
Information and Computation, 123(2):198–209, 1995.

Efficient Inference of Object Types

Jens Palsberg
palsberg@theory.lcs.mit.edu

Laboratory for Computer Science
Massachusetts Institute of Technology

NE43-340
545 Technology Square
Cambridge, MA 02139

Abstract

Abadi and Cardelli have recently investigated a calculus of objects
[2]. The calculus supports a key feature of object-oriented languages:
an object can be emulated by another object that has more refined
methods. Abadi and Cardelli presented four first-order type systems
for the calculus. The simplest one is based on finite types and no
subtyping, and the most powerful one has both recursive types and
subtyping. Open until now is the question of type inference, and
in the presence of subtyping “the absence of minimum typings poses
practical problems for type inference” [2].

In this paper we give an O(n3) algorithm for each of the four type
inference problems and we prove that all the problems are P-complete.
We also indicate how to modify the algorithms to handle functions and
records.

1 Introduction

Abadi and Cardelli have recently investigated a calculus of objects [2]. The
calculus supports a key feature of object-oriented languages: an object can

1

be emulated by another object that has more refined methods. For example,
if the method invocation a.l is meaningful for an object a, then it will also
be meaningful for objects with more methods than a, and for objects with
more refined methods. This phenomenon is called subsumption.

The calculus contains four constructions: variables, objects, method in-
vocation, and method override. It is similar to the calculus of Mitchell,
Honsell, and Fisher [20] in allowing method override, but it differs signifi-
cantly in also allowing subsumption but not allowing objects to be extended
with more methods.

Abadi, Cardelli [2] Mitchell, Honsell, Fisher [20]
Objects

√ √

Method override
√ √

Subsumption
√

Object extension
√

Abadi and Cardelli presented four first-order type systems for their calcu-
lus. The simplest one is based on finite types and no subtyping, and the most
powerful one has both recursive types and subtyping. The latter can type
many intriguing object-oriented programs, including objects whose methods
return an updated self [2], see also [4, 3, 1].

Open until now is the question of type inference:

Given an untyped program a, is a typable? If so, annotate it.

In the presence of subtyping “the absence of minimum typings poses practical
problems for type inference” [2].

In this paper we give an O(n3) algorithm for each of the four type inference
problems and we prove that all the problems are P-complete.

Choose: finite types or recursive types.
Choose: subtyping or no subtyping.
In any case: type inference is
P-complete and computable in O(n3).

Our results have practical significance:

1. For object-oriented languages based on method override and subsump-
tion, we provide the core of efficient type inference algorithms.

2

2. The P-completeness indicates that there are no fast NC-class parallel
algorithms for the type inference problems, unless NC = P.

In Section 2 we present Abadi and Cardelli’s calculus. For readability, Sec-
tion 3–6 concentrate on the most powerful of the type systems, the one with
recursive types and subtyping. The other type systems requires similar de-
velopments that will be summarized in Section 7. We first present the type
system (Section 3), and we then prove that the type inference problem is log
space equivalent to a constraint problem (Section 4) and a graph problem
(Section 5), and we prove that a program is typable if and only if the cor-
responding graph problem involves a well-formed graph (Section 6). If the
graph is well-formed, then a certain finite automaton represents a canonical

typing of the program. In Section 7 we give algorithms for all four type infer-
ence problems and in Section 8 we prove that all the problems are P-complete
under log space reductions. In Section 9 we give three examples of how the
most powerful of our type inference algorithms works. Finally, in Section 10
we discuss related work and possible extensions. The reader is encouraged
to refer to the examples while reading the other sections.

Our approach to type inference is related to that of Kozen, Schwartzbach,
and the present author in [17]. Although the problems that we solve here are
much different from that solved in [17], the two approaches have the same
ingredients: constraints, graphs, and automata.

We have produced a prototype implementation in Scheme of the most
powerful of our type inference algorithms. Experiments have been carried
out on a SPARCserver 1000 (with four SuperSPARC processors) running
Scm version 4e1. For example, the implementation used 24 seconds to pro-
cess a 58 lines program. This is encouraging because we used a rather slow
implementation language and because we did not fine-tune the implementa-
tion.

A potential obstacle for practical use of our algorithms is the property
that the canonical typing of a program may have a representation of a size
which is quadratic in the size of the program. Another potential obstacle
may be the use of adjacency matrices to represent certain graphs. If those
graphs are sparse in practice, then it may be worthwhile using less space-
demanding data structures at the cost of slower worst-case performance.
Further experiments are needed to evaluate the speed and space-usage of the
algorithms on programs of realistic size.

3

2 Abadi and Cardelli’s Calculus

Abadi and Cardelli first present an untyped object calculus, called the ς-
calculus. The ς-terms are generated by the following grammar:

a ::= x variable
[li = ς(xi)b

i∈1..n
i] (li distinct) object

a.l field selection / method invocation
a.l ⇐ ς(x)b field update / method override

We use a, b, c to range over ς-terms. An object [li = ς(xi)b
i∈1..n

i] has
method names li and methods ς(xi)bi. The order of the components does
not matter. In a method ς(x)b, we have that x is the self variable and b
is the body. Thus, in the body of a method we can refer to any enclosing
object, like in the Beta language [18].

The reduction rules for ς-terms are as follows. If o ≡ [li = ς(xi)b
i∈1..n

i],
then, for j ∈ 1..n,

• o.lj ; bj[o/xj]

• o.lj ⇐ ς(y)b ; o[lj ← ς(y)b]

Here, a[o/x] denotes the ς-term a with o substituted for free occurrences
of x (after renaming bound variables if necessary); and o[lj ← ς(y)b] denotes
the ς-term o with the lj field replaced by ς(y)b. An evaluation context is
an expression with one hole. For an evaluation context a[.], if b ; b′, then
a[b] ; a[b′].

A ς-term is said to be an error if it is irreducible and it contains either
o.lj or o.lj ⇐ ς(y)b, where o ≡ [li = ς(xi)b

i∈1..n
i], and o does not contain an

lj field.
For examples of reductions, consider first the object o ≡ [l = ς(x)x.l].

The expression o.l yields the infinite computation:

o.l ; x.l[o/x] ≡ o.l ; . . .

As another example, consider the object o′ ≡ [l = ς(x)x]. The method l
returns self:

o′.l ; x[o′/x] ≡ o′

4

As a final example, consider the object o′′ ≡ [l = ς(y)(y.l ⇐ ς(x)x)]. The
method l returns a modified self:

o′′.l ; (o′′.l ⇐ ς(x)x) ; o′

These three examples are taken from Abadi and Cardelli’s paper [2].
Abadi and Cardelli demonstrate how to encode the pure λ-calculus in the

ς-calculus. Note the following difference between these two calculi. In pure
λ-calculus no term yields an error; in the ς-calculus for example [].l yields
an error. The reason is that objects are structured values. In a λ-calculus
with pairs, some terms yield errors, like in the ς-calculus.

3 Type Rules

The following type system for the ς-calculus catches errors statically, that is,
rejects all programs that may yield errors [2].

An object type is an edge-labeled regular tree. A tree is regular if it has
finitely many distinct subtrees. Labels are drawn from some possibly infinite
set N of method names. We represent a type as a non-empty, prefix-closed
set of strings over N . One such string represents a path from the root. We
use A, B, . . . to denote types. The set of all types is denoted T . A type is
finite if it is finite as a set of strings.

For l1, . . . , ln ∈ N , A1, . . . , An ⊆ N∗ and α ∈ N∗, define

[li : A i∈1..n
i] = {ε} ∪ {l1α | α ∈ A1} ∪ . . . ∪ {lnα | α ∈ An}

A↓α = {β | αβ ∈ A} .

