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Abstract

We present a new approach to inferring types in un-
typed object-oriented programs with inheritance,
assignments, and late binding. It guarantees that
all messages are understood, annotates the pro-
gram with type information, allows polymorphic
methods, and can be used as the basis of an op-
timizing compiler. Types are finite sets of classes
and subtyping is set inclusion. Using a trace graph,
our algorithm constructs a set of conditional type
constraints and computes the least solution by least
fixed-point derivation.

1 Introduction

Untyped object-oriented languages with assign-

ments and late binding allow rapid prototyping be-

cause classes inherit implementation and not spec-

ification. Late binding, however, can cause pro-

grams to be unreliable, unreadable, and inefficient

[27]. Type inference may help solve these prob-

lems, but so far no proposed inference algorithm

has been capable of checking most common, com-

pletely untyped programs [9].

We present a new type inference algorithm for a

basic object-oriented language with inheritance, as-

signments, and late binding.
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The algorithm guarantees that all messages are un-

derstood, annotates the program with type infor-

mation, allows polymorphic methods, and can be

used as the basis of an optimizing compiler. Types

are finite sets of classes and subtyping is set in-

clusion. Given a concrete program, the algorithm

constructs a finite graph of type constraints. The

program is typable if these constraints are solvable.

The algorithm then computes the least solution in

worst-case exponential time. The graph contains

all type information that can be derived from the

program without keeping track of nil values or flow

analyzing the contents of instance variables. This

makes the algorithm capable of checking most com-

mon programs; in particular, it allows for polymor-

phic methods. The algorithm is similar to previous

work on type inference [18, 14, 27, 1, 2, 19, 12, 10, 9]

in using type constraints, but it differs in handling

late binding by conditional constraints and in re-

solving the constraints by least fixed-point deriva-

tion rather than unification.

The example language resembles Smalltalk [8]

but avoids metaclasses, blocks, and primitive meth-

ods. Instead, it provides explicit new and if-then-

else expressions; classes like Natural can be pro-

grammed in the language itself.

In the following section we discuss the impacts of

late binding on type inference and examine previ-

ous work. In later sections we briefly outline the

example language, present the type inference algo-

rithm, and show some examples of its capabilities.



2 Late Binding

Late binding means that a message send is dynam-

ically bound to an implementation depending on

the class of the receiver. This allows a form of poly-

morphism which is fundamental in object-oriented

programming. It also, however, involves the danger

that the class of the receiver does not implement a

method for the message—the receiver may even be

nil. Furthermore, late binding can make the control

flow of a program hard to follow and may cause a

time-consuming run-time search for an implemen-

tation.

It would significantly help an optimizing compiler

if, for each message send in a program text, it could

infer the following information.

• Can the receiver be nil?

• Can the receiver be an instance of a class which

does not implement a method for the message?

• What are the classes of all possible non-nil re-

ceivers in any execution of the program?

Note that the available set of classes is induced by

the particular program. These observations lead us

to the following terminology.

Terminology:

Type: A type is a finite set of classes.

Induced Type: The induced type of an ex-
pression in a concrete program is the set
of classes of all possible non-nil values to
which it may evaluate in any execution of
that particular program.

Sound approximation: A sound approxima-
tion of the induced type of an expression
in a concrete program is a superset of the
induced type.

Note that a sound approximation tells “the whole

truth”, but not always “nothing but the truth”

about an induced type. Since induced types are

generally uncomputable, a compiler must make do

with sound approximations. An induced type is

a subtype of any sound approximation; subtyp-

ing is set inclusion. Note also that our notion of

type, which we also investigated in [22], differs from

those usually used in theoretical studies of types in

object-oriented programming [3, 7]; these theories

have difficulties with late binding and assignments.

The goals of type inference can now be phrased as

follows.

Goals of type inference:

Safety guarantee: A guarantee that any mes-
sage is sent to either nil or an instance of
a class which implements a method for the
message; and, given that, also

Type information: A sound approximation of
the induced type of any receiver.

Note that we ignore checking whether the receiver

is nil; this is a standard data flow analysis problem

which can be treated separately.

