Logical Bytecode Reduction

Christian Gram Kalhauge *
Computer Science Department
University of California, Los Angeles (UCLA)
California, USA
chr@dtu.dk

Jens Palsberg
Computer Science Department
University of California, Los Angeles (UCLA)
California, USA
palsberg@ucla.edu

Abstract

Reducing a failure-inducing input to a smaller one is challenging for input with internal dependencies because most sub-inputs are invalid. Kalhauge and Palsberg made progress on this problem by mapping the task to a reduction problem for dependency graphs that avoids invalid inputs entirely. Their tool J-Reduce efficiently reduces Java bytecode to 24% of its original size, which made it the most effective tool until now. However, the output from their tool is often too large to be helpful in a bug report. In this paper, we show that more fine-grained modeling of dependencies leads to much more reduction. Specifically, we use propositional logic for specifying dependencies and we show how this works for Java bytecode. Once we have a propositional formula that specifies all valid sub-inputs, we run an algorithm that finds a small, valid, failure-inducing input. Our algorithm interleaves runs of the buggy program and calls to a procedure that finds a minimal satisfying assignment. Our experiments show that we can reduce Java bytecode to 4.6% of its original size, which is 5.3 times better than the 24.3% achieved by J-Reduce. The much smaller output is more suitable for bug reports.

CCS Concepts: • Software and its engineering → Software testing and debugging; • Theory of computation → Logic.

Keywords: input reduction, type-safe code transformation

1 Introduction

We have an input to a program that makes the program fail. The input is valid so the program should handle it; however, the input is so massive that we cannot determine the nature of the bug. The process of input reduction, first introduced by Zeller and Hildebrandt [28], addresses this problem by finding a small input that reproduces the failure. Their algorithm, dmin, produces a sub-input (the original input with pieces removed) that reproduces the failure. They found that running on a sub-input can have three outcomes: the failure still happens, the failure is gone, and don’t know. The “don’t know” outcome happens when the sub-input is invalid, despite that the original input was valid. An invalid sub-input is of no help with finding the bug, as noted by Regehr et al. [22] who coined the term the test-case validity problem. The test-case validity problem can arise for multiple reasons. In the context of finding bugs in C compilers, Regehr et al. [22] noted that C programs can be both statically invalid and dynamically invalid. In particular, they defined a dynamically invalid program to be one that executes “an operation with undefined behavior or rely on unspecified behavior” [22]. Their widely used tool C-Reduce [22] reduces large C programs to programs that are two orders of magnitude smaller and fit for inclusion in bug reports. In the context of finding bugs in tools that process Java bytecode, Kalhauge and Palsberg [13] noted that Java bytecode has many internal dependencies. For example, if a Java method constructs an object from a class, then it depends on that class: without the class, the method no longer type-checks. Their tool J-Reduce [13] reduces large Java bytecode programs to programs that are four times smaller but often still too large for the reader of a bug report.

Is reduction inherently harder for Java bytecode? For C, the most challenging component of the test-case validity problem is dynamically invalid programs. C-Reduce solves this by using a semantics-checking C interpreter to detect dynamically invalid input. For Java bytecode, the biggest challenge is the many internal dependencies. J-Reduce solves this by creating a dependency graph that avoids statically invalid inputs entirely. Thus, the reduction challenges for C and Java are different, and so far, C reduction has been more successful. We will show that more detailed modeling of internal dependencies can bring the effectiveness of Java bytecode reduction much closer to that of C reduction.
In this paper, we solve the underlying problem of modeling dependencies by using the full power of propositional Boolean logic. We use the model to search through valid sub-inputs efficiently while avoiding invalid sub-inputs, and to produce the result in Figure 1b. The claim of our paper is:
The use of propositional logic for modeling internal dependencies leads to an effective and efficient reduction of complex inputs.

In a typical case from Kalhauge and Palsberg [13], J-Reduce reduces the number of lines in the decompiled program from 7,661 to 6,918, while our tool reduces it to 815. This is a difference of almost an order of magnitude.

After a dive into the example in Figure 1 which illustrates why previous techniques are unable to model all dependencies (Section 2), we have structured the rest of this paper after our contributions.

- We have built a model of internal dependencies for a modest extension of Featherweight Java, which we call Featherweight Java with Interfaces (FJI). We prove that if a program type checks, then every sub-input that satisfies the dependencies also type checks. This is a sound dependency model of a complex input which previous techniques are unable to model. We then discuss the extensions needed to model Java bytecode (Section 3).
- We introduce the Generalized Binary Reduction algorithm, which given a model of the internal dependencies of a failure-inducing input, finds a valid failure-inducing sub-input in polynomial time. Our algorithm interleaves runs of the buggy program and calls to a procedure that finds a minimal satisfying assignment. We have proved the correctness, polynomial time complexity, and an optimality property of the algorithm (Section 4).
- We have implemented our approach and evaluated it on the benchmarks from the J-Reduce paper. Our tool reduces to 4.6% of the original size, while J-Reduce only reduces to 24.3%. This is 5.3x more reduction than J-Reduce (Section 5).

Finally, we go over related work in Section 6 and conclude in Section 7.

Most of our proofs are in supplementary material. Our implementation and benchmarks are available [14].

