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Abstract

Programming computersis a notorioudly error-prone process. It isthejob of the program-
ming language designer to make this process more reliable. One approach to thisis to
impose some sort of typing discipline on the programs. In doing this, the programming
language designer isimmediately faced with atradeoff: if the type system istoo smple, it
cannot accurately express important properties of the program; if it istoo expressive, then
mechanically checking or inferring the types becomes impractical. This thesis describes
a type system called refinement types, which is an example of a new way to make this
tradeoff, as well as a potentially useful system initself.

Refinement type inference requires programs to have types in two type systems. an
expressivetypeinference system (intersection types with subtyping) and arelatively smple
type system (basic polymorphic type inference). Refinement type inference inherits some
properties from each of these: asin intersection types with subtyping, we can use the type
system to do abstract interpretation; asin basic polymorphictypeinference, refinement type
inference is decidable (preliminary experiments suggest refinement type inference may be
practical aswell).

We have implemented refinement typeinferencefor asubset of Standard ML to test these
ideas. We have added new syntax, called rectype declarations, to alow the programmer
to specify relevant domains for the abstract interpretation. A prototype implementation of
refinement typeinference can do someinteresting case analysisfor Standard ML programs;
for example, if the programmer uses a rectype declaration to declare interest in whether
a boolean expression is in conjunctive normal form (CNF), refinement type inference
can efficiently prove that a function for converting boolean expressions to CNF does
indeed always return a boolean expression in CNF. Rectype declarations and refinement
type inference seem flexible and efficient enough to practically enforce many other useful
program properties as well.
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Chapter 1

| ntroduction

In this chapter we use examples to illustrate what refinement type inference can and cannot
do. We also describe the context in which this thesis exists, and give an overview of the
rest of the thesis.

1.1 Introductory Examples of Refinement Types

The examplesin this chapter are in Standard ML. The first example defines a Standard ML
function that returnsthe last cons cell in alist:

datatype « list = nil | cons of a*a list
fun lastcons (last as cons (hd, nil)) = last
| lastcons (cons (hd, tl)) = lastcons tl

Readers unfamiliar with Standard ML will benefit from some explanation of this. The first
lineisadatatype declaration that definesthe ML type constructor /ist to mean L1SP-like
listswhere al elements have the same type. The type of the elementsis the argument to the
type constructor; for example, since int is the type of integers, int list isthe type of lists
of integers. (Thetypeis not written list int; unlike function application, type application
iswritten in postfix.) This declaration also states that the constructors cons andnil can be
used to construct lists.

The second and third lines are the definition of the function 1astcons. A function
definition in Standard ML consists of the keyword fun followed by one or more cases
consisting of afunction name, a pattern, an “=", and an expression. Each time the function
is called, the first pattern that matches the actual argument is selected and used to bind
variables, the corresponding expression is evaluated, and the resulting value is returned.
The first pattern (last as cons (hd, nil)) binds the variable 1ast to the argument
and also matches the pattern cons (hd, nil) against the argument; this checks that the
outermost constructor is cons and the second argument to cons isnil. If thisis so, then
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we bind hd to the first element of the list cons and return last. The second pattern
(cons (hd, t1))matchesany nonempty list. Sincethefirst pattern matched lists of length
one, the expression corresponding to this pattern will only be evaluated when the list has
two or more elements.

The empty list nil is not matched by any pattern. This causes SML compilers to
generate awarning during typeinferencethat not all cases are accounted for, and an error at
runtimeif thevaluenil ispassed to lastcons. Withrefinement types, we can do better by
making a declaration that distinguishes empty lists from nonempty lists. Then refinement
type inference will always generate a warning when lastcons is used and the missing
case is reachable, and it will often remain silent when the missing case of lastcons is
unreachable. Assuming we eliminate the warning generated by SML typeinferencefor the
missing case, the net result is fewer and more specific warnings.

Standard ML also alows matching against patterns without making afunction call. For
example, the expression

case lastcons y of
cons (x, nil) => print x

printsthe unique element of thelist returned by 1astcons. Thisexpression getsacompiler
warning for the same reason as the definition of lastcons: the compiler sees that not all
cases are dedlt with. Once again, we can use refinement types to do better. If we make
a declaration distinguishing singleton lists from other lists, refinement type inference will
infer that 1astcons always returns a singleton list and that the missing branches of this
case Statement are unreachable.

