
Retargetable Communication for Distributed
Programs

Oren Freiberg
Microsoft

Email: aitnoren@cs.ucla.edu

Jens Palsberg
University of California, Los Angeles

Email: palsberg@ucla.edu

Mahdi Eslamimehr
Viewpoints Research Institute
Email: eslamimehr@ucla.edu

Abstract—The emergence of clusters of multi-core multipro-
cessors has created a challenge for software developers who
use concurrency to gain performance. The challenge lies in
the application’s dependence on both the hardware and the
deeply integrated communication infrastructure for performance
improvements. This integration of the communication and par-
allelism in the user’s application reduces flexibility by adding
complexity when switching to different communication and par-
allel infrastructures. In this paper, we present a retargetable
compiler framework for a subset of X10 that abstracts the
hardware details, parallelism, and communication away from
the application, allowing for portability and easier retargeting of
the communication and parallelism. The retargetable compiler
framework uses asynchronous computation and communication,
as well as the concept of places to abstract away hardware details
and to provide scalability. The framework offers performance,
functionality, and flexibility because of our separation of tasks
into layers and because of source code level serialization. To
illustrate the ease of retargeting the communication and the
patterns of parallelism, our framework is implemented with
two different communication APIs (DUP and MPI-2) and two
different patterns of parallelism (thread pooling and thread
spawning). Retargeting the communication infrastructure using
our framework required fewer code changes than changing the
pattern of parallelism. The minimal code change needed to
retarget these components offers developers a reasonable way
to retarget without recompiling their application or sacrificing
performance.

I. INTRODUCTION

The increasing prevalence of multi-core, many-core, and
distributed systems is pushing software developers to rely
on concurrency and distributed computing to obtain peak
performance [1]. Unfortunately, desired solutions in parallel
computing often heavily depend on the underlying hardware
(e.g., the number of processors per machine and the total
number of machines). Furthermore, developers are obliged
to support heterogeneous hardware setups in order to gain
domain-specific performance increases. The heavy cost is a
steep reduction in flexibility, since the communication mecha-
nism for distributed computing is integrated deeply into the
application [2], [3], [4]. Both Paalvast et al [2], [3] and
Hiranandani et al. [4] suggest that changing the application’s
means of communication and parallelism is time consuming,
difficult, and reduces code longevity. Because some bench-
marks presented in our work perform better with specific pat-
terns of parallelism and communication libraries, a reduction
in flexibility could consequently hinder performance. Without
flexibility, it is difficult to cater the communication or concur-
rency to the application. Further, a lack of flexibility can limit

the portability and scalability of an application and prevent it
from being able to run on different cluster configurations.

We address these issues with our retargetable X10 com-
piler framework 1 that offers the programmer the ability to
retarget the communication backend and change the model of
concurrency, all without recompiling the source application.
Our retargetability is a result of our separation of tasks into
three layers presented in Figure 1. The framework is split
into the Application Layer, which provides access to the
customized serialization generated for the user’s application,
the LocationSychronization Layer, which abstracts away the
parallelism infrastructure and hardware from the application,
and the Communication Layer, which abstracts the commu-
nication infrastructure from the application. The Application
Layer is automatically generated by our retargetable compiler,
which customizes the layer to the source application. This
customization is one factor that aids our compiler in offering
more features (like allowing any communication framework
or parallel library to be plugged in) than the comparable IBM
X10 solutions Not only are more features supported by our
compiler but it offers comparable performance to the IBM
X10-2.1.2 implementation.

II. THE CHALLENGES AND THE CURRENT
LANDSCAPE

We present an example of the difficulties of retargeting
an MPI-2 program [3] in Figures 2, 3, and 4. In Figure
2, a node is receiving instructions via the MPI_RECV to
spawn a thread, Thread1. On lines 2 and 3 in Figure 3,
Thread1 is using an MPI_SEND to initiate parallelism by
spawning two children to each execute the body of Figure
4. Thread1 then waits for its children to send back a finished
message; waiting for the message simulates a barrier on lines
5 and 6. In Figure 4, ThreadVal is spawned to work on
the val data it received via the MPI_RECV. Once the two
ThreadVal threads are done executing they send a finished
message to node 1 to notify Thread1 of their completion as
seen in Figure 4 line 5. In the example, if we were to switch
communication framework from MPI to DUP [5], a multi-
stream based communication framework, it would require
major restructuring. Naively switching all the MPI_SEND
and MPI_RECV statements to the corresponding DUP send
and receive statements would cause the program to execute
incorrectly. Incorrect execution occurs because DUP messages
are sent and received via file descriptors unlike MPI, and

1Our retargetable X10 compiler source with all benchmarks can be found
at https://github.com/Mah-D/Retargetable-Compiler

https://github.com/Mah-D/Retargetable-Compiler

Place O

User's Appllcatlon

Application Layer

t
LocationSychronization Layer

Dispatcher

Communication Layer

Place 1 Place 2

Fig. 1. The framework presented on three places

Node 1: receiving instructions to execute
Thread1

1 1: int p= COMM_WORLD.Get_rank ();
2 2: struct params;
3 3: MPI_RECV(params,SIZE,Struct,p-1,Thread1)
4 //spawn a thread to run Program.thread1(params)
5 4: Program.thread1(params);
6 //Join on threads

Fig. 2. Thread1: at node 1

1 struct val;
2 MPI_SEND(val,SIZE,Struct,p+1,ThreadVal)
3 MPI_SEND(val,SIZE,Struct,p+1,ThreadVal)
4 //Waiting for child threads to finish execution
5 MPI_RECV(ack,SIZE,int,p+1,FinishVal)
6 MPI_RECV(ack,SIZE,int,p+1,FinishVal)

Fig. 3. Thread2 : at node 2

without a universal write and read lock per node, messages can
get overwritten or corrupted. The complexity is exacerbated by
the dependence of parallelism controls on the communication
infrastructure, making the synchronization a difficult task and
often requiring restructuring of the whole application. This
hardship illustrates the need for a more modular commu-

1 MPI_RECV(ack,SIZE,int,p+1,FinishVal)
2 //spawn thread to run Program.threadVal
3 Program.threadVal(Val);
4 //Sending Thread1 a finish message
5 Send (1,SIZE,int,p-1,FinishVal)

Fig. 4. ThreadVal : at node 2

nication infrastructure that is not tightly coupled with the
application, parallelism controls, or underlying hardware. Our
framework addresses this problem by providing portability,
retargetable communication, and retargetable parallelism, all
while maintaining performance.

