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Partial-evaluation folklore has it that massaging one’s source programs can make them specialize
better. In Jones, Gomard, and Sestoft’s recent textbook, a whole chapter is dedicated to listing
such “binding-time improvements”: nonstandard use of continuation-passing style, eta-expansion,
and a popular transformation called “The Trick.” We provide a unified view of these binding-time
improvements, from a typing perspective. Just as a proper treatment of product values in partial
evaluation requires partially static values, a proper treatment of disjoint sums requires moving
static contexts across dynamic case expressions. This requirement precisely accounts for the
nonstandard use of continuation-passing style encountered in partial evaluation. Eta-expansion
thus acts as a uniform binding-time coercion between values and contexts, be they of function
type, product type, or disjoint-sum type. For the latter case, it enables “The Trick.” In this
article, we extend Gomard and Jones’ partial evaluator for the λ-calculus, λ-Mix, with products
and disjoint sums; we point out how eta-expansion for (finite) disjoint sums enables The Trick; we
generalize our earlier work by identifying that eta-expansion can be obtained in the binding-time
analysis simply by adding two coercion rules; and we specify and prove the correctness of our

extension to λ-Mix.

Categories and Subject Descriptors: D.1.1 [Programming Techniques]: Applicative (Func-
tional) Programming; D.3.3 [Programming Languages]: Language Constructs and Features—
procedures, functions, and subroutines; D.3.4 [Programming Languages]: Processors—trans-

lator writing systems and compiler generators; F.3.2 [Logics and Meanings of Programs]:
Semantics of Programming Languages—operational semantics; F.3.3 [Logics and Meanings of

Programs]: Studies of Program Constructs—functional constructs; F.4.1 [Mathematical Logic

and Formal Languages]: Mathematical Logic—lambda calculus and related systems; I.1.3 [Al-

gebraic Manipulation]: Languages and Systems—evaluation strategies; I.2.2 [Artificial Intel-

ligence]: Automatic Programming—automatic analysis of algorithms; program transformation

The first author is supported by the BRICS Centre (Basic Research In Computer Science) of the
Danish National Research Foundation and expresses grateful thanks to the DART project (Design,
Analysis and Reasoning about Tools) of the Danish Research Councils, for support during 1995.
The second author was hosted by BRICS during summer 1995. The third author is supported by
the Danish Natural Science Research Council and BRICS.
Authors’ addresses: O. Danvy and K. Malmkjær, Computer Science Department, Aarhus Uni-
versity, Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark; email: {danvy; karo-
line}@brics.dk; home pages: http://www.brics.dk/˜{danvy; karoline}; J. Palsberg, Laboratory
for Computer Science, Massachusetts Institute of Technology, NE43-340, 545 Technology Square,
Cambridge, MA 02139; email: palsberg@theory.lcs.mit.edu.
Permission to make digital/hard copy of all or part of this material without fee is granted
provided that the copies are not made or distributed for profit or commercial advantage, the
ACM copyright/server notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 1996 ACM 0164-0925/96/0700-0111 $03.50

ACM Transactions on Programming Languages, Vol. 18, No. 6, November 1996, pages 730–751.



Eta-Expansion Does The Trick · 101

General Terms: Algorithms, Languages, Performance

Additional Key Words and Phrases: Binding-time analysis and improvement, eta-expansion, par-
tial evaluation, program specialization, static reduction

1. INTRODUCTION

Partial evaluation is a program-transformation technique for specializing programs
[Consel and Danvy 1993; Jones et al. 1993]. As such, it contributes to solving
the tension between program generality (to ease portability and maintenance) and
program specificity (to have them attuned to the situation at hand). Modern partial
evaluators come in two flavors: online and offline.

1.1 Online Partial Evaluation

An online partial evaluator specializes programs in an interpretive way [Ruf 1993;
Weise et al. 1991]. For example, consider the treatment of conditional expressions.
An online partial-evaluation function maps a source program and an environment
to a disjoint sum: the result is either a static value or a residual expression.

PE : Exp → Env → Val + Exp

PE [[(IF e1 e2 e3)]] ρ = case PE [[e1]] ρ of
inVal(v1) ⇒ if v1|Bool

then PE [[e2]] ρ
else PE [[e3]] ρ

[] inExp(e1) ⇒ inExp(inIF(e1,
case PE[[e2]] ρ of

inVal(v2) ⇒ residualize(v2)
[] inExp(e2) ⇒ e2

end,
case PE[[e3]] ρ of

inVal(v3) ⇒ residualize(v3)
[] inExp(e3) ⇒ e3

end))
end

At every step, the partial evaluator must perform a binding-time test, i.e., it must
check whether each intermediate result is a static value or a residual expression. In
the case of a conditional expression, the test part is partially evaluated first.

—If its result is a static value, and assuming this value is boolean, we test it and
select the corresponding branch accordingly.

—If its result is a residual expression, we need to reconstruct the conditional ex-
pression, deferring the test and the corresponding branch selection until run time.
To this end, both conditional branches are (speculatively) processed. Again, the
binding time of their result is tested. If either result is a static value, it is resid-
ualized, i.e., turned into a residual expression that will evaluate to this value at
run time. (In Lisp, residualizing a static value amounts to quoting it.) If either
result is a residual expression, it just fits in the residual conditional expression.
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1.2 Offline Partial Evaluation

An offline partial evaluator is divided into two stages:

(1) a binding-time analysis determining which parts of the source program are
known (the “static” parts) and which parts may not be known (the “dynamic”
parts);

(2) a program specializer reducing the static parts and reconstructing the dynamic
parts, thus producing the residual program.