2 Example

This section illustrates that the previous graph-based approach does not extend to a more fine-grained reduction of Java bytecode and what we have done to solve it. Consider the example in Figure 1a. It contains a Java source program, which, when compiled, functions as an input to a tool. When we run the tool, we get an error. The error is produced by a combination of the code in the body of A.m() and M.x(), but we don’t know that. We do know, from the tool, that it

```java
class A implements I {
    String m(){ /* bug */ } B n(){ ... }
}
class B implements I {
    String m() { /* bug */ }
}
interface I { String m(); B n(); }

(a) The input program.
class A implements I {
    String m() { /* bug */ }
}
class B implements I {
    String m() { /* bug */ }
}
interface I { String m(); }

(b) The optimal reduction.
class M {
    String x(I a) { return a.m(); /* bug */ }
    String main() {
        return new M().x(new A()); /* bug */
    }
}

(c) Shared by both (a) and (b).

Figure 1. The example input program which produces an bug in a tool when the body of M.x(), M.main(), and A.m() are present at the same time. The second sub-figure is the optimal reduction that preserves the bug. We exclude the code in . . . for brevity.

We build on a long tradition of gradually modeling more and more of the internal dependencies of the input to avoid invalid sub-inputs. In Misherghi and Su’s paper on hierarchical delta debugging (HDD), they avoided many invalid inputs by exploiting the syntax tree of the inputs. Sun et al. [25] took this a step further and used a syntax tree as the model in their tool Perses, which enabled the tool to avoid all syntactically invalid sub-inputs. Beyond models of syntax, Kalhauge and Palsberg [13] used a dependency graph to model semantic dependencies.

In this paper, we introduce a new model of dependencies that goes beyond dependency graphs. Consider, for example, the Java program in Figure 1a, which is the input to a tool and makes the tool crash. While a programmer quickly can reduce Figure 1a to Figure 1b, automatic reduction based on a dependency graph produces suboptimal reductions. The reason is that dependency edges cannot express, for example, that if we want to preserve that A implements I and that I has a signature m, then we must also preserve that A implements m. Note that because the example is small, line-oriented reduction techniques such as dmin may well able to reduce Figure 1a to Figure 1b. For larger examples with many internal dependencies, dmin tends to produce disappointing results [13].
always requires M.main() to run at all. We want to reduce the input program while preserving the error.

Kalhauge and Palsberg [13] described an approach to reduce Java bytecode. Their tool, J-Reduce, models the dependencies between classes using a graph, which allows them to produce smaller results an order-of-magnitude faster than ddmim [28]. The modeling language is a conjunction of required classes [A] and dependencies between classes [A] ⇒ [B]. Every transitive closure in the graph (henceforth called simply a closure) corresponds to a valid sub-input. Their algorithm proceeds in five steps, which we quote from [13]:

1. "Map the input to its dependency graph.
2. Compute the closure of each node.
3. Form a list of the closures.
4. Run a reduction algorithm on the list of closures.
5. Output the union of the reduced list of closures."

In step (1), the algorithm derives dependencies from the program: if a class A mentions a class B, then we have a dependency from A to B. In step (4), the reduction algorithm can be ddmim [28], binary reduction [13], etc. For the example in Figure 1a, the class dependencies are: [M], ([M] ⇒ [A]), ([M] ⇒ [I]), ([A] ⇒ [B]), ([B] ⇒ [I]), and ([I] ⇒ [B]). Or in a graph:

In summary, both of the dependencies to it.

Going Beyond Classes. But all is not lost. We can inspect the program and see that if we are allowed to remove items within the classes, we can reduce the program. If we reduce the program by hand, we could get the program, which we show in Figure 1b. We can remove four different kinds of items: classes ([A]), implementations ([A] ⊈ [I]), methods ([A].m()), and the code associated with the methods ([A].m()). In this example, we have a total of 20 separate items, which we have listed in Figure 2, under the heading Variables.

When we generate constraints beyond the class level, we can reuse some of the ideas from previous work, but not all. Kalhauge and Palsberg [13] exclusively modeled referential dependencies: one item depends on another if it the item refers to it. We can transfer this idea directly to items within classes, and we have added a list of Referential Semantic Dependencies to fig. 2. In summary, both of the implements statements mentions the interface I, the code of main mentions I, A, and the methods I.m(), and all the n methods mentions B. The m methods mention String, but since we do not try to remove this class, there is no reason to model dependencies to it.

Differently from the previous work on graphs, items are nested. The nested structure of the items means that we cannot remove an item before we have removed all its children. Otherwise, we might find us in a situation where we want to keep a method, but we have removed its enclosing class. We
can fix this by adding dependencies from children to their parents. We call these Syntactic Dependencies, and we list them in fig. 2.

Additional Dependencies. The syntactic and referential dependencies by themselves are not enough to model valid inputs correctly. We can see this in Figure 3, which is the dependency graph created from the syntactic and referential dependencies. This graph contains closures that are invalid inputs. For example, the closure of variables in M (shaded gray) is not a valid input! In[M.main()]!code we cast A to I before we call I.m() on A. We are simply not allowed to cast A to I, unless that A is a subtype of I. In our case, we can see that we needed to preserve [A ≪ I]. So we know that there exist dependencies that we have not encoded. Referential dependencies alone are not enough to define all dependencies. Also, there exist references that do not generate dependencies. For example, in Java, we can refer to methods that are defined in a superclass. Assume we have a class C which extends A, then we are allowed to call (new C()).m(), because C inherits A’s methods. The bytecode would refer to a C.m(). We need a more general concept for defining dependencies.

Our First Contribution. In our example, the input has to type-check before we can run the tool on it. The problem is that referential semantic dependencies are not the only kind of semantic dependencies. By inspecting the type-checking rules, we can see that the code of M.main() casts A to I and therefore depends on that A implements I. We can model this like this:

\[
[M\text{.main()!code}] \Rightarrow [A ≪ I].
\]

We also have to model the inheritance laws. If [I.m()]) should be preserved then A has to implement [A.m()]. This is true because A implements I and I.m() is an abstract method. However, this constraint depends on [A ≪ I], because if [A ≪ I] has been removed we can safely remove [A.m()] without removing [I.m()]. In other words, if we preserve that A implements I and I.m() we must also preserve A.m():

\[
[I.m()] ∧ [A ≪ I] \Rightarrow [A.m()].
\]

Finally, we also include [M.main()!code], because, as described earlier, we know the tool does not work without it. We add the last six dependencies in Figure 2. The dependencies, now, precisely model the semantics of both the class hierarchy and the type system. A key part of our first contribution is to model the internal dependencies of the type-system of Java using propositional Boolean logic. We will describe a full dependency model of Featherweight Java with Interfaces, which we prove only can produce sub-inputs that type-check. We present this in Section 3.

Our Second Contribution. We have shown that we must go beyond dependency graphs to get better reduction than in previous work. Instead we use propositional Boolean logic. In our formulation, \([x]\) is a variable that indicates whether a construct \(x\) remains in the sub-input or is removed. In a sound model, a valid truth assignment corresponds to a valid sub-input of the original input. We can represent a dependency graph as a conjunction of implications and variables, as we saw above; from now on we will refer to such a constraint as a graph constraint. A graph constraint can be converted to the grammar above by converting each edge \([x] \Rightarrow [y]\) to \((x) \Rightarrow \neg([x] ∧ \neg[y]))

We can iterate through all satisfying truth assignments to the constraints in Figure 2 and see that not only are they all valid sub-inputs that type-check but they also contain the truth assignment that constitutes the minimal sub-input in Figure 1b:

\[
[A ≪ I], [A.m()], [A.m()!code], [A], [I.m()], [I],
[M.x()!code], [M.x()], [M.main()!code], [M.maint()], [M]
\]

The original input, with no knowledge of the internal dependencies, has \(2^{20} = 1,048,576\) sub-inputs. Far from all of these inputs are valid. Using our new constraints, we can count the number of valid truth assignments with a tool like sharpSAT [26]. Since a satisfying truth assignment corresponds to a valid input, we can see that there are 6,766 valid programs left. While it is possible to run 6,766 different sub-inputs to find the smallest one, this number scales exponentially with the input’s size. Additionally, any attempt to decrease the number of runs is hampered by the fact that the union of two satisfying truth assignments is not always a satisfying truth assignment. Our Generalized Binary Reduction algorithm (Section 4) finds the optimal solution by checking only 11 inputs.

3 Modeling Dependencies

We will formalize how we model dependencies and we will discuss aspect of our implementation that go beyond the formal model.

Featherweight Java with Interfaces. Featherweight Java with Interfaces (FJI) is a modest extension of Featherweight Java [9]: each class implements a single interface. An interface consists of a collection of signatures. While we can model the dependencies of Featherweight Java with graph constraints, we need the full power of propositional logic for FJI.

FJI is a convenient setting in which to show that reduced programs type check. We will define the syntax and type system for FJI, along with a reducer. From a program, we generate constraints that model the internal dependencies, then we solve the constraints, and finally we feed the solution to a reducer. The idea is that for any solution, the reduced program type checks (Theorem 3.1).

For examples in FJI, our formalization generates the same constraints as our implementation. In particular, the core of
the example in Section 2 is an FJI program, and our formalization generates the constraints listed in Section 2, as we will show in Section 3.

**Syntax.** Figure 4 shows the grammar of FJI. Our metanotation for Featherweight Java is similar to the one used in the original paper on Featherweight Java [9]; we refer the reader to that paper for details.

Figures 6 and 7 show the helper rules and type rules of FJI. In the type rules, we use \( \Gamma \) to range over type environments, that is, mappings from identifiers to types. We use \( \pi, \sigma \) to range over logical formulas. We use the abbreviation \( \overline{\pi} = \pi_1 \land \ldots \land \pi_n \). We use \( P(C) \) to denote the class in \( P \) with name \( C \), and we use \( P(I) \) to denote the interface in \( P \) with name \( I \). For every \( P \) we assume:

\[
P(\text{EmptyInterface}) = \text{interface EmptyInterface} \{} \.
\]

The type rules specify the conditions under which a program \( P \) type checks. When \( P \) satisfies those conditions, we write \( \vdash P \mid \pi \). We explain the role of \( \pi \) below.

**Boolean Variables and a Program Reducer.** For a given program, we define a set of Boolean variables that will be used by the constraints. Then we define a reducer that given a solution to the constraints will map a program to a reduced program.

From a program \( P \), we derive a set of Boolean variables that we denote \( V(P) \). We use \( \varphi \) as a truth assignment of the variables to range over \( V(P) \rightarrow \text{Bool} \). The idea is that \( \varphi([C]) = 1 \), then the reducer should keep class \( C \) and otherwise remove it. We have six kinds of variables: \( [C] \) toggles the class \( C \), \( [I] \) toggles the interface \( I \), \( [C.m()] \) toggles the method \( C.m \) in \( C \) and \( [I.m()] \) toggles the signature \( I.m \) in \( I \). The variable \( [C < I] \) signals if we should keep \( C \) implements \( I \) or we can change it to \( C \) implements EmptyInterface. Finally, the variable \( [C.m()].code \) signals if we should keep the body of method \( C.m() \). Otherwise, we can replace it with a trivial body.

The reducer in Figure 5 implements the idea of the Boolean variables explained above. The reducer forms the core of our implementation for Java bytecode. For any mapping \( \varphi : V(P) \rightarrow \text{Bool} \), we construct a reduced program \( \text{reduce}(P, \varphi) \).