Attempting to take such refined type information into account at compile time can very
quickly lead to undecidable problems. The key ideawhich makes our type system decidable
is that subtype distinctions (such as singleton lists as a subtype of arbitrary lists) must be
made explicitly by the programmer in the form of recursive type declarations. Since the
programmer makes a finite number of recursive type declarations, we have afinite number
of distinctionsto search over during type inference.

In the example above, we can declare the refinement type of singleton lists as

datatype « list = nil | cons of a*a list

rectype a empty = nil
and «a singleton = cons (a, nil)
and a long = cons (a, cons (a, a Tist))
and a Ly, = bottom (list)

Thisrectype declaration instructstypeinferenceto distinguish lists of length O, 1, and 2 or
morefromeach other. If wethink of refinement typesas sets, then | correspondsto set union.
Inthiscontext, the value constructorscons andnil operate on sets; thetypeexpressonnil
standsfor theset {nil} and cons(.X,Y') standsfor {cons(z,y) |z € X andy € Y'}. The
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expression bottom (list) correspondsto the empty set of lists, and L ;;;; arefinement type
identifier defined by thisdeclarationto stand for anempty set of lists. (Intheimplementation,
al identifiers are ASCII, so we cannot use the name L j,; as an identifier directly; instead
weusebot_list. Inthetext of thisthesiswearenot limited to ASCII, so we use the name
14, for thisidentifier.) Asaconvenience, the system also provides a catch-all refinement
type T, that includes al lists. This means that rectype declaration above is treated as
though the clause

.and a T = nil | cons (a* Tyg)

were added. (The implementation uses top_list instead of T j;,;.)

One way to think of the refinement type inference algorithmis that it performs abstract
interpretation over programmer-specified finite sets of refinement types (plural here, since
each ML type has its own set of refinement types). Finiteness is important, since it is
necessary for the decidability of refinement type inference. With the above declaration,
abstract interpretation works over this set of refinementsof « list:

a T gt

e

a empty a singleton a long

o Ly

The system ensures that the intersection of any two refinement type constructorsis aso a
refinement type constructor, so if we omitted the declaration of L ;;,, the lattice would ook
the same, except the position of L ;,; would be occupied by an automatically generated
name instead.

To perform the abstract interpretation, the type system needs to know the behaviors of
cons and nil on this abstract domain. This can be expressed through refinement types
given to the constructor. For example, cons applied to anything of type o and nil will
return asingleton list:

cons ! (a * a empty) — « singleton
The constructor cons also has other types, such as:

cons : («a * a singleton) — « long
cons : (a* a long) — a long

In the refinement type system, we expressthe principal typefor cons by using theintersec-
tion operator “A” to combine al these types, resulting in:
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cons : (a* a emply)  — « singleton A
(a * a singleton) — « long A
(o * a long) — a long

Thistypefor cons isgenerated automatically from the rectype declaration above.

We can also use refinement types to analyze polymorphic functions. For example, we
can define the usual function for applying a function to each element of alist and making a
list of the results as follows:

fun map f nil = nil
| map £ (cons (a, b)) = cons (f a, map f b)

This function has the polymorphic ML type V(«, 8).(a — 3) — « list — 3 list. With the
refinement type declarations listed above in effect, it has the refinement type

V(e B).(a— B) — (a emply — 3 empty A
a singleton — (3 singleton N
a long — 3 long).

In Chapter 4, we give examples where polymorphism interferes with refinement type
inference. This is not one of them; expressions using polymorphic map always get
as precise a refinement type as sSimilar expressions using a monomorphic version of
map. For example, the best refinement type for cons (nil, nil)isa empty singleton,
and the best refinement type for map (fn x => cons (x, nil)) (coms (nil, nil))is
a empty singleton singleton. Sincethe value of thisexpression is

cons (cons (nil, nil), nil),

thisis the best type we could hope for.

We can al so use refinement typesto provethat certain partsof aprogram do not use some
datatype constructors. Consider a compiler for a toy language with only if statements,
case Statements, and variables, where i f statements are syntactic sugar for case statements
that operate on the booleans. It is possible to separate a compiler for this language into
three sections: a parser, adesugarer that rewritesthe 1 f statementsto case statements, and
the rest of the compiler. Sincetherest of the compiler is only given desugared code, it does
not need to be prepared for if statements.

