. First notice that graph coloring for SSA-circular graphs is in NP because
we can verify any color assignment in polynomial time. To prove NP-hardness,
we will do a reduction from graph coloring for circular graphs, which is known to
be NP-complete [12, 19]. Given a graph coloring problem instance (V,K) where
V is a circular graph, we first transform V into an isomorphic graph V ′ by
adding K to all the integers used in V . Notice that min(V ′) > K. Next we
produce the graph coloring problem instance (F(V ′,K),K), and, by Lemma 3,
V ′ is K-colorable if and only if F(V ′,K) is K-colorable. ut



3 From SSA-circular graphs to post-SSA programs

We now present a reduction from coloring of SSA-circular graphs to the core
register allocation problem for simple post-SSA programs. In this section we
use a representation of circular graphs which is different from the one used in
Section 2. We represent a circular graph by a finite list of elements of the set
I = { def(j), use(j), copy(j,j′), | j, j′ ∈ N }. Each j represents a temporary
name in a program. We use ` to range over finite lists over I. If ` is a finite list
over I and the d-th element of ` is either def(j) or copy(j,j′), then we say that
j is defined at index d of `. Similarly, if the u’th element of ` is either use(j′) or
copy(j,j′), then we say that j′ is used at index u of `. We define X as follows:

X = { ` | for every j mentioned in `, j is defined exactly once and used
exactly once ∧ for every copy(j,j′) in `, we have j 6= j′ }

We will use X to range over X . The sets X and V are isomorphic; the function
α is an isomorphism which maps X to V:

α : X → V
α(X) = { (d, u) | ∃j ∈ N : j is defined at index d of X and j is used

at index u of X }

We define Y = α−1(W), and we use Y to range over Y. The graph W shown in
Figure 5 (b) is shown again in Figure 7 (a) in the new representation:

Y = 〈use(t),use(e),def(b),use(a),def(c),use(b),def(d),use(c),def(e),
use(d),def(a),def(t2), copy(t, t2), copy(e, e2), copy(a, a2)〉.

Figure 8 presents a mappingH from Y-representations of SSA-circular graphs
to simple post-SSA programs. Given an interval (d, u) represented by def(j) and
use(j), we map the initial point d to a variable definition vj = i2 + C, where i2
is the variable that controls the loop. We assume that all the constants are
chosen to be different. The final point u is mapped to a variable use, which we
implement by means of the conditional statement if (vj > C) break. We opted
for mapping uses to conditional commands because they do not change the live
ranges inside the loop, and their compilation do not add extra registers to the
final code. An element of the form copy(j, j′), which is mapped to the assignment
j = j′, is used to simulate the copy of one of the parameters of a φ-function,
after classical SSA elimination. Figure 7 (b) shows the program P = H(Y, 3),
where Y = F(C5, 3).

Lemma 5. We can color an SSA-circular graph Y with K colors if and only if
we can solve the core register allocation problem for H(Y,K) and K+1 registers.

Proof. First, assume Y has a K-coloring. The intervals in Y match the live
ranges in the loop of H(Y,K), except for the control variables i, and i2, which
have nonoverlapping live ranges. Therefore, the interference graph for the loop
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int m(int p1, int p2, int p3, int p4) {
int i1 = p4;
int a1 = p1;
int e1 = p2;
int t1 = p3;
int a = a1;
int e = e1;
int t = t1;
int i = i1;
while(i > 10) {

int i2 = i + 1;
if(t > 9) break;
if(e > 10) break;
int b = i2 + 11;
if (a > 11) break;
int c = i2 + 12;
if(b > 12) break;
int d = i2 + 13;
if(c > 13) break;
int e2 = i2 + 14;
if(d > 14) break;
int a2 = i2 + 15;
int t2 = i2 + 16;
i = i2;
a = a2;
t = t2;
e = e2;

}
return a;

}

(a) (b)

Fig. 7. (a) Y = F(C5, 3) represented as a sequence of instructions and as a graph. (b)
P = H(Y, 3).

can be colored with K+1 colors. The live ranges of the variables declared outside
the loop form an interval graph of width K+1. We can extend the K+1-coloring
of that interval graph to a K + 1-coloring of the entire graph in linear time.

Now, assume that there is a solution of the core register allocation problem
for H(Y,K) that uses K+1 registers. The intervals in Y represent the live ranges
of the variables in the loop. The control variables i and i2 demand one register,
which cannot be used in the allocation of the other live ranges inside the loop.
Therefore, the coloring of H(Y,K) can be mapped trivially to the nodes of Y .

ut

Theorem 1. The core register allocation problem for simple post-SSA programs
is NP-complete.

Proof. Combine Lemmas 4 and 5. ut

As an illustrative example, to color C5 with three colors is equivalent to deter-
mining a 3-coloring to the graph Y in Figure 7 (a). Such colorings can be found
if and only if the core register allocation problem for P = H(Y, 3) can be solved
with 4 registers. In this example, a solution exists. One assignment of registers
would be {a, a1, a2, c, p1} → R1, {b, d, t1, t2, t, p3} → R2, {e, e1, e2, p2} → R3,
and {i, i1, i2, p4} → R4. This corresponds to coloring the arcs a and c with the
first color, arcs b and d with the second, and e with the third.



gen(def(j)) = int vj = i2 + C;
gen(use(j)) = if (vj > C) break;

gen(copy(j,j′)) = vj = vj′ ;
H : Y ×N → simple post-SSA program

H(Y,K) = int m(int p1, . . . , int pK+1) {
int v11 = p1; . . . ; int v1K = pK ;
int i1 = pK+1;
int v1 = v11; . . . ; int vK = v1K ;
int i = i1;
while (i< C) {

int i2 = i+1;
map(Y , gen)
i = i2;

}
return v1;

}

Fig. 8. The mapping of circular graphs to simple post-SSA programs

4 Related Work

The first NP-completeness proof of a register allocation related problem was
published by Sethi [22]. Sethi showed that, given a program represented as a set
of instructions in a directed acyclic graph and an integer K, it is an NP-complete
problem to determine if there is a computation of the DAG that uses at most K
registers. Essentially, Sethi proved that the placement of loads and stores during
the generation of code for a straight line program is an NP-complete problem if
the order in which instructions appear in the target code is not fixed.