**Generating Type-checking Constraints.** Figures 6 and 7 show the type rules. For a program \( P \), we write \( \vdash P \mid \pi \) to denote that we simultaneously type check \( P \) and generate a propositional formula \( \pi \) that uses variables in \( V(P) \). We use the notation \( \varphi \models \pi \) to denote that \( \varphi \) satisfies \( \pi \).

The helper rules for FJI in Figure 6 are much like in Featherweight Java, there are, however two differences. The first is that we extended method type lookup to apply to interfaces, and that now the subtyping rules generate constraints that model the connection between a class and its interface. The second is a new group of rules for method choice. For a class \( C \) and a method \( m \) in a program \( P \), the constraint \( m \text{Any}(P, m, C) \) is a disjunction of variables that all are of the form \([C.m()]\). If we need \( C \) to implement a method \( m \) in the reduced program, then we can require \( m \text{Any}(P, m, C) \) to be true. This will ensure that the reducer will preserve at least one such method \( m \).

The type rules for FJI in Figure 7 are like the type rules for Featherweight Java except for new rules related to interfaces and signatures, plus the generation of constraints.

- In the rule for class typing, the constraints says that if we preserve class \( C \), then we also need to preserve class \( D \) plus the types of the fields. Additionally, if we preserve that class \( C \) implements interface \( I \), then we need to preserve both \( C \) and \( I \).
- In the rule for method typing, the constraints say that if we preserve method \( m \), then we also need to preserve the enclosing class \( C \) and the parameter types and the return type. Additionally, if we preserve the method body, then we need to preserve the enclosing method.
- In the rule for signature typing, the constraints say that if we preserve a signature, then we must preserve the enclosing interface as well as the parameter types and the return type.
- In the rule for signature typing relative to a class \( C \), the constraints say that if we preserve that \( C \) implements interface \( I \) and we preserve that \( I \) has a signature \( m \), then \( C \) needs to implement a method \( m \) in the reduced program.

**Figure 3.** The dependency graph containing syntactic (solid, black) and referential (dashed, gray) dependencies. We have abbreviated the code variables to [code]. We have shaded the variables part of the minimal closure from M.
\[ P ::= \bar{R} e \quad \text{programs} \]
\[ R ::= L \mid Q \quad \text{type declarations} \]
\[ T, U ::= C \mid I \quad \text{type names} \]
\[ L ::= \text{class } C \text{ extends } D \text{ implements } I \{ \bar{T} \bar{\bar{T}}; K \bar{M} \} \quad \text{classes} \]
\[ Q ::= \text{interface } I \{ \bar{S} \} \quad \text{interfaces} \]
\[ K ::= C(\bar{T} \bar{\bar{T}}) \{ \text{super}(\bar{f}); \text{this} \bar{f} = \bar{f}; \} \quad \text{constructors} \]
\[ M ::= T m(\bar{T} \bar{x}) \{ \text{return } e; \} \quad \text{methods} \]
\[ S ::= T m(\bar{T} \bar{x}) \quad \text{signatures} \]
\[ e ::= x \mid e.f \mid e.m(\bar{e}) \mid \text{new } C(\bar{e}) \mid (T) e \quad \text{expressions} \]

**Figure 4.** The syntax of Featherweight Java with Interfaces (FJI).

\[
\begin{align*}
\text{reduce}(\bar{R} e, \varphi) & = \text{reduceR}(\bar{R}, \varphi) e \\
\text{reduceR}(\text{class } C \text{ extends } D \text{ implements } I \{ \bar{T} \bar{T}; K \bar{M} \}, \varphi) & = \begin{cases} 
\text{class } C \text{ extends } D \\
\text{implements } \text{reduce}(C, I, \varphi) \\
\{ \bar{T} \bar{T}; K \text{reduceM}(C, \bar{M}, \varphi) \}
\end{cases} \quad \text{if } \varphi([C]) = 1 \\
o/w
\text{reduce}(C, I, \varphi) & = \begin{cases} 
I \\
\text{EmptyInterface}
\end{cases} \quad \text{if } \varphi([C \prec I]) = 1 \\
o/w
\text{reduceR}(\text{interface } I \{ \bar{S} \}, \varphi) & = \begin{cases} 
\text{interface } I \{ \text{reduceS}(I, \bar{S}, \varphi) \}
\end{cases} \quad \text{if } \varphi([I]) = 1 \\
o/w
\text{reduceM}(C, T m(\bar{T} \bar{x}) \{ \text{return } e; \}, \varphi) & = \begin{cases} 
T m(\bar{T} \bar{x}) \{ \text{return } e; \}
\end{cases} \quad \text{if } \varphi([C.m()]!\text{code}) = 1 \\
o/w
\text{reduceS}(I, T m(\bar{T} \bar{x}), \varphi) & = \begin{cases} 
T m(\bar{T} \bar{x}) \\
\end{cases} \quad \text{if } \varphi([I.m()]) = 1 \\
o/w
\end{align*}
\]

**Figure 5.** Our \textit{reduce} function of FJI.

- In the rules for expressions, the constraints ensure that the result type is preserved in the reduced program. Additionally, the constraint for method calls ensures that at least one appropriate method is preserved. We also require that the dispatch type exist, for compatibility with our implementation for full Java.

**Reduction is Type-Safe.** Our main theorem is that a reduced program type checks. This means that reduction with any solution to the constraints preserves typability.

**Theorem 3.1.** If \( \vdash P \mid \sigma \text{ and } \varphi \models \sigma \), then \( \exists \sigma' \text{ such that } \vdash \text{reduce}(P, \varphi) \mid \sigma' \).

We leave to future work to settle whether the converse of Theorem 3.1 holds. For example, the converse statement could read: if \( \vdash P \mid \sigma \text{ and } \vdash \text{reduce}(P, \varphi) \mid \sigma' \), then \( \varphi \models \sigma \). Such a result would indicate that the constraint matches the type system.

**Generating the Constraints in the Example.** The code in Figure 1a is FJI if we assume that every class extends Object, that its constructor is implicit, and that \( M \) implicitly implements EmptyInterface. Finally, we assume that there exists a class String, which we preserve while reducing the program. Now we show highlights of how we generate the constraints in Figure 2.

From the program typing rules (Figure 7), we can see that we can process the classes in parallel and then conjoin the results. Let’s start with A. We first look at the class typing rule in Fig. 7. We can see that we have to generate the dependencies for the superclass and the constructor, the constructor has no parameters so our constraint is \([A] \Rightarrow [\text{Object}]\). The second conjunct generates the constraints for the implements statement \(([A \prec I] \Rightarrow (|A| \land |I|)) \land \bar{\bar{\pi}} \land \bar{\bar{\pi}}\). Now let’s focus on the methods requirements \(\bar{\pi}\). There are two methods in A, String \(m() \{ \ldots \}\) and \(n() \{ \ldots \}\). For \(\pi\) we use the method typing rule to see that: \([A \cdot m()] \Rightarrow (|A| \land [\text{String}])\) and \([A \cdot m()]!\text{code} \Rightarrow [A \cdot m()] \land \pi_1 \land \pi_2\). For
Field lookup
d fields(P, Object) = •

\[ P(C) = \text{class } C \text{ extends } D \text{ implements } I \{ \overline{T} \overline{f} ; K \overline{M} \} \]

<table>
<thead>
<tr>
<th>fields(P, D) = U \overline{g}</th>
</tr>
</thead>
<tbody>
<tr>
<td>fields(P, C) = U \overline{g} , \overline{T} \overline{f}</td>
</tr>
</tbody>
</table>

Method type lookup

\[ P(C) = \text{class } C \text{ extends } D \text{ implements } I \{ \overline{T} \overline{f} ; K \overline{M} \} \]

\[ U m(\overline{U} \overline{x}) \{ \text{return } e; \} \in \overline{M} \]

\[ \text{mtype}(P, m, C) = (U \rightarrow U) \]

\[ P(C) = \text{class } C \text{ extends } D \text{ implements } I \{ \overline{T} \overline{f} ; K \overline{M} \} \]

\[ U m(\overline{U} \overline{x}) \{ \text{return } e; \} \notin \overline{M} \]

\[ \text{mtype}(P, m, C) = \text{mtype}(P, m, D) \]

\[ P(I) = \text{interface } I \{ \overline{S} \} \]

\[ U m(\overline{U} \overline{x}) \in \overline{S} \]

\[ \text{mtype}(P, m, I) = (U \rightarrow U) \]

Method choice

\[ \text{mAny}(P, m, \text{Object}) = 0 \]

\[ P(C) = \text{class } C \text{ extends } D \text{ implements } I \{ \overline{T} \overline{f} ; K \overline{M} \} \]

\[ U m(\overline{U} \overline{x}) \{ \text{return } e; \} \in \overline{M} \]

\[ \text{mAny}(P, m, C) = [\text{C.m}()] \lor \text{mAny}(P, m, D) \]

\[ P(C) = \text{class } C \text{ extends } D \text{ implements } I \{ \overline{T} \overline{f} ; K \overline{M} \} \]

\[ U m(\overline{U} \overline{x}) \{ \text{return } e; \} \notin \overline{M} \]

\[ \text{mAny}(P, m, C) = \text{mAny}(P, m, D) \]

\[ P(I) = \text{interface } I \{ \overline{S} \} \]

\[ U m(\overline{U} \overline{x}) \in \overline{S} \]

\[ \text{mAny}(P, m, I) = [\text{I.m}()] \]

Subtyping

\[ P \vdash T \leq T \]

\[ P \vdash T \leq T' \quad \pi_1 \quad P \vdash T \leq T'' \quad \pi_2 \]

\[ P \vdash T \leq T'' \quad \pi_1 \land \pi_2 \]

\[ P(C) = \text{class } C \text{ extends } D \text{ implements } I \{ \overline{T} \overline{f} ; K \overline{M} \} \]

\[ P \vdash C \leq D \]

\[ P \vdash C \leq I \quad \text{[C < I]} \]

Valid method overriding

\[ \text{mtype}(P, m, D) = U \rightarrow U \text{ implies } U = \overline{T} \text{ and } U = T \]

\[ \text{override}(P, m, D, T \rightarrow T) \]

Program typing

\[ P = \overline{R} e \quad \overline{R} \text{ OK in } P \mid \pi \quad P, \emptyset \vdash e : T \mid \pi \]

\[ P \vdash e : T \mid \pi \]

Class typing

\[ fields(P, D) = U \overline{g} \quad P \vdash \overline{S} \text{ OK in } C \mid \pi \]

\[ K = C(\overline{U} \overline{g}, \overline{T} \overline{f}) \{ \text{super}(\overline{g}) \text{; this.}\overline{f} \rightarrow \overline{T} ; \} \]

\[ P \vdash M \text{ OK in } C \mid \pi \quad P(I) = \text{interface } I \{ \overline{S} \} \]

\[ \text{class } C \text{ extends } D \text{ implements } I \{ \overline{T} \overline{f} ; K \overline{M} \} \text{ OK in } P \mid \]

\[ ((C) \Rightarrow (D) \land [\overline{U} \land [\overline{T}]) \land \]

\[ (C < I) \Rightarrow ((C) \land [I]) \land [\pi \land \pi] \]

Interface typing

\[ P \vdash \overline{S} \text{ OK in } I \mid \pi \]

\[ \text{interface } I \{ \overline{S} \} \text{ OK in } P \mid \pi \]

Method typing

\[ P(C) = \text{class } C \text{ extends } D \text{ implements } I \{ \overline{U} \overline{f} ; K \overline{M} \} \]

\[ \text{override}(P, m, D, \overline{T} \rightarrow T) \]

\[ P, (\overline{x} : \overline{T}, \text{this} : C) \vdash e : U \mid \pi_1 \quad P \vdash U \leq T \mid \pi_2 \]

\[ P \vdash T \vdash m(\overline{T} \overline{x}) \{ \text{return } e; \} \text{ OK in } C \mid \]

\[ ((\text{C.m}()) \Rightarrow ((\text{C} \land [\text{I}]) \land [\text{T}]) \land \]

\[ ((\text{C.m}!)\text{code} \Rightarrow ((\text{C.m}()) \land [\pi_1 \land \pi_2]) \]

Signature typing

\[ P \vdash T \vdash m(\overline{T} \overline{x}) \text{ OK in } I \mid [\text{I.m}()] \Rightarrow ((\text{I} \land [\text{I}]) \land [\text{T}]) \]

Signature typing relative to a class

\[ \text{mtype}(P, m, C) = \overline{T} \rightarrow T \]

\[ P \vdash T \vdash m(\overline{T} \overline{x}) \text{ OK in } I \text{ for } C \mid [\text{C < I}] \Rightarrow m\text{Any}(P, m, C) \]

Expression typing

\[ P, \Gamma \vdash x : \Gamma(x) \mid 1 \]

\[ P, \Gamma \vdash e : C \mid \pi \quad \text{fields}(P, C) = \overline{T} \overline{f} \]

\[ P, \Gamma \vdash e.f_{1} : T_{1} \mid \pi \]

\[ P, \Gamma \vdash e : T \mid \pi_1 \quad \text{mtype}(P, m, T) = U \rightarrow U \]

\[ P, \Gamma \vdash e : T \mid \pi \quad P \vdash \overline{T} \leq U \mid \pi_2 \]

\[ P, \Gamma \vdash e.m(\overline{x}) : U \mid [\text{I}] \land \pi_1 \land \text{mAny}(P, m, T) \land [\pi \land \pi_2] \]

\[ \text{fields}(P, C) = \overline{T} \overline{f} \quad P, \Gamma \vdash \overline{x} : U \mid \pi \quad P \vdash \overline{U} \leq \overline{T} \mid \pi \]

\[ P, \Gamma \vdash \text{new } C(\overline{x}) : C \mid [\text{C}] \land [\pi \land \pi] \]

\[ P, \Gamma \vdash e : U \mid \pi \]

\[ P, \Gamma \vdash (T) e : T \mid [\text{I}] \land [\pi] \]

Figure 6. FJI helper rules.

Figure 7. FJI type rules.
When we compile the source code, we get a load-constant will not work without the body of
We assume for these two methods that the expression \( \pi_1 \), and the return cast \( \pi_2 \) create no constraints. With that out of the way, we create the constraints \( T \) from the interfaces. Here we use the “Signature typing relative to a class” rules, where we generate constraints that require all the signatures of a class to be implemented by one of its superclasses.

\[
([A < I] \land [I.m()]) \Rightarrow mAny(P, m, A)
= ([A.m()] \land mAny(P, m, Object))
= [A.m()]
\]

The same happens for \( A \): \([A < I] \land [I.n()] \Rightarrow [A.n()] \).

Since we do not reduce String and Object we replace their variables with true, furthermore we expand all the implications so that they become clauses.

We can generate constraints for B, I, and M in a similar fashion.

Altogether, we have generated 31 of the 32 constraints from Figure 2. We add the last constraint \(([M.main()]!code)\) after constraint generation because we know that the tool will not work without the body of \([M.main()]\).

**Java Bytecode.** We have implemented a reducer and a constraint generator for Java bytecode for which our model of FJI is the core. We have a total of 11 kinds of items that can be removed, including constructors, fields, and super-class relations. Constructs that require special attention during constraint generation include abstract classes, interfaces extending other interfaces, classes implementing multiple interfaces, and type casts. Additionally, we have to model Java generics and type inference. Type checking with Java generics is undecidable [15] and our approach approximates the type checking problem as part of the constraints so the undecidability is a limiting factor for us. We have designed an approximation that has worked well in our experiments. In particular, the model of Java generics has so far never led our tool to produce an invalid sub-input.

For example, consider the following source-level declaration of a local variable and the corresponding bytecode:

```java
Class<? extends B> a = A.class →
 ldc [class A]
```

When we compile the source code, we get a load-constant instruction (ldc) and none of the generic-type information. For the source code, we could have generated a constraint that preserves that \( A \) extends \( B \), but in the bytecode we have to approximate it. We do that by making all method bodies that do reflection on the class \( A \) depend on that \( A \) extends all its superclasses.

### 4 Logical Reduction

In this section, we will restate the "Input Reduction Problem" using logic and show how the Generalized Binary Reduction algorithm enables us to efficiently reduce the input.

#### 4.1 Notation

We use small letters to refer to variables \( v \), capital letters to refer to sets \( L \), and the calligraphic letters \( D, \mathcal{L} \) to reference to sets of sets. \( 2^X \) indicates the power set of a set \( X \). In lists we can access the \( n \)th element with a subcript \( D_i \).

A solution \( M \) is a satisfying assignment to a logical statement \( R \), which we write \( R(M) \). We write solutions as the set of true variables. For example \((x \land \lnot y)(x, y)\) is true and \((x \land \lnot y)(x, y)\) is false. We can also get the variables \( \text{VARS}(R) \) of a logical statement. We can also condition, or update, logical expressions \((R \mid x = 1, y = 1)\), which effectively substitutes \( x = 1 \) and \( y = 1 \) in \( R \). This also works for sets \((R \mid X = 1)\).

A conjunctive normal form (CNF) is a representation of a logical expression using a conjunction of clauses. A clause is a disjunction of literals and a term is a conjunction of literals. A literal is a normal or negated variable. Furthermore, we define the following shorthands:

\[
\mathcal{D}^i = \bigcup_{D \in \mathcal{D}} D^i \quad \mathcal{D}^i_{>r} = \bigcup_{j \in \mathcal{D}^i} D^r \quad L^r = \bigcup_{l \in \mathcal{L}} l
\]

#### 4.2 Formalizing the Problem

Our formalization of the input reduction problem is akin to the formalizations in [13, 17], as we explain below. First, we represent an input as a set of variables \( I \) and we represent sub-inputs as subsets of \( I \). In Section 3, this set \( I \) was called \( V(P) \), and each sub-input was represented by a truth assignment \( \varphi \) defined on \( V(P) \). We represent the program that may have a bug as a black-box predicate \( \mathcal{P} \) that is true on a sub-input if and only if that sub-input induces a bug in the tool. The notion of black-box means that we can invoke \( \mathcal{P} \) on subsets of \( I \) but we cannot inspect \( \mathcal{P} \) in any other way.

The notion of a black-box predicate models that we have to run the tool to know anything about it. Finally, we have a propositional Boolean formula \( R_I \) over \( I \). In Section 3, this formula \( R_I \) was called \( \sigma \) and was generated from the input.

**Definition 4.1 (Input Reduction Problem).** *Instance:* \((I, \mathcal{P}, R_I, k)\), where \( I \) is a set of variables, \( \mathcal{P} \) is a black-box predicate on subsets of \( I \), and \( R_I \) is a Boolean formula in CNF over \( I \), and \( k \) is an integer representing a maximum cost.

**Assumptions:** \( \mathcal{P} \) can be evaluated in polynomial time, both \( \mathcal{P}(I) \) and \( R_I(I) \) are true, and \( \mathcal{P} \) is monotonic on valid sub-inputs: if \( X \subseteq Y \) and \( R_I(X) \) and \( R_I(Y) \), then \( \mathcal{P}(X) \Rightarrow \mathcal{P}(Y) \).

**Problem:** decide \( \exists S \subseteq I : \mathcal{P}(S) \land R_I(S) \land |S| < k \).

Our input reduction problem differs from the one of Mishsergh and Su [17] in that we model input validity and we require \( \mathcal{P} \) to be monotonic on valid sub-inputs. Our input reduction problem also differs from the one of Kalhauge and
Palsberg [13] in that we have no cost function on the sub-inputs. However, all three input reduction problems are NP-complete and for the same reason: we can easily reduce the Hitting Set Problem (which is NP-complete [15]) to each of the input reduction problems.

Theorem 4.2. The Input Reduction Problem is NP-complete.

In the remainder of this section, we will focus on the optimization version of the Input Reduction Problem. Specifically, we will present polynomial-time algorithms that each finds a small solution to \((I, \mathcal{P}, R_I)\).

4.3 Lossy Encodings into Graph Constraints

For our benchmarks, 97.5% of the clauses are graph constraints (see Section 5). We know that the binary reduction algorithm [13] relies on that all the constraints are graph constraints. Can we give a lossy encoding of the remaining 2.5% of the clauses as graph constraints and then apply the binary reduction algorithm? Yes we can, as follows. Those other 2.5% of the clauses are of the form \((\wedge_{i=1}^n a_i) \Rightarrow (\lor_{j=1}^m b_j)\), where \(n > 1 \lor m > 1\). For any \(i’, j’\), where \(1 \leq i’ \leq n\) and \(1 \leq j’ \leq m\), we can approximate such a clause by the graph constraint \(a_{i'} \Rightarrow b_{j'}\). This is because

\[(a_{i'} \Rightarrow b_{j'}) \Rightarrow ((\wedge_{i=1}^n a_i) \Rightarrow (\lor_{j=1}^m b_j))\]

Thus, if we have a solution to \((a_{i'} \Rightarrow b_{j'})\), then it is also a solution to \((\wedge_{i=1}^n a_i) \Rightarrow (\lor_{j=1}^m b_j)\). This means that if we replace \((\wedge_{i=1}^n a_i) \Rightarrow (\lor_{j=1}^m b_j)\) with \((a_{i'} \Rightarrow b_{j'})\) and apply binary reduction, we will get a valid result. In Section 5 we show experiments with two variations of the lossy encoding: one where we pick \((i’ = 1, j’ = 1)\) in all cases, and one where we pick \((i’ = n, j’ = m)\). Both of them give much better results than J-Reduce [13].

For example, consider Figure 2, which has four clauses that go beyond graph constraints:

\[
\begin{align*}
\lbrack A < I \rbrack \land \lbrack I. m() \rbrack & \Rightarrow \lbrack A.n() \rbrack \\
\lbrack A > I \rbrack \land \lbrack I. n() \rbrack & \Rightarrow \lbrack A.n() \rbrack \\
\lbrack B < I \rbrack \land \lbrack I. m() \rbrack & \Rightarrow \lbrack B.m() \rbrack \\
\lbrack B > I \rbrack \land \lbrack I. n() \rbrack & \Rightarrow \lbrack B.n() \rbrack
\end{align*}
\]

If we pick \((i’ = 1, j’ = 1)\) in all cases, we replace the above clauses with these ones:

\[
\begin{align*}
\lbrack A < I \rbrack & \Rightarrow \lbrack A.m() \rbrack \\
\lbrack A > I \rbrack & \Rightarrow \lbrack A.n() \rbrack \\
\lbrack B < I \rbrack & \Rightarrow \lbrack B.m() \rbrack \\
\lbrack B > I \rbrack & \Rightarrow \lbrack B.n() \rbrack
\end{align*}
\]

If we add these graph constraints to the other graph constraints in Figure 2, then running binary reduction will preserve both \([B]\) and \([A.m()]\), which is nonoptimal.

The lossy encodings ignore important elements of the constraints, which raises the question of whether we can do better. For example, we might use a SAT-solver to produce a minimal satisfying assignment. But, we also have to run the black-box predicate, preferably at most a polynomial number of times, which cannot be guaranteed by a SAT-solver. Now we present a new algorithm that both does better than

---

**Algorithm 1: Generalized Binary Reduction**

**Input:** \(\langle I, \mathcal{P}, R_I \rangle\) where \(\mathcal{P}(I)\) and \(R_I(I)\).

**Output:** \(D_0 \subseteq I\), where \(\mathcal{P}(D_0)\) and \(R_I(D_0)\).

**Data:** The variable order \(\preceq\) (a total order of \(I\)).

**Data:** The learned sets \(L \subseteq 2^I\) and the current progression \(D \in \text{List}(2^I)\).

\[
\begin{align*}
L & \leftarrow \emptyset \\
D & \leftarrow \text{PROGRESSION}_{R_I}(L, I) \\
\text{while } & \mathcal{P}(D_0) \text{ do} \\
& \quad r \leftarrow \min_r \mathcal{P}(D_0) \\
& \quad L \leftarrow L \cup \{D_r\} \\
& \quad D \leftarrow \text{PROGRESSION}_{R_I}(L, D) \\
\text{return } & D_0
\end{align*}
\]

**PROGRESSION**

**Input:** \(\langle I, J \rangle\) calculates \((D_0, D_1, \ldots)\):

\[
\begin{align*}
D_0 &= \text{MSA}_{\preceq}(R^+) \\
D_{i+1} &= \text{MSA}_{\preceq}(R^+ \land \forall x \in J. D_r \subseteq 1) \text{ if } \exists x \in \min_x J \setminus D_r \\
R^+ &= R_I \land \bigwedge_{L \subseteq L} L \wedge r \text{ with vars not in } J \text{ set to } 0
\end{align*}
\]

the lossy encodings and runs the black-box predicate a polynomial number of times.

4.4 Generalized Binary Reduction

Generalized Binary Reduction (GBR, Algorithm 1) solves the Input Reduction Problem approximately in polynomial time. GBR uses two building blocks: evaluation of the black-box predicate \(\mathcal{P}\) and computation of an approximate minimal satisfying assignment (MSA). We define minimal to mean that the MSA assigns true to as few variables as possible [21], which is an NP-complete problem so we settle for an approximate solution. GBR learns from the outcomes of calls to \(\mathcal{P}\) and MSA, which enables it to pick good inputs to later calls.

**The Main Algorithm.** GBR extends Binary Reduction [13] with a subroutine PROGRESSION that produces a progression of valid inputs. A progression is a list where every prefix represents a valid input (INV-PRO). GBR applies the black-box predicate \(\mathcal{P}\) to only prefixes of progressions, hence only to valid inputs.

GBR maintains three data structures. First, the variable order \(\preceq\) (a total order of \(I\)) helps the main loop terminate in polynomial time; it also helps us design MSA, which runs in polynomial time (see the appendix). Second, the current progression \(D\) represents the current search space. The search space satisfies the black-box predicate \(\mathcal{P}\), and \(D\) divides the search space into a non-empty list of disjoint subsets (INV-\(D\)). Third, the learned sets in \(L\) represent the growing knowledge about \(\mathcal{P}\). The main loop maintains that every learned set both overlaps with every valid sub-input that satisfies \(\mathcal{P}\) (INV-L), and overlaps with every prefix of the progression (INV-PRO).
Lemma 4.3 (Invariant). The main loop of GBR on \((I, \mathcal{P}, R_t)\) has the invariant \(\text{Inv}(L, D)\):

\[
P(D^j) \land |D| > 0 \land D^j \subseteq I \land (\forall i, j, i \neq j \Rightarrow D_i \cap D_j = \emptyset)
\] (INV-D)
\[
(\forall T \subseteq D^j. P(T) \land R_i(T) \Rightarrow \forall L \in L. T \cap L \neq \emptyset)
\] (INV-L)
\[
(\forall r \geq 0. R_i(D^j_r) \land \forall L \in L. D^j_r \cap L \neq \emptyset)
\] (INV-PRO)

The idea of the main loop is that the more we learn about \(\mathcal{P}\), the better chance we have of finding a valid input that satisfies \(\mathcal{P}\). The main loop checks whether the first set \(D_0\) in the progression satisfies \(\mathcal{P}\). If \(D_0\) does not satisfy \(\mathcal{P}\), then the main loop returns it, and otherwise, the main loop executes three steps.

First, the main loop finds the minimal prefix \(D^j_{<k}\) of the progression that satisfies \(\mathcal{P}\). Such a prefix exists because the entire progression satisfies \(\mathcal{P}\), and we can find it efficiently by binary search.

Second, the main loop adds the prefix’ last set \(D_k\) to \(L\). Since \(\mathcal{P}\) is monotone and \(D_k\) is the shortest prefix of \(D\) that satisfies \(\mathcal{P}\), at least one element in \(D_k\) must be part of any solution within the current search space. So, adding \(D_k\) to \(L\) maintains \(\text{Inv}(\cdot, \cdot)\). This set \(D_k\) is new to \(L\), which we can see after a few steps of reasoning, as follows. Notice that since \(\neg P(D_0)\) and \(P(D^j_{<k})\), we have \(r \neq 0\), hence \(D_r \cap D_0 = \emptyset\) \(\text{INV-D}\). From this and that \(D_0\) overlaps with all sets in \(L\) \(\text{INV-PRO}\), \(D_0\) must be missing at least one element in each of the sets in \(L\). So, \(D_r \neq L\).

Third, we build a new progression using \(L\) and \(D^j_{<k}\).

The Progression Subroutine. If \(J \subseteq I\), then the call \(\text{APPLICATION}_{R_i}(L, J)\) produces a non-empty list of disjoint subsets of \(J\) whose union is \(J\).

The first step is to map \(R_i\) to a stronger constraint \(R^+\), by adjoining it with a clause for each set in \(L\), and limiting \(R^+\) to have variables in \(J\) and setting all other variables to false. Now, every satisfying assignment to \(R^+\) is a solution to \(R_i\) and overlaps with all sets in \(L\).

The second step is to build the progression recursively. The first entry of the progression is an approximate MSA of \(R^+\). The \(k+1\)th entry is constructed by picking a variable that doesn’t occur in the earlier entries and then constructing an approximate MSA of \((R^+ \land x)\), while setting all the variables used in the earlier entries to true. The recursion ends when we run out of variables.

Correctness. When GBR returns \(D_0\), we have \(P(D_0)\) and \(D_0 = \text{MSA}_{\leq}(R^+)\), hence \(R_i(D_0)\).

Execution time. We know that \(D_0\) contains an element from every \(L \in L\). Indeed, as we prove in detail in the appendix, \(D_0\) contains the \(\leq\)-smallest variable in each set in \(L\). When the main loop adds \(D_k\) to \(L\), we know that \(D_k\) is new to \(L\) and that \(D_k \cap D_0 = \emptyset\). So, adding \(D_k\) has a \(\leq\)-smallest variable that is different from the \(\leq\)-smallest variables in the other sets in \(L\). This means that the maximum number of times we can add a set \(D_k\) to \(L\) is equal to the number of iterations. So, the main loop terminates after at most \(|I|\) iterations.

Each iteration of the main loop evaluates \(P\) a polynomial number of times, and each of those evaluations runs in polynomial time, by assumption. Additionally, each iteration computes \(\text{MSA}_{\leq}\) a polynomial number of times, and each of those computations takes polynomial time. So, the grand total is that GBR does at most \(|I|\) iterations that each runs in polynomial time, hence GBR runs in polynomial time.

Theorem 4.4. GBR finds an approximate solution to the Input Reduction Problem in polynomial time.

Note that our use of \(\leq\) can make \(D_0\) larger than the smallest possible solution. For example, consider \((a \land b \Rightarrow c) \land (c \Rightarrow b)\), in which \((a \land b \Rightarrow c)\) is not a graph constraint. Define the predicate \(P\) to be true iff \(b\) is true; assume that every subset of \(\{a, b, c\}\) is valid; and pick the variable order \((c, b, a)\). The first progression is \((\{b, c\}, \{a\})\), so our algorithm returns \((b, c)\). This is suboptimal: a smaller solution is \((b)\).

Minimality for graph constraints. In the appendix we show that if all the clauses in \(R_i\) are graph constraints and we pick \(\leq\), then GBR produces a solution that is locally minimal. Here, locally minimal means that no proper subset of the solution satisfies \(P\).

Theorem 4.5. If \(R_i\) consists of only graph constraints, then GBR produces a locally minimal solution.

4.5 Running on the Example in Section 2

