
Mathematical Structures in Computer Science, 5(1):113–125, 1995.

Also in Proc. POPL’93, pages 419–428.

Efficient Recursive Subtyping

Dexter Kozen∗

kozen@cs.cornell.edu

Jens Palsberg†

palsberg@daimi.aau.dk

Michael I. Schwartzbach†

mis@daimi.aau.dk

Abstract

Subtyping in the presence of recursive types for the λ-calculus was
studied by Amadio and Cardelli in 1991 [1]. In that paper they showed
that the problem of deciding whether one recursive type is a subtype
of another is decidable in exponential time.

In this paper we give an O(n2) algorithm. Our algorithm is based
on a simplification of the definition of the subtype relation, which
allows us to reduce the problem to the emptiness problem for a certain
finite automaton with quadratically many states.

It is known that equality of recursive types and the covariant Böhm
order can be decided efficiently by means of finite automata, since they
are just language equality and language inclusion, respectively. Our
results extend the automata-theoretic approach to handle orderings
based on contravariance.

∗Computer Science Department, Cornell University, Ithaca, New York 14853, USA.
†Computer Science Department, Aarhus University, 8000 Aarhus C, Denmark.

1

1 Introduction

Recursive types are present in most programming languages, since they pro-
vide a means of typing recursive functions and data structures. Subtyping is
also present in many languages and is especially important in object-oriented
languages as a means of typing functions in the presence of inheritance and
late binding.

The unrestricted combination of recursion and subtyping, found for exam-
ple in Amber [2] and Quest [4, 3], is of substantial pragmatic value. Since it
does not depend on programmer-defined names, it allows the flexible typing
of such constructs as data persistence and data migration.

The combination of recursive types and subtyping at an abstract level was
studied by Amadio and Cardelli in 1991 [1]. They considered types for the
λ-calculus generated by the following grammar, where v is a type variable:

t ::= v | ⊥ | > | t1 → t2 | µv.t

Intuitively, ⊥ is a minimal type containing only the divergent computation;
> is a maximal or universal type containing all values; t1 → t2 is the usual
function space; and µv.t is a recursive type that satisfies the equation

µv.t = t[v/µv.t] ,

where t[v/s] denotes the term t with s substituted for free occurrences of v
(after renaming bound variables if necessary).

In Amadio and Cardelli’s approach, types are understood as collections
of values, and subtypes are subcollections. Thus, types are partially ordered
by an inclusion relation ≤. It is postulated that ⊥ ≤ t ≤ > for any type t,
and function spaces are ordered by the usual rule

s→ t ≤ s′ → t′ if and only if s′ ≤ s and t ≤ t′ ,

i.e., → is covariant in the range and contravariant in the domain. This
defines a partial order inductively on finite types, but not on recursive types.

Amadio and Cardelli showed how to extend the ordering to recursive
types. Their definition involves a rule of the form

(v ≤ v′ ⇒ t ≤ t′) ⇒ (µv.t ≤ µv′.t′) ,

2

where v occurs only in t and v′ occurs only in t′. In other words, if by
assuming the inclusion of the recursion variables we can verify the inclusion
of the bodies, then we can deduce the inclusion of the recursive types.

They also considered the standard representation of types as labeled trees,
defined a partial order on infinite trees, and showed that it agrees with the
type inclusion order. Their definition of the order on trees involves infinite
sequences of finite approximations, where the approximations are obtained
by truncating the trees at some finite level. The relation ≤ holds between
two trees iff it holds between all their finite truncations.

For an illustration of the type and tree orderings, consider the following
two types and their tree representations.

µu.((u→ u)→ ⊥) µv.((v → ⊥)→ >)

→
� @

→
� @

→
� @

→
� @

⊥

⊥

...

...
...

→
� @→

� @→
� @→

� @

>

>
⊥

⊥...

It can be shown using Amadio and Cardelli’s type rules that the left type
is included in the right. It is somewhat easier to see this for the corresponding
trees: all level-k truncations are clearly ordered from left to right.

In order to automate type checking in the presence of subtypes and re-
cursive types, the problem of deciding type inclusion is of paramount impor-
tance:

Given two types s and t, is s ≤ t?