If a type inference is successful, then the program

is typable; the error messageNotUnderstood will not

occur. A compiler can use this to avoid inserting

some checks in the code. Furthermore, if the type

information of a receiver is a singleton set, then

the compiler can do early binding of the message

to the only possible method; it can even do in-line

substitution. Similarly, if the type information is

an empty set, then the receiver is known to always

be nil. Finally, type information obtained about

variables and arguments may be used to annotate

the program for the benefit of the programmer.

Smalltalk and other untyped object-oriented lan-

guages are traditionally implemented by interpret-

ers. This is ideal for prototyping and exploratory

development but often too inefficient and space de-

manding for real-time applications and embedded

systems. What is needed is an optimizing compiler

that can be used near the end of the programming

phase, to get the required efficiency and a safety

guarantee. A compiler which produces good code



can be tolerated even it is slow because it will be

used much less often than the usual programming

environment. Our type inference algorithm can

be used as the basis of such an optimizing com-

piler. Note, though, that both the safety guaran-

tee and the induced types are sensitive to small

changes in the program. Hence, separate compi-

lation of classes seems impossible. Typed object-

oriented languages such as Simula [6]/Beta [15],

C++ [26], and Eiffel [17] allow separate compila-

tion but sacrifice flexibility. The relations between

types and implementation are summarized in fig-

ure 1.

When programs are: Their implementation is:

Untyped Interpretation

Typable Compilation

Typed Separate Compilation

Figure 1: Types and implementation.

Graver and Johnson [10, 9], in their type system

for Smalltalk, take an intermediate approach be-

tween “untyped” and “typed” in requiring the pro-

grammer to specify types for instance variables

whereas types of arguments are inferred. Suzuki

[27], in his pioneering work on inferring types in

Smalltalk, handles late binding by assuming that

each message send may invoke all methods for that

message. It turned out, however, that this yields

an algorithm which is not capable of checking most

common programs.

Both these approaches include a notion of method

type. Our new type inference algorithm abandons

this idea and uses instead the concept of conditional

constraints, derived from a finite graph. Recently,

Hense [11] addressed type inference for a language

O’Small which is almost identical to our example

language. He uses a radically different technique,

with type schemes and unification based on work of

Rémy [24] and Wand [29]. His paper lists four pro-

grams of which his algorithm can type-check only

the first three. Our algorithm can type-check all

four, in particular the fourth which is shown in

figure 11 in appendix B. Hense uses record types

which can be extendible and recursive. This seems

to produce less precise typings than our approach,

and it is not clear whether the typings would be

useful in an optimizing compiler. One problem is

that type schemes always correspond to either sin-

gletons or infinite sets of monotypes; our finite sets

can be more precise. Hense’s and ours approaches

are similar in neither keeping track of nil values

nor flow analyzing the contents of variables. We

are currently investigating other possible relations.

Before going into the details of our type inference

algorithm we first outline an example language on

which to apply it.

3 The Language

Our example language resembles Smalltalk, see

figure 2.

A program is a set of classes followed by an expres-

sion whose value is the result of executing the pro-

gram. A class can be defined using inheritance and

contains instance variables and methods; a method

is a message selector (m1 . . . mn ) with formal pa-

rameters and an expression. The language avoids

metaclasses, blocks, and primitive methods. In-

stead, it provides explicit new and if-then-else ex-

pressions (the latter tests if the condition is non-

nil). The result of a sequence is the result of the

last expression in that sequence. The expression

“self class new” yields an instance of the class of

self. The expression “E instanceOf ClassId” yields

a run-time check for class membership. If the check

fails, then the expression evaluates to nil.

The Smalltalk system is based on some primi-

tive methods, written in assembly language. This

dependency on primitives is not necessary, at least

not in this theoretical study, because classes such

as True, False, Natural, and List can be programmed

in the language itself, as shown in appendix A.