Now we show a run GBR on the example in Section 2. First we compute a variable order and the initial progression. We have \(L = \emptyset\) and \(J = I\), so \(R^+ = R_i\), and we get \(D_0\):

\[
\begin{align*}
&\{A], [A < I], [I], [M], [M.x()], \\
&\{M.main()\}, [M.main()!code]\}
\end{align*}
\]

The rest of the progression is calculated using \(\text{MSA}_{\leq}\) on \(R \land x \mid D_{<k}^j = 1\) with \(x \in \min_{J \setminus D_{<k}^j} X\). For our first choice after \(D_0\), we choose \(x = [B]\), because it is the smallest variable in \(J \setminus D_0\). \([B]\) implies no new variables, so the set \(D_1 = \{B\} = \{B\}\). We calculate the rest of the progression in the same way. We have annotated each set with the number it is in the progression:

\[
D = D_0, \{[B]\}, \{[B.n()!code]\}, \{[B.n()!code]\}, \{[B.m()!code]\}
\]

\[
\{[B < I]\}, \{[B.m()!code]\}, \{[A.n()!code]\}, \{[I.x()!code]\}
\]

\[
\{[A.n()!code]\}, \{[A.m()!code]\}, \{[I.m()!code]\}
\]

\[
\{[M.x()!code]\}, \{[M.x()!code]\}
\]
This progression is ideal, because the initial element is minimal, and every element after the first have size one. Before entering the body of the loop, we run $P$ for the first time on $D_0$: no bug! Then we run a binary search over the prefixes of the progression to find the shortest one that satisfies $P$. First, we try the prefix $D_25$, which fails. So the correct choice must be between 7 and 13. In binary-search fashion, we cut the search space in half and try $D_26$, which also fails. After two more tries, we conclude that the shortest-satisfying prefix is the full progression. While this didn’t reduce the size of the search space, we learned something important: $[A.m()]{\text{code}}$ has to be in the solution. So, we add $([A.m()]{\text{code}})$ to $L$.

Now we compute the next progression $D$. We use dots to differentiate the different progressions: $D$, $D'$, and so on. We can see that $R' = R_1 \land [A.m()]{\text{code}}$. We start by computing $D_0 = D_0 \cup ([A.m()]{\text{code}}, [A.m()] )$ where we add $[A.m()]{\text{code}}$ because it is in $L$ and we add $[A.m()]$ because we have $[A.m()]{\text{code}} \Rightarrow [A.m()]$ from the constraints. The rest of the progression is straightforward:

$$D = D_0, ([B])_1, ([B.n()])_2, ([B.n()]{\text{code}})_3, ([B.m()])_4, ([B.n()]{\text{code}})_5, ([B.m()]{\text{code}})_6, ([A.n()])_7, ([I.n()])_8, ([A.n()]{\text{code}})_9, ([I.m()])_10, ([M.x()]{\text{code}})_11.$$  

We now start the second iteration of the algorithm. We try $P(D_0)$, which is false. This is our sixth invocation of $P$. Now we run our second binary search over the prefixes of the progression. Again we find that the entire progression is needed to satisfy $P$, and we learn that $[M.x()]{\text{code}}$ has to be part of the solution.

Now $L = ([A.m()]{\text{code}}), ([M.x()]{\text{code}})$ and $J = D_3$. We compute another progression and we get $D_0 = D_0 \cup ([M.x()]{\text{code}}), [I.m()]$.

The rest of the progression is unimportant because we run our eleventh (11) and last invocation of $P$ on $D_0$ and this time it succeeds. Indeed, $D_0$ is the optimal solution we presented in Section 2. Finally, we run our $reduce$ function on it and produce the sub-input in Figure 1b. We can see that all the variables in $M$ are in the solution, so $M$ remains the same. We can remove $B$ entirely because $[B]$ is not in the solution. Finally, we can see that $[I.m()]$ and $[A.m()]$ are not in the solution, so we remove the $m$ methods from both $I$ and $A$. The other variables in $A$ and $I$ are part of the solution, so those items stay.

5 Experimental Evaluation

This section answers this research question:

**Does the use of propositional logic for modeling internal dependencies lead to an effective and efficient reduction of complex inputs in practice?**

To which the answer is: yes! Our tool reduces Java bytecode to 4.6% of its original size, which is 5.3 times better than the 24.3% achieved by J-Reduce. It does this while only being 3.1 times slower. If we only want the amount of reduction produced by J-Reduce, we can achieve that with our reducer in only 6 minutes. This is below 10% of the total running time of J-Reduce.

**Implementation.** Our implementation and evaluation are written as an extension to the J-Reduce artifact [12, 13]. Our logical model is built in a Haskell eDSL and is around 800 lines of code.

**Benchmarks.** We use the benchmarks from J-Reduce’s artifact, which is a collection of 100 programs from the NJR project [19], together with three decompilers. We have removed four benchmarks from the benchmarks set. Three of them because they did not type check. This was not a problem in the J-Reduce paper, because it did not type check the programs. The fourth is a copy of the standard library, which caused us problems.

In this evaluation, a decompiler is buggy if the output does not compile. Each of a total of 94 input programs causes at least one of the decompilers to produce an output that does not compile. The goal of the evaluation is to reduce the input program while preserving the full error message of the compiler. A risk to validity is that multiple benchmarks may lead to failure because of the same bug in a decompiler, in which case the results may be skewed.

**Statistics.** In total, the benchmarks contain 227 instances where the decompilers produce source-code that fails to compile. A clause can be represented as an edge in a graph if there exactly one positive and negative literal in the clause. On average (geometric mean), those benchmarks have 184 classes, 285 KB, 9.2 errors produced by the compiler, 2.9k reducible items, 8.7k clauses in the model, and 97.5% edges among the clauses.

**Running the Benchmarks.** To support our findings, we have evaluated four reduction strategies:

**J-Reduce:** Our modification of the implementation of J-Reduce, which writes the class-files instead of using symbolic links.

**Two Lossy Encodings:** The model from Section 3, the two lossy encodings from Section 4.3, and then our modification of J-Reduce.

**Our Reducer with GBR:** The model from Section 3 and our GBR algorithm from Section 4.4.

We ran in parallel in batches of 8 on every benchmark. We did this concurrently on three 24 Intel(R) Xeon(R) Silver 4116 CPU, 2.10 GHz core machines with 188 GB RAM. The machines ran OpenJDK version 1.8.0_222.

**Analysis.** We first compare J-Reduce with our reducer. We have plotted a cumulative frequency diagram of each of the three metrics: time spent reducing, and the final relative size in both number classes and bytes left, see Figure 8a. By inspecting the first figure, we can see that J-Reduce finishes...
running on all benchmarks within an hour, while for some benchmarks, our reducer takes up to 10 hours. We can, however, see that it has finished on most (>95%) of the benchmarks within two hours. For this extra running time, we get much more reduction. We can see that we reduce half of the benchmarks to below 10% in classes and 5% in bytes, where J-Reduce only reduce to around 40%.

The long execution times stem from that decompilers take time to execute and that some cases have many distinct bugs. Each bug requires GBR to do an individual search. One of our long-running cases leads to many distinct bugs and a constraint with 9,207 variables, and we end up doing 73 searches with 13 steps each. In total, that case leads us to run 951 decompilations and compilations in 8 hours, each taking 33 seconds on average.

We can see that J-Reduce’s and our reducers geometric mean running time is 218.6 s and 680.7 s, respectively, which means that our reducer is 3.1 times slower than J-Reduce. The reduction of our reducer is much better: for number of classes, we can reduce to 8.4% while J-Reduce gets 22.8%, and for bytes we reduce to 4.6% while J-Reduce gets 24.3%. We perform 2.7 times better on classes, and 5.3 times better on bytes.

However, this comparison is only fair if we assume that we have 10 hours to reduce. A much more likely scenario is that we have a fixed time window, and we want the algorithm to reduce as much as it can in that time frame. We can stop both algorithms at any point in the execution and use the smallest input until that point that preserves the error message. To illustrate this, in fig. 8b, we have plotted the mean reduction over time.

The two lossy encodings from Section 4.3 have execution times that are similar to that of our reducer: the first one is 4% faster while the second is 2% slower. Additionally, they are almost as good of our reducer: the first one produces 5% more bytes while the second produces 8% more bytes. Similarly, the first one produces 6% more lines than our reducer while the second produces 8% more lines. Overall, our reducer is strictly better than the first lossy encoding for 48% of our benchmarks, and our reducer is strictly better than the second lossy encoding for 51% of our benchmarks. Those percentages increase to 79% and 84% for benchmarks with at least 5% non-graph constraints.

**Figure 8. Our results**
6 Related Work

Input Reduction. In Section 1 we discussed several tools for input reduction. Additionally, Chisel is a tool that uses machine learning to learn the underlying dependency graph while reducing a C program [8]. Future work could address whether a Chisel-like technique can learn dependencies expressed using propositional Boolean logic.

Internal Reduction. QuickCheck [4] randomly generates input using a specification created by the user. When it finds an input that produces a fault, it tries to reduce it. Hedgehog [24] and Hypothesis [16] are successors to QuickCheck that intelligently generate smaller inputs from scratch, instead of reducing an existing input. This is known as internal test-case reduction because the reduction is internal to the input generation. Compared to these tools, our technique and other input reducers work on any input and not only inputs generated internally.

Debloating. We can use our tool as a debloater in the following way. Given a test suite, we define the black-box predicate in Definition 4.1 to be true if all tests pass. This guarantees that the application preserves the behavior described by the test-suite. We leave to future work to compare such a debloater to tools such as the seminal Jax [27] and more recent debloaters such as JSrink [2], TamiFlex [1], ProGuard [7], JRed [10], and BlankIt [20].

Type-Safe Code Transformations. When the input itself is a program, input reduction is an example of a program transformation. In particular, our reducer for Java bytecode is a type-safe program transformation (Theorem 3.1) that may change the semantics of the program. This makes it different from a long line of work on type-safe, semantics-preserving program transformations [3, 5, 18]. On the technical side, our proof of type safety differs from the proofs in the cited papers in the following way. While the cited papers prove that each typed program is transformed into one typed program, we prove that a family of sub-programs all type check.

7 Conclusion

We have shown that the use of propositional logic for modeling internal dependencies leads to an effective and efficient reduction of complex inputs. We did that by modeling the type-system of Featherweight Java with Interfaces and proving that a reduced program type checks. Additionally, we have shown experimentally that the model extends to full Java and models Java more closely than previous work. Our polynomial time reduction algorithm, Generalized Binary Reduction, uses this model to get 5.3 times better results. Much of this improvement can be achieved with simple lossy encodings, yet we have found that completing "the final mile" requires a powerful algorithm.

Acknowledgments

We thank Shuyang Liu, Zeynig Migeed, Akshay Utture, the anonymous PLDI reviewers, and the first author’s PhD committee [11] for helpful suggestions, and we thank our PLDI shepherd Cormac Flanagan for guidance. NSF award 1730697 and ONR award N00014-18-1-2037 supported us.

References


A Featherweight Java Correctness

We state again our main result.

Theorem 3.1: If ⊢ P | σ and ϕ |= σ, then ∃σ′ such that ⊢ reduce(P, ϕ) | σ′.

Proof. Let P = (R e). We have the assumption 1) P | σ, which was derived from the assumptions 2) R OK in P | π and 3) P, e : T | π, where σ = π ∧ π. For each R_i in reduce(P, ϕ), we have ϕ |= [Rid(R)], so from (1), (2), and Lemma A.1 we have ∃σ′ such that 4) reduce(R_i, ϕ) OK in reduce(P, ϕ) | π′. We have from (1), (3), and Lemma A.4 that ∃σ′ such that 5) reduce(P, ϕ), e : T | π′. Define σ′ = π′ ∧ π′. From (4), (5), the definition reduce(P, ϕ) = reduceR(R, ϕ) e, and the rule for program typing, we have ⊢ reduce(P, ϕ) | σ′. □

Lemma A.1. If ⊢ P | σ and R OK in P | π and ϕ |= σ ∧ [Rid(R)] ∧ π, then ∃σ′ such that reduce(R, ϕ) OK in reduce(P, ϕ) | π′.

We define the notation Rid(R) as follows. If R = class C extends D implements I ((U) ; K M), then Rid(R) = C. If R = interface I (S), then Rid(R) = I.

Proof. We have two main cases.

In the first main case, if R = class C extends D implements I (U (f) ; K M), then we have the assumption R OK in P | π, which was derived from the assumptions 1) fields(P, D) = {U, U (f)} and 2) K = C(U, K M) (super(g); this.f = f; { and 3) P + M OK in P | π and 4) P(I) = interface I (S) and 5) P + S OK in P for C | π, and where π = ([(C ⊆ D) ⇒ ([U] ∧ [f])) ∧ ([C ⊆ I] ⇒ ([C ∧ [I]]) ∧ π ∧ π). From the assumption that ϕ |= [C ∧ π], we have 6) ϕ |= [D]. From (6), (1) and Lemma A.5, we have 7) fields(reduce(P, ϕ), D) = {U, f}. For each M with name m in reduce(M, ϕ), we have that σ as a conjunct contains [C.m()](code) ⇒ [C.m()]], so we have 8) ϕ |= [C.m()]]. From the assumption that ϕ |= [C] and (8) and Lemma A.2, we have that ∃σ′ such that 9) reduce(P, ϕ) ⇒ reduceM(M, ϕ) OK in C | π′.

Now we have two subcases.

In the first subcase, ϕ([C ⊆ I]) = 1. By definition we have reduceC(C, I, ϕ) = I. From the assumption that ϕ |= π and (5), we have 10) ϕ |= ([C] ∧ [I]). From (10) we have reduce(P, ϕ) is defined on I and that 11) reduce(P, ϕ)(I) = interface I (reduceS(S, ϕ)). From any T m(T π) in reduce(S, I, ϕ) we have 12) ϕ([I(m())]) = 1. From (5), ϕ([C ⊆ I]) = 1, (10), (12), and Lemma A.3, we have that ∃σ′ such that 13) reduce(P, ϕ) T m(T π) OK in I for C | π′. From (7), (2), (9), (11), (13), and the rule for class typing, we have that ∃σ′ such that reduceR(R, ϕ) OK in reduce(P, ϕ) | π′.

In the second subcase, ϕ([C ⊆ I]) = 0. By definition we have reduceC(C, I, ϕ) = EmptyInterface. Also by definition, we have that 14) reduce(P, ϕ)(EmptyInterface) = interface EmptyInterface {}. Notice that EmptyInterface contains no signatures, which wipes out the condition P + S OK in EmptyInterface for C | π. So, from (7), (2), (9), (14), we have that ∃σ′ such that reduce(R, ϕ) OK in reduce(P, ϕ) | π′.