Here, [li : A i∈1..n
i] is an object type with components li : Ai, and A↓α is the

subtree of A at α if α ∈ A, ∅ if not. The following properties are immediate
from the definitions:

(i) [li : A i∈1..n
i]↓ li = Ai

(ii) (A↓α)↓β = A↓αβ

The set of object types is ordered by the subtyping relation ≤ as follows:

A ≤ B if and only if ∀l ∈ N : l ∈ B ⇒ (l ∈ A ∧ A↓ l = B ↓ l)

5

Clearly, ≤ is a partial order. Intuitively, if A ≤ B, then A may contain more
fields than B, and for common fields, A and B must have the same type. For
example, [l : A, m : B] ≤ [l : A], but [l : [m : A]] 6≤ [l : []]. Notice that if
A ≤ B, then B ⊆ A.

To state typing rules, Abadi and Cardelli use an explicitly typed version
of the ς-calculus where each bound variable is annotated with a type.

If a is an explicitly typed ς-term, A is an object type, and E is a type
environment, that is, a partial function assigning types to variables, then the
judgment E ` a : A means that a has the type A in the environment E. This
holds when the judgment is derivable using the following five rules:

E ` x : A (provided E(x) = A) (1)

E[xi ← A] ` bi : Bi ∀i ∈ 1..n

E ` [li = ς(xi : A)b i∈1..n
i] : A

(where A = [li : B i∈1..n
i]) (2)

∀j ∈ 1..n :
E ` a : [li : B i∈1..n

i]

E ` a.lj : Bj

(3)

∀j ∈ 1..n :
E ` a : A E[x← A] ` b : Bj

E ` a.lj ⇐ ς(x : A)b : A
(where A = [li : B i∈1..n

i]) (4)

E ` a : A A ≤ B

E ` a : B
(5)

The first four rules express the typing of each of the four constructs in the
object calculus and the last rule is the rule of subsumption.

Notice that rule (3) can be replaced by the equivalent rule

E ` a : [lj : Bj]

E ` a.lj : Bj

(6)

Notice also that rule (4) can be replaced by the equivalent rule

E ` a : A E[x← A] ` b : Bj

E ` a.lj ⇐ ς(x : A)b : A
(where A ≤ [lj : Bj]) (7)

If E ` a : A is derivable, we say that a is well-typed with type A. An
untyped ς-term a is said to be typable if there exists an annotated version of
a which is well-typed.

For comparison with the typing rules for simply typed λ-calculus, notice
that:

6

• Rule (1) is identical to the rule for variables in λ-calculus;

• Rule (2) can be understood as the rule for object type introduction, just
like the rule for λ-abstraction is the rule for function type introduction;
and

• Rule (3) can be understood as the rule for object type elimination, just
like the rule for application is the rule for function type elimination in
λ-calculus.

Rule (4) has no obvious counterpart among the typing rules for simply typed
λ-calculus.

For examples of type derivations, let us consider the three example terms
from Section 2. First consider the object o ≡ [l = ς(x)x.l]. The expression
o.l can be typed as follows, with x implicitly typed with [l : []]:

∅[x← [l : []]] ` x : [l : []]

∅[x← [l : []]] ` x.l : []

∅ ` o : [l : []]

∅ ` o.l : [] .

Consider then the object o′ ≡ [l = ς(x)x]. The expression o′.l can be typed
as follows, with x implicitly typed with [l : []]:

∅[x← [l : []]] ` x : [l : []] [l : []] ≤ []

∅[x← [l : []]] ` x : []

∅ ` o′ : [l : []]

∅ ` o′.l : [] .

Consider then the object o′′ ≡ [l = ς(y)b], where b ≡ y.l ⇐ ς(x)x. The
expression o′′.l can be typed as follows, with both x and y implicitly typed
with [l : []]:

∅[y ← [l : []]] ` y : [l : []] ∅[y ← [l : []], x← [l : []]] ` x : []

∅[y ← [l : []]] ` b : [l : []] [l : []] ≤ []

∅[y ← [l : []]] ` b : []

∅ ` o′′ : [l : []]

∅ ` o′′.l : [] .

Consider finally the object []. Trying to type the expression [].l will fail
because rule (2) can only give [] the type [], so rule (3) cannot be applied
afterwards.

7

4 From Rules to Constraints

In this section we prove that the type inference problem is log space equivalent
to solving a finite system of type constraints. The constraints isolate the
essential combinatorial structure of the type inference problem.

Definition 4.1 Given a denumerable set of variables, an AC-system

(Abadi/Cardelli-system) is a finite set of inequalities W ≤ W ′, where W and
W ′ are of the forms V or [li : V i∈1..n

i], and where V, V1, . . . , Vn are variables.
If L maps variables to types, then define L̃ as follows:

L̃(W) =

{
[l1 : L(V1), . . . , ln : L(Vn)] if W is of the form [li : V i∈1..n

i]
L(V) if W is a variable V

A solution for an AC-system is a map L from variables to types such that
for all W ≤ W ′ in the AC-system, L̃(W) ≤ L̃(W ′). 2

For examples of AC-systems, see Section 9.
We first prove that the type inference problem is log space reducible to

solving AC-systems.
Given an untyped ς-term c, assume that it has been α-converted so that

all bound variables are distinct. We will now generate an AC-system from c
where the bound variables of c are a subset of the variables in the constraint
system. This will be convenient in the statement and proof of Lemma 4.2
below. Let X be the set of bound variables in c; let Y be a set of variables
disjoint from X consisting of one variable [[b]] for each occurrence of a subterm
b of c; and let Z be a set of variables disjoint from X and Y consisting of one
variable 〈a.lj〉 for each occurrence of a subterm a.lj of c. (The notations [[b]]
and 〈a.lj〉 are ambiguous because there may be more than one occurrence of
the term b or a.lj in c. However, it will always be clear from context which
occurrence is meant.) Notice that there are two variables 〈a.lj〉 and [[a.lj]] for
each occurrences of a subterm a.lj of c. Intuitively, 〈a.lj〉 denotes the type
of a.lj before subtyping, and [[a.lj]] denotes the type of a.lj after subtyping.
We generate the following AC-system of inequalities over X ∪ Y ∪ Z:

• for every occurrence in c of a bound variable x, the inequality

x ≤ [[x]] (8)

8

• for every occurrence in c of a subterm of the form [li = ς(xi)b
i∈1..n

i],
the inequality

[li : [[bi]]
i∈1..n] ≤ [[[li = ς(xi)b

i∈1..n
i]]] (9)

and for every i ∈ 1..n, the equalities

xi = [li : [[bi]]
i∈1..n] (10)

• for every occurrence in c of a subterm of the form a.lj, the inequalities

[[a]] ≤ [lj : 〈a.lj〉] (11)

〈a.lj〉 ≤ [[a.lj]] (12)

• for every occurrence in c of a subterm of the form a.lj ⇐ ς(x)b, the
constraints

[[a]] ≤ [[a.lj ⇐ ς(x)b]] (13)

[[a]] = x (14)

[[a]] ≤ [lj : [[b]]] (15)

In (8) to (15), each equality A = B denotes the two inequalities A ≤ B and
B ≤ A.

Denote by C(c) the AC-system of constraints generated from c in this
fashion. For a ς-term c of size n, the AC-system C(c) is of size O(n), and
it is generated using O(log n) space. We show below that the solutions of
C(c) over T correspond to the possible type annotations of c in a sense made
precise by Lemma 4.2. For examples of AC-systems generated from ς-terms,
see Section 9.

The constraints are motivated by the forms of the corresponding type
rules. The reason for the use of ≤ in four of the constraint rules can be
summarized as follows:

• Given a type derivation, we can find a particular type derivation where
the subsumption rule (5) is used exactly once for each occurrence of a
subterm.

9

This explains the use of ≤ in the constraints (8), (9), (12), (13). For example,
consider an occurrence in c of a variable x. If the constraint x ≤ [[x]] has
solution L, then we can construct the type derivation

L ` x : L(x) L(x) ≤ L([[x]])

L ` x : L([[x]]) .

The use of ≤ in the constraints (11) and (15) is motivated by the rules (6)
and (7).