(Program) P ::= C1 . . . Cn E

(Class) C ::= class ClassId [inherits ClassId]
var Id1 . . . Idk M1 . . . Mn

end ClassId

(Method) M ::= method m1 Id1 . . . mn Idn E

(Expression) E ::= Id := E | E m1 E1 . . . mn En| E ; E | if E then E else E |
ClassId new | self class new | E instanceOf ClassId |
self | super | Id | nil

Figure 2: Syntax of the example language.

4 Type Inference

Our type inference algorithm is based on three fun-

damental observations.

Observations:

Inheritance: Classes inherit implementation
and not specification.

Classes: There are finitely many classes in a
program.

Message sends: There are finitely many syn-
tactic message sends in a program.

The first observation leads to separate type infer-

ence for a class and its subclasses. Notionally, this

is achieved by expanding all classes before doing

type inference. This expansion means removing all

inheritance by

• Copying the text of a class to its subclasses

• Replacing each message send to super by a

message send to a renamed version of the in-

herited method

• Replacing each “self class new” expression by a

“ClassId new” expression where ClassId is the

enclosing class in the expanded program.

This idea of expansion is inspired by Graver and

Johnson [10, 9]; note that the size of the expanded

program is at most quadratic in the size of the orig-

inal.

The second and third observation lead to a finite

representation of type information about all execu-

tions of the expanded program; this representation

is called the trace graph. From this graph a finite

set of type constraints will be generated. Typa-

bility of the program is then solvability of these

constraints. Appendix B contains seven example

programs which illustrate different aspects of the

type inference algorithm, see the overview in fig-

ure 3. The program texts are listed together with

the corresponding constraints and their least solu-

tion, if it exists. Hense’s program in figure 11 is the

one he gives as a typical example of what he cannot

type-check [11]. We invite the reader to consult the

appendix while reading this section.

A trace graph contains three kinds of type infor-

mation.

Three kinds of type information:

Local constraints: Generated from method
bodies; contained in nodes.

Connecting constraints: Reflect message
sends; attached to edges.

Conditions: Discriminate receivers; attached
to edges.



Example program in: Illustrates: Can we type it?

Figure 10 Basic type inference Yes

Figure 11 Hense’s program Yes

Figure 12 A polymorphic method Yes

Figure 13 A recursive method Yes

Figure 14 Lack of flow analysis No

Figure 15 Lack of nil detection No

Figure 16 A realistic program Yes

Figure 3: An overview of the example programs.

4.1 Trace Graph Nodes

The nodes of the trace graph are obtained from

the various methods implemented in the program.

Each method yields a number of different nodes:

one for each syntactic message send with the cor-

responding selector. The situation is illustrated

in figure 4, where we see the nodes for a method

m that is implemented in each of the classes

C1,C2,. . . ,Cn. Thus, the number of nodes in the

trace graph will at most be quadratic in the size

of the program. There is also a single node for

the main expression of the program, which we may

think of as a special method without parameters.

Methods do not have types, but they can be pro-

vided with type annotations, based on the types

of their formal parameters and result. A particu-

lar method implementation may be represented by

several nodes in the trace graph. This enables it to

be assigned several different type annotations—one

for each syntactic call. This allows us effectively to

obtain method polymorphism through a finite set

of method “monotypes”.

4.2 Local Constraints

Each node contains a collection of local constraints

that the types of expressions must satisfy. For each

syntactic occurrence of an expression E in the im-

plementation of the method, we regard its type as

an unknown variable [[E]]. Exact type information

is, of course, uncomputable. In our approach, we

will ignore the following two aspects of program ex-

ecutions.

Approximations:

Nil values: It does not keep track of nil values.

Instance variables: It does not flow analyze
the contents of instance variables.

The first approximation stems from our discussion

of the goals of type inference; the second corre-

sponds to viewing an instance variable as having a

single possibly large type, thus leading us to iden-

tify the type variables of different occurrences of

the same instance variable. In figures 14 and 15

we present two program fragments that are typical

for what we cannot type because of these approxi-

mations. In both cases the constraints demand the

false inclusion {True} ⊆ {Natural}. Suzuki [27] and

Hense [11] make the same approximations.