In the second main case, if R = interface I (S), then we have the assumption R OK in P | π, which was derived from the assumption 15) S OK in I | π. For each T m(T π) in reduce(S, I, ϕ), we have 16) ϕ([I(m())]) = 1. From the rule for signature typing, we have that we can derive 17) T m(T π) OK in I | π. So, from (17) we have that ∃σ′ such that reduceR(R, ϕ) OK in reduce(P, ϕ) | π′. □

Lemma A.2. Let M = T m(T π) { return e ; }. If ⊢ P | σ and P + M OK in C | π and ϕ |= σ ∧ [C] ∧ [C.m()] ∧ π then ∃σ′ such that reduce(P, ϕ) ⇒ reduceM(M, ϕ) OK in C | π′.

Proof. We have the assumption P + M OK in C | π, which was derived from the assumptions 2) P(C) = class C extends D implements I (U (f) ; K M) and 3) override(P, m, D, T → T) and 4) P, (x : T, this : C) e : U | π and 5) P + U ≤ T | π, where 6) π = ([C.m()] ⇒ ([C] ∧ [T] ∧ [π])) ∧ ([C.m()](code) ⇒ ([C.m()] ∧ π ∧ π)). From (6) and the assumption that ϕ |= [C.m()], we have 7) ϕ |= [T] ∧ [π]. From (2), (3), ϕ |= σ, and Lemma A.7, we have 8) override(reduce(P, ϕ), m, D, T → T).

Now we have two cases.

In the first case, 12) ϕ |= [C.m()](code). In this case, 13) reduceM(M) = M. From (12) and (6), we have 14) ϕ |= π ∧ π ∧ π. From (4), (7), the assumption that ϕ |= [C], (14), and Lemma A.4, we have ∃σ′ such that 15) reduce(P, ϕ), (x : T, this : C) e : U | π′ and 16) ϕ |= [U]. From (5), (16), (14), and Lemma A.9, we have ∃σ′ such that 17) reduce(P, ϕ) U ≤ T | π′. From (2), (8), (15), (17), and the rule for method typing, we derive reduce(P, ϕ) ⇒ reduceM(M) OK in C | π′, where π′ = ([C.m()] ⇒ ([C] ∧ [T] ∧ [π])) ∧ ([C.m()](code) ⇒ ([C.m()] ∧ π′ ∧ π′)).
In the second case, 18) \( \varphi([C.m().code]) = 0 \). In this case, 19) \( reduce(M) = T \quad m(\overline{T}X) \quad \text{return this.m.\( \overline{X} \)) ; \). From the expression typing rules for variables and method call, we can derive 20) \( P, (\overline{T}, \text{this : C}) \vdash \text{this.m.}(\overline{T}) : T \quad | \quad (1 \wedge ([C.m()] \vee m\text{Any}(P, m, D)) \wedge \overline{T} \wedge 1) \). And from the assumption that \( \varphi \models [C.m()] \), we have that 21) \( \varphi \models \overline{1} \wedge ([C.m()] \vee m\text{Any}(P, m, D)) \wedge \overline{T} \wedge 1) \). From (20), (7), the assumption that \( \varphi \models [C] \), (21), and Lemma A.4, we have 3\( \sigma \) such that 22) \( reduce(P, \varphi), (\overline{T}, this : C) \vdash \text{this.m.}(\overline{T}) : T \). From the first rule for subtyping, we have 23) \( reduce(P, \varphi) \vdash T \leq T \). From 20), (2), (8), (22), (23), and the rule for method typing, we derive \( reduce(P, \varphi) \vdash \text{reduce}(M) \) OK in \( C \mid \pi', \) and \( \forall \pi' : \text{reduce}(P, \varphi) \vdash T \quad m(\overline{T} \overline{X}) \) OK in \( I \) for \( C \mid \pi' \) and \( \varphi \models [T] \). We use the notation \( \text{conRan} (\Gamma) \) to denote \( \land_{x \in \text{domain} (\Gamma)} (\Gamma(x)) \).

**Proof.** We proceed by induction on \( e \).

In the base case of a variable \( x \), we have by assumption that 1) \( P, \Gamma \vdash x : \Gamma(x) \mid 1 \) and (2) \( \varphi \models [\Gamma(x)] \). So \( \Gamma(x) \) is defined and we can use the rule for variables to derive \( reduce(P, \varphi), \Gamma \vdash x : T \mid \pi' \) and \( \varphi \models [T] \).

In the induction step, we have four cases. In the case of a field access \( e.f \), we have the assumption that \( P, \Gamma \vdash e.f : T_i \mid \pi, \) which was derived from the assumptions (1) \( P, \Gamma \vdash e : C \mid \pi \) and (2) \( \text{fields}(P, C) = \overline{T} \overline{f} \). From (1) and the induction hypothesis, we have \( \pi' \) such that (3) \( reduce(P, \varphi), \Gamma \vdash e : C \mid \pi' \) and (4) \( \varphi \models [C] \). From (2), (4), and Lemma A.5, we have (5) \( \text{fields}(reduce(P, \varphi), C) = \overline{T} \overline{f} \). From (3), (5), and the rule for field access, we can derive \( reduce(P, \varphi), \Gamma \vdash e.f : T_i \mid \pi'. \) From the rule for class typing, we have that (6) \( \sigma \) a conjunct contains \( ([C] \Rightarrow [T_i]) \), so from (4), (6), and \( \varphi \models \sigma \), we have \( \varphi \models [T_i] \).

In the case of a method call \( e.m(\overline{e}) \), we have the assumption that \( P, \Gamma \vdash e.m(\overline{e}) : U \mid [T] \wedge \pi_1 \wedge m\text{Any}(P, m, T) \wedge \pi \wedge \pi_2 \), which was derived from the assumptions (1) \( P, \Gamma \vdash e : T \mid \pi_1 \) and (2) \( m\text{type}(P, m, T) = \overline{U} \rightarrow U \), (3) \( P, \Gamma \vdash e : \overline{T} \mid \pi \) and (4) \( P \vdash \overline{T} \leq \overline{U} \mid \pi_2 \). From (1) and the induction hypothesis, we have \( \pi' \) such that (5) \( reduce(P, \varphi), \Gamma \vdash e : T \mid \pi' \) and (6) \( \varphi \models [T] \). From (2), (6), the assumption that \( \varphi \models \pi \), where \( \pi \) contains \( m\text{Any}(P, m, T) \) as a conjunct, and Lemma A.6, we have (7) \( m\text{type}(reduce(P, \varphi), m, T) = \overline{U} \rightarrow U \) and (8) \( \varphi \models [\overline{U}] \wedge [U] \). From (3) and the induction hypothesis, we have \( \pi' \) such that (9) \( reduce(P, \varphi), \Gamma \vdash e : \overline{T} \mid \pi' \) and (10) \( \varphi \models [\overline{T}] \). From (4), (10), and Lemma A.9, we have (11) \( reduce(P, \varphi) \) \( \vdash \overline{U} \leq \overline{T} \mid \pi_2 \). From (5), (7), (9), (11), and the rule for method call, we can derive \( reduce(P, \varphi), \Gamma \vdash e.m(\overline{e}) : U \mid [T] \wedge \pi' \wedge m\text{Any}(reduce(P, \varphi), m, T) \wedge \pi \wedge \pi_2 \). From (8), we have \( \varphi \models [U] \).

In the case of an object creation \( new C(\overline{e}) \), we have the assumption that \( P, \Gamma \vdash new C(\overline{e}) : C \mid [C] \wedge \pi \wedge \pi, \) which was derived from the assumptions (1) \( \text{fields}(P, C) = \overline{T} \overline{f} \) and (2) \( \Gamma \vdash \pi : U \mid \pi \) and (3) \( P \vdash \overline{U} \leq \overline{T} \mid \pi \). From (1) and the assumption that \( \varphi \models [C] \) and Lemma A.5, we have (4) \( \text{fields}(reduce(P, \varphi), C) = \overline{T} \overline{f} \). From (2) and the induction hypothesis, we have \( \pi' \) such that (5) \( reduce(P, \varphi), \Gamma \vdash e : \overline{U} \mid \pi' \) and (6) \( \varphi \models [\overline{U}] \). From (3), (6), and Lemma A.9, we have (7) \( reduce(P, \varphi) \) \( \vdash \overline{U} \leq \overline{T} \mid \pi \). From (4), (5), (7), and the rule for object creation, we have \( reduce(P, \varphi), \Gamma \vdash new C(\overline{e}) : C \mid [C] \wedge \pi \wedge \pi \). From the assumption \( \varphi \models [C] \wedge \pi \wedge \pi \), we have \( \varphi \models [C] \).

In the case of a cast \( (T)e \), we have the assumption that \( P, \Gamma \vdash (T)e : T \mid [T] \wedge \pi \), which was derived from the assumption (1) \( P, \Gamma \vdash e : \overline{U} \mid \pi \). From (1) and the induction hypothesis, we have \( \pi' \) such that (2) \( reduce(P, \varphi), \Gamma \vdash e : T \mid \pi' \) and (3) \( \varphi \models [U] \). From (2) and the rule for cast, we have \( reduce(P, \varphi), \Gamma \vdash (T)e : T \mid [T] \wedge \pi' \). From the assumption \( \varphi \models [T] \wedge \pi \), we have \( \varphi \models [T] \).

**Lemma A.5.** If \( P \mid \sigma \) and \( \varphi \models \sigma \wedge [C] \) and \( \text{fields}(P, C) = \overline{T} \overline{f} \), then \( \text{fields}(reduce(P, \varphi), C) = \overline{T} \overline{f} \).

**Proof.** We proceed by induction on the derivation of \( \text{fields}(P, C) = \overline{T} \overline{f} \).

If the last rule used in the derivation is the rule for \( \text{Object} \), then we that \( \text{fields}(P, \text{Object}) = \bullet \) and we can use the rule for \( \text{Object} \) to derive \( \text{fields}(reduce(P, \varphi), \text{Object}) = \bullet \).

If the last rule used in the derivation is the rule for a class \( C \), then \( \text{fields}(P, C) = \overline{U} \overline{g} \), \( \overline{T} \overline{f} \), which was derived from (1) \( P(C) = \text{class } C \) extends \( D \) implements \( I \vdash \overline{f}; \overline{T} \overline{f}; \overline{K} \overline{M} \) and (2) \( \text{fields}(P, D) = \overline{U} \overline{g} \). From (1) and \( \varphi \models [C] \) and the definition of \( reduce \), we have that \( (reduce(P, \varphi))(C) \) is defined and that (3) the fields of \( (reduce(P, \varphi))(C) \) are \( \overline{T} \overline{f} \). From the rule for class
typing applied to class C, we get that \( \sigma \) as a conjunct has the constraint \((C) \Rightarrow [D]\), so \( \varphi \models (\sigma \land [C]) \) gives that \((4) \varphi \models [D] \). From (2), (4), and the induction hypothesis, we have (5) fields(\( \text{reduce}(P, \varphi), D \)) = \( \overline{U} \overline{g} \). From (3) and (5) and the rule for a class C, we conclude fields(\( \text{reduce}(P, \varphi), C \)) = \( \overline{U} \overline{g} \cdot \overline{T} \overline{f} \).

**Lemma A.6.** If \( \vdash P \mid \sigma \) and \( \varphi \models \sigma \land [T] \land \text{mAny}(P, m, T) \) and \( \text{mtype}(P, m, T) = (\overline{U} \rightarrow U) \), then \( \text{mtype}(\text{reduce}(P, \varphi), m, T) = (\overline{U} \rightarrow U) \) and \( \varphi \models [U] \land [U] \).

**Proof.** We proceed by induction on the derivation of \( \text{mtype}(P, m, T) = (\overline{U} \rightarrow U) \).

Suppose the last rule used to derive \( \text{mtype}(P, m, T) = (\overline{U} \rightarrow U) \) is the first rule for method type lookup. Thus, \( T = C \) and we have 1) \( (C) \) class C extends D implements \( I \{ T f; K M \} \) and 2) \( U \) \( m(\overline{U} \overline{x}) \) \( \text{return} \ e \) \( \in \overline{M} \). From (1), (2), and the first rule for method choice, we have 3) \( \text{mAny}(P, M, C) = [C.m()] \lor \text{mAny}(P, m, D) \). Now we have two subcases.

In the first subcase, \( \varphi([C.m()] \lor [T] \land [U]) \). We have that \( (\text{reduce}(P, \varphi))((C) \Rightarrow [D]) \) is defined that that is has a method \( m \).

So, \( \text{mtype}(\text{reduce}(P, \varphi), m, C) = (\overline{U} \rightarrow U) \). From the rule for class typing, we have that \( \sigma \) as a conjunct contains (4) \( [C] \Rightarrow ([U] \land [U]) \). From (4) \( \varphi \models [T] \), we have \( \varphi \models [U] \land [U] \).

In the second subcase, \( \varphi([C.m()] \lor [T] \land [U]) \). From (3) \( \varphi([C.m()] \lor [T] \land [U]) \). From (4) \( \varphi \models [T] \land [U] \).

For the rule of class typing, we have that \( \sigma \) as a conjunct contains \([C] \Rightarrow [D] \). From \( \varphi \models [T] \land [U] \), we have (5) \( \varphi \models [D] \). From (4), (5), and the induction hypothesis, we have 6) \( \text{mtype}(\text{reduce}(P, \varphi), m, D) = (\overline{U} \rightarrow U) \) and 7) \( \varphi \models [U] \land [U] \). From (6) \( \varphi \models [U] \land [U] \) and 2) \( \text{mtype}(\text{reduce}(P, \varphi), m, C) = (\overline{U} \rightarrow U) \). From (1) \( \varphi \models [T] \land [U] \), we have (4) \( \varphi \models [D] \). From (3), (4), and the induction hypothesis, we have 5) \( \text{mtype}(\text{reduce}(P, \varphi), m, D) = (\overline{U} \rightarrow U) \) and 6) \( \varphi \models [U] \land [U] \).

Suppose the last rule used to derive \( \text{mtype}(P, m, T) = (\overline{U} \rightarrow U) \) is the second rule for method type lookup. Thus, \( T = I \) and we have 1) \( (I) \) class C extends D implements \( I \{ T f; K M \} \) and 2) \( U \) \( m(\overline{U} \overline{x}) \) \( \text{return} \ e \) \( \in \overline{M} \). From (1), (2), and the second rule for method choice, we have 3) \( \text{mAny}(P, M, I) = [I.m()] \lor \text{mAny}(P, m, T) \). From (1) \( \varphi \models [T] \land [M] \), we have (4) \( \varphi \models [D] \). From (3), (4), and the induction hypothesis, we have 5) \( \text{mtype}(\text{reduce}(P, \varphi), m, D) = (\overline{U} \rightarrow U) \) and 6) \( \varphi \models [U] \land [U] \).

Suppose the last rule used to derive \( \text{mtype}(P, m, T) = (\overline{U} \rightarrow U) \) is the third rule for method type lookup. Thus, \( T = I \)

and we have 1) \( (I) \) class C extends D implements \( I \{ T f; K M \} \) and 2) \( U \) \( m(\overline{U} \overline{x}) \) \( \text{return} \ e \) \( \in \overline{M} \). From (1), (2), and the third rule for method choice, we have 3) \( \text{mAny}(P, M, I) = [I.m()] \lor \text{mAny}(P, m, T) \). From the assumption \( \varphi \models [T] \land [M] \), we have (4) \( \varphi \models [D] \). From (3), (4), and the induction hypothesis, we have 5) \( \text{mtype}(\text{reduce}(P, \varphi), m, D) = (\overline{U} \rightarrow U) \) and 6) \( \varphi \models [U] \land [U] \).

**Proof.** Our goal is to prove \( \text{override}(\text{reduce}(P, \varphi), m, D, U \rightarrow U) \), which by the rule for valid method overriding means that we must prove (1) \( \text{mtype}(\text{reduce}(P, \varphi), m, D) = \overline{U}' \rightarrow U' \) implies \( U = U' \). If \( \text{mtype}(\text{reduce}(P, \varphi), m, D) = \overline{U}' \rightarrow U' \) is not derivable, then (1) is vacuously true. If we can derive \( \text{mtype}(\text{reduce}(P, \varphi), m, D) = \overline{U}' \rightarrow U' \), then from Lemma A.8 we have (2) \( \text{mtype}(P, m, D) = \overline{U}' \rightarrow U' \). By assumption we have that we can derive \( \text{override}(P, m, D, U \rightarrow U) \) so by (2) and the rule for valid method overriding, we have \( U = U' \rightarrow U' = U \), as required.

**Lemma A.7.** If \( \vdash P \mid \sigma \) and \( \text{non}(C) \) class C extends D implements \( I \{ T f; K M \} \) and \( \varphi \models \sigma \) and \( \text{override}(P, m, D, U \rightarrow U) \), then \( m \text{type}(\text{reduce}(P, \varphi), m, D, U \rightarrow U) \).

**Proof.** We proceed by induction on the derivation of \( \text{mtype}(\text{reduce}(P, \varphi), m, D, U \rightarrow U) \).

If the last rule used to derive \( \text{mtype}(\text{reduce}(P, \varphi), m, C) = \overline{U} \rightarrow U \) was the first rule for method type lookup, then (\( \text{reduce}(P, \varphi) \)) has a method m that also \( P(C) \) has, so \( \text{mtype}(P, m, C) = \overline{U} \rightarrow U \).

If the last rule used to derive \( \text{mtype}(\text{reduce}(P, \varphi), m, C) = \overline{U} \rightarrow U \) was the second rule for method type lookup, then D has no method m and we have \( \text{mtype}(\text{reduce}(P, \varphi), m, C) = \text{mtype}(\text{reduce}(P, \varphi), m, D) \). From the induction hypothesis, we have \( \text{mtype}(\text{reduce}(P, \varphi), m, D) = \text{mtype}(P, m, D) \). Now we have two subcases.

In the first subcase, \( P(C) \) has a method m. From the type rule for method typing applied to that method, we have \( \text{override}(P, m, C, T \rightarrow T) \), where \( T \) and \( T \) are the declared parameter and result types in the method. From the type rule for valid method overriding, we have that \( \text{mtype}(P, m, C) = \overline{U} \rightarrow U \) implies \( U = T \) and \( U = T \). Thus, \( \text{mtype}(P, m, C) = \overline{U} \rightarrow U \).