The two stages must fit together such that (1) no static parts are left in the resid-
ual program and (2) no static computation depends on the result of a dynamic
computation [Jones 1988; Nielson and Nielson 1992; Palsberg 1993; Wand 1993].

Considering again conditional expressions as above, the net effect of binding-time
analysis is to factor out the binding-time checks. The static values are classified as
static, and the residual expressions are classified as dynamic. As a rule, binding-
time analyses lean toward safety in the sense that in case of doubt a dynamic
classification is safer than a static one.

1.3 This Article

We consider offline partial evaluation, but our results also apply to online partial
evaluation.

In an offline partial evaluator, the precision of the binding-time analysis deter-
mines the effectiveness of the program specializer [Consel and Danvy 1993; Jones
et al. 1993]. Informally, the more parts of a source program are classified to be static
by the binding-time analysis, the more parts are processed away by the specializer.

Practical experience with partial evaluation shows that users need to massage
their source programs to make binding-time analysis classify more program parts
as static, and thus to make specialization yield better results. Jones, Gomard, and
Sestoft’s textbook [Jones et al. 1993, Ch. 12] documents three such “binding-time
improvements”: continuation-passing style, eta-expansion, and “The Trick.”

1.4 Continuation-Passing Style

Evaluating some expressions reduces to evaluating some of their subexpressions; for
example, evaluating a let expression reduces to evaluating its body, and evaluating
a conditional expression reduces to evaluating one of the conditional branches.
Classifying such outer expressions as dynamic forces these inner expressions to be
dynamic as well, even when they are actually static and the context of the outer
expression, given a static value, could be classified as static. For example, in terms
such as

10 + (let x = D in 2 end)

and

10 + (case D of inleft(t1) ⇒ 1 [] inright(t2) ⇒ 2 end)

if D is dynamic, both the let and the case expressions need to be reconstructed.
(In the presence of computational effects, e.g., divergence, unfolding such a let ex-
pression statically is unsound, since it would prevent the computational effect from
occurring at run time.) Both the second arguments of + are therefore dynamic,
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and thus both occurrences of + are classified to be dynamic as well, even though
at run time both expressions reduce to a value that could have been computed at
specialization time. Against this backdrop, moving the context [10 + [·]] inside the
let and the case expressions makes it possible to classify + to be static and thus
to compute the addition at specialization time. This context move can be achieved
either by a source transformation such as the CPS transformation or by delimiting
the “static” continuation of the specializer and relocating it inside the reconstructed
expression. Both of these continuation-based methods are documented in the liter-
ature [Bondorf 1992; Consel and Danvy 1991; Jones et al. 1993; Lawall and Danvy
1995]. Note that this change in the specializer requires a corresponding change in
the binding-time analysis.

1.5 Eta-Expansion

Jones, Gomard, and Sestoft list eta-expansion as an effective binding-time improve-
ment [Jones et al. 1993]. In an earlier work [Danvy et al. 1995], we showed that a
source eta-expansion serves as a binding-time coercion for static higher-order values
in dynamic contexts and for dynamic values in potentially static contexts expecting
higher-order values (see Section 3.1). We proposed and proved the correctness of
a binding-time analysis that generates these binding-time coercions at points of
conflict, instead of taking the conservative solution of dynamizing both values and
contexts.

In the same work [Danvy et al. 1995], we also pointed out that an analog problem
occurs for products and that the analog of eta-expansion for products serves as a
binding-time coercion for static product values in dynamic contexts and for dynamic
values in potentially static contexts expecting product values (see Section 3.2). We
did not, however, present the corresponding binding-time analysis generating these
binding-time coercions at points of conflict, nor did we consider disjoint sums.

In summary, eta-redexes provide a syntactic representation of binding-time coer-
cions, either from static to dynamic, or from dynamic to static, at higher type.

1.6 “The Trick”

In their partial-evaluation textbook [Jones et al. 1993], Jones, Gomard, and Ses-
toft document a folklore binding-time improvement, referring to it as “The Trick.”
Until now, The Trick has not been formalized. Intuitively, it is used to process
dynamic choices of static values, i.e., when finitely many static values may occur
in a dynamic context. Enumerating these values makes it possible to plug each of
them into the context, thereby turning it into a static context and enabling more
static computation.

The Trick can also be used on any finite type, such as booleans or characters,
by enumerating its elements. Alternatively, one may wish to cut on the number of
static possibilities that can be encountered at a program point — for example, only
finitely many characters (instead of the whole alphabet) may occur in a regular-
expression interpreter [Jones et al. 1993, Sec. 12.2]. The Trick is usually carried out
explicitly by the programmer (see the while loop in Jones and Gomard’s Imperative
Mix [Jones et al. 1993, Sec. 4.8.3]).

This enumeration of static values could also be obtained by program analysis, for
example using Heintze’s set-based analysis [Heintze 1992]. Exploiting the results of
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such a program analysis would make it possible to automate The Trick. In fact, a
program analysis determining finite ranges of values that may occur at a program
point does enable The Trick. For example, control-flow analysis [Shivers 1991] (also
known as closure analysis [Sestoft 1989]) determines a conservative approximation
of which λ-abstractions can give rise to a closure that may occur at an application
site. The application site can be transformed into a case-expression listing all
the possible λ-abstractions and performing a first-order call to the corresponding
λ-abstraction in each branch. This defunctionalization technique was proposed
by Reynolds in the early seventies [Reynolds 1972] and recently cast in a typed
setting [Minamide et al. 1996]. Since the end of the eighties, it is used by such
partial evaluators as Similix to handle higher-order programs [Bondorf 1991]. The
conclusion of this is that Jones, Gomard, and Sestoft actually do use an automated
version of The Trick [Jones et al. 1993, Sec. 10.1.4, Item (1)], even if they do not
present it as such.