Our framework is designed to support single place, mul-
tiple data (SPMD) computation models where parallelism
is expressed through async, finish, and place, key parallel
constructs in X10 [6]. These constructs allow the parallel
implementation and hardware details to be abstracted out of the
source application and into the LocationSychronization Layer.
A challenge with modularizing the parallelism infrastructure
for a distributed system is that parallelism can be tied to the
communication infrastructure because messages are needed for
barriers across nodes and for task level parallelism. While
challenging, it is important to have the flexibility to change
the patterns of parallelism because different patterns can result
in performance gains. These performance gains are illustrated
in our performance results where the thread pool pattern
outperformed thread spawning for both our Stream and Series
benchmarks. Although improvements were noticed for both the
Series and Stream benchmarks, the thread pool model is not
always best. The Linpack benchmark, for example, does not
execute correctly while using the thread pool pattern because
it runs out of memory on even small input sizes due to the
large number of threads needed to be preallocated. However,
Linpack executes correctly when utilizing the thread spawning
pattern, an example of why it is important to be able to switch
to different patterns of parallelism.

We utilize X10-1.5 as our source language to leverage
the benefits of X10, a place, hardware and communication
agnostic source level language. Our work is related to the
IBM X10 runtimes, which also relies upon variations of
the X10 language as its source language. Flat-X10, X10-
1.5 and X10-2.1.2 represent the breadth of research in this
area. In Figure 5 we compare the features supported by
the three IBM runtimes with our X10 retargetable compiler.
Bikshandi et al. [7] presents an implementation of Flat-X10,
a subset of X10 designed for distributed execution. Flat-X10
is designed for high performance distributed execution of the
X10 language, but has several limitations. Flat-X10 is limited
to the LAPI API for communication, lacks support for both
arbitrary distributions and for arbitrary nesting of classes and
arrays. Further, Flat-X10 does not support nesting of async
and finish.

The IBM X10-1.5 implementation was built with a shared
memory model allowing for execution on only one machine.
The X10-1.5 implementation supports all properties of the
original X10 language, including arbitrary distributions and
the nesting of async and finish. It also supports the nesting of
arbitrary classes and arrays but the difficulties with supporting

X10-1.5 Flat-X10 X10-2.1.2 RC
shared memory execution X X X
distributed execution X X X
multiple communication libraries X X
arbitrary communication libraries X
switching communication requires no recompilation of source application X
retargeting patterns of parallelism X
nesting of async and finish X X X
nesting of classes and arrays X X
arbitrary distributions X X
control over place to node mapping X
garbage collectiom X X X

Fig. 5. A comparison of features supported by the three IBM runtimes and our retargetable compiler framework (RC)

this feature arise with distributed execution.

IBM’s X10-2.1.2 implementation has added support for
nested async and finish and added support for a subset of
communication libraries. X10-2.1.2 does not support arbitrary
communication libraries but only supports a subset that match
their template. Further, the communication code is directly
injected into the application, requiring the source application to
be recompiled when switching communication libraries. X10-
2.1.2 does not support arbitrary distributions or the nesting
of classes and arrays. This means classes and arrays cannot
contain any classes or arrays, reducing the programmer’s
flexibility. Another limitation of the X10-2.1.2 implementation
is that the programmer has no control of which nodes are
mapped to which place. This poses a particular problem when
running on a heterogeneous cluster since two places (a place
being a single operating system process) can get mapped to
the slowest node or the node with least memory in the cluster.
Our framework allows the programmer to specify a mapping
of places to nodes to avoid such problems. Our framework
also supports retargeting to arbitrary communication libraries
and different patterns of parallelism because we separate these
tasks into separate layers. The separation of tasks into layers
provides an abstraction between the hardware, the application,
the communication, and the parallelism. The result is a source
application independent of the LocationSychronization Layer
and Communication Layer, resulting in retargetability and
longer code life cycles because changes in these layers require
no recompilation of the source application.

Our framework is able to support arbitrary distributions and
arbitrary nesting of classes and arrays because our Application
Layer is customized to each solution. Classes and arrays which
have classes and arrays nested in them must be serialized
into a contiguous block of memory in order to support this.
Our compiler automatically analyzes the source program and
generates customized serialization functions for classes and
arrays that are utilized within an async. Not only does our
framework support a larger subset of features, but we also offer
comparable performance to the X10-2.1.2 implementation.
One reason the framework maintains performance is because
it is compiling, it customizes the serialization to the source
program. Without this customization, the application would
either take a performance hit or remove flexibility from the
programmer.

Our framework is not just limited to X10 and is usable
by any language that has the same high level constructs,

including Habanero-C, OpenMP, and Habanero-Java. This is
because our separation of tasks into layers allows the source
language to be independent of the LocationSychronization
Layer and the Communication Layer. We demonstrate the
ease of retargeting communication with three communication
libraries: DUP, which utilizes stream based communication,
and MPICH2 [8] and OpenMPI [9], two libraries which utilize
point to point communication.