Amadio and Cardelli showed that this problem is decidable, but gave no com-
plexity analysis. However, their algorithm involves the explicit construction
of a binary tree of polynomial depth, thus is in some cases exponential. Their
algorithm is based on a concrete representation of recursive types involving
back-pointers to represent recursion.

3

In this paper we show that the type inclusion problem is solvable in time
O(n2). Our algorithm is based on a simplification of Amadio and Cardelli’s
definition of the subtype relation on trees; we show that the two definitions
are equivalent. Our definition, which is a generalization of an order intro-
duced by us in [7], intuitively says:

Two trees are ordered if no common path detects a counterex-
ample.

This allows us to reduce the problem to the emptiness problem for a certain
finite automaton which accepts a language of counterexamples.

Our algorithm represents recursive types as so-called term automata. The
automaton that detects counterexamples is then defined as a certain product
of two term automata. For an illustration of this, consider the following two
types, their tree representations, and the term automata for these trees.

µv.(v → ⊥) 6≤ µu.(u→ >)

→
� @→

� @
⊥

⊥...

→
� @→

� @
>

>...

s s-&%
'$

�
-0

1
→v

⊥ s s-&%
'$

�
-0

1
→u

>

These two types are not in the subtype relation: consider for example
their level-3 truncations. This can be detected by the following product
automaton (we show only the reachable states):

4

@
@
@R

@
@
@R

�
�
�	�
�
��

?

1

1
0

0

((⊥,>, 1))

(⊥,>, 0)(→v,→u, 1)

(→v,→u, 0)

The idea is that the accept states (marked with double parentheses) are
those where the first component is not less than the second component in the
ordering ⊥ ≤ → ≤ >. Because of contravariance, however, we use the third
component to signal if the ordering should be reversed: 0 means “no” and
1 means “yes”. The automaton above accepts the word 01, thus the level-3
truncations of the trees are not ordered.

The test for emptiness takes linear time in the size of the product au-
tomaton using depth first search. The size of the product automaton is the
product of the sizes of the two term automata. Thus, our algorithm runs in
O(n2) time.

It may be surprising that the inclusion of recursive types can be decided
efficiently using finite automata. To quote Amadio and Cardelli [1]:

The problem of equating recursive types . . . can be related to
well-known solvable problems, such as the equivalence of finite-
state automata. However, the similar problem for subtyping has
no well-known parallel.

Our results establish that the automata-theoretic approach is fruitful even in
the presence of subtyping and contravariance. Further evidence is provided
by the results of [7], which establish the first known polynomial time algo-
rithm for a type inference problem studied by Thatte [10] and O’Keefe and
Wand [9].

In the remainder of the paper we provide the definitions of term automata
and labeled trees, prove that Amadio and Cardelli’s tree ordering and ours
agree, and give the details of our algorithm. We introduce term automata
and labeled trees in a more general form than needed here; they may be
useful in other contexts.

5

2 Terms

Here we give a general definition of (possibly infinite) terms over an arbitrary
finite ranked alphabet Σ. Such terms are essentially labeled trees, which we
represent as partial functions labeling strings over ω (the natural numbers)
with elements of Σ. In our application, types are terms over the ranked
alphabet {⊥,→,>}; finite types are finite terms and recursive types are
regular terms.

Let Σn denote the set of elements of Σ of arity n. Let ω denote the set
of natural numbers and let ω∗ denote the set of finite-length strings over ω.

Definition 1 A term over Σ is a partial function

t : ω∗ → Σ

with domain D(t) satisfying the following properties:

• D(t) is nonempty and prefix-closed;

• if t(α) ∈ Σn, then {i | αi ∈ D(t)} = {0, 1, . . . , n− 1}.

The set of all terms is denoted TΣ.
An element α ∈ ω∗ is a leaf of t if α ∈ D(t) and α is not a proper prefix

of any other element of D(t); equivalently, if t(α) ∈ Σ0. 2

A term t is finite if its domain D(t) is a finite set. We denote the set of
finite terms over Σ by FΣ. A path in a term t is a maximal subset of D(t)
linearly ordered by the prefix relation. By König’s Lemma, a term is finite
iff it has no infinite paths.