In summary, and according to the literature, The Trick appears as yet another
powerful binding-time improvement. It has not been formalized.

1.7 Overview

In this article we present and prove the correctness of a partial evaluator that
both automates and unifies the binding-time improvements listed above. Section 2
presents an extension of Gomard and Jones’s λ-Mix which handles products and
disjoint sums properly. Section 3 illustrates the effect of eta-expansion in this
continuation-based partial evaluator. In particular, eta-expansion of disjoint-sums
values does The Trick. Section 4 extends the binding-time analysis of Section 2
with coercions as eta-redexes. Section 5 proves the correctness of this extended
partial evaluator. Section 6 assesses our results, and Section 7 concludes.

1.8 Notation

Consistently with Nielson and Nielson [1992], we use overlining to denote “static”
and underlining to denote “dynamic.” For purposes of annotation, we use “@”
(pronounced “apply”) to denote applications, and we abbreviate (e0@e1)@e2 by
e0@e1@e2 and e0@(λx.e) by e0@λx.e.

A context is an expression with one hole [Barendregt 1984].
We assume Barendregt’s Variable Convention [Barendregt 1984]: when a λ-term

occurs in this article, all bound variables are chosen to be different from the free
variables. This can be achieved by renaming bound variables.

Eta-expanding a higher-order expression e of type τ1 → τ2 yields the expression

λv.e@v

where v does not occur free in e [Barendregt 1984]. By analogy, “eta-expanding” a
product expression e of type τ1 × τ2 yields the expression

pair(fst e, snd e)

(surjective pairing). And “eta-expanding” a disjoint-sum expression e of type τ1+τ2

yields the expression

case e of inleft(x1) ⇒ inleft(x1) [] inright(x2) ⇒ inright(x2) end.

ACM Transactions on Programming Languages, Vol. 18, No. 4, July 1996.



Eta-Expansion Does The Trick · 105

e ::= x |

λx.e | e0@e1 | pair(e1, e2) | fst e | snd e |

inleft(e) | inright(e) | case e of inleft(x1) ⇒ e1 [] inright(x2) ⇒ e2 end

Fig. 1. BNF of the λ-calculus.

τ ::= d | τ1 → τ2 | τ1 × τ2 | τ1 + τ2

e ::= x |

λx.e | e0@e1 | pair(e1, e2) | fst e | snd e |

λx.e | e0@e1 | pair(e1, e2) | fst e | snd e |

inleft(e) | inright(e) | case e of inleft(x1) ⇒ e1 [] inright(x2) ⇒ e2 end

inleft(e) | inright(e) | case e of inleft(x1) ⇒ e1 [] inright(x2) ⇒ e2 end

Fig. 2. BNF of the two-level λ-calculus.

2. AN EXTENSION OF λ-MIX HANDLING PRODUCTS AND DISJOINT SUMS

Our starting point is Gomard and Jones’s partial evaluator λ-Mix, an offline partial
evaluator for the λ-calculus [Gomard 1992; Gomard and Jones 1991; Jones et al.
1993]. We extend it to handle products and disjoint sums. Like Gomard and
Jones’s, our binding-time analysis is monovariant in that it associates one binding-
time type for each source expression. Also like Gomard and Jones, only static terms
are typed.

Our partial evaluator provides a proper treatment of disjoint sums, where a dy-
namic sum of two static values is not approximated to be dynamic if its context
of use is static. Instead, this context is duplicated during specialization. Bondorf
[1992] has given a specification of this technique, but no proof of correctness. The
technique is also used to specify “one-pass” CPS transformations [Danvy and Fil-
inski 1990]. Like the CPS transformation, the specification can be specified both
purely functionally or in a more “direct” style, using control operators [Lawall and
Danvy 1994].

Figure 1 displays the syntax of a λ-calculus with products and disjoint sums.
Figure 2 displays the syntax of a two-level λ-calculus where each construct, except
variables, has two forms: overlined (static) and underlined (dynamic). A two-level
λ-term is said to be completely dynamic if all the constructs in it are underlined. A
binding-time analysis (Section 2.1) maps a λ-term into a two-level λ-term. Program
specialization (Section 2.2) reduces all the static parts of a two-level λ-term and
yields a completely dynamic λ-term. Erasing its annotations yields the residual,
specialized λ-term. This is summarized in the diagram of Figure 3.
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Fig. 3. Offline partial evaluation.

2.1 Binding-Time Analysis

Figure 4 displays Gomard’s binding-time analysis, restricted to the pure λ-calculus.
Types are finite and generated from the grammar of Figure 2. The type d denotes
the type of dynamic values. The judgment

A ` e : t . w

should be read as follows: under hypothesis A, the λ-term e can be assigned the
type t with the annotated term w. The whole program must be assigned the type
d, whereas parts of the program can have other types. This requirement ensures
that program specialization can produce a completely dynamic λ-term. Notice that
a λ-term can have several types and several annotated versions. For example, both

∅ ` λx.x : d . λx.x

and

∅ ` λx.x : d → d . λx.x

are derivable. Notice also that each τ in Figure 4 can be either d or some other
type.

Figures 5 and 6 display the extension of this binding-time analysis to products
and disjoint sums. The extension to products is straightforward. In the extension
to disjoint sums, the binding time of a case expression is independent of the binding
time of its test, even when this test is dynamic.