Notice that we cannot replace the constraints (11) and (12) by the single
constraint

[[a]] ≤ [lj : [[a.lj]]] (16)

To see this, let a.lj occur in c and suppose C(a.lj) has solution L (so in
particular, (11) and (12) has solution L). Consider the type derivation

L ` a : L([[a]]) L([[a]]) ≤ [lj : L(〈a.lj〉)]
L ` a : [lj : L(〈a.lj〉)]

L ` a.lj : L(〈a.lj〉) L(〈a.lj〉) ≤ L([[a.lj]])

L ` a.lj : L([[a.lj]])

Clearly, L([[a]])↓ lj need not be equal to L([[a.lj]]). With the constraint (16),
however, they are forced to be equal.

Let E be a type environment assigning a type to each variable occurring
freely in c. If L is a function assigning a type to each variable in X ∪ Y ∪Z,
we say that L extends E if E and L agree on the domain of E.

If b is an annotated ς-term, then we let b denote the corresponding un-
typed term. Moreover, we let b̂ be the partial function that maps each bound
variable in b to its type annotation.

Lemma 4.2 The judgment E ` c : A is derivable if and only if there exists

a solution L of C(c) extending both E and ĉ, such that L([[c]]) = A. In

particular, if c is closed, then c is well-typed with type A if and only if there

exists a solution L of C(c) extending ĉ such that L([[c]]) = A.

Proof. We first prove that if C(c) has a solution L extending both E and
ĉ, then L ` c : L([[c]]) is derivable. We proceed by induction on the structure
of c.

10

For the base case, L ` x : L([[x]]) is derivable using rules (1) and (5), since
L(x) ≤ L([[x]]).

For the induction step, consider first [li = ς(xi)bi
i∈1..n

]. Let A =
[li : L([[bi]])

i∈1..n]. To derive L ` [li = ς(xi : L(xi))b
i∈1..n

i] : L([[[li =

ς(xi)bi
i∈1..n

]]]), by rule (5) and the fact that A ≤ L([[[li = ς(xi)bi
i∈1..n

]]]),
it suffices to derive L ` [li = ς(xi : L(xi))b

i∈1..n
i] : A. From the fact that

L(xi) = A for every i ∈ 1..n, it suffices to derive L ` [li = ς(xi : A)b i∈1..n
i] :

A. The side condition of rule (2) is clearly satisfied, so it suffices to derive,
for each i ∈ 1..n, L[xi ← A] ` bi : L([[bi]]), or in other words, L ` bi : L([[bi]]).

But since L is a solution of C([li = ς(xi)bi
i∈1..n

]), it is also a solution of C(bi)
for each i ∈ 1..n, thus the desired derivations are provided by the induction
hypothesis.

Now consider a.lj. Since L is a solution of C(a.lj), it is also a solution
of C(a). From the induction hypothesis, we obtain a derivation of L ` a :
L([[a]]). By rule (3) and the fact that L([[a]]) ≤ [lj : L(〈a.lj〉)], we obtain a
derivation of L ` a.lj : L(〈a.lj〉). Using rule (5) and the fact that L(〈a.lj〉) ≤
L([[a.lj]]), we then obtain a derivation of L ` a.lj : L([[a.lj]]).

Finally consider a.lj ⇐ ς(x : L(x))b. Let A = L([[a]]). To derive L `
a.lj ⇐ ς(x : L(x))b : L([[a.lj ⇐ ς(x)b]]), by rule (5) and the fact that A ≤
L([[a.lj ⇐ ς(x)b]]), it suffices to derive L ` a.lj ⇐ ς(x : L(x))b : A. From the
fact that A = L(x), it suffices to derive L ` a.lj ⇐ ς(x : A)b : A. The side
condition of rule (7) is satisfied because A ≤ [lj : L([[b]])], so it suffices to
derive L ` a : A and L[x← A] ` b : L([[b]]), or in other words L ` a : L([[a]])
and L ` b : L([[b]]). But since L is a solution of C(a.lj ⇐ ς(x)b), it is also a
solution of C(a) and C(b), thus the desired derivations are provided by the
induction hypothesis.

We then prove that if E ` c : A is derivable, then there exists a solution
L of C(c) extending both E and ĉ.

Suppose E ` c : A is derivable, and consider a derivation of minimal
length. Since the derivation is minimal, there is exactly one application of
the rule (1) involving a particular occurrence of a variable x, exactly one
application of the rule (2) involving a particular occurrence of a subterm
[li = ς(xi : A)b i∈1..n

i], exactly one application of the rule (3) involving a
particular occurrence of a subterm a.lj, and exactly one application of the
rule (4) involving a particular occurrence of a subterm a.lj ⇐ ς(x : A)b. In
the case of a variable x, there is a unique type B such that F (x) = B for

11

any F such that a judgment F ` a : B ′ appears in the derivation for some
occurrence of a subterm a of ς(x : A)b; this can be proved by induction on the
structure of the derivation of F ` a : B ′. Finally, there can be at most one
application of the rule (5) involving a particular occurrence of any subterm;
if there were more than one, they could be combined using the transitivity
of ≤ to give a shorter derivation.

Now construct L as follows. For every free variable x of c define L(x) =
E(x). For every bound variable x, let ς(x : A)b be the method in which it
is bound, and define L(x) = A. For every occurrence of a subterm a of c,
find the last judgment in the derivation of the form F ` a : B involving that
occurrence of a, and define L([[a]]) = B. Intuitively, the last judgment of the
form F ` a : B means the judgment after the use of subsumption. Finally,
for every occurrence of a subterm a.lj of c, find the unique application of the
rule (3) deriving F ` a.lj : Bj, and define L(〈a.lj〉) = Bj.

Certainly L extends E and ĉ and L([[c]]) = A. We now show that L is a
solution of C(c).

For an occurrence of a bound variable x, there are two cases. Suppose first
that the variable is bound in a method that occurs in an object declaration.
Find the unique application of the rule (2) deriving the judgment F ` [li =
ς(xi : A)b i∈1..n

i] : A from a family of premises where one of them is F [x ←
A] ` b : Bi. Then L(x) = A. The rule (1) must have been applied to
obtain a judgment of the form G ` x : L(x) and only rule (5) applied to
that occurrence of x thereafter, thus L(x) ≤ L([[x]]). Suppose then that the
variable is bound in a method that occurs in a method override. Find the
unique application of the rule (4) deriving the judgment F ` a.lj ⇐ ς(x :
A)b : A from two premises where one of them is F [x ← A] ` b : Bj. As
before, we get that L(x) ≤ L([[x]]).

For an occurrence of a subterm of the form [li = ς(xi : A)b i∈1..n
i], find

the unique application of the rule (2) deriving the judgment F ` [li = ς(xi :
A)b i∈1..n

i] : A from the premises F [xi ← A] ` bi : Bi, where A = [li :

L([[bi]])
i∈1..n]. Then L(xi) = A, and A ≤ L([[[li = ς(xi)bi

i∈1..n
]]]).

For an occurrence of a subterm of the form a.lj, find the unique appli-
cation of the rule (3) deriving the judgment F ` a.lj : Bj from the premise
F ` a : [li : B i∈1..n

i]. Then L([[a]]) = [li : B i∈1..n
i] and Bj = L(〈a.lj〉) ≤

L([[a.lj]]). Thus, L([[a]]) ≤ [lj : L(〈a.lj〉)], by the definition of ≤.
Finally for an occurrence of a subterm of the form a.lj ⇐ ς(x : A)b, find

12

the unique application of the rule (4) deriving the judgment F ` a.lj ⇐
ς(x : A)b : A from the premises F ` a : A and F [x ← A] ` b : Bj, where
A = [li : B i∈1..n

i]. Then L([[a]]) = A ≤ L([[a.lj ⇐ ς(x)b]]), and A = L(x).
Moreover, L([[b]]) = Bj, so L([[a]]) ≤ [lj : L([[b]])], by the definition of ≤. 2

We then prove that solving AC-systems is log space reducible to the type
inference problem.

Lemma 4.3 Solvability of AC-systems is logspace-reducible to the type in-

ference problem.