For an expression E, the local constraints are gener-

ated from all the phrases in its derivation, accord-

ing to the rules in figure 5. The idea of generat-

ing constraints on type variables from the program

syntax is also exploited in [28, 25].

The constraints guarantee safety; only in the cases

4) and 8) do the approximations manifest them-

selves. Notice that the constraints can all be ex-
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Figure 4: Trace graph nodes.

pressed as inequalities of one of the three forms:

“constant ⊆ variable”, “variable ⊆ constant”, or

“variable ⊆ variable”; this will be exploited later.

Each different node employs unique type variables,

except that the types of instance variables are com-

mon to all nodes corresponding to methods imple-

mented in the same class. A similar idea is used by

Graver and Johnson [10, 9].

4.3 Trace Graph Edges

The edges of the trace graph will reflect the possible

connections between a message send and a method

that may implement it. The situation is illustrated

in figure 6.

If a node corresponds to a method which contains a

message send of the form X m: A, then we have an

edge from that sender node to any other receiver

node which corresponds to an implementation of a

method m. We label this edge with the condition

that the message send may be executed, namely

C ∈ [[X]] where C is the class in which the particular

method m is implemented. With the edge we asso-

ciate the connecting constraints, which reflect the

relationship between formal and actual parameters

and results. This situation generalizes trivially to

methods with several parameters. Note that the

number of edges is again quadratic in the size of

the program.

4.4 Global Constraints

To obtain the global constraints for the entire pro-

gram we combine local and connecting constraints

in the manner illustrated in figure 7. This pro-

duces conditional constraints, where the inequali-

ties need only hold if all the conditions hold. The

global constraints are simply the union of the con-

ditional constraints generated by all paths in the

graph, originating in the node corresponding to the

main expression of the program. This is a finite set,

because the graph is finite; as shown later in this

section, the size of the constraint set may in (ex-

treme) worst-cases become exponential.

If the set of global constraints has a solution, then



Expression: Constraint:

1) Id := E [[Id]] ⊇ [[E]] ∧ [[Id := E]] = [[E]]
2) E m1 E1 . . .mn En [[E]] ⊆ {C |C implements m1. . . mn}
3) E1 ; E2 [[E1 ; E2]] = [[E2]]
4) if E1 then E2 else E3 [[if E1 then E2 else E3]] ⊇ [[E2]] ∪ [[E3]]
5) C new [[C new]] = {C}
6) E instanceOf C [[E instanceOf C]] = {C}
7) self [[self]] = {the enclosing class}
8) Id [[Id]] = [[Id]]
9) nil [[nil]] = { }

Figure 5: The local constraints.

-

sender receiver

(“formal result equals actual result”)

(“actual equals formal”)

[[E]] = [[X m: A]]

[[A]] = [[F]]

Connecting constraints:

C ∈ [[X]]
E

method m: F

...
X m: A

...

Figure 6: Trace graph edges.

this provides approximate information about the

dynamic behavior of the program.

Consider any execution of the program. While ob-

serving this, we can trace the pattern of method

executions in the trace graph. Let E be some ex-

pression that is evaluated at some point, let val(E)

be its value, and let class(b) be the class of an

object b. If L is some solution to the global con-

straints, then the following result holds.

Soundness Theorem:

If val(E) 6= nil then class(val(E)) ∈ L([[E]])

It is quite easy to see that this must be true. We

sketch a proof by induction in the number of mes-

sage sends performed during the trace. If this is

zero, then we rely on the local constraints alone;

given a dynamic semantics [4, 5, 23, 13] one can eas-

ily verify that their satisfaction implies the above

property. If we extend a trace with a message send

X m: A implemented by a method in a class C,

then we can inductively assume that C ∈ L([[X]]).

But this implies that the local constraints in the

node corresponding to the invoked method must

hold, since all their conditions now hold and L is

a solution. Since the relationship between actual

and formal parameters and results is soundly rep-

resented by the connecting constraints, which also

must hold, the result follows.