2.2 Program Specialization

Program specialization reduces the static parts of a two-level λ-term. Our specifica-
tion of program specialization has the form of an operational semantics. If e and e′

are two-level λ-terms, then e −→ e′ means that e reduces to e′. Figure 7 displays
the three basic evaluation rules, and Figure 8 displays four “code-motion” rules.
We say that a two-level λ-term is in normal form if it cannot be reduced. Each
code-motion rule duplicates the static context of a dynamic case expression and
moves the copies to the branches of the case expression. This creates new redexes,
which fits together with the rule for binding-time analysis of case expressions of
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A ` x : A(x) . x

A[x 7→ τ1] ` e : τ2 . w

A ` λx.e : τ1 → τ2 . λx.w

A[x 7→ d] ` e : d . w

A ` λx.e : d . λx.w

A ` e0 : τ1 → τ2 . w0 A ` e1 : τ1 . w1

A ` e0@e1 : τ2 . w0@w1

A ` e0 : d . w0 A ` e1 : d . w1

A ` e0@e1 : d . w0@w1

Fig. 4. Gomard’s binding-time analysis for the pure λ-calculus.

A ` e1 : τ1 . w1 A ` e2 : τ2 . w2

A ` pair(e1, e2) : τ1 × τ2 . pair(w1, w2)

A ` e1 : d . w1 A ` e2 : d . w2

A ` pair(e1, e2) : d . pair(w1, w2)

A ` e : τ1 × τ2 . w

A ` fst e : τ1 . fst w

A ` e : τ1 × τ2 . w

A ` snd e : τ2 . snd w

A ` e : d . w

A ` fst e : d . fstw

A ` e : d . w

A ` snd e : d . snd w

Fig. 5. Extension of Gomard’s binding-time analysis to products.

A ` e : τ1 + τ2 . w A[x1 7→ τ1] ` e1 : τ . w1 A[x2 7→ τ2] ` e2 : τ . w2

A ` case e of
inleft(x1) ⇒ e1

[] inright(x2) ⇒ e2

end

: τ . case w of

inleft(x1) ⇒ w1

[] inright(x2) ⇒ w2

end

A ` e : d . w A[x1 7→ d] ` e1 : τ . w1 A[x2 7→ d] ` e2 : τ . w2

A ` case e of
inleft(x1) ⇒ e1

[] inright(x2) ⇒ e2

end

: τ . case w of
inleft(x1) ⇒ w1

[] inright(x2) ⇒ w2

end

A ` e : τ1 . w

A ` inleft(e) : τ1 + τ2 . inleft(w)

A ` e : τ2 . w

A ` inright(e) : τ1 + τ2 . inright(w)

A ` e : d . w

A ` inleft(e) : d . inleft(w)

A ` e : d . w

A ` inright(e) : d . inright(w)

Fig. 6. Extension of Gomard’s binding-time analysis to sums.
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Static applications:

(λx.e)@e1 −→ e[e1/x]

Static decompositions:

fst pair(e1, e2) −→ e1 snd pair(e1, e2) −→ e2

Static projections:

case inleft(e) of

inleft(x1) ⇒ e1

[] inright(x2) ⇒ e2

end

−→ e1[e/x1] case inright(e) of

inleft(x1) ⇒ e1

[] inright(x2) ⇒ e2

end

−→ e2[e/x2]

Fig. 7. Operational semantics of the two-level λ-calculus — evaluation rules.

Static applications:

(case e0 of inleft(x1) ⇒ e1 [] inright(x2) ⇒ e2 end)@e −→

case e0 of inleft(x1) ⇒ e1@e [] inright(x2) ⇒ e2@e end

Static decompositions:

fst (case e0 of inleft(x1) ⇒ e1 [] inright(x2) ⇒ e2 end) −→

case e0 of inleft(x1) ⇒ fst e1 [] inright(x2) ⇒ fst e2 end

snd (case e0 of inleft(x1) ⇒ e1 [] inright(x2) ⇒ e2 end) −→

case e0 of inleft(x1) ⇒ snd e1 [] inright(x2) ⇒ snd e2 end

Static projections:

case (case e0 of inleft(x1) ⇒ e1 [] inright(x2) ⇒ e2 end) of

inleft(x′

1) ⇒ e′1
[] inright(x′

2) ⇒ e′2
end
−→ case e0 of

inleft(x1) ⇒ case e1 of inleft(x′

1) ⇒ e′1 [] inright(x′

2) ⇒ e′2 end

[] inright(x2) ⇒ case e2 of inleft(x′

1) ⇒ e′1 [] inright(x′

2) ⇒ e′2 end

end

Fig. 8. Operational semantics of the two-level λ-calculus — code-motion rules.

Figure 6. Notice that there is no rule of the form

e@(case e0 of inleft(x1) ⇒ e1 [] inright(x2) ⇒ e2 end) −→

case e0 of inleft(x1) ⇒ e@e1 [] inright(x2) ⇒ e@e2 end.

This is because such a rule cannot create redexes unless the left-hand side is already
a redex itself.

The code motion rules in Figure 8 occur variously in logic, proof theory, CPS
transformation, deforestation, and partial evaluation. Similarly to Paulin-Mohring
and Werner [1993, Sec. 4.5.4], we use them to move static values toward static
contexts, in the simply typed two-level λ-calculus. For each context E[·], if e −→
e′, then E[e] −→ E[e′].

Our extension of λ-Mix is correct, as proven in Section 5.
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3. EXAMPLES

We first briefly summarize how eta-expansion works for functions and products,
and then we give two examples of how our partial evaluator does The Trick.