Definition 2 Let t be a term and α ∈ ω∗. Define the partial function
t↓α : ω∗ → Σ by

t↓α(β) = t(αβ) .

If t↓α has nonempty domain, then it is a term, and is called the subterm of
t at position α. 2

Definition 3 A term t is said to be regular if it has only finitely many
distinct subterms; i.e., if {t ↓α | α ∈ ω∗} is a finite set. The set of regular
terms is denoted RΣ. 2

6

Example 4 Let Σ = {f, g, a, b}, where f, g, a, b have arities 2,1,0,0 respec-
tively. The following picture represents a typical finite term t:

f
� @

g g

a f
� @

a b

The leaves of t are the strings 00, 100, 101 with t(00) = t(100) = a and
t(101) = b. The domain D(t) of t is the set of all prefixes of these strings,
namely ε, 0, 1, 10 in addition to those already mentioned, with t(ε) = t(10) =
f and t(0) = t(1) = g.

The following picture represents a typical infinite regular term s:

f
� @

f
� @

f
� @

f
� @

a

a

a

a ...

The domain of s is the infinite regular set 1∗ + 1∗0, with s(1n0) = a and
s(1n) = f for all n ≥ 0. The leaves are the elements of the regular subset
1∗0. The term is regular because it has only two subterms, namely s itself
and the singleton term a. 2

The sets TΣ, FΣ, and RΣ become algebraic structures of signature Σ under
the natural syntactic definition of the operators

fTΣ : T nΣ → TΣ

for each f ∈ Σn given by

fTΣ(t0, . . . , tn−1)(iα) = ti(α), 0 ≤ i < n

fTΣ(t0, . . . , tn−1)(ε) = f .

7

Then

D(fTΣ(t0, . . . , tn−1)) = {ε} ∪
n−1⋃
i=0

{iα | α ∈ D(ti)} .

In particular, for c ∈ Σ0, we have cTΣ(ε) = c and cTΣ undefined otherwise.
The following lemma establishes some elementary properties of these op-

erators.

Lemma 5

(i) If f ∈ Σn and 0 ≤ i < n, then fTΣ(t0, . . . , tn−1)↓ i = ti.

(ii) If t(ε) = f ∈ Σn, then t = fTΣ(t↓0, . . . , t↓(n− 1)).

(iii) (t↓α)↓β = t↓αβ.

(iv) The string α is a leaf of t iff D(t↓α) = {ε}.

Proof. All properties are immediate consequences of the definitions. 2

3 Term Automata

Every regular term over a finite ranked alphabet Σ has a finite representation
in terms of a special type of automaton called a term automaton.

Definition 6 Let Σ be a finite ranked alphabet. A term automaton over Σ
is a tuple

M = (Q, Σ, q0, δ, `)

where:

• Q is a finite set of states,

• q0 ∈ Q is the start state,

• δ : Q× ω → Q is a partial function called the transition function, and

• ` : Q→ Σ is a (total) labeling function,

8

such that for any state q ∈ Q, if `(q) ∈ Σn then

{i | δ(q, i) is defined} = {0, 1, . . . , n− 1} .

We decorate Q, δ, etc. with the superscript M where necessary. 2

Let M be a term automaton as in Definition 6. The partial function δ
extends naturally to a partial function

δ̂ : Q× ω∗ → Q

inductively as follows:

δ̂(q, ε) = q

δ̂(q, αi) = δ(δ̂(q, α), i) .

For any q ∈ Q, the domain of the partial function λα.δ̂(q, α) is nonempty (it
always contains ε) and prefix-closed. Moreover, because of the condition on
the existence of i-successors in Definition 6, the partial function

λα.`(δ̂(q, α))

is a term.

Definition 7 Let M be a term automaton. The term represented by M is
the term

tM = λα.`(δ̂(q0, α)) .

A term t is said to be representable if t = tM for some M. 2

Intuitively, tM(α) is determined by starting in the start state q0 and
scanning the input α, following transitions of M as far as possible. If it is
not possible to scan all of α because some i-transition along the way does
not exist, then tM(α) is undefined. If on the other hand M scans the entire
input α and ends up in state q, then tM(α) = `(q).