Note that an expression E occurring in a method

that appears k times in the trace graph has k

type variables [[E]]1, [[E]]2, . . . , [[E]]k in the global

constraints. A sound approximation to the induced
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C = connecting constraints of the final edge

L = local constraints of the final node

K1,K2,K3, . . . ,Kn ⇒ L ∪ C

Conditional constraint:

KnK3K2K1

Figure 7: Conditional constraints from a path.

type of E is obtained as

⋃

i

L([[E]]i)

Appendix C gives an efficient algorithm to compute

the smallest solution of the extracted constraints,

or to decide that none exists. The algorithm is at

worst quadratic in the size of the constraint set.

The complete type inference algorithm is summa-

rized in figure 8.

4.5 Type Annotations

Finally, we will consider how a solution L of the

type constraints can produce a type annotation of

the program. Such annotations could be provided

for the benefit of the programmer.

An instance variable x has only a single associ-

ated type variable. The type annotation is sim-

ply L([[x]]). The programmer then knows an upper

bound of the set of classes whose instances may

reside in x.

A method has finitely many type annotations, each

of which is obtained from a corresponding node in

the trace graph. If the method, implemented in the

class C, is

Input: A program in the example language.

Output: Either: a safety guarantee and type
information about all expressions; or: “un-
able to type the program”.

1) Expand all classes.

2) Construct the trace graph of the expanded
program.

3) Extract a set of type constraints from the
trace graph.

4) Compute the least solution of the set of type
constraints. If such a solution exists, then
output it as the wanted type information,
together with a safety guarantee; otherwise,
output “unable to type the program”.

Figure 8: Summary of the type inference algorithm.

method m1: F1 m2: F2 . . . mn: Fn

E

then each type annotation is of the form

{C} × L([[F1]]) × · · · × L([[Fn]]) → L([[E]])

The programmer then knows the various manners

in which this method may be used.

A constraint solution contains more type informa-



tion about methods than the method types used

by Suzuki. Consider for example the polymorphic

identity function in figure 12. Our technique yields

both of the method type annotations

id : {C} × {True} → {True}
id : {C} × {Natural} → {Natural}

whereas the method type using Suzuki’s framework

is

id : {C} × {True,Natural} → {True,Natural}

which would allow neither the succ nor the isTrue

message send, and, hence, would lead to rejection

of the program.

4.6 An Exponential Worst-Case

The examples in appendix B show several cases

where the constraint set is quite small, in fact linear

in the size of the program. While this will often be

the situation, the theoretical worst-case allows the

constraint set to become exponential in the size

of the program. The running time of the inference

algorithm depends primarily on the topology of the

trace graph.

In figure 9 is shown a program and a sketch of its

trace graph. The induced constraint set will be ex-

ponential since the graph has exponentially many

different paths. Among the constraints will be a

family whose conditions are similar to the words of

the regular language

(CCC + DCC)
n
3

the size of which is clearly exponential in n.

Note that this situation is similar to that of type

inference in ML, which is also worst-case exponen-

tial but very useful in practice. The above scenario

is in fact not unlike the one presented in [16] to il-

lustrate exponential running times in ML. Another

similarity is that both algorithms generate a po-

tentially exponential constraint set that is always

solved in polynomial time.

class C class D
var x var x
method m1 method m1

x m2 x m2

method m2 method m2

x m3 x m3

...
...

method mn−1 method mn−1

x mn x mn

method mn method mn

0 0
end C end D
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D
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C
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C
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D
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Figure 9: A worst-case program.

5 Conclusion

Our type inference algorithm is sound and can han-

dle most common programs. It is also conceptually

simple: a set of uniform type constraints is con-

structed and solved by fixed-point derivation. It

can be further improved by an orthogonal effort in

data flow analysis.

The underlying type system is simple: types are

finite sets of classes and subtyping is set inclusion.

An implementation of the type inference algorithm

is currently being undertaken. Future work in-

cludes extending this into an optimizing compiler.

The inference algorithm should be easy to modify

to work for full Smalltalk, because metaclasses



are simply classes, blocks can be treated as objects

with a single method, and primitive methods can

be handled by stating the constraints that the ma-

chine code must satisfy. Another challenge is to

extend the algorithm to produce type annotations

together with type substitution, see [20, 21, 22].