3.1 Coercions for Functions

As illustrated in our earlier work [Danvy et al. 1995], for functions, eta-expansion is
useful in two cases. The first is where a dynamic context E[·], expecting a higher-
order value of type d (one could be tempted to write “of type τ1→τ2” to clarify
that this is a function, but in the present treatment, dynamic terms are not typed),
can be coerced into a static context

λv.[·]@v

that expects a value of type τ1→τ2. The second useful case is where a dynamic
higher-order value e of type d (again, one could be tempted to write τ1→τ2) can be
coerced into a static value

λv.e@v

of type τ1→τ2 that will fit into a static context.

A Concrete Example: Church Numerals. Church numerals [Barendregt 1984] are
defined with a λ-representation for the number zero and with a λ-representation
for the successor function:

zero = λs.λz.z

succ = λn.λs.λz.s@(n@s@z)

Suppose we want to specialize succ with respect to a given numeral, say the one
corresponding to 2, i.e., succ@(succ@zero). A standard binding-time analysis does
not allow source arguments to be higher order [Jones et al. 1993]. Our binding-
time analysis, however, will produce the following two-level, eta-expanded term (the
eta-redex is boxed):

(λn.λs.λz.s@(n@ (λv.s@v) @z))@λs.λz.s@(s@z)

The following Scheme session illustrates Church numerals and their residualiza-
tion.

> (define zero (lambda (s) (lambda (z) z)))

> (define succ (lambda (n) (lambda (s) (lambda (z) (s ((n s) z))))))

> (define succ-gen

(lambda (n)

(let* ([s (gensym! "s")]

[z (gensym! "z")])

‘(lambda (,s)

(lambda (,z)

(,s ,((n (lambda (v) ‘(,s ,v))) z)))))))

> (succ-gen (succ (succ zero)))

(lambda (s0) (lambda (z1) (s0 (s0 (s0 z1)))))

> (((lambda (s0) (lambda (z1) (s0 (s0 (s0 z1))))) 1+) 0)

3

>
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Procedure succ-gen is the generating extension of Procedure succ, i.e., its asso-
ciated program specializer [Jones et al. 1993]. Applying succ-gen to the static data
gives the same result as specializing succ with respect to the static data. In the def-
inition of succ-gen, binding-time information is encoded with Scheme’s quasiquote
(backquote) and unquote (comma) [Clinger and Rees 1991].

3.2 Coercions for Products

A similar situation occurs for partially static values: whenever such a value occurs
in a dynamic context, the value is dynamized, and conversely, whenever a partially
static context receives a dynamic value, the context is dynamized as well. Let us
consider pairs. A static pair p of type d×d can be coerced to

pair(fst p, snd p)

which has type d. A dynamic pair p of type d can be coerced to

pair(fst p, snd p)

which has type d×d.
For example, if the following expression occurs in a dynamic context

fst e

where e has type (d → d) × d, the result of binding-time analysis reads

fst e

where e has type d. If we eta-expand the result, it will read:

fst (pair(λx.(fst e)@x, snd e)).

This term has type d, which matches the type of its context, and the partially static
pair e remains partially static, thanks to the coercion.

Conversely, if the value of two expressions e (of type d) and e′ (of type d×d) can
occur in the same context, binding-time analysis classifies e′ to be dynamic and, as
a by-product, dynamizes this context. Again, e could be eta-expanded to read

pair(fst e, snd e).

This term has type d × d, which avoids dynamizing the context and thus makes it
possible to keep e′ a static pair, thanks to the coercion. (Note that the alternative of
eta-expanding e′ into pair(fst e′, snd e′) would not be a binding-time improvement,
since it would dynamize the present context.)

3.3 Coercions for Disjoint Sums

The same coercions apply to disjoint sums. In the following, we give two examples
of how The Trick can be achieved by eta-expansion in the presence of our new rules
for binding-time analysis and transformation of case expressions.

Static Injection in a Dynamic Context. The following expression is partially eval-
uated in a context where f is dynamic.

(λv.f@(case v of inleft(a) ⇒ a + 20 [] inright(b) ⇒ ... end)@v)@inleft(10)
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Assume this β-redex will be reduced. Notice that v occurs twice: once as the
test part of a case expression, and once as the argument of the application of f
to the case expression. Since f is dynamic, its application is dynamic, and the
application of that expression is dynamic as well. Thus the binding-time analysis
classifies v to be dynamic, since it occurs in a dynamic context, and in turn both the
case expression and inleft(10) are also classified as dynamic. Overall, binding-time
analysis yields the following two-level term.

(λv.f@(case v of inleft(a) ⇒ a + 20 [] inright(b) ⇒ ... end)@v)@inleft(10)

In this term, both f and v have type d.
After specialization (i.e., reduction of static expressions and reconstruction of

dynamic expressions) the residual term (call it (a)) reads as follows.

f@(case inleft(10) of inleft(a) ⇒ a + 20 [] inright(b) ⇒ ... end)@inleft(10)

The fact that inleft(10), a partially static value, occurs in the dynamic context
f@(case v of inleft(a) ⇒ a + 20 [] inright(b) ⇒ ... end)@[·] “pollutes” its occurrence
in the potentially static context case [·] of inleft(a) ⇒ a + 20 [] inright(b) ⇒ ... end,
so that neither is reduced statically.

Note that since v is dynamic and occurs twice, a cautious binding-time analysis
would reclassify the outer application to be dynamic: there is usually no point in
duplicating residual code. In that case, the expression is totally dynamic and so is
not simplified at all.

In this situation, a binding-time improvement is possible, since inleft(10) will
occur in a dynamic context. We can coerce this occurrence by eta-expanding the
dynamic context (the eta-redex is boxed).