In summary, our paper makes several contributions:

• We provide a retargetable compiler framework that
compiles X10 source to C, supports multi-threaded
and distributed execution, and demonstrates retar-
getability through three communications libraries
(DUP, OpenMPI, and MPICH2) and two different
parallel patterns (thread spawning and thread pools),

• We offer a framework with three layers that provide
a natural way to abstract the implementation of par-
allelism and communication from the application and
that allow for the nesting of async and finish,

• We present benchmarks compiled and executed using
our retargetable compiler framework to illustrate our
comparable performance to the X10-2.1.2 implemen-
tation and to illustrate portability by running on two
different clusters,

• We deliver support for nested classes, nested arrays
and arbitrary distributions through a customized Ap-
plication Layer.

III. X10-1.5

In this section, we provide an overview of PlasmaX10, our
subset of X10-1.5. The X10 language is an explicitly parallel
language that provides the programmer with a high degree
of expressiveness and utilizes an Asynchronous Partitioned
Global Address Spaces (APGAS) and an active messaging
[10] model for computation. An APGAS model allows for
an object at one place to point to an object that resides in
the address space of a different place, which can manifest as
accesses via an async. A place in X10 defines the address space
or locality such that all concurrent code executing at the same
place will share the same address space. A place can be thought
of as a node, a processor or even a CPU. X10 is different
from other models of parallel languages such as Titanium
[11], which unlike X10 is limited to distributing arrays with

only a rectangular set of array indices. X10 allows for data
distribution through multidimensional distributed arrays over
an arbitrary set of indices.

(Statement) s ::=
async (id){s} parallelism

|finish {s} synchronization

Fig. 6. Parallelism and Synchronization constructs in X10

Our subset of X10, PlasmaX10, is synonymous with the
programming language Java, except with thread and distributed
execution expressed through high level concepts such as async,
finish, and place. Although PlasmaX10 lacks both inheritance
and abstract classes and is just a subset of X10, it is expressive
enough to implement many distributed and shared memory
benchmarks from both the Java Grande and HPC Challenge
benchmarks. PlasmaX10 is very similar to a PGAS language
that utilizes active messaging [10] . The similarity allows Plas-
maX10 to express programs written in PGAS languages, which
support shared memory or utilize message-passing libraries
like UPC[12] and Titanium.

Parallelism, in X10, is expressed through async while
synchronization is expressed through finish statements as seen
in Figure 6. An async executes its body at a given place which
is labeled id in Figure 6. Data declared final and utilized
by the body of the async is transmitted to the place where
the async will execute. Synchronization is expressed through
finish statements, which block until all asyncs spawned inside
its body terminate, including all recursively called asyncs. For
example in Figure 7, an async is spawned inside of the finish
block to execute a function at the next place. The async on
line 5 will execute Program.thread1 at the given place while
the finish waits at the end of the block for the async and all of
its potential children asyncs to complete execution. The code
in Figure 7 is a translation of our example code in Figure 3
to X10, except with only one thread being spawned.

A. PlasmaX10 to C

We built a compiler that translates PlasmaX10 to C and
generates the Application Layer within the resulting C code.
We compile to C to benefit from the language’s tools, run-
time support, optimized compiler, and flexibility to build for
and respond to many different architectures. The framework
generates all the code for the Application Layer including the
customizable serialization code, freeing an X10 developer from
writing any new code to use our framework. The compiler
translates PlasmaX10 code found in Figure 6 to the C code
presented in Figure 7, discussed in more detail in section
IV-B. The example in Figure 6 and Figure 7 is initiating

1 final place p = (here) ;
2 final X x = (new X ()) ;
3 finish {
4 final T1 params = new T1(x);
5 async (p . next ()) {
6 Program.thread1(params);
7 }}//end of async and finish

Fig. 7. X10 Sample Code

1 const place_t p = here();
2 /*finish*/ {
3 struct X x;
4 task_start_finish();
5 struct T1 params;
6 T1_T1(¶ms, x);
7 /* async */{
8 struct _struct_async async;
9 async.method = (ASYNC0) ;

10 async.size = sizeof(params);
11 async.params = (void *)(& params);
12 task_dispatch(a, place_next(p));
13 }//end of async
14 task_end_finish();
15 }//end of finish

Fig. 8. Translation of X10 to C

work at a new place and then waiting for its completion,
analogous to Figure 4. The translation from X10 to C is
done by replacing async, finish, and place statements with
public method calls in the LocationSychronization Layer. The
public method calls allow for parallelism and communication
constructs to be abstracted out of the user’s application.

IV. FRAMEWORK

In this section we provide a brief overview of the frame-
work, which is divided into three parts, as illustrated in Figure
2. The Application Layer is discussed in IV-A, LocationSy-
chronization Layer in IV-B, and the Communication Layer in
IV-C. Each layer of the framework is comprised of several
interfaces, which are implemented in our framework. The
Application Layer resides inside the programmer’s applica-
tion and is an abstraction that provides our implementation
access to the user’s application. The application never directly
communicates with the Communication Layer, but utilizes
the high level constructs of async, finish, and place in the
LocationSychronization Layer to create parallelism, to support
synchronization, and to define locality. The LocationSychro-
nization Layer manages the spawning of asyncs and finish
barriers at different logical places. The LocationSychronization
Layer directly communicates with the Communication Layer
and uses a PlaceMapping, provided by the programmer, to
translate logical places to physical places that are need by
the Communication Layer. The Communication Layer uses
physical places, a representation of the node’s name, or pro-
cess’s id to inform the messaging library which place to send
a message to. The Communication Layer handles the calls
to the backend communication library the user has chosen.
In our implementation, we chose DUP and MPICH2, two
very different communication libraries to illustrate the ease
of switching communication libraries.