To formalize this, wefirst define the abstract syntax for this toy language:

datatype pat = TRUE | FALSE
datatype syn =
VAR of siring
| IF of syn * syn * syn
| CASE of syn * (pat * syn) list
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We can use arectype declaration to distinguish desugared abstract syntax:

rectype desugared =
VAR ( T string )
| CASE (desugared * (T o * desugared) T jist)

We omit the code for the parser. The code for the desugarer is straightforward:

fun desugar (IF (sl1, s2, s3)) =
CASE (desugar s1, [(TRUE, desugar s2), (FALSE, desugar s3)])
| desugar (VAR s) = VAR s
| desugar (CASE (s, 1)) =
CASE (desugar s, map (fn (pat, s’) => (pat, desugar s’)) 1)

This gives desugar the refinement type T,,, — desugared. For the purposes of this
example, our only concern about the rest of the compiler is to show that refinement type
inference can verify that it does not need to deal with the IF constructor if it isonly passed
desugared codefor input. Itispossible towrite and typecheck a caricature of the rest of the
compiler by first defining a stub datatype for the output of the compiler:

datatype code = CODE

Then we define the rest of the compiler to covert all syntax it expects to encounter into a
CODE:

fun rest (VAR s) = CODE
| rest (CASE (s, 1)) =
(rest s;
map (fn (pat, s’) => rest s’) 1;
CODE)

In this case refinement types can verify that the missing IF case of rest is never reached
if itsargument has the type desugared.

If we do not use refinement types, adilemmaarises aswe writethiscode. Either we can
have separate datatypes for the input and output of functionslike desugar, or we can have
one datatype and add unreachable casesto rest to keep the ML compiler from complaining.
Thefirst optionisawkward because thedataty pesdefined tend to be redundant, and functions
for printing out these datatypes (among others) must have redundant implementations. The
second option is unattractive as well because the compiler does not check that the added
cases are unreachable, and because we have forced the programmer to write unnecessary
code.
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1.2 Practical Examples of Refinement Types

Refinement type inferenceis practical only if, in areasonable amount of time, it can infer
useful information that is not immediately obviousto a human programmer. The examples
in this section are practical in that sense; the prototype implementation needs 22 seconds
elapsed time to verify them on a SPARCstation iPX and the examples are complex enough
that refinement type inference found an error. This implementation is not particularly
efficient; an improvement in speed by afactor of 10 would not be surprising.

We illustrate the practicality of refinement types with some code for manipulating
boolean expressions. We will present this code as Standard ML syntax; itisasimple matter
to trandate this into the restricted language described in the theory or the language of the
prototype. The assertions below about the behavior of refinement type inference are based
onthe behavior of theimplementation; to the best of my knowledge, they are also consistent
with the theory in the following chapters.

First, we can define boolean expressions with the declaration

datatype boolexp = And of boolexp * boolexp
| Or of boolexp * boolexp
| Not of boolexp
| True
| False
|

Var of string
For example, the expression (z A y) V —(z A y) isrepresented as the value
Or (And (Var "x", Var "y"), Not (And (Var "x", Var "y")))

One ssimple operation we can do with a boolean expression is evauate it, if it is ground
(that is, it has no variables). It is easy to write afunction to do this:

fun eval (And (bl, b2)) = eval bl andalso eval b2
| eval (Or (b1, b2)) = eval bl orelse eval b2
| eval (Not bl) = not (eval bi)
| eval True = true
| eval False = false

Unfortunately, presenting this definition to a Standard ML system yields awarning that the
function is missing a case for the Var constructor. This isreasonable, since we did not tell
the compiler that we only intend to evaluate ground boolean expressions. With refinement
types, we can tell the compiler this, and it can check that eval is missing no cases required
to evaluate ground boolean expressions. Refinement types can also ensure at compiletime
that all expressions passed to eval are ground.

To makethishappen, wedefine ground bool ean expressionswitharectype declaration:
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rectype ground = True | False | Not (ground) |
And (ground * ground) | Or (ground * ground)

This declaration defines a refinement type ground. Every refinement type is entirely
contained within some ML type; we say the refinement type refines the ML type. In this
case, ground refines boolexp. The rectype Sstatement can be read as a description of all
the ways of constructing a value with refinement type ground; for instance, because the
rectype Statement includes the clause And (ground * ground), it is possible to construct
a value with refinement type ground by applying the constructor And to a value with
refinement type ground * ground; thisis equivalent to saying the argument to And must be
apair of values, each with refinement type ground.