Lemma 8 Let t ∈ TΣ. The following are equivalent:

(i) t is regular;

9

(ii) t is representable;

(iii) t is described by a finite set of equations involving the µ operator.

Proof. (i) =⇒ (ii) Suppose t has only finitely many subterms. Define

Q = {t↓α | α ∈ ω∗, D(t↓α) 6= ∅}
q0 = t = t↓ε

`(s) = s(ε)

δ(s, i) =

{
s↓ i , if 0 ≤ i ≤ arity(`(s))
undefined , otherwise

and let M be the automaton with these data. A straightforward inductive
argument using Lemma 5 shows that

δ̂(t, α) =

{
t↓α , if D(t↓α) 6= ∅
undefined , otherwise

thus

`(δ̂(q0, α)) = `(δ̂(t, α))

= δ̂(t, α)(ε)

= t↓α(ε)

= t(α) .

Therefore t = tM.
(ii) =⇒ (i) For any term automatonM and α, β ∈ ω∗, a straightforward

inductive argument shows that

δ̂(q0, αβ) = δ̂(δ̂(q0, α), β) ,

thus

tM ↓α = λβ.tM(αβ)

= λβ.`(δ̂(q0, αβ))

= λβ.`(δ̂(δ̂(q0, α), β))

= tMα ,

whereMα isM with start state δ̂(q0, α) (if it exists) instead of q0. If δ̂(q0, α)
does not exist, then tM ↓α has empty domain. Thus tM has no more subterms
than there are states of M.

The equivalence of (i) and (iii) is proved in [5]. 2

10

4 Types

Types are terms over the ranked alphabet Σ = {⊥,→,>}, where→ is binary
and ⊥, > are nullary. Over this signature, every D(t) ⊆ {0, 1}∗. At the risk
of ambiguity, we omit the superscript TΣ on the derived operators→TΣ , ⊥TΣ ,
>TΣ and use infix notation for →; thus we write s→ t for the term with left
subterm s and right subterm t, and ⊥ and > for the singleton terms with
the corresponding labels.

The finite types FΣ are ordered naturally by the following inductively de-
fined binary relation ≤FIN. This relation captures the natural type inclusion
or coercion order in that it is covariant in the range and contravariant in the
domain of a function type.

Definition 9 The order ≤FIN is the smallest binary relation on FΣ such that

(i) ⊥ ≤FIN t ≤FIN > for all finite t;

(ii) if s′ ≤FIN s and t ≤FIN t′ then s→ t ≤FIN s′ → t′.

2

We remark that the converse of Definition 9(ii) holds as well, since FΣ is a
free algebra.

In order to handle recursive types, we need to extend the ordering ≤FIN to
infinite types in a natural way. Much of the effort in Amadio and Cardelli’s
paper [1] is devoted to this task. Their definition, which involves infinite
sequences of finite approximations, is given later (Definition 15). Here we
give a simplified definition that does not involve approximations (Definition
11). We will eventually show (Theorem 16) that the two definitions are
equivalent.

Definition 10 The parity of α ∈ {0, 1}∗ is the number mod 2 of 0’s in α.
The parity of α is denoted πα. A string α is said to be even if πα = 0 and
odd if πα = 1. 2

Definition 11 Let ≤0 be the linear order

⊥ ≤0 → ≤0 >

11

on Σ, and let ≤1 be its reverse

> ≤1 → ≤1 ⊥ .

For s, t ∈ TΣ, define s ≤ t if s(α) ≤πα t(α) for all α ∈ D(s) ∩ D(t). 2

Lemma 12 The relation ≤ is a partial order on TΣ, and agrees with ≤FIN

on FΣ. In particular, for any s, t, s′, t′,

(i) ⊥ ≤ t ≤ >

(ii) t ≤ ⊥ if and only if t = ⊥

(iii) > ≤ t if and only if t = >

(iv) s→ t ≤ s′ → t′ if and only if s′ ≤ s and t ≤ t′.

Proof. First we show that ≤ is a partial order. Reflexivity is trivial, since
≤πα is a partial order.