Much of the literature concerning complexity results for register allocation
deals with two basic questions. The first is the core register allocation problem,
which we defined in Section 1. The second is the core spilling problem which
generalizes the core register allocation problem:

Core spilling problem:
Instance: a program P , number K of available registers, and a number
M of temporaries.
Problem: can at least M of the temporaries of P be mapped to one of
the K registers such that temporary variables with interfering live ranges
are assigned to different registers?

Farach and Liberatore [11] proved that the core spilling problem is NP-complete
even for straight line code and even if rescheduling of instructions is not allowed.
Their proof uses a reduction from set covering.

For a straight line program, the core register allocation problem is linear in
the size of the interference graph. However, if the straight line program contains
pre-colored registers that can appear more than once, then the core register



allocation problem is NP-complete. In this case, register allocation is equivalent
to pre-coloring extensions of interval graphs, which is NP-complete [2].

In the core register allocation problem, the number of registers K is not
fixed. Indeed, the problem used in our reduction, namely the coloring of circular
graphs, has a polynomial-time solution if the number of colors is fixed. Given n
circular arcs determining a graph G, and a fixed number K of colors, Garey et
al. [12] have given an O(n ·K! ·K · logK) time algorithm for coloring G if such a
coloring exists. Regarding general graphs, the coloring problem is NP-complete
for every fixed value of K > 2 [13].

Bodlaender et al. [3] presented a linear-time algorithm for the core register
allocation problem with a fixed number of registers for structured programs.
Their result holds even if rescheduling of instructions is allowed. If registers of
different types are allowed, such as integer registers and floating point registers,
for example, then the problem is no longer linear, although it is still polynomial.

Researchers have proposed different algorithms for inserting copy instruc-
tions, particularly for reducing the number of copy instructions [7, 5, 10, 18].
Rastello et al. [10] have proved that the optimum replacement of φ-functions
by copy instructions is NP-complete. Their proof uses a reduction from the
maximum independent set problem.

5 Conclusion

We have proved that the core register allocation problem is NP-complete for
post-SSA programs generated by the classical approach to SSA-elimination that
replaces φ-functions with copy instructions. In contrast, Hack et al.’s recent
approach to SSA-elimination [17] generates programs for which the core register
allocation problem is in polynomial time. We conclude that the choice of SSA-
elimination algorithm matters.

We claim that compiler optimizations such as copy propagation and constant
propagation cannot improve the complexity of the core register allocation prob-
lem for simple post-SSA programs. Inspecting the code in Figure 8 we perceive
that the number of loop iterations cannot be easily predicted by a local analysis
because all the control variables are given as function parameters. In the state-
ment int vj = i+C; the variable i limits the effect of constant propagation and
the use of different constants C limits the effect of copy propagation. Because
all the K + 1 variables alive at the end of the loop have different values, live
ranges cannot be merged at that point. In contrast, rescheduling of instructions
might improve the complexity of the core register allocation problem for simple
post-SSA programs. However, rescheduling combined with register allocation is
an NP-complete problem even for straight line programs [22].

Theorem 1 continues to hold independent on the ordering in which copy
instructions are inserted, because the function G, defined in Section 2, can be
modified to accommodate any ordering of the copy points. In more detail, let
W = F(V,K) be a SSA-circular graph, let n ∈ [0 · · ·max(W )], and let ovl(n) be



use(t)
def(t2)

use(b)

def(b)

use(a)

def(a)

use(c)
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def(c)

c = c1
t = t1

use(t);
def(a);
use(c);
def(b);
use(a);
def(c2);
use(b);
def(t2);

if

use(t);
use(c);

c1, t1

c = c2
t = t2

a

a

b

b

t

c=c1

c=c2

t1

t2

t=t1

c1

c

c2

t=t2

c

t

(a) (b) (c)

Fig. 9. (a) SSA graph W that represents F(C3,K). (b) A program P that represents
W with a single if-statement. (c) Schematic view of the live ranges of P .

the number of intervals that overlap at point n.

∀n ∈ ]max(V ) · · ·max(W )] : ovl(n) = K (7)

Any ordering that ensures property 7 suffices for the proof of Lemma 2. Figure
6 shows the region around the point 0 of a SSA-circular graph. Given W =
F(V,K), exactly K copy points are inserted in the interval between max(V )
and max(W ).

Our proof is based on a reduction from the coloring of circular graphs. We
proved our result for programs with a loop because the core of the interference
graph of such programs is a circular graph. The existence of a back edge in the
control flow graph is not a requirement for Theorem 1 to be true. For example,
SSA-circular graphs can be obtained from a language with a single if-statement.
Figure 9 (a) shows a SSA-circular graph that represents C3, when K = 2, and
Figure 9 (b) shows a program whose live ranges represent such graph. The live
ranges are outlined in Figure 9 (c).
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