(λv.f@(case v of inleft(a) ⇒ a + 20 [] inright(b) ⇒ ... end)
@

case v of inleft(a) ⇒ inleft(a) [] inright(b) ⇒ inright(b) end )

@
inleft(10)

Binding-time analysis now yields the following two-level term.

(λv.f@(case v of inleft(a) ⇒ a + 20 [] inright(b) ⇒ ... end)
@

case v of inleft(a) ⇒ inleft(a) [] inright(b) ⇒ inright(b) end)

@

inleft(10)

Here, v is not approximated to be dynamic: it has the type Int + t, for some t.
Specialization yields the residual term

f@30@inleft(10)

which is more reduced than the residual term (a) above.
Let us now illustrate the dual case, where a dynamic injection in a potentially

static context dynamizes this context.
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Dynamic Injection in a Static Context. The following expression is partially eval-
uated in a context where d is dynamic.

(λf. ... f@d ... f@inleft(λx.x) ...)
@
λv.case v of inleft(a) ⇒ a@10 [] inright(b) ⇒ ... end

Assume this β-redex will be reduced. Notice that f occurs twice: it is applied
both to a static value and to a dynamic value. The binding-time analysis of Figures
4, 5, and 6 thus approximates its argument to be dynamic and yields the following
two-level term.

(λf. ... f@d ... f@inleft(λx.x) ...)

@
λv.case v of inleft(a) ⇒ a@10 [] inright(b) ⇒ ... end

In this term, f has type d.
Specialization yields the following residual term (call it (b)).

...
(λv.case v of inleft(a) ⇒ a@10 [] inright(b) ⇒ ... end)@d
...
(λv.case v of inleft(a) ⇒ a@10 [] inright(b) ⇒ ... end)@inleft(λx.x)
...

The fact that d, a dynamic value, occurs in the potentially static context f@[·]
dynamizes this context, which in turn dynamizes inleft(λx.x).

In this situation, a binding-time improvement is possible to make inleft(λx.x)
occur in a static context always. We can coerce the bothering occurrence of d by
eta-expanding it (the eta-redex is boxed).

λf. ...

f@ case d of inleft(a) ⇒ inleft(a) [] inright(b) ⇒ inright(b) end

...
f@inleft(λx.x)
...

@
λv.case v of inleft(a) ⇒ a@10 [] inright(b) ⇒ ... end

This eta-expansion enables The Trick. Even though d is not statically known,
its type tells us that it is either some dynamic value a or some dynamic value b.
Program specialization automatically does The Trick, by plugging these values into
the enclosing context (see Figure 8).

But this is not enough because now λx.x will be dynamized by the newly intro-
duced occurrence of a. Indeed, binding-time analysis yields the following two-level
term.
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λf. ...

f@case d of inleft(a) ⇒ inleft(a) [] inright(b) ⇒ inright(b) end
...

f@inleft(λx.x)
...

@

λv.case v of inleft(a) ⇒ a@10 [] inright(b) ⇒ ... end

In this term, f has type (d + t) → d, for some t.
Specialization moves the context of the dynamic case expression in each of its

branches and produces the following residual term (call it (c)).

...
case d of inleft(a) ⇒ a@10 [] inright(b) ⇒ ... end
...
(λx.x)@10
...

This residual term (c) is more reduced than the residual term (b) above.
However, the fact that a, a dynamic value, occurs in the potentially static context

[·]@10 dynamizes this context, which in turn dynamizes λx.x.
Fortunately, we already solved that problem in Section 3.1, using eta-expansion.

The new eta-redex is boxed.

λf. ...

f@case d of inleft(a) ⇒ inleft( λz.a@z ) [] inright(b) ⇒ inright(b) end
...
f@inleft(λx.x)
...

@
λv.case v of inleft(a) ⇒ a@10 [] inright(b) ⇒ ... end

Binding-time analysis now yields the following two-level term.

λf. ...

f@case d of inleft(a) ⇒ inleft(λz.a@z) [] inright(b) ⇒ inright(b) end
...

f@inleft(λx.x)
...

@

λv.case v of inleft(a) ⇒ a@10 [] inright(b) ⇒ ... end

Here, f has type ((d → d) + t) → d, for some t. Thus neither inleft(λx.x) nor λx.x
are approximated to be dynamic.

Specialization yields the following residual term.
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...
(case d of inleft(a) ⇒ a@10 [] inright(b) ⇒ ... end)
...
10
...

This residual term is more reduced than the term (c) above.

A Concrete Example: Mix’s Pending List. The Trick was first used to program
Mix, the first self-applicable partial evaluator [Jones et al. 1989]. Mix’s program
specializer is polyvariant and operates on a “pending list,” which is a list of special-
ization points, subindexed with static values. When Mix is self-applied, looking up
in this list is a dynamic operation, even though the specialization points are static.
The Trick is used to move the context of this lookup (i.e., the specializer) inside
the list to specialize the specialization points at self-application time.

Holst and Hughes have characterized this use of The Trick as the application of
one of Wadler’s theorems for free: Reynolds’s Abstraction theorem in the first-order
case [Holst and Hughes 1990; Reynolds 1983; Wadler 1989]. The composition of
specialization and list lookup is replaced by the composition of lookup and map of
specialization over the list. This achieves a binding-time improvement because it
enables the specialization of specialization points at self-application time.

In the context of this article, and since the source program has a fixed number
of specialization points, the pending list has a fixed length, and thus it can be
formalized as a finite disjoint sum. Eta-expansion over this disjoint sum enables
The Trick, through which specialization points are specialized at self-application
time.