Appendix A: Basic classes

class Object

end Object

class True

method isTrue

Object new

end True

class False

method isTrue

nil

end False

Henceforth, we abbreviate “True new” as “true”,

and “False new” as “false”.

class Natural

var rep

method isZero

if rep then false else true

method succ

(Natural new) update: self

method update: x

rep := x; self

method pred

if (self isZero) isTrue then self else rep

method less: i

if (i isZero) isTrue

then false

else if (self isZero) isTrue then true

else (self pred) less: (i pred)

end Natural

Henceforth, we abbreviate “Natural new” as “0”,

and, recursively, “n succ” as “n + 1”.

class List

var head, tail

method setHead: h setTail: t

head := h; tail := t

method cons: x

(self class new) setHead: x setTail: self

method isEmpty

if head then false else true

method car

head

method cdr

tail

method append: aList

if (self isEmpty) isTrue

then aList

else (tail append: aList) cons: head

method insert: x

if (self isEmpty) isTrue

then self cons: x

else

if (head less: x) isTrue

then self cons: x

else (tail insert: x) cons: head

method sort

if (self isEmpty) isTrue then self

else (tail sort) insert: head

method merge: aList

if (self isEmpty) isTrue

then aList

else

if (head less: (aList car)) isTrue

then (tail merge: aList) cons: head

else (self merge: (aList cdr)) cons: (aList car)

end List

class Comparable

var key

method getKey

key

method setKey: k

key := k

method less: c

key less: (c getKey)

end Comparable



Appendix B: Example Programs

class A
method f

7
end A
class B

method f
true

end B
x := A new; (x f) succ

Constraints:

[[A new]] = {A}
[[x]] ⊇ [[A new]]
[[x := A new]] = [[A new]]
[[x]] ⊆ {A,B}
A ∈ [[x]] ⇒ [[x f]] = [[7]]
A ∈ [[x]] ⇒ [[7]] = {Natural}
B ∈ [[x]] ⇒ [[x f]] = [[true]]
B ∈ [[x]] ⇒ [[true]] = {True}
[[x f]] ⊆ {Natural}
Natural ∈ [[x f]] ⇒ [[(x f) succ]] = {Natural}
[[x := A new; (x f) succ]] = [[(x f) succ]]

Smallest Solution:

[[x]] = [[A new]] = [[x := A new]] = {A}
[[x f]] = [[(x f) succ]] =
[[x := A new; (x f) succ]] = [[7]] = {Natural}
[[true]] = {True}

Trace graph sketch:
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# 
"!
# 

@
@

@
@R

�
�

�
�	

fBfA

Figure 10: Conditions at work.

class A
method m

0
end A
class B inherits A

method n
0

end B
a := A new;
b := B new;
a := b;
a m

Constraints:

[[A new]] = {A}
[[a]] ⊇ [[A new]]
[[B new]] = {B}
[[b]] ⊇ [[B new]]
[[a]] ⊇ [[b]]
[[a]] ⊆ {A,B}
A ∈ [[a]] ⇒ [[a m]] = [[0]]
B ∈ [[a]] ⇒ [[a m]] = [[0]]
[[0]] = {Natural}
...

Smallest Solution:

[[a]] = {A,B}
[[b]] = {B}
[[a m]] = {Natural}
[[A new]] = {A}
[[B new]] = {B}
...

Trace graph sketch:
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Figure 11: Hense’s program.



class C
method id: x

x
end C
((C new) id: 7) succ;
((C new) id: true) isTrue

Constraints:

[[C new]]1 = {C}
[[C new]]1 ⊆ {C}
C ∈ [[C new]]1 ⇒ [[7]] = [[x]]1
C ∈ [[C new]]1 ⇒ [[x]]1 = [[(C new) id: 7]]
[[7]] = {Natural}
[[(C new) id: 7]] ⊆ {Natural}
Natural ∈ [[(C new) id: 7]] ⇒ {Natural} = [[((C new) id: 7) succ]]
[[C new]]2 = {C}
[[C new]]2 ⊆ {C}
C ∈ [[C new]]2 ⇒ [[true]] = [[x]]2
C ∈ [[C new]]2 ⇒ [[x]]2 = [[(C new) id: true]]
[[true]] = {True}
[[(C new) id: true]] ⊆ {True,False}
True ∈ [[(C new) id: true]] ⇒ {Object} = [[((C new) id: true) isTrue]]
False ∈ [[(C new) id: true]] ⇒ {} = [[((C new) id: true) isTrue]]

Smallest Solution:

[[C new]]1 = [[C new]]2 = {C}
[[7]] = [[x]]1 = [[(C new) id: 7]] = [[((C new) id: 7) succ]] = {Natural}
[[true]] = [[x]]2 = [[(C new) id: true]] = {True}
[[((C new) id: true) isTrue]] = {Object}

Trace graph sketch:
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Figure 12: A polymorphic method.



class D
method f: x

if x then self f: x else nil
end D
(D new) f: nil

Constraints:

[[D new]] = {D}
[[D new]] ⊆ {D}
D ∈ [[D new]] ⇒ [[nil]] = [[x]]1
D ∈ [[D new]] ⇒ [[if x then self f: x else nil]]1 = [[(D new) f: nil]]
D ∈ [[D new]] ⇒ [[if x then self f: x else nil]]1 ⊇ [[self f: x]]1 ∪ [[nil]]1
D ∈ [[D new]] ⇒ [[nil]]1 = {}
D ∈ [[D new]] ⇒ [[self]]1 = {D}
D ∈ [[D new]] ⇒ [[self]]1 ⊆ {D}
D ∈ [[D new]], D ∈ [[self]]1 ⇒ [[x]]1 = [[x]]2
D ∈ [[D new]], D ∈ [[self]]1 ⇒ [[if x then self f: x else nil]]2 = [[self f: x]]1
D ∈ [[D new]], D ∈ [[self]]1 ⇒ [[if x then self f: x else nil]]2 ⊇ [[self f: x]]2 ∪ [[nil]]2
D ∈ [[D new]], D ∈ [[self]]1 ⇒ [[nil]]2 = {}
D ∈ [[D new]], D ∈ [[self]]1 ⇒ [[self]]2 = {D}
D ∈ [[D new]], D ∈ [[self]]1 ⇒ [[self]]2 ⊆ {D}
D ∈ [[D new]], D ∈ [[self]]1, D ∈ [[self]]2 ⇒ [[x]]2 = [[x]]2
D ∈ [[D new]], D ∈ [[self]]1, D ∈ [[self]]2 ⇒ [[if x then self f: x else nil]]2 = [[self f: x]]2
[[nil]] = {}

Smallest Solution:

[[D new]] = [[self]]1 = [[self]]2 = {D}
[[nil]] = [[x]]1 = [[nil]]1 = [[if x then self f: x else nil]]1 = [[self f: x]]1 =
[[(D new) f: nil]]1 = [[x]]2 = [[nil]]2 = [[if x then self f: x else nil]]2 =
[[self f: x]]2 = [[(D new) f: nil]]2 = {}

Trace graph sketch:
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Figure 13: A recursive method.



x := 7;
x succ;
x := true;
x isTrue

Constraints:

[[x]] ⊇ [[7]]
[[7]] = {Natural}
[[x]] ⊆ {Natural}
[[x]] ⊇ [[true]]
[[true]] = {True}
[[x]] ⊆ {True,False}
...

Figure 14: A safe program rejected.

(if nil then true else 7) succ

Constraints:

[[if nil then true else 7]] ⊆ {Natural}
[[if nil then true else 7]] ⊇ [[true]] ∪ [[7]]
[[true]] = {True}
[[7]] = {Natural}
...

Figure 15: Another safe program rejected.

class Student inherits Comparable
. . .

end Student
class ComparableList inherits List

method studentCount
if (self isEmpty) isTrue
then 0
else

if (self car) instanceOf Student
then ((self cdr) studentCount) succ
else (self cdr) studentCount

end ComparableList

Figure 16: An example program.