Proof. Let C be an AC-system. Recall that for an inequality W ≤ W ′ in
C, both W and W ′ are of the forms V or [li : V i∈1..n

i], where V, V1, . . . , Vn

are variables. Define
aC = [lV = ς(x)(x.lV)

for each variable V in C
lR = ς(x)[li = ς(y)(x.lVi

) i∈1..n]
for each R in C of the form [li : V i∈1..n

i]
mR,lj = ς(x)((x.lVj

⇐ ς(y)(x.lR.lj)).lR)
for each R in C of the form [li : V i∈1..n

i]
and for each j ∈ 1..n

lW≤W ′ = ς(x)((x.lW ′ ⇐ ς(y)(x.lW)).lW)
for each inequality W ≤ W ′ in C

]

Notice that aC can be generated in log space.
We first prove that if C is solvable then aC is typable. Suppose C has

solution L. Define
A = [lV : L(V) for each variable V in C

lR : L̃(R) for each R in C of the form [li : V i∈1..n
i]

mR,lj : L̃(R) for each R in C of the form [li : V i∈1..n
i]

and for each j ∈ 1..n

lW≤W ′ : L̃(W) for each inequality W ≤ W ′ in C
]

Define also

13

d = [lV = ς(x : A)(x.lV)
for each variable V in C

lR = ς(x : A)[li = ς(y : L̃(R))(x.lVi
) i∈1..n]

for each R in C of the form [li : V i∈1..n
i]

mR,lj = ς(x : A)((x.lVj
⇐ ς(y : A)(x.lR.lj)).lR)

for each R in C of the form [li : V i∈1..n
i]

and for each j ∈ 1..n
lW≤W ′ = ς(x : A)((x.lW ′ ⇐ ς(y : A)(x.lW)).lW)

for each inequality W ≤ W ′ in C
]

Clearly, d is an annotated version of aC and ∅ ` d : A is derivable.
We then prove that if aC is typable, then C is solvable. Suppose aC

is typable. From Lemma 4.2 we get a solution M of C(aC). Notice that
each method in aC binds a variable x. Each of these variables corresponds
to a distinct type variable in C(aC). Since M is a solution of C(aC), and
C(aC) contains constraints of the form x = [. . .] for each method in aC (from
rule (10)), all those type variables are mapped by M to the same type. Thus,
we can think of all the bound variables in aC as being related to the same
type variable, which we will write as x.

Define

L(V) = M(x)↓ lV for each variable V in C.

The definition is justified by Property 1 below.

• Property 1 If V is a variable in C, then M(x)↓ lV is defined.

• Property 2 For each R in C of the form [li : V i∈1..n
i], we have

M(x)↓ lR = [li : (M(x)↓ lVi
) i∈1..n].

We will proceed by first showing the two properties and then showing that
C has solution L.

To see Property 1, notice that in the body of the method lV we have the
expression x.lV . Since M is a solution of C(aC), we have from the rules (8)
and (11) that M satisfies

x ≤ [[x]] ≤ [lV : 〈x.lV 〉] .

We conclude that M(x)↓ lV = M(〈x.lV 〉) is defined.

14

To see Property 2, let R be an occurrence in C of the form [li : V i∈1..n
i].

In the body of the method lR have the expression [li = ς(y)(x.lVi
) i∈1..n].

Since M is a solution of C(aC), we have from the rules (10), (9), (8), (11),
and (12) that M satisfies

x = [. . . lR : [[[li = ς(y)(x.lVi
) i∈1..n]]] . . .] (17)

[li : [[x.lVi
]] i∈1..n] ≤ [[[li = ς(y)(x.lVi

) i∈1..n]]] (18)

x ≤ [[x]] ≤ [lVi
: 〈x.lVi

〉 i∈1..n] for each i ∈ 1..n (19)

〈x.lVi
〉 ≤ [[x.lVi

]] for each i ∈ 1..n (20)

Thus, for each i ∈ 1..n,

M(x)↓ lVi
= M(〈x.lVi

〉) from (19)
≤ M([[x.lVi

]]) from (20)
= M([[[li = ς(y)(x.lVi

) i∈1..n]]])↓ li from (18)
= M(x)↓ lR ↓ li from (17)

For each j ∈ 1..n, in the body of the method mR,lj , we have the expression
x′.lVj

⇐ ς(y)(x.lR.lj) where we, for clarity, have written the first occurrence
of x as x′. Since M is a solution of C(aC), we have from the rules (8), (15),
(8), (11), (12), (11), and (12) that M satisfies

x ≤ [[x′]] ≤ [lVj
: [[x.lR.lj]]] (21)

x ≤ [[x]] ≤ [lR : 〈x.lR〉] (22)

〈x.lR〉 ≤ [[x.lR]] (23)

[[x.lR]] ≤ [lj : 〈x.lR.lj〉] (24)

〈x.lR.lj〉 ≤ [[x.lR.lj]] (25)

Thus,

M(x)↓ lR ↓ lj = M(〈x.lR〉)↓ lj from (22)
= M([[x.lR]])↓ lj from (23)
= M(〈x.lR.lj〉) from (24)
≤ M([[x.lR.lj]]) from (25)
= M(x)↓ lVj

from (21)

We conclude that for each i ∈ 1..n, M(x) ↓ lR ↓ li = M(x) ↓ lVi
. From this,

(17), and (18) we get Property 2.
We can summarize Property 1 and 2 as follows.

15

• Property 3 If W is lefthand-side or a righthand-side of an inequality
in C, then M(x)↓ lW is defined and L̃(W) = M(x)↓ lW .

We will now show that C has solution L. Consider an inequality W ≤ W ′

in C. The body of the method lW≤W ′ contains the expression x′.lW ′ ⇐
ς(y)(x.lW) where we, for clarity, have written the first occurrence of x as x′.
Since M is a solution of C(aC), we have from the rules (8), (15), (8), (11),
and (12) that M satisfies

x ≤ [[x′]] ≤ [lW ′ : [[x.lW]]] (26)

x ≤ [[x]] ≤ [lW : 〈x.lW 〉] (27)

〈x.lW 〉 ≤ [[x.lW]] (28)

We conclude

L̃(W) = M(x)↓ lW from Property 3
= M(〈x.lW 〉) from (27)
≤ M([[x.lW]]) from (28)
= M(x)↓ lW ′ from (26)

= L̃(W ′) from Property 3

2

For example, let C be the AC-system consisting of the single constraint

V ≤ [l : W]

We then get:

aC = [lV = ς(x)(x.lV)
lW = ς(x)(x.lW)
l[l:W] = ς(x)[l = ς(y)(x.lW)]
m[l:W],l = ς(x)((x.l ⇐ ς(y)(x.l[l:W].l)).l[l:W])
lV ≤[l:W] = ς(x)((x.l[l:W] ⇐ ς(y)(x.lV)).lV)

]

By combining Lemmas 4.2 and 4.3 we get the following result.

Theorem 4.4 The type inference problem is log space equivalent to solving

AC-systems.

16

5 From Constraints to Graphs

In this section we prove that solving AC-systems is log space equivalent to
solving a certain kind of constraint graphs. The graphs yield a convenient
setting for applying algorithms like transitive closure.

Definition 5.1 A AC-graph is a directed graph G = (N, S, L,≤) consisting
of two disjoint sets of nodes N and S, and two disjoint sets of directed edges
L and ≤. Each edge in L is labeled with some l ∈ N , and each edge in ≤ is
labeled with ≤. An AC-graph satisfies the properties:

• any N node has finitely many outgoing L edges, all to S nodes, and
those edges have distinct labels;

• any S node has no outgoing L edges;

For each h : S → T , define h̃ : (N ∪ S)→ T as

h̃(u) =

{
[l1 : h(v1), . . . , ln : h(vn)] if u

li→ vi are the L edges from u ∈ N
h(u) if u ∈ S

A solution for G is any map h : S → T such that if u
≤→ v, then h̃(u) ≤ h̃(v).

The solution h is finite if h(s) is a finite set for all s. 2

For examples of AC-graphs, see Section 9.
Recall that we represent a type as a set of strings. Note that a solvable

AC-graph has a pointwise ⊆-least solution. To see this, observe that the
intersection of any non-empty family of solutions is itself a solution. Thus,
provided that solutions exist, the intersection of all solutions is the pointwise
⊆-least solution.