For transitivity, suppose s ≤ t ≤ u. Let α ∈ D(s)∩D(u). Surely ε ∈ D(t);
and if β is a proper prefix of α in D(t), then

→ = s(β) ≤πβ t(β) ≤πβ u(β) = → ,

so t(β) = →, therefore β is not a leaf of D(t). Since ε ∈ D(t) and no proper
prefix of α is a leaf of D(t), we must have α ∈ D(t). But then

s(α) ≤πα t(α) ≤πα u(α) ,

thus s(α) ≤πα u(α) by the transitivity of ≤πα. Since α was arbitrary, s ≤ u.
For antisymmetry, assume s ≤ t ≤ s. Let α ∈ D(s). Arguing as above,

we must have α ∈ D(t), thus D(s) ⊆ D(t), and by symmetry, D(t) ⊆ D(s).
For any α ∈ D(s) ∩ D(t), we have

s(α) ≤πα t(α) ≤πα s(α) ,

thus s(α) = t(α). Since s and t have the same domain and agree on the
intersection of their domains, they are equal.

We next establish the properties (i)–(iv) in turn.
(i) For any t, we have ε ∈ D(t) and ⊥(ε) ≤0 t(ε) ≤0 >(ε).

12

(ii), (iii) follow immediately from (i) and antisymmetry.
(iv) For if, suppose s′ ≤ s and t ≤ t′ and let α ∈ D(s→ t) ∩ D(s′ → t′).

If α = ε, we have

(s→ t)(ε) = (s′ → t′)(ε) = →

so

(s→ t)(ε) ≤πε (s′ → t′)(ε) .

If α = 0β, then β ∈ D(s) ∩ D(s′) and

(s′ → t′)(α) = (s′ → t′)(0β)

= s′(β)

≤πβ s(β)

= (s→ t)(0β)

= (s→ t)(α) ,

therefore

(s→ t)(α) ≤πα (s′ → t′)(α) .

If α = 1β, then β ∈ D(t) ∩ D(t′) and

(s→ t)(α) ≤πα (s′ → t′)(α)

by a similar argument.
For only if, assume that s → t ≤ s′ → t′. Let α ∈ D(s) ∩ D(s′). Then

0α ∈ D(s→ t) ∩ D(s′ → t′), therefore

s(α) = (s→ t)(0α)

≤π(0α) (s′ → t′)(0α)

= s′(α) ,

thus s′(α) ≤πα s(α). Since α was arbitrary, s′ ≤ s. A similar argument
shows that for arbitrary α ∈ D(t)∩D(t′) we have t(α) ≤πα t′(α), thus t ≤ t′.

Finally, we show that the orders ≤FIN and ≤ agree on finite types, i.e.,
s ≤ t if and only if s ≤FIN t. We proceed by induction on the structure of s

13

and t. If s = ⊥ or t = > then the result follows from (i). If t = ⊥ then the
result is immediate from (ii), and if s = > then the result is immediate from
(iii). The remaining case

s→ t ≤ s′ → t′ ⇐⇒ s→ t ≤FIN s′ → t′

follows immediately from (iv) and the induction hypothesis on the subterms.
2

In order to define Amadio and Cardelli’s order, we have to consider finite
approximations to infinite terms. This is done using a truncation operator.

Definition 13 Let g : ω∗ → {⊥,>}. For any term t, we define a finite term
t|gk, the level-k truncation of t with respect to g, as follows:

D(t|gk) = {α ∈ D(t) | |α| ≤ k}

t|gk(α) =

{
t(α) , if |α| < k,
g(α) , if |α| = k.

2

In otherwords, t|gk is obtained by truncating the term t at depth k and rela-
beling the leaves according to g.

For example, let

AC(α) =

{
⊥ , if α even,
> , if α odd.

The truncation operator |AC
k is the one employed by Amadio and Cardelli

[1]. It has the nice property that t|AC
k ≤FIN t|AC

k+1, although this property
turns out not to be essential. The following lemma shows that the particular
function g chosen in the definition of the truncation operator is irrelevant for
our purposes.

Define s ≤k t if s(α) ≤πα t(α) for all α ∈ D(s) ∩ D(t) such that |α| < k.
Note that g is not mentioned in this condition.