In the second subcase, $P(C)$ has no method $m$. In this case, we have from the second rule for method type lookup that $\text{mtype}(P, m, C) = \text{mtype}(P, m, D)$. Now we have that

$$\text{mtype}(P, m, C) = \text{mtype}(P, m, D) = \text{mtype}((\text{reduce}(P, \varphi), m, D) = \text{mtype}((\text{reduce}(P, \varphi), m, C) = U \rightarrow U.$$ 

\[\square\]

**Lemma A.9.** If $\vdash P \mid \sigma$ and $P \vdash T \leq U \mid \pi$ and $\varphi \models \sigma \land [T] \land \pi$, then $\text{reduce}(P, \varphi) \vdash T \leq U \mid \pi$ and $\varphi \models [U]$.

*Proof.* We proceed by induction on the derivation of $P \vdash T \leq U \mid \pi$.

If the last rule used in the derivation is the rule for reflexivity, then $P \vdash T \leq T \mid 1$ and we can use the rule for reflexivity to derive $\text{reduce}(P, \varphi) \vdash T \leq T \mid 1$. Additionally, we have from an assumption that $\varphi \models [T]$.

If the last rule used in the derivation is the rule for transitivity, then $P \vdash T \leq T' \mid \pi_1 \land \pi_2$, which was derived from (1) $P \vdash T \leq T' \mid \pi_1$ and (2) $P \vdash T' \leq T'' \mid \pi_2$. From (1), the assumption that $\varphi \models [T]$, and the induction hypothesis, we have (3) $\text{reduce}(P, \varphi) \vdash T \leq T' \mid \pi_1$ and (4) $\varphi \models [\pi]$. From (2), (4), and the induction hypothesis, we have (5) $\text{reduce}(P, \varphi) \vdash T' \leq T'' \mid \pi_2$ and (6) $\varphi \models [T'']$. From (3), (5), and the rule for transitivity, we can derive $\text{reduce}(P, \varphi) \vdash T \leq T'' \mid \pi_1 \land \pi_2$. Additionally, we have $\varphi \models [T'']$ from (6).

If the last rule used in the derivation is the rule for $C \leq D$, then $P \vdash C \leq D \mid 1$, which was derived from (1) $P(C) = \text{class } C \text{ extends } D \text{ implements } I \{ \overline{T} ; F ; \overline{K} \}$, which was derived from (1) $P(C) = \text{class } C \text{ extends } D \text{ implements } I \{ \overline{T} ; F ; \overline{K} \}$. By assumption, we have (2) $\varphi \models [C]$. We can use (1), (2), and the rule for $C \leq D$ to derive $\text{reduce}(P, \varphi) \vdash C \leq D \mid 1$. From the rule for class typing, we have that (3) $\sigma$ as a conjunct contains $([C] \Rightarrow [D])$, so from (2) and (3), we have $\varphi \models [D]$.

If the last rule used in the derivation is the rule for $C \triangleleft I$, then $P \vdash C \triangleleft I \mid [C \triangleleft I]$, which was derived from (1) $P(C) = \text{class } C \text{ extends } D \text{ implements } I \{ \overline{T} ; F ; \overline{K} \}$. By assumption, we have (2) $\varphi \models [C \triangleleft I]$. From the rule for class typing, we have that (3) $\sigma$ as a conjunct contains $([C \triangleleft I] \Rightarrow [C])$, so from (2) and (3), we have that (4) $\varphi \models [C]$. We can use (1), (4), and the rule for $C \triangleleft I$ to derive $\text{reduce}(P, \varphi) \vdash C \triangleleft I \mid [C \triangleleft I]$. From the rule for class typing, we have that (5) $\sigma$ as a conjunct contains $([C \triangleleft I] \Rightarrow [I])$, so from (2), (5), and the assumption $\varphi \models [\pi]$, we have $\varphi \models [I]$.  

\[\square\]
B Details of The Generalized Binary Reduction

In this section we go in the details of how we compute the variable order and the minimal satisfying assignment, furthermore we describe the properties of the progression. First, we will introduce a theoretical logical form which we use to guarantee correctness of the algorithms.

B.1 Implicative Positive Form

The correctness of our algorithm builds on that our logical expression has a special form which we call implicative positive form.

Definition B.1 (Implicative positive form). The implicative positive form (IPF) is a conjunction of clauses with distinct variables (CNF), where at least one of the literals in each clause are positive.

This structure have some very nice properties that we use:

Lemma B.2. A CNF $R$ is an IPF if and only if $R(VARS(R))$.

Lemma B.3. If $R$ is an IPF, then if we condition $R$ by setting variables to true, we still have an IPF.

There also exist a dual-IPF, where there must exist at least one negative literal in every clause.

Lemma B.4. A CNF $R$ can be formulated as an dual-IPF if and only if $R(\emptyset)$.

Lemma B.5. If $R$ is an dual-IPF, then conditioning $R$ by setting variables to false, we still have an dual-IPF.

B.1.1 Proofs.

Proof of Lemma B.2. First, let’s assume that $R(VARS(R))$. Since $R$, is CNF, and therefore a conjunction of clauses, we can see that every clause have to be satisfied. A clause is only satisfied by setting all variables true, if at least one of the literals in the clause is positive. This proves the first direction.

Then, let’s assume that $R$ is IPF. In this case all clauses have at least one positive literal. For each such clause we can see that if all variables in the clause is true then the clause is also true. This logic extends to the conjunction of the clauses and that concludes the proof. □

Proof of Lemma B.3. Since conditioning an CNF returns a CNF, and if we condition $R$ with a set of variables $X = 1$ then we know that $VARS(R) \setminus X$ is still a model to $(R \mid X = 1)$. We can use Lemma B.2, with the fact that $(R \mid x = 1)$ is a CNF, $VARS(R \mid x = 1) = VARS(R) \setminus \{X\}$, and $(R \mid X = 1)(VARS(R) \setminus \{X\})$ we see that $(R \mid x = 1)$ is IPF. □

The proofs of Lemmas B.4 and B.5 are like the proofs of Lemmas B.2 and B.3.

B.2 The Variable Order

We compute the variable order by mapping $R_1$ to a directed graph in which each variable in $R_1$ is a node and each clause yields edges from all positive variables to all negative variables. Specifically, $X^X \Rightarrow Y^Y$ yields the edges $y \rightarrow x$ for $(x, y) \in X \times Y$. Then, we get the variable order as the reverse post-order of the graph.

If all clauses are graph constraints, then $X$ and $Y$ are singletons, and this heuristics, represents the first step in the Kosaraju Sharir algorithm for calculating strongly connected components (SCC) [23].

Since MSA is effectively a DFS from the smallest variables in all the clauses with only positive variables (Lemma B.9), then each element in the progression after the first will be a SCC in the graph. This means we will only add unions of SCC’s to $L$. Because MSA chooses the smallest variable in each set in $L$, the first element in the progression will always be the union of the SCC represented by $L$. Since at least one variable in each set in $L$ is required to satisfy $P$, and since each set in $L$ is a SCC in $R_1$, the local minima is exactly the union of the sets in $L$. This fact is used in Lemma B.14.

B.2.1 Example. The variable order in Section 4.5, was computed like this. We build the transposed graph in Figure 9, by drawing edges from the positive variables to the negated variables in each clause in Figure 2, effectively reversing each implication. The red arrows and numbers (top) are the result of a depth first search, and the black numbers are the post-order of that form. We extract the variable order, by reversing the post-order of the variables:

$$
\begin{align*}
|M|_{20} &\leq |M.main()|_{19} \leq |X|_{18} \leq |M.x()|_{17} \leq |B|_{16} \leq |B.n()|_{15} \leq |B.n()!code|_{14} \\
&\leq |B.m()|_{13} \leq |B < I|_{12} \leq |B.m()!code|_{11} \leq |A|_{10} \leq |A.n()|_{9} \leq |I.n()|_{8} \leq |A.n()!code|_{7} \\
&\leq |A.m()|_{6} \leq |I.m()|_{5} \leq |M.x()!code|_{4} \leq |A < I|_{3} \leq |A.m()!code|_{2} \leq |M.main()!code|_{1}
\end{align*}
$$
Figure 9. The transposed graph used to generate the variable order (red and dashed arrows). The 0 and the dotted red lines represent the root of the forest. The red arrows and numbers show the depth-first order, while the black numbers show the post-order. The reverse of the post-order is the variable order.

B.3 The Minimal Satisfying Assignment (MSA$_\leq$)

The approximate minimal satisfying assignment computes a satisfying assignment, where we try to minimize the number of variables that has to be true.

Definition B.6 (Approx. Minimal Satisfying Assignment (MSA$_\leq$)). Under the assumption that $R$ is IPF, then

$$\text{MSA}_\leq(R) = \begin{cases} \{x\} \cup \text{MSA}_\leq(R \mid x = 1) & x \in \min \subseteq O_R \\ \emptyset & o/w \end{cases}$$

where, $O_R$ is the set of all clauses in $R$ that only contain positive variables.

We compute MSA$_\leq$ by choosing the smallest variable in the clauses that only contain positive variables until there are no such clauses left. At this point we have found a satisfying solution, because if there is no clauses with only positive variables then $R$ is a dual-ipf, and the empty set is a solution (Lemma B.4).

If $R$ is an IPF, we can guarantee that MSA$_\leq$ will return a solution that only contain variables in $R$:

Lemma B.7. Given any variable order $(\leq)$, the logical closure MSA$_\leq(R)$ output a solution to $R$, only containing variables in $R$, given that $R$ is IPF.

$$R(\text{MSA}_\leq(R)) \land \text{MSA}_\leq(R) \subseteq \text{VARS}(R)$$

Furthermore, we can prove that MSA$_\leq(R)$ will return a set that contain smallest variable of all clauses with only positive literals in $R$. We use this fact to prove that our algorithm runs in polynomial time.

Lemma B.8. Given any variable order $(\leq)$, and a $R$ which is an IPF, then

$$\{\min \subseteq O \mid O \in O_R\} \subseteq \text{MSA}_\leq(R)$$
We illustrate this step by step in Figure B.3.2. We prove that GBR is locally optimal for graphs.

Finally, we can prove that MSA_≤(R) essentially is a DFS from all the smallest variables in all the clauses that only contain positive variables, if R can be represented using graph constraints and clauses with only positive variables. We use this to prove that GBR is locally optimal for graphs.

**Lemma B.9.** Given any variable order (≤), and R where all clauses are graph constraints (x ⇒ y) or clauses with only positive variables. Then MSA_≤ produces minimal closure that contains the smallest variable from each clause in OR.

### B.3.1 Example
We calculate $D_0 = \text{MSA}_≤(R) = \{[A], [A < I], [I], [M], [M.x], [M.main], [M.main!code]\}$. Each row corresponds to a recursive call to MSA_≤. The column R represents the value of R at that call, OR is the set of positive closures in R, and x is the smallest variable in the union of the sets.

![Figure 10](image)

The initial run of $D_0 = \text{MSA}_≤(R) = \{[A], [A < I], [I], [M], [M.x], [M.main], [M.main!code]\}$. Each row corresponds to a recursive call to MSA_≤. The column R represents the value of R at that call, OR is the set of positive closures in R, and x is the smallest variable in the union of the sets.

<table>
<thead>
<tr>
<th>R</th>
<th>OR</th>
<th>x ∈ min_≤ O^\cup_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>{[M.main!code]}</td>
<td>![M.main!code]</td>
</tr>
<tr>
<td>(R</td>
<td>M.main!code) = 1)</td>
<td>{[M.main!code], [M.x], [A], [A &lt; I]}</td>
</tr>
<tr>
<td>(R</td>
<td>M.main!code) = 1)</td>
<td>{[M], [M.x], [A], [A &lt; I]}</td>
</tr>
<tr>
<td>(R</td>
<td>M.x) = 1)</td>
<td>{[I], [A], [A &lt; I]}</td>
</tr>
<tr>
<td>(R</td>
<td>I) = 1)</td>
<td>{[A], [A &lt; I]}</td>
</tr>
<tr>
<td>(R</td>
<td>A) = 1)</td>
<td>{[A &lt; I]}</td>
</tr>
</tbody>
</table>

There are now two cases, either x ∈ OR or OR is empty. In the case where OR is empty, then MSA_≤ R = ∅ and we know that all clauses in R have at least one positive variable which means that it is a dual-ipf, which in turn means that the empty set is a solution Lemma B.4, which is also clearly a subset of the variables of R.

In the second case, there exist an x which is a positive variable in VARS(R), where MSA_≤(R) = {x} ⊆ MSA_≤(R | x = 1). Conditioning with x = 1 in R result in a IPF (Lemma B.3), with fewer variables because x ∈ VARS(R). We can now use the induction hypothesis with $R' = (R | x = 1)$, from which we get that $(R | x = 1)(\text{MSA}_≤(R | x = 1))$ and MSA_≤(R | x = 1) ⊆ VARS(R | x = 1). From this we get

\[
\text{MSA}_≤(R) \subseteq \{x\} \cup \text{MSA}_≤(R | x = 1) \\
\subseteq \{x\} \cup \text{VARS}(R | x = 1) \\
\subseteq \text{VARS}(R).
\]

And from $(R | x = 1)(\text{MSA}_≤(R | x = 1))$ we can see that $(R | x = 1) \cup \text{MSA}_≤(R | x = 1)$ which by substitution concludes the proof. □

**Proof of lemma B.8.** Proof by induction on the number of variables in R.

The base case, where there are no variables in R, it is also the case that OR is empty, which means that proof is trivial.

The inductive case we know that for all R’ smaller than R:

\[
\{ \text{min}_≤ O \mid O ∈ OR \} \subseteq \text{MSA}_≤(R')
\]

We can see there are two cases. Either there are O is empty, in which case the lemma is trivially true or there exist a $x ∈ \text{min}_≤ O^\cup$, s.t. MSA_≤(R) = \{x\} ⊆ MSA_≤(R | x = 1). Because x is the smallest element in all the sets, we know that it is...
all so the smallest element in each clause it is an element of. We can split \( O_R \) in two sets \( O_R^x \) and \( O_R^{\mathcal{X}} \), where \( x \) is contained in \( O_R^x \). It is clear that \( x \) is the smallest element in \( O_R^x \), so we only have to prove:

\[
\{ \min_{\geq} O \mid O \in O_R^{\mathcal{X}} \} \subseteq \{ x \} \cup \text{MSA}_{\leq}(R \mid x = 1)
\]

Because \( x \) is not an element in \( O_R^{\mathcal{X}} \), we know that \( O_R^{\mathcal{X}} \subseteq O(R \mid x = 1) \). And since \((R \mid x = 1)\) is smaller than \( R(x \in \text{VARS}(R)) \) we can use the induction hypothesis, to see that

\[
\{ \min_{\geq} O \mid O \in O_R^{\mathcal{X}} \} \subseteq \{ \min_{\leq} O \mid O \in O(R \mid x = 1) \} \subseteq \text{MSA}_{\geq}(R \mid x = 1),
\]

which concludes the proof. □

Proof of lemma B.9. By inspection of \( \text{MSA}_{\leq} \) we can see that it acts precisely as a best-first search. Where the minimal variable from \( O_R \) is chosen as the next element each time. By conditioning on \( R \) with \( x \) we essentially mark \( x \) as visited in the graph and add all its neighbors to \( O_R \). Following the same argument as in lemma B.8, we will add the smallest set from each clause ever added to \( O_R \). Since a best-first search finds a minimal closure from the set in its queue, and essentially the queue consist of the first element in each set in \( O_R \), we have proved the lemma. □

B.4 Progression

We have discussed the progression in the main text of the paper. We have identified the main properties of the progression. Given an CNF \( R_I \), a set of learned sets \( L \), and an input space \( J \), then for a progression \( D = \text{PROGRESSION}_{R_I}(L, J) \) Assuming \( R_I(J) \) (and that \( \forall L \in L, J \cap L \neq \emptyset \):