Theorem 5.2 Solving AC-systems is log space equivalent to solving AC-

graphs.

Proof. Given an AC-system, we construct an AC-graph as follows. As-
sociate a unique N node with every subexpression of the form [li : V i∈1..n

i],
and associate a unique S node with every variable. From the node for
[li : V i∈1..n

i], define for each i ∈ 1..n an L edge labeled li to the node
for Vi. Finally, define ≤ edges for the inequalities. Notice that the AC-graph

17

can be generated in log space. Clearly, the resulting AC-graph is solvable if
and only if the AC-system is solvable.

Conversely, given an AC-graph, we construct an AC-system as follows.
For every ≤ edge, generate the obvious inequality. Notice that the AC-system
can be generated in log space. Clearly, the resulting AC-system is solvable if
and only if the AC-graph is solvable. 2

For examples of AC-graphs generated from AC-systems, see Section 9.
The following two definitions provide the basis for the algorithms for

solving AC-graphs that will be presented in Section 7. First we define the
closure of an AC-graph, which makes the solutions (or lack thereof) explicit.
Then we define a condition for solvability: well-formedness of the graph. The
concepts of closure and well-formedness are brought together in Theorem 6.5
which says that a closed graph is solvable if and only if it is well-formed.

Definition 5.3 An AC-graph is closed if the edge relation ≤ is reflexive,
transitive, and closed under the following rule which say that the dashed
edge exists whenever the solid ones do:

�����
HHHHj

? ?

≤ ≤

l l

=

The = edge denotes two ≤ edges, one in each direction.
The closure of an AC-graph G is the smallest closed AC-graph containing

G as a subgraph. 2

Note that an AC-graph and its closure have the same set of solutions. To
see this, observe that any solution of the closure of G is also a solution of G,
since G has fewer constraints. Conversely, observe that the closure of G can
be constructed from G by iterating the closure rules, and it follows induc-
tively by the definition of ≤ that any solution of G satisfies the additional
constraints added by this process.

Definition 5.4 An AC-graph is well-formed if for any nodes u, v ∈ N with

u
≤→ v, if v has an outgoing edge labeled l, then so does u. 2

18

6 From Graphs to Automata

In this section we define an automaton M and prove our main result. This
automaton will be used to characterize the canonical assignment of types to
nodes of a given AC-graph.

Definition 6.1 Let an AC-graph G = (N, S, L,≤) be given. The automaton
M is defined as follows. The input alphabet ofM is N (the set of method
names). The states of M are N ∪ S. We use p, q, s, u, v, w to range over
states. The transitions are defined as follows.

v
ε→ v′ if v

≤→ v′ in G

v
l→ v′ if v

l→ v′ in G

If p and q are states ofM and α ∈ N∗, we write p
α→ q if the automaton can

move from state p to state q under input α, including possible ε-transitions.
The automaton Ms is the automaton M with start state s. All states

are accept states; thus the language accepted by Ms is the set of strings α
for which there exists a state p such that s

α→ p. We denote this language by
L(s).

The set L(s) is clearly nonempty, since s
ε→ s is in M, and it is prefix-

closed since all states inM are accept states. Moreover, L(s) is regular: each
of the finitely many states in M corresponds to a subtree in L(s). Hence,
L(s) ∈ T . 2

The intuition motivating the definition ofM is that we want to identify
the conditions that require a path to exist in any solution. Thus L(s) is the
set of α that must be there; this intuition is made manifest in the following
lemma.

Recall from Section 3 that A ↓ α is the subtree of A at α if α ∈ A, ∅ if
not.

Lemma 6.2 Let G be an AC-graph. If h : S → T is any solution and s
α→ p

in M, then α ∈ h̃(s) and h̃(s)↓α ≤ h̃(p).

Proof. We proceed by induction on the number of transitions. If this is
zero, then p = s and α = ε, and the result is immediate. Otherwise, assume

19

that s
α→ p in M and the lemma holds for this sequence of transitions. We

argue by cases, depending on the form of the next transition out of p.

Consider first a transition p
ε→ q. Then p

≤→ q in G, so h̃(p) ≤ h̃(q). By
the induction hypothesis, we get αε = α ∈ h̃(s) and

h̃(s)↓αε = h̃(s)↓α ≤ h̃(p) ≤ h̃(q).

Consider then a transition p
l→ q. Then p

l→ q in G, so h̃(p) ↓ l = h̃(q).
Thus, l ∈ h̃(p). By the induction hypothesis we get h̃(p) ⊆ h̃(s) ↓ α, so
l ∈ h̃(s)↓α, hence αl ∈ h̃(s). We also get

h̃(s)↓αl = (h̃(s)↓α)↓ l = h̃(p)↓ l = h̃(q)

using the definition of ≤. 2

Lemma 6.3 Let G be a closed AC-graph. Suppose that G contains the edges

u
≤→ v

l→ w. Then L̃(u)↓ l = L̃(w).

Proof. Follows from G being closed. 2

Lemma 6.4 Let G be a closed AC-graph. Suppose that G contains the edge

u1
≤→ u2. If l ∈ L̃(u1) and l ∈ L̃(u2), then L̃(u1)↓ l = L̃(u2)↓ l.

Proof. For each i ∈ 1..2 we observe that for any node wi and edges

ui
≤→ vi

l→ wi, we get from Lemma 6.3 that L̃(ui) ↓ l = L̃(wi). Thus, it is
sufficient to choose two such nodes w1 and w2, and prove that L̃(w1) = L̃(w2).
This choice is possible since l ∈ L̃(u1) and l ∈ L̃(u2). From G being closed

we get that there are edges w1
≤→ w2 and w2

≤→ w1. Thus, L̃(w1) = L̃(w2)
indeed holds. 2

Theorem 6.5 A closed AC-graph is solvable if and only if it is well-formed.

If it is solvable, then L is the pointwise ⊆-least solution.

Proof. Let G be a closed AC-graph. Clearly, if G is solvable, then it is
well-formed.

Assume now that G is well-formed. To show that L is a solution for G, we

need to prove that if u
≤→ v in G, then L̃(u) ≤ L̃(v). Suppose l ∈ L̃(v). We

20

must prove that l ∈ L̃(u) and L̃(u) ↓ l = L̃(v) ↓ l. If we can prove l ∈ L̃(u),
then L̃(u)↓ l = L̃(v)↓ l follows from Lemma 6.4.

First, if u ∈ N , then from G being well-formed, we get u
l→ w in G for

some w. Thus, l ∈ L̃(u). Second, if u ∈ S, then from u
≤→ v, we get from

Lemma 6.3 that l ∈ L̃(u).
To show that L is the pointwise ⊆-least solution, we need to show that

for any solution h : S → T , L(s) ⊆ h(s) for all s. This follows directly from
Lemma 6.2. 2

Intuitively, the pointwise ⊆-least solution is the one where the types con-
tain only those fields that are absolutely required by the type rules.

7 Algorithms

We first demonstrate how to close an AC-graph and how to check if an
AC-graph is well-formed. Then we proceed to presenting the type inference
algorithms.

7.1 Closure

To compute the closure of an AC-graph (N, S, L,≤), we use four data struc-
tures:

1. ITC: a data structure for incremental transitive closure. It maintains
the transitive closure of a graph of ≤ edges during edge insertions.
Specifically, it maintains an adjacency matrix TC such that after each
edge insertion, TC [x, y] = 1 if and only if there is a path from x to
y in the graph, and TC [x, y] = 0 otherwise. An edge insertion may
result in the addition of more edges, and so on, recursively. The insert
operation returns a list of all edges that have been added, represented
as node pairs. Initialization and maintenance of ITC can be done in
O(n3) time, where n is the number of nodes [15, 21].

2. PE: a data structure with potential ≤ edges. This data structure is
computed in a preprocessing phase. It is a matrix of the same form
as the adjacency matrix, but with each entry being a list of pairs of

21

nodes. It is computed by, for each pair of L edges x1
l1→ y1 and x2

l2→ y2,
checking if l1 = l2, and if so, appending [(y1, y2), (y2, y1)] to PE[x1, x2].
This takes O(|L|2) time. The idea is that, for l1 = l2, if we later find

edges x
≤→ x1 and x

≤→ x2 for some x, then we must insert x1
l1→ y1 and

x2
l2→ y2 into ITC.