Lemma 14 For any function g : ω∗ → {⊥,>}, terms s and t, and k ≥ 0,

s|gk ≤ t|gk iff s ≤k t .

14

Proof. Suppose s|gk ≤ t|gk. If α ∈ D(s) ∩ D(t) and |α| < k, then α ∈
D(s|gk) ∩ D(t|gk) and

s(α) = s|k(α) ≤πα t|k(α) = t(α) .

Conversely, suppose s ≤k t. If α ∈ D(s|k) ∩ D(t|k) and |α| < k, then
α ∈ D(s) ∩ D(t) and

s|k(α) = s(α) ≤πα t(α) = t|k(α) ,

and if α ∈ D(s|k) ∩ D(t|k) and |α| = k, then s|k(α) = t|k(α) = g(α). 2

Definition 15 Amadio-Cardelli’s order ≤AC is defined as

s ≤AC t ⇐⇒ s|AC
k ≤FIN t|AC

k for all k ≥ 0.

2

By Lemmas 12 and 14, this definition is independent of the choice of trun-
cation operator.

Theorem 16 The relations ≤ and ≤AC agree.

Proof. For any terms s and t,

s ≤ t ⇐⇒ s ≤k t for all k ≥ 0

⇐⇒ s|AC
k ≤ t|AC

k for all k ≥ 0, by Lemma 14

⇐⇒ s|AC
k ≤FIN t|AC

k for all k ≥ 0, by Lemma 12

⇐⇒ s ≤AC t .

2

5 An Algorithm

In this section we give an algorithm to decide whether s ≤ t for two given
regular types s and t. Assume s and t are given by term automata M and
N respectively over the ranked alphabet Σ = {⊥,→,>}. If s and t are given
by other means, say by simultaneous equations as in [1], then results of [5]

15

can be used to obtain the automata in linear time as described in Lemma 8
of Section 3.

Recall from Definition 11 that s ≤ t iff s(α) ≤πα t(α) for all α ∈ D(s) ∩
D(t). Equivalently, s 6≤ t iff the set

{α ∈ D(s) ∩ D(t) | s(α) 6≤πα t(α)} (1)

is nonempty. We show that the set (1) is a regular subset of {0, 1}∗, and
describe a conventional finite automaton A (in the sense of [6]) over the input
alphabet {0, 1} that accepts exactly this set.

Define

A = (QA, {0, 1}, qA0 , δA, FA)

where:

• QA = QM ×QN × {0, 1} are the states of A;

• qA0 = (qM0 , qN0 , 0) is the start state of A;

• δA : QA × {0, 1} → QA is the partial function which for b, i ∈ {0, 1},
p ∈ QM, and q ∈ QN gives

δA((p, q, b), i) = (δM(p, i), δN (q, i), b⊕ πi)

where ⊕ denotes mod 2 sum;

• the set of accept states of A is

FA = {(p, q, b) | `M(p) 6≤b `N (q)} .

According to this definition, δA((p, q, b), i) is defined if and only if `M(p) =
`N (q) = →. The automaton A is nondeterministic only in the sense that
the state (p, q, b) has no i-successors if either `M(p) or `N (q) ∈ {⊥,>}. If
`M(p) = `N (q) =→, then the i-successor of (p, q, b) is defined and is unique.

Theorem 17 The automaton A accepts the set (1).

16

Proof. Extend the partial function δA to a partial function

δ̂A : QA × {0, 1}∗ → QA

inductively as usual:

δ̂A(p, ε) = p

δ̂A(p, αi) = δA(δ̂A(p, α), i) .

By definition, α is accepted by A iff δ̂A(qA0 , α) exists and is in FA.
We show by induction that for any α ∈ {0, 1}∗, p ∈ QM, q ∈ QN , and

b ∈ {0, 1},

δ̂A((p, q, b), α) = (δ̂M(p, α), δ̂N (q, α), b⊕ πα) . (2)

(Of course, the use of the equality symbol = to compare expressions involving
partial functions bears the extra semantic condition that the left hand side is
defined if and only if the right hand side is. This is an implicit but important
part of our equational arguments.)

For the basis α = ε, we have

δ̂A((p, q, b), ε) = (p, q, b)

= (δ̂M(p, ε), δ̂N (q, ε), b⊕ πε) .