A refinement type called T 4., cOntaining all values of ML type boolexp isimplicitly
declared. Without this there would be no refinement type for non-ground boolean expres-
sions, which would essentially mean that the var constructor would cause a refinement
type error whenever it isused.

With the declaration of ground, refinement type inference will infer that eval has the
refinement type ground — T y,,;, Where T 4,,,iS the refinement of bool that includes both
true and false. Aslong as refinement type inference can infer that the argument passed
to eval each timeit is called has refinement type ground, there will be no warning and no
need for a warning because the missing case in eval will not be reached.

Refinement types can aso be used to infer useful things about the result of substituting
values for variables in boolean expressions. This requires manipulating substitutions; we
will represent a substitution as a value with the type (string * boolexp) list,where the first
element of each pair inthelististhe nameof thevariableand the second isthe corresponding
value. An elementary operation on substitutions is looking up a value in a substitution,
which can be implemented with the code:

fun lookup (coms ((stl, v), tl)) st2 =
1f stl = st2 then v else lookup tl st2
| lookup [1 _ = error ()
If we assume error has the ML type a— 3, then lookup gets the ML type (« *
3) list — a — 3, where we underline type variables for which polymorphic equality must
be defined. The refinement typeinferred for itissimilar: (a * 3) Ty — a— 5.

When we instantiate the ML type variables « and /3, the corresponding refinement
type variables can be instantiated to any refinement of the ML type substituted for the
corresponding ML type variable. For example, consider the instantiation mapping « to
string and /3 to boolexp. Instantiating the ML type (a * 3) list — a — 3 yields the ML
type (string * boolexp) list — string — boolexp. Wewill supposethat T ., refinesstring;
SINCe T pooterp FEfines boolexp, instantiating therefinement type (a 3) T st — o — B yields

((TstTing * Tboolexp) list — Tstﬂng - Tboolexp .
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Since ground aso refines boolexp, instantiating it also yields
(T string * ground) list — T siping — ground.

We can combine multiple refinement types of an expression with A, so lookup aso hasthe
refinement type

(Tstring * QT’OU?ld) list — Tstﬂng - gT’OUTld A (Tstring * Tboolexp) list — Tstring - Tboolexp .

Now we can use 1ookup to implement a function for applying a substitution:

fun apsubst (And (b1, b2)) s =
And (apsubst bl s, apsubst b2 s)
| apsubst (Or (b1, b2)) s =
Or (apsubst bl s, apsubst b2 s)
| apsubst (Not bl) s = Not (apsubst bl s)
| apsubst (Var st) s = lookup s st
| apsubst x _ = x

and with refinement types we can infer that this function has the type
Tboolexp H(Tstring * gmund) Tlist - gTOU?ld,

which meansthat applying aground substitution to any boolean expression yields aground
boolean expression (or raises an exception).

We can aso use refinement types to reason about boolean expressions in conjunctive
normal form (CNF). We can distinguish these with the following rectype declaration:

rectype cnf = And (enf x enf) | disj | True
and disj = Or (disj * disj) | literal | False
and literal = Not (atom) | atom
and atom = Var (T sping)

As an example of the use of this rectype statement, we can write afunction to convert
boolean expressions into CNF, and use refinement types to verify that it aways returns an
expression in CNF. We define the function in two steps; the first step is to transform the
digunction of two expressions in CNF into an expression in CNF:

fun disjCnfs (And (b1, b2)) ¢
| disjCnfs True ¢ = True
| disjCnfs b (And (c1, c2))
And (disjCnfs b c1, disjCnfs b c2)
| disjCnfs b True = True
| disjCnfs b ¢ = Or (b, <)

And (disjCnfs bl c, disjCnfs b2 c)
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Type inference infers that disjCnfs has the refinement type enf — enf — enf, among
others.