3. M: a matrix of the same form as the adjacency matrix. It is used to
keep track of the accesses to PE. Specifically, M[x, y] = 1 if and only
if we have accessed PE[x, y], and M[x, y] = 0 otherwise.

4. Q: the worklist. Specifically, Q is a list of pairs of nodes. Each pair

(x, y) indicates that x
≤→ y must be inserted into ITC.

The algorithm works as follows. First compute PE, initialize ITC to be the
empty graph, initialize M to be the 0-matrix, and initialize Q to be the list
of ≤ edges of the input graph. Then repeat the following step until Q is
empty:

• Let (x, y) be a pair in Q. Remove it and insert it into ITC. Let R be
the list which is returned by the insert operation. For each (x, y) in R,
find the immediate successors z of x in ITC, and if M[y, z] = 0, then
set M[y, z] = 1 and set M[z, y] = 1, and append PE[y, z] to Q.

Suppose (N, S, L,≤) is the input graph, and let n be the number of nodes
in the graph, that is, n = |N |+ |S|. There can be O(n2) new edges in ITC,
and for each one, we consider O(n) immediate successors of a given node.
For the graphs of our application, |L| ∈ O(n), so for those the total running
time of the algorithm is O(n3).

7.2 Well-formedness

To check that an AC-graph is well-formed, do a depth-first search of the
graph, maintaining for each node in N both a set of labels of outgoing L
edges and a list of outgoing ≤ edges. Each time a node u ∈ N is to be

exited, check for each edge u
≤→ v that the label set for v is a subset of the

label set for u. The time spent is:

• The search itself takes time proportional to the number of edges, which
is O(|L|+ | ≤ |) time.

22

• The maintenance of label sets takes time proportional to inserting |L|
elements, which is O(|L| log |L|) time.

• The maintenance of lists of ≤ edges takes O(| ≤ |) time.

• The checks take O(|L|2) time. (There is either zero or one comparison
of labels for each pair of L edges.)

Suppose (N, S, L,≤) is the input graph, and let n be the number of nodes
in the graph, that is, n = |N | + |S|. For the graphs of our application,
|L| ∈ O(n), so for those the total running time of the algorithm is O(n2).

7.3 Type inference

We have shown that the type inference problem with recursive types and
subtyping is log space equivalent to solving AC-graphs. Using the character-
ization of Theorem 6.5, we get a straightforward type inference algorithm:

Input: A ς-term of size n.
1: Construct the corresponding AC-graph (in log space).
2: Close the graph (in O(n3) time).
3: Check if the resulting graph is well-formed (in O(n2) time).
4: If the graph is well-formed,

then output “typable” together with the automatonM
else output “not typable”.

The entire algorithm requires O(n3) time. Every subterm of the input
corresponds to a state (s) in the automatonM, and a suggestion for its type
is represented by the language L(s).

Consider then the type inference problem with finite types and subtyping.
Clearly, this problem is log space equivalent to finding finite solutions to AC-
graphs. By Theorem 6.5, there exists a finite solution if and only if L is
a finite solution. Thus, we obtain a type inference algorithm by modifying
step 4 of the above algorithm so that it checks that L is finite. To do that,
we check for a cycle inM with at least one non-ε transition reachable from
some (s). This can be done in linear time in the size of the closed AC-graph
using depth-first search. Thus, the entire algorithm requires O(n3) time.

Consider then the type inference problems without subsumption. This
causes us to change the inequalities (8), (9), (12), and (13) to the corre-
sponding equalities. Note that we leave the inequalities (11) and (15) un-

23

changed. We can then repeat the development of Sections 4–6, but this
time with a subclass of AC-systems, which we call SAC-systems (simple AC-
systems). In SAC-systems, the allowed constraints are of the forms W = W ′

or V ≤ [li : V i∈1..n
i], where V, V1, . . . , Vn are variables, and W, W ′ are of the

forms V or [li : V i∈1..n
i]. Similarly, there is a subclass of AC-graphs, which

we call SAC-graphs. In SAC-graphs, most ≤ edges come in pairs, yielding

“equality” edges. Specifically, consider an edge u
≤→ v. Unless, u is an S

node and v is an N node, then there is also an edge v
≤→ u. An SAC-graph is

well-formed if it is well-formed as an AC-graph. Moreover, the closure of an
SAC-graph G is the smallest closed SAC-graph containing G as a subgraph.
Clearly, the “AC-closure” and the “SAC-closure” of an SAC-graph are the
same. SAC-graphs can be solved using the above algorithms, in time O(n3),
both with recursive and finite types.

In summary:

Theorem 7.1 All four type inference problems are solvable in O(n3) time.

8 Completeness

We now prove that all four type inference problems are P-hard under log
space reductions. Clearly, it is sufficient to show that the two problems of
solving SAC-systems with finite or recursive types are P-hard. These two
results are obtained by reductions of simple type inference for λ-calculus,
and of the monotone circuit value problem, respectively, as explained in the
following.

We first consider finding finite solutions to SAC-systems. Simple type
inference for λ-calculus is P-complete under log space reductions [12]. It is
log space equivalent to finding finite solutions to a finite set of equations of
the forms V = V ′ → V ′′ or V = C, where V, V ′, V ′′ are variables, and C is a
constant. Variables range over the set of finite binary trees over the binary
constructor→ and some set of nullary constants. A solution is a map L from
variables to such trees such that all equations are satisfied. We can in log
space transform such a set of equations into an equivalent SAC-system by
translating V = V ′ → V ′′ into V = [l : V ′ r : V ′′], and translating V = C
into V = []. Thus, finding finite solutions to a SAC-system is P-hard.

24

We then consider finding arbitrary solutions to SAC-systems. A mono-
tone circuit [7] is a directed acyclic graph G whose nodes, called gates, are
of five different kinds:

1. input gates with no in-edge and one out-edge;

2. and-gates with two in-edges and one out-edge;

3. or-gates with two in-edges and one out-edge;

4. fan-out gates with one in-edge and two out-edges; and

5. a single output gate with one in-edge and no out-edges.

Furthermore, all gates are reachable from the input gate, and the output
gate is reachable from all gates.

Every assignment a of truth values to the input gates of G can be extended
uniquely to a truth value assignment a to all gates of G by defining:

1. if n is an input gate, then a(n) = a(n);

2. if n is an and-gate with predecessors n′ and n′′, then a(n) = a(n′) ∧
a(n′′);

3. if n is an or-gate with predecessors n′ and n′′, then a(n) = a(n′)∨a(n′′);

4. if n is a fan-out gate with predecessor n′ and out-edges n1, n2, then
a(n1) = a(n′) and a(n2) = a(n′); and

5. if n is the output gate with predecessor n′, then a(n) = a(n′).

The monotone circuit value problem [16] is the problem of deciding, given a
monotone circuit G and an assignment a to the input gates of G, whether
a(n) = true for the output gate n. It is P-complete under log-space reduc-
tions [16].

We will now give a log space reduction of the monotone circuit value
problem to the problem of finding arbitrary solutions to SAC-graphs. The
construction is adapted from Henglein’s proof of P-hardness of left-linear
semi-unification [13]. That proof, in turn, is adapted from Dwork, Kanellakis,
and Mitchell’s proof of P-hardness of unification [8].

25

Given a monotone circuit and an assignment to input gates, we construct
an SAC-graph as follows. Each gate in the circuit yields a small “gadget”
consisting of a few nodes and edges. Each gadget has a pair of designated
nodes for every in- and outedge of the encoded gate:

1. Each input gate is represented by two S nodes n, n′. The output node
pair is (n, n′).

2. Each and-gate is represented by three S nodes n, n′, n′′. The two input
node pairs are (n, n′) and (n′, n′′). The output node pair is (n, n′′).

3. Each or-gate is represented by two S nodes n, n′. The two input node
pairs are (n, n′) and (n, n′). The output node pair is also (n, n′).