For the induction step,

δ̂A((p, q, b), αi) = δA(δ̂A((p, q, b), α), i)

= δA((δ̂M(p, α), δ̂N (q, α), b⊕ πα), i)

= (δM(δ̂M(p, α), i), δN (δ̂N (q, α), i), b⊕ πα⊕ πi)
= (δ̂M(p, αi), δ̂N (q, αi), b⊕ π(αi)) .

¿From (2) we have that the domain of the partial function

λα.δ̂A((p, q, b), α)

is the intersection of the domains of λα.δ̂M(p, α) and λα.δ̂N (q, α). This says
that any string α accepted by A must lie in the set

D(λα.δ̂A(qA0 , α)) = D(λα.δ̂M(qM0 , α)) ∩ D(λα.δ̂N (qN0 , α))

= D(s) ∩ D(t) .

17

For such strings α,

α is accepted by A ⇐⇒ δ̂A(qA0 , α) ∈ FA

⇐⇒ δ̂A((qM0 , qN0 , 0), α) ∈ FA

⇐⇒ (δ̂M(qM0 , α), δ̂N (qN0 , α), 0⊕ πα) ∈ FA

⇐⇒ (δ̂M(qM0 , α), δ̂N (qN0 , α), πα) ∈ FA

⇐⇒ `M(δ̂M(qM0 , α)) 6≤πα `N (δ̂N (qN0 , α))

⇐⇒ s(α) 6≤πα t(α) .

Thus A accepts the set (1). 2

To decide whether s ≤ t, we construct the automaton A and ask whether
it accepts a nonempty set, i.e., whether there exists a path from the start
state to some final state. This can be determined in linear time in the size
of A using depth first search.

The automaton A has 2 · |QM| · |QN | states and at most two transition
edges from each state. Thus the entire algorithm takes no more thanO(|s|·|t|)
time, where |s| and |t| are the sizes of the representations of the regular terms
s and t. We have shown

Theorem 18 The subtype relation for recursive types can be decided in time
O(n2).

This result generalizes to an arbitrary signature of type constructors, each
having for every argument a given polarity.

Acknowledgements

This work was supported by the Danish Research Academy, the National
Science Foundation, the John Simon Guggenheim Foundation, the U.S. Army
Research Office through the ACSyAM branch of the Mathematical Sciences
Institute of Cornell University under contract DAAL03-91-C-0027, and the
Danish Research Council under the DART Project (5.21.08.03). An earlier
version of this paper appeared as [8].

18

References

[1] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. In Eigh-
teenth Symposium on Principles of Programming Languages, pages 104–118.
ACM Press, January 1991. To appear, Trans. on Prog. Lang. and Systems.

[2] Luca Cardelli. Amber. In Combinators and Functional Programming Lan-
guages, Proc. 13th Summer School School of the LITP. Springer-Verlag
(LNCS 242), May 1985.

[3] Luca Cardelli. Typeful programming. In Lect. Notes for the IFIP Advanced
Seminar on Formal Methods in Programming Language Semantics, 1989.

[4] Luca Cardelli and Peter Wegner. On understanding types, data abstraction,
and polymorphism. Computing Surveys, 17:4:471–522, December 1985.

[5] Bruno Courcelle. Fundamental properties of infinite trees. Theor. Comput.
Sci., 25:95–169, 1983.

[6] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

[7] Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient inference
of partial types. In Proc. 33rd IEEE Symp. Found. Comput. Sci., October
1992. To appear. Also PB-394, Computer Science Department, Aarhus Uni-
versity, April 1992.

[8] Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient recursive
subtyping. In Proc. 20th ACM Symp. Princip. Programing Lang., pages 419–
428. ACM, January 1993.

[9] Patrick M. O’Keefe and Mitchell Wand. Type inference for partial types is de-
cidable. In Proc. ESOP’92, European Symposium on Programming. Springer-
Verlag (LNCS 582), 1992.

[10] Satish Thatte. Type inference with partial types. In Proc. International Col-
loquium on Automata, Languages, and Programming 1988. Springer-Verlag
(LNCS 317), 1988.

19