A. Application Layer

The Application Layer is the entry point into the user’s
own application for our implementation and interface. In this
section, we explain how the Application Layer interacts with
the rest the LocationSychronization Layer and discuss the
concept of logical and physical places. In Figure 9, we
present the Application Layer, the layer that a developer or

1 interface Application_Layer {
2 public Application_Layer
3 (LocationSychronization AFP)
4 public void _pack_ASYNC(_async child)
5 public void initialize_constants()
6 public void Run_Main()
7 public void thread_run(uint32_t method,
8 BinaryBuffer params)
9 }

Fig. 9. Application Layer Interface

1 interface PlaceMap {
2 private HashTable LogicalToPhysical
3 <Place_T,PhysicalPlace>;
4 public PhysicalPlace
5 translateLogicalToPhyiscal(Place_t P);
6 }

Fig. 10. PlaceMap Interface

compiler writer would be required to implement to provide our
implementation access to the user’s application. Run_Main,
a method we require in the user’s application, provides a hook
to start the application. Initilize constants initializes static
final global variables at each physical place because each
physical place has its own address space. The developer or
compiler writer must also implement or generate thread run,
a function that maps an async’s method number to a method
that contains the body of the async to be executed. Data
needed by the body of an async should be transmitted with
the async message and then passed along to the thread run
method. As seen in Figure 8 line 9, thread run would call the
method that maps to ASYNC0 with data needed for execution
of the async’s body stored in params, line 11. Supporting
the nesting of arrays and classes requires serialization, which
is done in the _pack_ASYNC method in the Application
Layer. Our retargetable compiler automatically generates the
thread_run, initialize_constants, Run_Main and
_pack_ASYNC methods. Our retargetable compiler generates
the serialization methods for our implementation by analyzing
each class and array to see if it is used within an async and by
checking its definition to see if it includes a class or array.
If both conditions hold, a serialization method is made to
serialize the array or class and the nested array or class. This
serialization technique allows for nested arrays and classes to
be communicated across nodes.

The user’s application does not directly communicate with
the Communication Layer, illustrated in Figure 1, but com-
municates indirectly through public members of LocationSy-
chronization Layer, explained in section IV-B. This separation
allows for the user’s application to operate on logical places
instead of physical places. The user’s application can acquire
logical place information from the public place functions in
the LocationSychronization Layer. For example here() will
provide an instance of the user’s application with its logical
place. This abstraction restricts logical place information to the
application and physical place information to the Communi-
cation Layer.

1 interface LocationSychronization {
2 private class Task {
3 uint32_t up_count;
4 uint32_t down_count;
5 pthread_mutex_t down_mutex;
6 pthread_cond_t down_cv;
7 Task parent;
8 }
9 public LocationSychronization

10 (Communication C, PlaceMap P){
11 public static void main();
12 //finish constructs
13 public void task_start_finish();
14 public void task_end_finish();
15 //async constructs
16 public uint32_t task_dispatch(Async a,Place_T p);
17 //place
18 public Place_T here();
19 public Place_T max_places();
20 public uint32_t isfirst(Place_T p);
21 public uint32_t islast(Place_T p);
22 public Place_T place_first();
23 public Place_T place_last();
24 public Place_T place_next(Place_T p);
25 public Place_T place_prev(Place_T p);
26 public Place_T toplace(uint32_t p);
27 //creates the thread for Run_Main
28 private void _create_main_thread();
29 // terminates all current running dispatchers
30 private uint32_t dispatcher_terminate(Place_T p);
31 //initializes logical to physical place data
32 private uint32_t _place_init()
33 private uint32_t dispatcher();
34 }
35 //logical place representation
36 class Place_T {
37 uint32_t place;
38 }
39 class PhysicalPlace{
40 uint32_t place;
41 }
42 class Async {
43 uint32_t method;
44 uint64_t size;
45 BinaryBuffer params;
46 }
47 }

Fig. 11. LocationSychronization Interface

B. LocationSychronization Layer

The LocationSychronization Layer interface, illustrated in
Figure 11, is where parallelism, synchronization, and the
concept of places are abstracted. In this section, we explain
the interface and how the high level X10 constructs async,
finish, and place are represented in our interface. In our im-
plementation, machines and processes are mapped to physical
places while the X10 concept of places is mapped to logical
places. This provides flexibility to the application, allowing
for different hardware configurations, number of machines,
and number of processors to be determined by a logical to
physical place mapping without changing any source code. The
programmer will provide a PlaceMapping via a file or program
arguments, which maps places to node, CPUs, processors or

machines. This allows the application to run on a different
PlaceMapping without modifying any source code and, if
running under the same architecture, without recompiling any
code. This also provides the application an efficient way to
automatically scale, since the application can be designed
with an abstract view of places. Further data in the same
logical place should be accessible via shared memory while
two logical places on the same machine should have separate
address spaces. The PlaceMapping, illustrated in Figure 10,
is a mapping of logical places to physical places, enabling
the LocationSychronization Layer to pass logical places to the
Application Layer and physical places to the Communication
Layer.

Each physical place has its own address space and dis-
patcher, which manages incoming messages and directs them.
The dispatcher is place-independent and handles all initializa-
tion of the library code and global static final variables in
the application code. All messages come through a dispatcher,
which handles the message accordingly. If the message is
an async, it designates it for execution. The dispatcher also
handles acknowledgment messages that are used to signal a
parent async or finish of their child’s completion.

Finish blocks, essentially barriers for all nested asyncs, are
translated to a task_start_finish at the beginning of the
block and a task_end_finish at the end of the block illus-
trated in Figure 8 lines 4 and 14. The task_start_finish
function creates a Task object that is attached to any asyncs
created within the block. This is so that the asyncs will be
able to notify their parent that they have finish execution. The
task_end_finish blocks until all child asyncs and their
children recursively have completed execution. We support
nesting in our runtime of async and finish by utilizing a
method very similar to Misra and Chandy’s [2] work on the
Dijkstra-Scholten algorithm for termination detection [13]. In
our scheme, all children notify the parent async or finish of
their completion and each parent async or finish waits for their
children’s completion. A parent async or finish keeps track of
the number of children that is spawned within its block, and
once all children have reported completion, the parent async
of finish stops blocking.