3.4 Conclusions

For functions, products, and disjoint sums, eta-redexes act as binding-time coer-
cions. Also, and as illustrated in the last example, they synergize. In particular,
the first eta-expansion of the Section on “Dynamic Injection in a Static Context”
enables The Trick. Even though d is unknown, its type tells us that it can be either
some (dynamic) value a or b. Program specialization automatically does The Trick
and plugs these values into the surrounding context (see Figure 8).

4. BINDING-TIME ANALYSIS WITH ETA-EXPANSION

In our earlier work [Danvy et al. 1995], we proposed and proved the correctness of a
binding-time analysis that generates binding-time coercions for higher-order values
at points of conflict, instead of taking the conservative solution of dynamizing
both values and contexts. We pointed out the analogous need for binding-time
coercions for products, but did not present the corresponding binding-time analysis
generating these binding-time coercions at points of conflict. This binding-time
analysis can be obtained by extending the binding-time analysis of Figures 4, 5,
and 6 with Figures 9 and 10.

Figure 9 displays two general eta-expansion rules. Intuitively, the two rules can
be understood as being able (1) to coerce the binding-time type d to any type τ
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A ` e : d . w τ ` z ⇒ m ∅[z 7→ d] ` m : τ . w′

A ` e : τ . w′[w/z]

A ` e : τ . w τ ` z ⇒ m ∅[z 7→ τ ] ` m : d . w′

A ` e : d . w′[w/z]

Fig. 9. Extension of Gomard’s binding-time analysis to binding-time coercions.

d ` e ⇒ e

τ1 ` x ⇒ x′ τ2 ` e@x′ ⇒ e′

τ1 → τ2 ` e ⇒ λx.e′

τ1 ` fst e ⇒ e1 τ2 ` snd e ⇒ e2

τ1 × τ2 ` e ⇒ pair(e1, e2)

τ1 ` x1 ⇒ e1 τ2 ` x2 ⇒ e2

τ1 + τ2 ` e ⇒ case e of inleft(x1) ⇒ e1 [] inright(x2) ⇒ e2 end

Fig. 10. Type-directed eta-expansion.

and (2) to coerce any type τ to the type d. The combination of the two rules allows
us to coerce the type of any λ-term to any other type.

Eta-expansion itself is defined in Figure 10. It is type-directed, and thus it
can insert several embedded eta-redexes in a way that is reminiscent of Berger
and Schwichtenberg’s normalization of λ-terms [Berger and Schwichtenberg 1991;
Danvy 1996].

Consider the first rule in Figure 9. Intuitively, it works as follows. We are given a
λ-term e that we would like to assign the type τ . In case we can only assign it type
d, and τ 6= d, we can use the rule to coerce the type to be τ . The first hypothesis
of the rule is that e has type d and annotated term w. The second hypothesis of
the rule takes a fresh variable z and eta-expands it according to the type τ . This
creates a λ-term m with type τ . Notice that z is the only free variable in m. The
third hypothesis of the rule annotates m under the assumption that z has type d.
The result is an annotated term w′ with the type τ and with a hole of type d (the
free variable z) where we can insert the previously constructed w. Thus, w′ makes
the coercion happen. The second rule in Figure 9 works in a similar way.

With this new binding-time analysis, all the examples of Section 3 now special-
ize well without binding-time improvement. In particular, no tricks are required
from the partial-evaluation user — they were a tell-tale of too coarse binding-time
coercions in existing binding-time analyses.

For example, consider again the first example in Section 3.2, that is, the expres-
sion fst e. We assume that the judgment

∅ ` e : (d → d) × d . w
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is derivable, i.e., e has type (d → d) × d with annotated term w. Moreover, we
assume that the expression fst e occurs in a dynamic context, so we need to assign
it type d. The following derivation does that, giving the expected annotated and
eta-expanded version of e.

∅ ` e : d . pair(λx.(fst w)@x, snd w)

∅ ` fst e : d . fst pair(λx.(fst w)@x, snd w)

To derive the hypothesis we use the second rule in Figure 9. We need the following
three judgments:

∅ ` e : (d → d) × d . w

(d → d) × d ` z ⇒ pair(λx.(fst z)@x, snd z)

∅[z 7→ (d → d) × d] ` pair(λx.(fst z)@x, snd z) : d . pair(λx.(fst z)@x, snd z)

The first judgment is given by assumption; the derivation of the other two are left
to the reader.

5. CORRECTNESS

We now state and prove that our binding-time analysis is correct with respect to
the operational semantics of two-level λ-terms. The statement of correctness is
taken from Palsberg [1993] and Wand [1993], who proved correctness of two other
binding-time analyses. The proof techniques are well known; we omit the details.

If w is a two-level λ-term, then ŵ denotes the underlying λ-term.
We first prove a basic property of the operational semantics of two-level λ-terms.

Let −→−→ be the reflexive and transitive closure of −→.

Theorem 5.1 (Church-Rosser). If e −→−→ e′ and e −→−→ e′′, then there

exists e′′′ such that e′ −→−→ e′′′ and e′′ −→−→ e′′′.

Proof. By the method of Tait and Martin-Löf; the sequence of definitions and
lemmas is standard [Barendregt 1984, pp. 59–62].

We then prove that if e can be annotated as w, then so can ŵ. This enables us
to simplify the statements and proofs of subsequent theorems.

Theorem 5.2 (Simplification). If A ` e : τ . w, then A ` ŵ : τ . w.

Proof. By induction on the structure of the derivation of A ` e : τ . w.

We then prove subject reduction, using a substitution lemma.

Lemma 5.2.1 (Substitution). If

A ` ŵ1 : τ . w1 and A′ ` ŵ2 : τ ′ . w2 ,

then

A′′ ` ŵ2[ŵ1/z] : τ ′ . w2[w1/z] ,

where A and A′′ agree on the free variables of w1, where A′ and A′′ agree on the

free variables of w2 except z, and where A′(z) = τ .