An earlier version of this had an error that was found when the earlier definition did not
have the correct refinement type. The version with the error was

fun disjCnfs (And (bl, b2)) ¢ = And (disjCnfs bl ¢, disjCnfs b2 c)
| disjCnfs True c = True
| disjCnfs (b as Or _) (And (cl, c2)) =
And (disjCnfs b c1, disjCnfs b c2)
| disjCnfs (b as Or _) True = True
| disjCnfs b ¢ = Or (b, <)

An example of the error isdisjCnfs False (And (False, False)); thisevauatesto
Or (False, And (False, False)),

which is not in CNF, even though both of the arguments to disjCnfs are in CNF. The
prototype implementation detected the error when it was told to check the assertion that
disjCnfs hasthetype cnf — cnf — cnf; the command to do thisis written as

val _ = disjCnfs < cnf — enf — enf

(Actualy, the prototypeimplementation only takes ASCI| charactersfor input, soitisreally
written

val _ = disjCnfs <: cnf -> cnf -> cnf

However, since theimplementation isaresearch prototyperather than apractical tool at this
point, readability is more important than gritty realism, so we will typeset al discussion of
the implementation.)

After we can convert the digunction of two CNF boolean expressionsto CNF, it is easy
to convert arbitrary boolean expressions to CNF:

fun toCnf (And (bl b2)) = And (toCnf bl, toCnf b2)
| toCnf (Or (bl, b2)) = disjCnfs (toCnf bl) (toCnf b2)

| toCnf (No (And (b1, b2))) = toCnf (Or (Not bl, Not b2))
| toCnf (Not (Or (bl, b2))) = toCnf (And (Not bil, Not b2))
| toCnf (Not True) = False
|

|

|

ct+

toCnf (Not False) = True
toCnf (Not (Var s)) = Not (Var s)
toCnf z = z

The prototype implementation can infer that toCnf hasthe refinement type T ;007.., — cnf .
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1.3 Redated Work

The main features of refinement type inference — basic polymorphic type inference, sub-
typing, intersection types, and rectype declarations — are al derived from features of
languages that have appeared in the literature.

1.3.1 Basic Polymorphic Type I nference

A dynamically typed language like L1 SP can have one function that can append any kinds of
lists, whether those lists contain integers, booleans, or other lists. Parametric polymorphism
provides some of this flexibility to staticaly typed languages. In this example, we start
by assuming all elements of the lists have the same type; we will nhame this type with
a parameter, say «. Then, for al «, the function that appends lists (call it append) can
have the type « list — « list — « list. We can see that this function can append lists
of booleans by first instantiating « to bool, to conclude that append aso has the type
bool list — bool list — bool list.

Standard ML is alanguage with parametric polymorphism that has been devel oped for
at least 15 years[Mil78, MTH90, MT91b, Har86, HMM * 88, Tof87, Tof88, DM 82, Mac88]
practical implementations are freely available. Standard ML has the added advantage that
the polymorphismisimplicit, which meansthat no types need be mentioned in the definition
of functions such as append; instead, they can all be inferred.

Refinement type inference simply uses polymorphic type inference with minimal
changes. Ultimately, we hopeto have adialect of Standard ML that will accept all existing
SML programs, as well as SML programs with rectype declarations added. Since alarge
body of SML code already exists, thismay |ead to widespread use of refinement typesfairly
soon after good implementations of refinement types are available.

1.3.2 Subtyping

Roughly speaking, one type is a subtype of another if al values with the first type also
have the second type. For example, in mathematics, al integers are rea numbers, so
programming languages often have the type of integers (which we shal cal int) as a
subtype of the type of real numbers (which we shal call real). Since integers are often
implemented differently from real numbers, the simple notion of subtyping as containment
is not necessarily true at the implementation level; instead, we may have to use some
non-trivial function to coerce elements of the subtype into elements of the supertype. In
this example, the coercion function maps the machine representations of integers into the
machine representations of reals.

Subtyping at a base type leads naturally to subtyping at higher types, for example, if int
is asubtype of real, then we would expect (int * int) to be a subtype of (real * real). We
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also havethe dightly counter-intuitive assertion that real — bool isasubtype of int — bool,;
this is the case because any element of the former can be converted to an element of the
latter by first coercing the argument of the function from int to real.

Subtyping also has a natural interpretation when used with records. Any record with,
say, both age and name fields has an age field; if we rephrase this in terms of subtyping
and standard notation for record types, and assuming that the age field is an int and the
name field is a string, we say that {age : int,name : string} isasubtype of {age : int}.
Several approaches to clean interaction between this kind of subtyping and polymorphism
are [IM88, Jat89, R89, LW91, HP91, HL94]. These are al type inference systems that
in some sense extend the type inference of Standard ML ; making a version of refinement
types that is based on one of these instead of Standard ML is potential future work.