An async, which initialized parallelism, is translated to a
task_dispatch, which packs the Async object and takes
a place as a parameter that represents where to execute, as
seen in Figure 8 lines 7-13. The Async object also stores
the data needed for the execution of the body of the async.
task_dispatch creates a Task object for the current async
and attaches the parent async or finish Task to it. The Task
object stores its parent’s information in order to notify the
parent async or finish of its completion. task_dispatch
calls the Communication Layer through the WriteMessage
function to send the Async object to the place of execution.
As an optimization, if the place specified has the same logical
place for destination and origin, the Communication Layer can
be skipped and the async executed at the place of origin. This
optimization showed us speedups from 2x to 10x, and the best
results were with benchmarks designed for a shared memory
model. When executing with only one place, our implementa-
tion utilizes a multi-threaded shared memory model due to this
one-place optimization that avoids the Communication Layer.
Otherwise, if multiple places are present in the PlaceMapping,

1 interface Communication {
2 private class Message {
3 uint32_t placeFrom;
4 uint32_t placeTo;
5 uint32_t messageType;
6 uint64_t size;
7 Task parentTask;
8 Async async;
9 }

10 public uint32_t WriteMessage(
11 Place_T placeToWriteMessage,
12 uint32_t messageType,
13 uint64_t sizeOfTask,
14 Task parentTask,
15 uint64_t sizeOfAsync,
16 Async async);
17 public uint32_t ReadMessage(
18 Place_T placeMessageFrom,
19 uint32_t messageType,
20 Task parentTask,
21 Async async);
22 }

Fig. 12. Communication Layer Interface

then the application is executed as a distributed model. Once
an async is received at place by a dispatcher, it is then
created locally by the LocationSychronization Layer through
the _create_async function, which will initiate the async
execution.

Execution of user’s code is initiated through thread_run
function of the Application Layer. Once the async is finished
executing, an ack_async message is sent back to the place of
origin to notify any parent async or finish that their child async
has finished execution. In our implementation, the parent async
will not terminate until all children async terminate. Switching
from a thread spawning pattern to a thread pool pattern for
creating parallelism with the async construct required only
changing fifteen lines of code in the LocationSychronization
Layer and only recompiling this layer.

C. Communication Layer Interface

The Communication Layer, illustrated in Figure 12, is
the bridge between the LocationSychronization Layer and the
messaging library. In this section, we provide an overview of
the Communication Layer and the communication libraries.
We implement our messaging library with two very different
communication libraries: DUP and MPI-2. The DUP system is
a multi-stream based communication framework that utilizes
TCP streams and pipes for communication and is designed
around a data flow graph where nodes represent physical places
in our PlaceMapping. We utilized MPICH2 and OpenMPI,
two message passing implementation of MPI-2 that utilizes
point to point communication and ranks to represent phys-
ical places [14]. Utilizing a new messaging library would
require changing only the WriteMessage, ReadMessage and
_place_init functions throughout the whole implementa-
tion. In our implementation, WriteMessage required four lines
of code change, ReadMessage required one line of code change
and _place_init required five lines of code change. This
totals to ten lines of code change to switch from DUP to

Execution Time (secs)
DUP 4 Nodes MPI 4 Nodes

In-house benchmarks
Plasma 325.13 262.77
MapReduce 22.54 22.50
Java Grande benchmarks
Linpack 18.25 15.24
Sor 10.86 5.23
Montecarlo 1.22 1.26
Crypt 1,568.53 1,607.85
Raytracer 57.89 46.49
Series 90.93 98.99
Moldyn 54.26 45.08
Sparsemm 66.56 66.15
HPC Challenge benchmark
Stream 3.60 4.43

Fig. 13. Benchmark execution times(mean on 10 runs)

MPICH2 and requiring only the Communication Layer and
the LocationSychronization Layer to be recompiled. The user
application and the Application Layer did not require recom-
pilation because each layer is independent and no changes
occurred in these layers.

The WriteMessage function marshals a Message object into
a TPL 2 image and sends the image to a given physical place.
The place parameter passed into the WriteMessage function
is the physical place translated from a logical place provided
by the LocationSychronization Layer. On the receiving end
of a WriteMessage is a ReadMessage that is waiting for an
incoming message. Once a message is read at a given place,
the message should be demarshaled from its TPL image and
placed into a Message object where the values are then further
unpacked and passed back to the dispatcher. Our implementa-
tion assumes that all network communication is handled by the
messaging library and the messaging library handles buffers
appropriately. If buffering is not handled by the communication
libraries, then this should be done in the WriteMessage or
ReadMessage functions. All of our implementations with DUP,
OpenMPI, and MPICH2 required no additional buffering in the
WriteMessage or ReadMessage functions.

V. EXPERIMENTAL RESULTS

We used 11 benchmarks, all written in X10-1.5 and
translated to C. Eight are from the Java Grande benchmark
suite [15]. One is from the HPC challenge benchmarks, and
two were written internally. We chose these diverse bench-
marks because they represent a wide range of common imple-
mentation issues. Our most complex benchmark is a plasma
simulation program [16], [17], which we translated from
Fortran with MPI to X10-1.5. The plasma simulation utilizes
multidimensional distributed arrays over non-regular regions
and calculates the vector force interactions of a large number
of particles in a 2D space. Our MapReduce benchmarks sums
a distributed integer array in typical map and reduce fashion.