4. Each fan-out gate is represented by two N nodes n, n′ and four S nodes

n1, n2, n
′
1, n

′
2, and four edges n

0→ n1, n
1→ n2, n′ 0→ n′

1, and n′ 1→ n′
2,

where 0 indicates “left” and 1 indicates “right”. The input node pair
is (n, n′). The output node pairs are (n1, n

′
1) and (n2, n

′
2).

5. The output gate is represented by two N nodes n1, n2 and one S node

n′
2, and one edge n2

l→ n′
2. The input node pair is (n1, n2).

Each edge in the circuit yields one or more edges in the SAC-graph, as
follows. Suppose there is an edge from gate g to gate g ′ in the circuit. We
connect the corresponding output pair (n, n′) in the representation of g to
the corresponding input pair (m, m′) in the representation of g′ by adding

the edges m
≤→ n and n′ ≤→ m′.

Finally, consider an input gate which is assigned true by a. Suppose the

gate is represented by n, n′. We add the edge n
≤→ n′.

Having now constructed the SAC-graph G, consider the two N nodes
n1, n2 in the representation of the output gate g. Clearly, the closure of G

contains an edge n1
≤→ n2 if and only if a(g) = true. By Theorem 6.5 it

follows, that a(g) = true if and only if G is not solvable. Thus, finding
arbitrary solutions to a SAC-system is P-hard.

In summary:

Theorem 8.1 All four type inference problems are P-complete.

26

9 Examples

We now give three examples of how the type inference algorithms work. We
use the algorithm for the system with recursive types and subtyping.

The first example is taken from Section 2. Consider the object o ≡ [l =
ς(x)x.l]. The expression o.l yields the following constraints and in turn the
following graph:

o.l

[
[[o]] ≤ [l : 〈o.l〉]
〈o.l〉 ≤ [[o.l]]

o

[
[l : [[x.l]]] ≤ [[o]]
x = [l : [[x.l]]]

x.l

[
[[x]] ≤ [l : 〈x.l〉]
〈x.l〉 ≤ [[x.l]]

x x ≤ [[x]]

- -

?
- �

?
- -

?

x [[x]]
⊙

⊙
[[x.l]] 〈x.l〉

[[o]]
⊙ 〈o.l〉

[[o.l]]

≤ ≤

l=

l ≤

≤
≤ l

≤

To the left of the constraints we have written from which expressions they
are generated. In the graph we indicate N nodes with the symbol

⊙
. To

close the graph we only need to add three equality edges between the nodes
[[x.l]], 〈x.l〉, and 〈o.l〉, and of course edges to make ≤ transitive. Clearly, the
resulting graph is well-formed, hence solvable. By transforming the graph
into an automaton, we get that the variable x has the ⊆-least annotation
[l : []].

The second example is also taken from Section 2. Consider the object
o′ ≡ [l = ς(x)x]. The expression o′.l yields the following constraints and in
turn the following graph:

27

o′.l

[
[[o′]] ≤ [l : 〈o′.l〉]
〈o′.l〉 ≤ [[o′.l]]

o′
[

[l : [[x]]] ≤ [[o′]]
x = [l : [[x]]]

x x ≤ [[x]]

-

�
�

���

?
- -

?

x [[x]]

⊙

⊙
[[o′]] 〈o′.l〉

[[o′.l]]

≤

= l

l

≤
≤

≤

To close the graph we only need to add an equality edge between the
nodes [[x]] and 〈o′.l〉, and of course edges to make ≤ transitive. Clearly, the
resulting graph is well-formed, hence solvable. By transforming the graph
into an automaton, we get that the variable x has the ⊆-least annotation
[l : []].

The third example is also taken from Section 2. Consider the object
o′′ ≡ [l = ς(y)b], where b ≡ y.l ⇐ ς(x)x. The expression o′′.l yields the
following constraints and in turn the following graph:

o′′.l

[
[[o′′]] ≤ [l : 〈o′′.l〉]
〈o′′.l〉 ≤ [[o′′.l]]

o′′
[

[l : [[b]]] ≤ [[o′′]]
y = [l : [[b]]]

b

[[y]] ≤ [[b]]
[[y]] = x
[[y]] ≤ [l : [[x]]]

x x ≤ [[x]]

y y ≤ [[y]]

A
A
A
A
A
A
A
AAU

- -

? ?

6

?

? ?
-

y
⊙

[[o′′]]
⊙

[[b]] 〈o′′.l〉

[[y]] x [[o′′.l]]

⊙
[[x]]

= ≤ ≤

≤ l l

≤ ≤
=

≤ ≤
l

28

To close the graph we only need to add an equality edge between the
nodes [[b]] and 〈o′′.l〉, and of course edges to make ≤ transitive. Clearly, the
resulting graph is well-formed, hence solvable. By transforming the graph
into an automaton, we get that the variables x, y both have the ⊆-least
annotation [l : []].

The fourth example illustrates what happens if the program is not ty-
pable. Consider the object a ≡ []. The expression a.l yields the following
constraints and in turn the following graph:

a [] ≤ [[a]]

a.l

[
[[a]] ≤ [l : 〈a.l〉]
〈a.l〉 ≤ [[a.l]]

-

?

-

�

⊙
[[a]]

⊙

[[a.l]] 〈a.l〉≤

≤≤

l

To close the graph we only need to add a single edge to make ≤ transitive.
The resulting graph is not well-formed, however, because the leftmost node
does not have an outgoing l edge. Thus, the graph is not solvable.

10 Related work

Type inference with subtyping has been studied for λ-calculi. In that setting,
the problem of type inference with atomic subtyping can be presented as fol-
lows. Suppose types are finite trees over the binary function type constructor
→ and a partially ordered set (Σ,≤) of constants, that is, base types. The
ordering on types is the smallest extension of ≤ such that s → t ≤ s′ → t′

if and only if s′ ≤ s and t ≤ t′. The type rules are those of simply typed
λ-calculus with typed constants together with the subsumption rule. The
type inference problem is to decide if a given λ-term is typable. This prob-
lem was introduced by Mitchell in 1984 [19] who showed that type inference
is computable in NEXPTIME in the size of the program. If (Σ,≤) is a dis-
joint union of lattices, then type inference is computable in polynomial time
[23]. Moreover, if (Σ,≤) is “tree-like”, then type inference is computable
in polynomial time [6]. In general, the type inference problem is PSPACE -
hard [14, 23]. Type inference with atomic subtyping has also been studied
in combination with ML polymorphism [10, 11].

Objects do not have base types, so type inference with atomic subtyping
does not apply to Abadi and Cardelli’s calculus. The object types considered

29

in this paper are rather like record types. Type inference for λ-calculi with
records but no subtyping has been studied by Wand [24] and Remy [22].
In the presence of subtyping, unification-based approaches to type inference
seem not to apply.

Type inference for λ-calculi with records and subtyping has been studied
by Eifrig, Smith, and Trifonov [9], using the approach to type inference of
Aiken and Wimmers [5]. Their algorithm does not immediately apply to
Abadi and Cardelli’s calculus because of the following difference between
the subtyping relations. For records, the conventional subtyping relations
makes every record type constructor covariant in all arguments. For example,
[l : A, m : C] is a subtype of [l : B] provided that A is a subtype of B. In
Abadi and Cardelli’s type system, [l : A, m : C] can only be a subtype of
[l : B] if A = B. The conventional subtyping relation for records is unsound
in the case of Abadi and Cardelli’s calculus [2]. Even though the subtyping
relation in Abadi and Cardelli’s type system is smaller than the conventional
one for record types, it yields a more complicated definition of closed AC-
graphs, as illustrated in the following.