- The progression is a non-empty split of the input space \( J \):
  \[
  |D| > 0 \quad \land \quad D^D = J \quad \land \quad \forall i, j, i \neq j \Rightarrow D_i \cap D_j = \emptyset.
  \]
  (SPLIT)

- The progression is correct, if all non-empty prefixes of the progression is a solution to \( R_I \) and intersects with all elements in \( L \):
  \[
  \forall r \geq 0, \quad R_I(D_{r\mid r}) \quad \land \quad \forall L \in L, D_{r\mid r} \cap L \neq \emptyset
  \]
  (CORRECT)

- The progression is locally optimal if the first set \( D_0 \) in the progression is minimal:
  \[
  \forall T \subseteq D_0, \quad R_I(T) \land (\forall L \in L, T \cap L \neq \emptyset) \Rightarrow T = D_0
  \]
  (LOC-OPT)

And we can prove that our progression have these properties

Lemma B.10. Our progression is (SPLIT) and (CORRECT).

Lemma B.11. Given that \( R_I \) is represented using graph constraints then our progression is (LOC-OPT).

Furthermore, we can prove that our progression run in polynomial time.

Lemma B.12. Assuming that \( R_I \) is a CNF, \( R_I(J) \) and \( \forall L \in L, J \cap L \neq \emptyset \), our progression runs in polynomial time.

B.4.1 Proofs.

Proof of Lemma B.10. Initially we see that \( D = \text{PROGRESSION}_{R_I}(L, J) \), and we get to assume that \( R_I(J) \) and that \( \forall L \in L, J \cap L \neq \emptyset \). From these two assumptions we can see that the progression algorithm will terminate and all calls to \( \text{MSA}_{\leq} \) are IPFs Lemmas B.12 and B.13.

We start by a proof by induction over the prefixes of the progression. Our IH is for all \( 0 \leq r < |D| \):

\[
R^+(D_{r\mid r}) \quad \land \quad \forall i, j \leq r, i \neq j \Rightarrow D_i \cap D_j = \emptyset
\]

Let’s start with the base case \( r = 0 \). We see that \( R^+(D_{0\mid 0}) \), from \( D_{0\mid r} = D_0 = \text{MSA}_{\leq}(R^+) \), lemma B.7. The second conjunct is trivially true.

Now let’s prove it for the case where \( r \geq 1 \). We get the induction hypothesis for all \( r’ < r \). We know that \( D_r = \text{MSA}_{\leq}(R^+ \land x \mid D_{r’\mid k}) \), that \( x \in J \setminus D_{r’\mid k} \), where \( k = r - 1 \). From Lemma B.7 we know that \( (R^+ \land x \mid D_{r’\mid k}) = (D_{r’}) \), which also means that \( R^+(D_{r’\mid k} \cup D_r) \) is \( R^+(D_{r’\mid k}) \). We can also see that \( D_r \subseteq \text{VARS}(R^+ \land x \mid D_{r’\mid k}) \) which means that \( D_r \) does not intersect with any elements in \( D_{r’\mid k} \), and because we know \( \forall i, j \leq k, i \neq j \Rightarrow D_i \cap D_j = \emptyset \) from the induction hypothesis, we get \( \forall i, j \leq r, i \neq j \Rightarrow D_i \cap D_j = \emptyset \).

Using this IH we can satisfy each of the requirements in (SPLIT): \( |D| \) is trivial. \( D^{\mathcal{X}} = J \), follows from that on exit with \( i = 0 \), we know know that \( \exists x \in J \setminus D_{r’\mid k} \), because otherwise there would exist yet another element in \( D_r \). \( \forall i, j \neq \Rightarrow D_i \cap D_j = \emptyset \). Trivial from the IH. And now (CORRECT), for all \( r \geq 0 \), which is only 0. Using basic logical operations we hat for all \( x, R^+(X) \Rightarrow R_I(X) \land (\forall L \in L \land L’(X)), \) which correspond directly to \( R_I(D_{r’\mid k}^+) \) and \( (\forall L \in L, D_{r’\mid k} \cap L \neq \emptyset) \). Which concludes the proof. □
Proof of Lemma B.11. From Lemma B.14, we can see that every call to our progression $(L', J')$ produces strongly connected components (SCC). The GBR only add elements from the progression $D$ (not including the first) to $L$, so we know that we only add SCC’s to $L$.

Because we know that $L$ only contain SCCs, then $O_D$ will only be SCCs. The property of SCCs is that the closure from any element is equal to the closure from all. This means that when we use that if $R_I$ is a graph MSA$_\preceq$ finds a closure from smallest elements in each set in $O_R$ (Lemma B.9), We can conclude that $D_0 = MSA_{\preceq}(R)$ will be the closure that contain $O_R^J$. This closure is the smallest which contain a single element from each element in $L$. This concludes the proof. □

Proof of Lemma B.12. Because each call to MSA$_\preceq$ is an IPF (Lemma B.13), we can can see that each element after the first must contain at least one element $x$ (Lemma B.7). This means that we can call MSA$_\preceq$ no more than $|I|$ times. Each call to MSA$_\preceq$ can only do one conditioning for each clause, which takes $|R|$ time. All other operations are also polynomial in time. □

B.4.2 Auxiliary lemmas.

Lemma B.13. Assuming that $R_I$ is a CNF, $R_I(J)$ and $\forall L \in L$. $|I \cap L \neq \emptyset$, then calls to MSA$_\preceq$ in our progression are IPF’s.

Proof: We can first see that $R$ is an IPF. We can see because $R_I$ is CNF, and we only add clauses with at least one positive variable in $J$ to $R_I$, and limit it to only having variables in $J$. From this fact we can see that all calls to MSA$_\preceq$ is IPF. For $i = 0$ it is trivial, for $i = k + 1$ we can clearly see that $R \land x$ is an IPF since $x$ is a positive variable. And, since we are allowed to condition with positive variables Lemma B.3 ($R \land X \mid D_{\frac{k}{k}} = 1$) is IPF. □

Lemma B.14. Given a $R_I$ that contains only graph constraints, then all elements in each progression produced by our progression algorithm ($D = PROGRESSION_{R_I}(L, J)$) after the first, are strongly connected components in $R_I$.

Proof: Our variable order is the reverse post-order of the transposed over-approximated graph of $R_I$. Since the solution of a logical graph correspond directly with the closures in the graph, we know that the first element $D_0 = MSA_{\preceq}(R)$ contain a closure of the smallest elements in clauses (Lemma B.8).

For all $k > 0$, $(R \mid D_{\frac{k}{k}} = 1)$ is a logical graph with only edges. From this point, each element in the progression $D_i$ correspond to a closure of $x$ in $(R \mid D_{\frac{k}{k}} = 1)$. Because $x$ is the smallest in the reverse post-order of the transposed graph, then we know that there exist no edges from $x$ to any other element than $x$, without there also existing an transitive edge in the opposite direction. This means that any closure in the graph at this point containing $x$ will be a SCC in $(R \mid D_{\frac{k}{k}} = 1)$. And because any SCC in a subgraph is also a SCC in the full graph $R$. We have, therefore, proved the lemma. □
C Proof of the Generalized Binary Reduction

C.1 Proof that Input Reduction Problem is NP-complete

Proof of Theorem 4.2. The Input Reduction Problem is in NP because given $S$, we can check in polynomial time that $\mathcal{P}(S) \land R_I(S) \land |S| < k$ because both $\mathcal{P}$ and $R_I$ can be evaluated in polynomial time.

The Input Reduction Problem is NP-hard via a reduction from the Hitting Set Problem. The Hitting Set Problem is: given $(I, Z, k)$, where $Z \subseteq 2^I$ is a set of sets, decide $\exists S \in 2^I : (\forall X \in Z : S \cap X \neq \emptyset) \land (|S| < k)$. The reduction works as follows. Define $\mathcal{P}(S) = (\forall X \in Z : S \cap X \neq \emptyset)$ and $R_I(S) = 1$. Notice that these definitions satisfy all the assumptions of Input Reduction Problem. In particular, $\mathcal{P}$ can be evaluated in polynomial time and both $\mathcal{P}(I)$ and $R_I(I)$ are true. Additionally, since $R_I$ is always true, we see easily from the definition of $\mathcal{P}$ that $\mathcal{P}$ is monotonic.

If $(I, \mathcal{P}, R_I, k)$ has solution $S$, then $\mathcal{P}(S) = (\forall X \in Z : S \cap X \neq \emptyset)$ is true, and $|S| < k$. This means that $S$ is a also a solution to $(I, Z, k)$.

Conversely, if $(I, Z, k)$ has solution $S$, then $(\forall X \in Z : S \cap X \neq \emptyset) \land (|S| < k)$. This means that $\mathcal{P}(S)$ is true, and since $R_I(S)$ is true and $|S| < k$, we have that $S$ is also a solution to $(I, \mathcal{P}, R_I, k)$. □

C.2 Proof of Main Theorems

Proof of Theorem 4.4 (Polynomial Time). From Lemma B.8 we can see that initial set of the progression will contain the smallest variables in $L$ in respect to the variable order: $\{\min_{\leq} L \mid L \in L\} \subseteq D_0$. We know that $D_r \cap D_0 = \emptyset$ for any $r \neq 0$ (SPLIT), and therefore also

$$\{\min_{\leq} L \mid L \in L\} \subseteq \{\min_{\leq} L \mid L \in L \cup \{D_r\}\}.$$ 

This means that for every iteration the lower bound of $D_0$ increases. Since we can only increase the lower bound $|L|$ times, we can only add $D_r$ to $L \cup O(|l|)$ times. This, in turn, means we can only run the loop $O(|l|)$ times. Since all operations, including calculating the progression (Lemma B.12), is polynomial in time, we know that GBR runs in polynomial time. □

Proof of Theorem 4.5 (Local Minima). First we can see that GBR will terminate (Theorem 4.4), so now we just have to prove that GBR on $(I, \mathcal{P}, R_I)$ will return an $S = D_0$ st.

$$\forall T \subseteq S. \mathcal{P}(T) \land R_I(T) \iff T = S$$

In the first direction ($\Rightarrow$), we get to assume $T \subseteq D_0 \subseteq D^I$, that $\mathcal{P}(T)$ and $R_I(T)$, and we know that the algorithm must have terminated with $\mathcal{P}(D_0)$. We can now use

$$\left(\forall T \subseteq D^I. \mathcal{P}(T) \land R_I(T) \Rightarrow \forall L \in L. T \cap L \neq \emptyset\right)$$

from Lemma 4.3, to see that $\forall L \in L. T \cap L \neq \emptyset$ which we can use with $R_I(T)$ in (LOC-OPT) to see that $T = D_0$. We get (LOC-OPT) from the fact that $R_I$ is described using graph constraints and Lemma B.11.

In the other direction ($\Leftarrow$). Since the loop condition is false we know that $\mathcal{P}(D_0)$, furthermore from the invariant (Lemma 4.3) we know that $D_0 \subseteq D^I \subseteq I$ and $R_I(D_0) = R_I(D_0)$. We have therefore proven that $S$ is a local minimal solution to the input reduction problem. □

C.3 Proof of Invariant

Proof of Lemma 4.3 (Invariant). We know that our progression is (SPLIT) and (CORRECT) from Lemma B.10. We can use this fact to, for every step of the generalized binary reduction on $(I, \mathcal{P}, R_I)$, show that the following invariant holds:

$$\text{Inv}(L, D) \equiv \mathcal{P}(D^I) \land |D| > 0 \land D^I \subseteq I \land (\forall i, j \neq i \Rightarrow D_i \cap D_j = \emptyset)$$

$$\land \left(\forall r \geq 0. R_I(D^I_R) \land \forall L \in L. D^I_{L,R} \cap L \neq \emptyset\right)$$

$$\land \left(\forall T \subseteq D^I. \mathcal{P}(T) \land R_I(T) \Rightarrow \forall L \in L. T \cap L \neq \emptyset\right)$$

Initially, with $L = \emptyset$ and $R_I(I)$, we can see that $\forall L \in L. D^I \cap L \neq \emptyset$ is trivially true. This means that we can use that $D = \text{PROGRESSION}_{R_I}(L, I)$ is a correct progression which means that we can use (SPLIT) and (CORRECT). We can now prove each conjunct in the invariant:

- $\mathcal{P}(D^I)$ from the input requirement $\mathcal{P}(I)$ and $D^I = I$ (SPLIT).
- $|D| > 0$ from (SPLIT).
- $D^I \subseteq I$ from $D^I = I$ (SPLIT).
- $\forall i, j \neq i \Rightarrow D_i \cap D_j = \emptyset$ from (SPLIT).
- $(\forall r \geq 0. R_I(D^I_R) \land \forall L \in L. D^I_{L,R} \cap L \neq \emptyset)$ from (CORRECT).
- $(\forall T \subseteq D^I. \mathcal{P}(T) \land R_I(T) \Rightarrow \forall L \in L. T \cap L \neq \emptyset)$ is trivially true because $L = \emptyset$. 

For each iteration of the while loop, we get assume the invariant. First we see that there exist a \( D_0 \) in \( D \), which we get from the invariant \(|D| > 0\). Then for entering the loop body we get that \( \neg P(D_0) \). In the loop we make the following updates:

\[
\begin{align*}
  r &= \min r \text{ s.t. } r > 0 \land P(D_{r/}) \\
  L' &= L \cup \{D_r\} \\
  D' &= \text{PROGRESSION}_{R_1}(L', D_{r/})
\end{align*}
\]

First we need to prove that there exist a minimal \( r > 0 \), where \( P(D_{r/}) \). We know that \( P(D_{r/}) \) and because \( D_{r/} \) is equal to the longest prefix \( D_{(\log r - 1)} \), we know that there exist an \( r = |D| - 1 \), st \( P(D_{r/}) \). From the loop check we know that \( \neg P(D_0) \), which means that we can conclude that \(|D| > 1\), because otherwise \( D_0 = D_{j/} \) and \( P(D_0) \) which is a contradiction.

The only way \( D_{r/} \cap D_r = \emptyset \) is if \( D_r = \emptyset \), but if that is the case we also know that \( P(D_{r/-1}) \), which is a contradiction, because \( r \) is the smallest st \( P(D_{r/-1}) \). So we know \( D_{r/} \cap D_r \neq \emptyset \). From the invariant we can see that \( \forall L \in L', D_{r/} \cap L \neq \emptyset \), which means that \( \forall L \in L' \). \( D_{r/} \cap L \neq \emptyset \) The invariant also gives us that \( R_1(D_{r/}) \) and that means we have both preconditions to allow us to use that \( D' \) is a correct progression, so we know \( \text{(SPLIT)} \) and \( \text{(CORRECT)} \).

We can now prove each conjunct in the invariant Inv\((L', D')\), except the last:

- \( P(D_{r/}) \) from the input requirement \( P(D_{r/}) \) and \( D_{r/} = D_{r/} \), \( \text{(SPLIT)} \).
- \( |D'| > 0 \) from \( \text{(SPLIT)} \).
- \( \forall i, j \neq i \Rightarrow D'_i \cap D'_j = \emptyset \) from \( \text{(SPLIT)} \).
- \( \forall r \geq 0 \).
- \( D_{r/} \subseteq I \) from \( D_{r/} = D_{r/} \) and \( D_{r/} \subseteq D_{r/} \subseteq I \), \( \text{(SPLIT)} \).
- \( \forall r \geq 0 \). \( R_1(D_{r/}) \land \forall L \in L', D_{r/} \cap L \neq \emptyset \) from \( \text{(CORRECT)} \).

We now only have to prove:

\[
\forall T \subseteq D_{r/}, \ P(T) \land R_1(T) \Rightarrow \forall L \in L', T \cap L \neq \emptyset
\]

We get to assume that \( T \subseteq D_{r/}, \) and \( P(T) \) and \( R_1(T) \) and we have to prove that

\[
\forall L \in L', T \cap L \neq \emptyset \iff \forall L \in L \cup \{D_r\}, T \cap L \neq \emptyset (1)
\]

\[
\iff T \cap D_r \neq \emptyset \land \forall L \in L, T \cap L \neq \emptyset (2)
\]

\[
\iff \forall T \cap D_r \neq \emptyset (3)
\]

We get (1) from \( L' = L \cup \{D_r\} \), and (2) by expanding \( \{D_r\} \) out of the for all statement, and finally we get \( \forall L \in L, T \cap L \neq \emptyset \) from the invariant, because \( T \subseteq D_{r/} \subseteq D_{r/} \subseteq D_{/} \), \( \text{(SPLIT)} \), and \( P(T) \) and \( R_1(T) \) which leaves us to prove \( T \cap D_r \neq \emptyset (3) \).

Proving \( T \cap D_r \neq \emptyset \) is straight forward. If \( T \cap D_r = \emptyset \) then we know that \( T \subseteq D_{r/-1} \), and because \( P \) is monotone over solutions to \( R_1, R_1(D_{r/-1}) \) and \( R_1(T) \), then we know that \( P(T) \subseteq P(D_{r/-1}) \). Since we know that \( P(T) \), we also know that \( P(D_{r/-1}) \), this a contradiction because \( r \) is the smallest \( r \) st \( P(D_{r/}) \). Thus we have proven that Inv\((L, D)\) is true for all steps of the algorithm. \( \square \)