2http://tpl.sourceforge.net/index.html

Fig. 14. Performance for series

Fig. 15. Performance for stream

A. Measurements

We ran our experiments, in Figure 13, on a system with
one quad-core Intel Xeon CPU 2.66GHz with 6 MB of cache
and 32GB of RAM running the Ubuntu OS 2.6.32-28-server,
and three iMacs with 2.33GHz duo core processors with 6 MB
of cache and 2GB of RAM via 100Mbit Ethernet running Mac
OS X 10.5.8. All four machines were connected via Ethernet
connections. The benchmarks and the implementation were
compiled for a 64-bit architecture but many of our benchmarks
that utilize a small addresses space were able to execute for a
32-bit architecture. We ran our experiments, in Figure 14 and
Figure 15, on the Hoffman2 cluster, with each node having
an Intel Nehalem 2.53GHz CPU with 4GB of memory and all
interconnected via Ethernet.

In our implementation, all benchmarks were compiled from
X10 to C, in which the C source was compiled with gcc for
execution. In X10-2.1.2, the source X10 code is compiled to
C++ and later compiled with g++ for execution. We compared
our implementation, using OpenMPI, to the X10-2.1.2 imple-
mentation, using sockets. No recompilation was done to either

implementation while scaling between 1, 2, 4, 8 and 16 nodes.
We believe this allows for a fair comparison between IBM’s
X10-2.1.2 implementation and our own.

While comparing MPICH2 to DUP with the thread spawn-
ing pattern, the master node was the Intel Xeon machine while
the three children nodes were iMacs. Figure 13 illustrates the
average execution time of ten runs of our implementation on
two separate communication frameworks DUP and MPICH2.
The input sizes in Figure 13 for the Series and Stream
benchmarks are about a hundred times smaller than the input
sizes for comparing X10-2.1.2 to our implementation. This
is because DUP is an experimental messaging library that
cannot currently handle messages that are too large. Figure 14
and 15 illustrate the average execution time on the Hoffman2
cluster over five runs of the X10-2.1.2 implementation and our
implementation. Series and Stream are the only benchmarks
compared because the rest of the benchmark suite required
arbitrary distributions, could not compile correctly, or produced
run time errors on the IBM X10-2.1.2 implementation. All
these benchmarks compiled and executed correctly on IBM’s
X10-1.5 and our implementation.

B. Evaluation

As illustrated in Figure 13, SOR, Plasma, and Moldyn
performed better under MPICH2, while Crypt and Series
showed better performance under DUP. These results illustrate
the benefits of executing on different communication libraries.
By switching communication libraries, performance gains were
made without modifying or recompiling the programmer’s ap-
plication. In Figure 14, both our implementations outperform
the X10-2.1.2 implementation on all numbers of nodes. Our
thread pool implementation illustrates a speedup of about 6.2x
when utilizing sixteen nodes and a speedup of about 4.5x
when utilizing eight cores. Our thread pool implementation
outperforms our thread spawning implementation, in Figure
14 and Figure 15, because the Stream and Series benchmarks
have many asyncs with short execution cycles, favoring the
thread pool pattern. Even though our implementation is not
optimized for performance, it still outperforms the X10-2.1.2
implementation on Series, which has a distributed workload.
This is likely because early versions of X10 were designed for
a shared memory model and not a distributed model.

In Figure 14, we see that our thread pool implementation
outperforms the X10-2.1.2 implementation while utilizing one
node with a speedup of about 32.7x and two nodes with a
speed up of about 6.3. While executing on one node, our
implementation has an optimization to avoid the communica-
tion network utilizing a multi-threaded shared memory model.
However, as we scale past two nodes, our implementation
slows as it starts utilizing the communication network while
the X10 implementation maintains a steady execution time.
This is because the Stream benchmark was designed for a
shared memory model, which is why our implementation
outperforms the X10 implementation for 1, 2 and 4 nodes.
The X10 implementation only outperforms our implementation
as the distributed workload is overwhelmed by the costs of
communication. The X10 implementation does not incur the
cost of communication as the number of nodes increases
because it does not distribute any work to the added nodes,
avoiding the cost of communication all together.

VI. RELATED WORK

Bikshandi et al. [7], to our knowledge, is the only other
work that illustrates execution of active messaging in multiple
places. A subset of X10 called FLAT X10 is demonstrated
with a compiler that translates the source application written
in FLAT X10 into C++ SPMD programs. A runtime system
is exhibited and utilizes an active messaging infrastructure for
communication based on the IBMs LAPI Low Level API. No
support is given for nested async of finish blocks. Additionally,
no support is given for different architectures or support for
separate compilation. This work was recently extended with
the X10-2.1.2 implementation, which now has support for
nesting of async and support for communication frameworks
beyond the LAPI API, such as sockets. Recompilation is
required when switching communication frameworks and the
implementation is strictly tied to the X10 language. The
implementation can only use communication frameworks that
match the templates they provided, such as LAPI and TCP,
which languages like DUP do not fit. Another limitation of this
work is it does not allow users to choose which nodes to map
to their corresponding places, and requires the architecture and
hardware of all nodes to be the same. This work also does not
allow for the union of distributions the way in, which formed
arbitrary distributions. This limits the problem scope that this
solution can be used for, since arbitrary distributions are a
requirement for benchmarks such as plasma. This work also
does not allow for the nesting of value arrays and classes,
a major inconvenience to the developer. Our implementation
allows for arbitrary distributions, nesting of value arrays, value
classes and out performs the X10-2.1.2 implementation in
the majority of our results. Further although this work was
intended for distributed execution it performs better on shared
memory applications over distributed applications.