Appendix C: Solving Systems of

Conditional Inequalities

This appendix shows how to solve a finite system

of conditional inequalities in quadratic time.

Definition C.1: A CI-system consists of

• a finite set A of atoms.

• a finite set {αi} of variables.

• a finite set of conditional inequalities of the

form

C1, C2, . . . , Ck ⇒ Q

Each Ci is a condition of the form a ∈ αj ,

where a ∈ A is an atom, and Q is an inequality

of one of the following forms

A ⊆ αi

αi ⊆ A

αi ⊆ αj

where A ⊆ A is a set of atoms.

A solution L of the system assigns to each variable

αi a set L(αi) ⊆ A such that all the conditional

inequalities are satisfied. 2

In our application, A models the set of classes oc-

curring in a concrete program.

Lemma C.2: Solutions are closed under intersec-

tion. Hence, if a CI-system has solutions, then it

has a unique minimal one.

Proof: Consider any conditional inequality of the

form C1, C2, . . . , Ck ⇒ Q, and let {Li} be all so-

lutions. We shall show that ∩iLi is a solution. If

a condition a ∈ ∩iLi(αj) is true, then so is all of

a ∈ Li(αj). Hence, if all the conditions of Q are

true in ∩iLi, then they are true in each Li; fur-

thermore, since they are solutions, Q is also true

in each Li. Since, in general, Ak ⊆ Bk implies

∩kAk ⊆ ∩kBk, it follows that ∩iLi is a solution.

Hence, if there are any solutions, then ∩iLi is the

unique smallest one. 2

Definition C.3: Let C be a CI-system with atoms
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Figure 17: The lattice of assignments.

A and n distinct variables. An assignment is an el-

ement of (2A)n ∪ {error} ordered as a lattice, see

figure 17. If different from error, then it assigns a

set of atoms to each variable. If V is an assignment,

then C̃(V ) is a new assignment, defined as follows.

If V = error, then C̃(V ) = error. An inequality is

enabled if all of its conditions are true under V . If

for any enabled inequality of the form αi ⊆ A we

do not have V (αi) ⊆ A, then C̃(V ) = error ; other-

wise, C̃(V ) is the smallest pointwise extension of V

such that

• for every enabled inequality of the form A ⊆
αj we have A ⊆ C̃(V )(αj).

• for every enabled inequality of the form αi ⊆
αj we have V (αi) ⊆ C̃(V )(αj).

Clearly, C̃ is monotonic in the above lattice. 2

Lemma C.4: An assignment L 6= error is a solu-

tion of a CI-system C iff L = C̃(L). If C has no

solutions, then error is the smallest fixed-point of

C̃.

Proof: If L is a solution of C, then clearly C̃ will

not equal error and cannot extend L; hence, L is

a fixed-point. Conversely, if L is a fixed-point of

C̃, then all the enabled inequalities must hold. If

there are no solutions, then there can be no fixed-

point below error. Since error is by definition a

fixed-point, the result follows. 2

This means that to find the smallest solution, or to

decide that none exists, we need only compute the

least fixed-point of C̃.

Lemma C.5: For any CI-system C, the least fixed-

point of C̃ is equal to

lim
k→∞

C̃k(∅, ∅, . . . , ∅)

Proof: This is a standard result about monotonic

functions on complete lattices. 2

Lemma C.6: Let n be the number of different

conditions in a CI-system C. Then

lim
k→∞

C̃k(∅, ∅, . . . , ∅) = C̃n+1(∅, ∅, . . . , ∅)

Proof: When no more conditions are enabled, then

the fixed-point is obtained by a single application.

Once a condition is enabled in an assignment, it

will remain enabled in all larger assignments. It

follows that after n iterations no new conditions

can be enabled; hence, the fixed-point is obtained

in at most n + 1 iterations. 2

Lemma C.7: The smallest solution to any CI-

system, or the decision that none exists, can be

obtained in quadratic time.

Proof: This follows from the previous lemmas. 2
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