Proof. By induction on the structure of the derivation of A′ ` ŵ2 : τ ′ .w2.
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Theorem 5.3 (Subject Reduction). If A ` ŵ : τ . w and w −→ w′, then

A ` ŵ′ : τ . w′.

Proof. By induction on the structure of the derivation of A ` ŵ : τ . w, using
Lemma 5.2.1.

Next we prove that if a closed two-level λ-term of type d is reduced to normal form,
then all the components of that normal form are dynamic.

Theorem 5.4 (Dynamic Normal Form). Suppose w is a two-level λ-term in

normal form, and suppose A is an environment such that A(x) = d for all x in the

domain of A. If A ` ŵ : d . w, then w is completely dynamic.

Proof. By induction on the structure of the derivation of A ` ŵ : d . w.

Finally, we prove that typability ensures that no “confusion” between static and
dynamic will occur, for example as in (λx.e)@e1.

Theorem 5.5 (No Confusion). If A ` ŵ : τ . w, then the following “con-

fused” terms do not occur in w.

(λx.e)@e1

(λx.e)@e1

fst pair(e1, e2)

fst pair(e1, e2)

snd pair(e1, e2)

snd pair(e1, e2)

case inleft(e) of inleft(x1) ⇒ e1 [] inright(x2) ⇒ e2 end

case inleft(e) of inleft(x1) ⇒ e1 [] inright(x2) ⇒ e2 end

case inright(e) of inleft(x1) ⇒ e1 [] inright(x2) ⇒ e2 end

case inright(e) of inleft(x1) ⇒ e1 [] inright(x2) ⇒ e2 end

Proof. Immediate.

Together, Theorems 5.2, 5.3, 5.4, and 5.5 guarantee that if we have derived
A ` e : d . w, then we can start specialization of w and know that

—if a normal form is reached, then all its components will be dynamic, and

—no confused terms will occur at any point.

We have thus established the correctness of a partial evaluator which automat-
ically does The Trick. Notice that the correctness statement also holds without
eta-expansion, i.e., for the partial evaluator specified in Section 2.

6. ASSESSMENT AND RELATED WORK

The two new eta-expansion rules of Figure 9 unify and generalize our earlier treat-
ment of eta-expansion [Danvy et al. 1995], and they are a key part of our explanation
of The Trick. Intuitively, the two rules make it possible (1) to coerce the binding-
time type d to any type τ and (2) to coerce any type τ to the type d. There is no
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direct rule, however, for coercing for example d → d to d → (d → d). Such a rule
seems to be definable using some notion of subtyping.

Our rules for eta-expansion resemble rules for inserting coercions in type systems
with subtyping [Henglein 1993]. The purpose of our rules, however, is not to change
the type of a term to a supertype; two of our coercions can change the type of a
term to any other type.

We have not considered inferring binding-time annotations. This seems possible,
using the technique of Dussart, Henglein, and Mossin [Dussart et al. 1995] — a
future work.

In Jones, Gomard, and Sestoft’s textbook [Jones et al. 1993], using The Trick
requires the partial-evaluation user to collect static information under dynamic
control (either by hand or by program analysis) and to rewrite the source program
to exploit it. We represent this statically collected information as a disjoint sum.

Jones, Gomard, and Sestoft also restrict static values occurring in dynamic con-
texts to be of base type. Values of higher type are dynamized, thereby making
their type a base type, namely dynamic. In contrast, the binding-time analysis of
Section 4 provides a syntactic representation of binding-time coercions at higher
type. This syntactic representation can be interesting in its own right, in a setting
where the binding time “dynamic” retains a type structure [Danvy 1996].

Polyvariant specializers usually select dynamic conditional expressions as spe-
cialization points [Bondorf and Danvy 1991; Jones et al. 1993], thus disabling the
code-motion rules of Figure 8. Experience, however, shows that not all dynamic
conditional expressions need be treated as specialization points [Malmkjær 1993].
For these, the code-motion rules of Figure 8 can apply.

A polyvariant binding-time analysis, in contrast to our monovariant binding-
time analysis, associates several binding-time descriptions with each program point
[Consel 1993a]. Polyvariance obviates binding-time coercions, by generating several
variants instead of coercing them into a single one. Experience, however, shows
that polyvariance is expensive [Ashley and Consel 1994]. Moreover, our personal
experience with Consel’s partial evaluator Schism [Consel 1993b] shows that eta-
expansion can speed up a polyvariant binding-time analysis by reducing the number
of variants.

Finally, our results apply to online partial evaluation in that they provide guide-
lines to structure a typed online partial evaluator. Online partial evaluators usually
keep multiple representations of static values, which obviates the need for residu-
alization functions. They need, however, to be continuation-based to be able to
achieve The Trick.

7. CONCLUSION

We have specified and proven the correctness of a partial evaluator for a λ-calculus
with products and disjoint sums. The specializer moves static contexts across dy-
namic case expressions, and the binding-time analysis accounts for this move (Sec-
tion 2). We have demonstrated that in such a partial evaluator, eta-expansion for
disjoint-sum values achieves The Trick, thus characterizing it as a typing property
(Section 3). Our binding-time analysis automatically inserts binding-time coer-
cions as eta-redexes (Section 4), and thus our partial evaluator both unifies and
automates the binding-time improvements listed in Jones, Gomard, and Sestoft’s
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textbook [Jones et al. 1993, Ch. 12]. Future work includes finding an efficient
algorithm for our new binding-time analysis.
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