Given an algorithmic description, Paalvast et al. [2], [3] il-
lustrate a method of automatic code generation for a distributed
system. They present difficulties placed on the programmer
when communication and parallelization are integrated into an
algorithm, demonstrating it is hard to debug, and even minute
changes can require major program restructuring. Flexibility
allows for the communication schemes and synchronization to
match the necessary problem. The source language Booster,
a high level parallel programming language, is translated to
distributed SPMD code in which communication and synchro-
nization are generated automatically. The annotation language
that describes the algorithm used in the generation of SPMD
programs is not limited to Booster. No benchmarks of the
system are demonstrated in either work.

Callahan et al. [18] offer an automatically generated mes-
sage passing SPMD-like program from a sequentially shared
memory application with the help of annotations that illustrate
how data in arrays should be distributed. They suggest the
annotations of data dependencies provide for portability, but
expressed challenges with irregular or complex distributions
of arrays. Data movement is tightly bound to the application
since load and store statements are inserted into the translated
source for data transfer. They suggest portability is important,
and with a more flexible communication structure like our
implementation, would improve the work. No implementation
or performance numbers are presented.

Hiranandani et al. [4] present the parallel language Fortran

D, which enhances Fortran with data distribution. This work
stresses the need for flexibility, code longevity, and retargeting
to encourage the use of parallel computing in the scientific
community. The Fortran D compiler outputs a SPMD pro-
gram with explicit message passing. The compiler integrates
communication directly into the code and is heavily reliant
on owner computes rule, which states the process that holds
the left-hand side element of an expression will perform the
calculations. Fortran D is limited because of its reliance on the
owner compute rule, which can lead to inefficient computation
due to excessive communication and because it is limited
to vector style computation. Benkner et al.[19] provide an
overview of High Performance Fortran (HPF), a high-level
data parallel language that is compiled to parallel Fortran with
message passing for distributed systems. The compiler utilizes
HPF mappings to determine data distributions. HPF does not
support task parallel applications.

Cytron et al. [20] offer automatic translation of programs
written in fork-join style and automatically introduce SPMD
regions to express parallelism. Two limiting assumptions are
made that there are no data dependencies between threads and
that execution of parallel loops is deterministic, both of which
we do not assume. Further this work is limited to the fork-
join style, in which many benchmarks in our suite cannot be
written.

Amarasinghe et al. [21] offer code generation techniques
for optimizing communication and producing a SPMD pro-
gram for each node, given a description of partitioned compu-
tation. The description aids in data-flow analysis used to gen-
erate the automatically parallelized code. Like our implemen-
tation, communication is automatically generated. However,
unlike our implementation, the communication code is directly
integrated into the code and does not allow for the flexibility of
switching communication libraries. Retargeting the pattern of
parallelism or communication would require recompiling the
application.

Lapadula et al. [22] present a communication framework
for C* code translated into C code. This framework is for
mesh-connected MIMD multicomputers. The communication
framework is integrated tightly into the generated C code. This
integration of the communication code into the C code requires
recompiling the application to retarget the communication.

Barton et al. [23] express the implementation of Unified
Parallel C (UPC) runtime RTS and the compiler for UPC. UPC
is a partitioned global address space (PGAS) language[24]
similar to X10 and is also compiled to C as the runtime
language. Static analysis is utilized to insert communication
code into the runtime language. This insertion of communi-
cation code directly in the code would require rewriting the
compiler and recompiling the user’s code to retarget the com-
munication, two disadvantages our implementation overcomes.
Further inefficiencies result from the Shared Variable Directory
(SVD) that UPC requires to be maintained across all places,
putting a heavy burden on the communication backend. This
is not required in the X10 languages representation of remote
references aiding our implementation.

Darema et al. [25] present the SPMD shared memory
model for Fortran using a Fetch-and-Add mechanism for en-
forcing synchronization. Techniques for debugging and SPMD

programs are presented without any automation or compiler
assistance. Synchronization code is directly inserted into the
application requiring recompilation of the application if a
change is needed. The computational model assumes a shared
memory organization.

VII. LIMITATIONS

The design and implementation have controlled limitations.
The runtime implementation does not yet support garbage
collection for the Application Layer while the Communications
Layer and LocationSychronization Layer memory is managed.
We plan to optimize our implementation through message
batching and statically determining which asyncs to run locally
to prevent the communication from outweighing the benefit of
distributed computation as in the X10-2.1.2 implementation.

VIII. FUTURE WORK

We hope to implement both a distributed garbage collector
and a per-place garbage collector which we have prototypes
for. We also hope to reduce the memory footprint of programs
through static analysis to reduce the need for a garbage
collector and to improve efficiency by reducing the number
and size of messages. We also are aiming to demonstrate the
support for even more heterogeneity by including GPUs in our
cluster and having different execution engines with different
source languages at each node. We are also aiming to develop
automatically generated constraints during compilation to pro-
duce a valid mapping via executions on smaller sample sets,
runtime load balancing and through code analysis.

IX. CONCLUSION

In this paper, we have presented a retargetable com-
munication framework that supports scalability and can run
on a variety of architectures and languages. Our three-layer
framework offers users a natural way of separating the paral-
lelism and communication library from the application. This
separation allows for the communication library and paral-
lelism to be changed without recompiling the application.
Our implementations on both DUP and MPICH2 illustrate the
minimal changes required to switch communication libraries.
Our results illustrate that our implementation outperforms the
X10-2.1.2 implementation and that our implementation can
both scale without recompilation and provide portability. Our
customization of serialization for the source application allows
us to maintain performance while offering wealth of features.
Our main goal for the future is to optimize our implementation
to avoid communication when the workload is too small and
to further illustrate the flexibility of the framework.

REFERENCES

[1] H. Sutter, “The free lunch is over: A fundamental turn toward con-
currency in software,” Dr. Dobbs journal, vol. 30, no. 3, pp. 202–210,
2005.