Our algorithms can easily be extended to handle also λ-terms and a con-
travariant function space constructor, in outline as follows. The constraints
for λ-terms are as usual (see for example [17]). The definition of AC-graph
needs to be extended with a set N→ of nodes and a set E→ of edges. Each
edge in E→ is labeled by either L or R, where L 6∈ N and R 6∈ N , where N
is the set of method names. Each node in N→ corresponds to a function type
constructor, and it has exactly two outgoing E→ edges, both to S nodes:
one edge labeled L (indicating the left argument of→) and one edge labeled
R (indicating the right argument of →). The definition of closed AC-graph
needs to be extended so that it is closed under the rule which says that the
dashed edges exists whenever the solid ones do:

�
-

-
B
B
B
BBN

�
�

�
�

���

B
B
B
BBN

�
�

�
�

���
≥

≤

≤

RLRL

Clearly, closing such graphs can be done in O(n3) time. Finally, the

30

notion of well-formed AC-graph needs to be restricted so that:

1. No well-formed AC-graph can contain edges of the forms u
≤→ v or

v
≤→ u where u ∈ N and v ∈ N→,

2. No well-formed AC-graph can contain a pair of edges of the forms u
≤→ v

and u
≤→ w where u ∈ S, v ∈ N , and w ∈ N→, and

3. No well-formed AC-graph can contain a pair of edges of the forms v
≤→ u

and w
≤→ u where u ∈ S, v ∈ N , and w ∈ N→.

The extra checks can be done in O(n2) time where n is the number of nodes.
Given proper definitions of the new set of types and the new ≤ relation (along
the lines of [17]), it should be possible to prove that Theorem 6.5 holds. For
the program λ(x)((x.a)x), the most powerful of the type inference algorithms
infers that x has the ⊆-least annotation [a : []→ []].

For a λ-calculus with records, our algorithm can be modified to handle
the conventional subtyping relation for record types, simply by changing the
definition of closed AC-graph such that if u, v ∈ N , s, t ∈ S, and the edges

u
≤→ v, u

l→ s, v
l→ t exist, then also s

≤→ t exists. Clearly, closing a graph
can be done in O(n3) time. The proof that Theorem 6.5 holds is left as an
exercise for the reader.

In remains to be seen how to extend our algorithm to deal with ML
polymorphism.

11 Conclusion

The type inference problems we have addressed are related to those treated by
Eifrig, Smith, and Trifonov [9]. Specifically, our algorithm can be modified to
handle functions and records, and it seems possible to modify their algorithm
to handle the object calculus. The results of the two approaches appear to
be complimentary. We have completeness results and efficient algorithms,
while they have incremental algorithms that can handle ML polymorphism.
Future work may attempt to combine the two approaches.

31

Acknowledgements. The author thanks Paris Kanellakis for comments that
prompted me to find the reduction from AC-systems to the type inference
problem. The author also thanks Fritz Henglein and Harry Mairson for
discussions on proving P-hardness. Moreover, the author thanks Devdatt
Dubhashi, Gudmund Frandsen, and Sven Skyum for discussions on algo-
rithms for closing AC-graphs. Finally, the author thanks Ole Agesen and
the anonymous referees for many helpful comments on a draft of the paper.
A preliminary version of this paper appeared in Proc. LICS’94, Ninth Annual
IEEE Symposium on Logic in Computer Science. The results of this paper
were obtained while the author was at Northeastern University, Boston.

References

[1] Mart́ın Abadi and Luca Cardelli. A semantics of object types. In Proc.

LICS’94, Ninth Annual IEEE Symposium on Logic in Computer Science,
pages 332–341, 1994.

[2] Mart́ın Abadi and Luca Cardelli. A theory of primitive objects. Manuscript,
February 1994.

[3] Mart́ın Abadi and Luca Cardelli. A theory of primitive objects: Second-order
systems. In Proc. ESOP’94, European Symposium on Programming, pages
1–25. Springer-Verlag (LNCS 788), 1994.

[4] Mart́ın Abadi and Luca Cardelli. A theory of primitive objects: Untyped
and first-order systems. In Proc. TACS’94, Theoretical Aspects of Computing

Sofware, pages 296–320. Springer-Verlag (LNCS 789), 1994.

[5] Alexander Aiken and Edward Wimmers. Type inclusion constraints and type
inference. In Proc. Conference on Functional Programming Languages and

Computer Architecture, pages 31–41, 1993.

[6] Marcin Benke. Efficient type reconstruction in the presence of inheritance.
Manuscript, 1994.

[7] Ravi B. Boppana and Michael Sipser. The complexity of finite functions.
In J. van Leeuwen, A. Meyer, M. Nivat, M. Paterson, and D. Perrin, editors,
Handbook of Theoretical Computer Science, volume A, chapter 14, pages 757–
804. Elsevier Science Publishers, Amsterdam; and MIT Press, 1990.

32

[8] C. Dwork, P. Kanellakis, and J. Mitchell. On the sequential nature of unifi-
cation. Journal of Logic Programming, 1:35–50, 1984.

[9] J. Eifrig, S. Smith, and V. Trifonov. Type inference for recursively constrained
types and it application to OOP. In Proc. Mathematical Foundations of Pro-

gramming Semantics, 1995. To appear.

[10] You-Chin Fuh and Prateek Mishra. Type inference with subtypes. In Proc.

ESOP’88, European Symposium on Programming, pages 94–114. Springer-
Verlag (LNCS 300), 1988.

[11] You-Chin Fuh and Prateek Mishra. Polymorphic subtype inference: Closing
the theory-practice gap. In Proc. TAPSOFT’89, pages 167–183. Springer-
Verlag (LNCS 352), 1989.

[12] Fritz Henglein. Simple type inference and unification. Technical Report
(SETL Newsletter) 232, Courant Institute of Mathematical Sciences, New
York University, October 1988.

[13] Fritz Henglein. Fast left-linear semi-unification. In Proc. ICCI’90, Inter-

national Conference on Computing and Information, pages 82–91. Springer-
Verlag (LNCS 468), 1990.

[14] My Hoang and John C. Mitchell. Lower bounds on type inference with sub-
types. In Proc. POPL’95, 22nd Annual SIGPLAN–SIGACT Symposium on

Principles of Programming Languages, pages 176–185, 1995.

[15] G. F. Italiano. Amortized efficiency of a path retrieval data structure. Theo-

retical Computer Science, 48:273–281, 1986.

[16] Richard M. Karp and Vijaya Ramachandran. Parallel algorithms for shared-
memory machines. In J. van Leeuwen, A. Meyer, M. Nivat, M. Paterson,
and D. Perrin, editors, Handbook of Theoretical Computer Science, volume A,
chapter 17, pages 869–941. Elsevier Science Publishers, Amsterdam; and MIT
Press, 1990.

[17] Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient inference
of partial types. Journal of Computer and System Sciences, 49(2):306–324,
1994. Also in Proc. FOCS’92, 33rd IEEE Symposium on Foundations of
Computer Science, pages 363–371, Pittsburgh, Pennsylvania, October 1992.

[18] Bent B. Kristensen, Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kris-
ten Nygaard. The BETA programming language. In Bruce Shriver and Peter

33

Wegner, editors, Research Directions in Object-Oriented Programming, pages
7–48. MIT Press, 1987.

[19] John Mitchell. Coercion and type inference. In Eleventh Symposium on Prin-

ciples of Programming Languages, pages 175–185, 1984.

[20] John C. Mitchell, Furio Honsell, and Kathleen Fisher. A lambda calculus of
objects and method specialization. In LICS’93, Eighth Annual Symposium

on Logic in Computer Science, pages 26–38, 1993.

[21] J. A. La Poutré and J. van Leeuwen. Maintenance of transitive closure and
transitive reduction of graphs. In Proc. Workshop on Graph-Theoretic Con-

cepts in Computer Science, pages 106–120. Springer-Verlag (LNCS 314), 1988.

[22] Didier Rémy. Typechecking records and variants in a natural extension of ML.
In Sixteenth Symposium on Principles of Programming Languages, pages 77–
88, 1989.

[23] Jerzy Tiuryn. Subtype inequalities. In LICS’92, Seventh Annual IEEE Sym-

posium on Logic in Computer Science, pages 308–315, 1992.

[24] Mitchell Wand. Type inference for record concatenation and multiple inheri-
tance. In LICS’89, Fourth Annual Symposium on Logic in Computer Science,
pages 92–97, 1989.

34