[2] J. Misra and K. M. Chandy, “Termination detection of diffusing
computations in communicating sequential processes,” ACM Trans.
Program. Lang. Syst., vol. 4, no. 1, pp. 37–43, Jan. 1982. [Online].
Available: http://doi.acm.org/10.1145/357153.357156

[3] MPI Forum, “Message Passing Interface (MPI) Forum Home Page,”
June. [Online]. Available: http://www.mpi-forum.org/

http://doi.acm.org/10.1145/357153.357156
http://www.mpi-forum.org/

[4] S. Hiranandani, K. Kennedy, and C.-W. Tseng, “Compiling fortran
d for mimd distributed-memory machines,” Commun. ACM, vol. 35,
no. 8, pp. 66–80, Aug. 1992. [Online]. Available: http://doi.acm.org/
10.1145/135226.135230

[5] K. C. Bader, T. Eißler, N. Evans, C. GauthierDickey, C. Grothoff,
K. Grothoff, J. Keene, H. Meier, C. Ritzdorf, and M. J. Rutherford,
“Distributed stream processing with dup,” in Network and Parallel
Computing. Springer, 2010, pp. 232–246.

[6] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. Von Praun, and V. Sarkar, “X10: an object-oriented
approach to non-uniform cluster computing,” Acm Sigplan Notices,
vol. 40, no. 10, pp. 519–538, 2005.

[7] G. Bikshandi, J. G. Castanos, S. B. Kodali, V. K. Nandivada, I. Pe-
shansky, V. A. Saraswat, S. Sur, P. Varma, and T. Wen, “Efficient,
portable implementation of asynchronous multi-place programs,” in
ACM Sigplan Notices, vol. 44, no. 4. ACM, 2009, pp. 271–282.

[8] N. T. Karonis, B. Toonen, and I. Foster, “Mpich-g2: A grid-enabled
implementation of the message passing interface,” Journal of Parallel
and Distributed Computing, vol. 63, no. 5, pp. 551–563, 2003.

[9] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine et al.,
“Open mpi: Goals, concept, and design of a next generation mpi
implementation,” in Recent Advances in Parallel Virtual Machine and
Message Passing Interface. Springer, 2004, pp. 97–104.

[10] T. Von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser, Active
messages: a mechanism for integrated communication and computation.
ACM, 1992, vol. 20, no. 2.

[11] P. N. Hilfinger, D. O. Bonachea, K. Datta, D. Gay, S. L. Graham, B. R.
Liblit, G. Pike, J. Z. Su, and K. A. Yelick, “Titanium language reference
manual, version 2.19,” UC Berkeley Tech Rep. UCB/EECS-2005-15,
Tech. Rep., 2005.

[12] U. Consortium et al., “Upc language specifications v1. 2,” Lawrence
Berkeley National Laboratory, 2005.

[13] E. W. Dijkstra and C. S. Scholten, “Termination detection for diffusing
computations,” Information Processing Letters, vol. 11, no. 1, pp. 1–4,
1980.

[14] N. S. Evans, C. GauthierDickey, C. Grothoff, K. Grothoff, J. Keene,
and M. J. Rutherford, “Simplifying parallel and distributed simulation
with the dup system,” in Proceedings of the 2010 Spring Simulation
Multiconference. Society for Computer Simulation International, 2010,
p. 154.

[15] L. A. Smith, J. M. Bull, and J. Obdrizalek, “A parallel java grande
benchmark suite,” in Supercomputing, ACM/IEEE 2001 Conference.
IEEE, 2001, pp. 6–6.

[16] D. Dauger, V. Decyk, and J. Dawson, “Using semiclassical trajectories
for the time-evolution of interacting quantum-mechanical systems,”
Journal of Computational Physics, vol. 209, no. 2, pp. 559–581, 2005.

[17] J. Tonge, D. E. Dauger, and V. K. Decyk, “Two-dimensional semiclassi-
cal particle-in-cell code for simulation of quantum plasmas,” Computer
physics communications, vol. 164, no. 1, pp. 279–285, 2004.

[18] D. Callahan and K. Kennedy, “Compiling programs for distributed-
memory multiprocessors,” The Journal of Supercomputing, vol. 2, no. 2,
pp. 151–169, 1988.

[19] S. Benkner and H. Zima, “Compiling high performance fortran for
distributed-memory architectures,” Parallel Computing, vol. 25, no. 13,
pp. 1785–1825, 1999.

[20] R. Cytron, J. Lipkis, and E. Schonberg, “A compiler-assisted approach
to spmd execution,” in Proceedings of the 1990 ACM/IEEE conference
on Supercomputing. IEEE Computer Society Press, 1990, pp. 398–406.

[21] S. P. Amarasinghe and M. S. Lam, “Communication optimization and
code generation for distributed memory machines,” in ACM SIGPLAN
Notices, vol. 28, no. 6. ACM, 1993, pp. 126–138.

[22] A. Lapadula and K. P. Herold, A retargetable C* compiler and run-time
library for mesh-connected MIMD multicomputers. Citeseer, 1992.

[23] C. Barton, C. Casçaval, G. Almási, Y. Zheng, M. Farreras, S. Chatterje,
and J. N. Amaral, “Shared memory programming for large scale
machines,” in ACM SIGPLAN Notices, vol. 41, no. 6. ACM, 2006,
pp. 108–117.

[24] D. Bonachea, P. Hargrove, M. Welcome, and K. Yelick, “Porting gasnet

to portals: Partitioned global address space (pgas) language support for
the cray xt,” Cray User Group (CUG09), 2009.

[25] F. Darema, D. A. George, V. A. Norton, and G. F. Pfister, “A single-
program-multiple-data computational model for epex/fortran,” Parallel
Computing, vol. 7, no. 1, pp. 11–24, 1988.

http://doi.acm.org/10.1145/135226.135230
http://doi.acm.org/10.1145/135226.135230