Two papers by Fuh and Mishra[FM89, FM90] describe an interesting system that deals
simultaneously with polymorphism and subtyping. Like refinement types, their system
permits a user-defined subtyping relation, but unlike refinement types their system has no
intersection operator. In their system the result of type inference is a pair, consisting of
atype and a set of constraints that may stipulate that some free type variables appearing
in the type must be subtypes of one ancther. It is not clear how to extend this system to
include intersections.

Subtyping in refinement typesis simpler than subtyping in general because with refine-
ment types, the coercion function is aways the identity function.

1.3.3 Intersection Types

I ntersection types record multiple pieces of information about an expression. For example,
consider a unary negation operator that appliesto both integers and reals. It will therefore
have both of the types int — int and real — real. Therefore, if we have intersection types
in our language, we can say it has the type (int — int) A (real — real). When the type
system uses the type of unary negation, it will have to select an appropriate type from the
ones intersected.

These types can quickly become too expressive; type inference becomes undecidable
[CDCV80]. There are restrictionsthat yield a decidable system [CG92], but it is hot clear
what subtyping means in this system.

Another variant of thisis Forsythe [Rey88]. This language has intersection types and
subtyping, but no polymorphism. This language has a different approach to records from
the polymorphic one mentioned above: theintersection of thetwo record types{age : int}
and {name : string} iS{age : int,name : string}.

Yet another option is F, [Pie91b]. This language has intersection types, subtyping,
and polymorphism, and its type system can encode any of the abstract interpretations that
refinement type inference can. However, it has explicit types, and type checking in this
system is undecidable.
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1.3.4 Rectype Declarations

Rectype declarations essentially define finite automata that recognize when avalueisin a
refinement type. In fact, as long as there are no function types, arectype declaration has
exactly the same descriptive power as aregular tree automaton [GS84]. Similar automata
have been used to define types for logic programs; most of the papersin [Pfe92] deal with
some aspect of this. For example, [ Y FS92, page 68] uses the example

FEvenlist(71,72) i:=[];[n1 | Oddlist(71,12)].
Oddlist(71,72) ©i= [12 | Evenlist(r1, 12)].

which isremarkably similar to (and probably derived independently from) the example we
will use in the next chapter:

datatype blist = nil | comns of bool * blist
rectype bev = cons (T4 * bod) | nil (runit)
and bod = cons (T p1 * bev)

The operations needed to determine the meaning of a rectype declaration can be
computed exactly for regular tree automata [GS84]. The algorithms given for regular tree
automata in [DZ92] seem practical, and assuming they are sound, they are more accurate
than the type system given in Chapter 3. An example where the current specification is
weak ison page 193. Finding a practical algorithm that workswell in the general case and
is exact in the case when there are no function objects is future work.

1.4 Claimsof the Thesis

The central claim of thisthesisis:

Refinement types provide a sound, practical, declarative, and unobtrusive way
to express and effectively verify some reasoning by cases about Standard ML
programsand potentially programsin other functional programming languages.

This has severa parts:

¢ Refinement types can express reasoning by cases about Standard ML programs. This
requires subtyping (because some cases include others) and intersection types (to
describe the behavior of functions on multiple possible inputs).

¢ Refinement types can be effectively verified. This means that type inference is
decidable; we ensure this by only distinguishing cases in which the programmer has
declared interest and by requiring expressions with a refinement type to aways have
an ML type.
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Refinement type inferenceis practical. Thisthesis demonstrates this by describing a
prototype implementation of it that has tolerable performance.

Refinement type inference is sound. We exhibit a soundness proof.

Refinement typeinferenceisdeclarative. Refinement typeinference can be described
with a declarative type inference system. See Figure 2.6 on page 60.

Refinement type inference is unobtrusive. If rectype declarations and “<1” are not
used inaprogram, then that program has arefinement typeif and only if it hasan ML
type. Refinement types are also unobtrusive in the sense that they do not necessarily
have any effect on execution. Given a program that checks refinement types, it is
easy to construct a compiler for avariant of Standard ML that has refinement types:
the compiler could ssmply check refinement types, remove all rectype declarations
and uses of “<1” from the given source code, and then pass the resulting source code
to a Standard ML compiler.

1.5 Outline of the Work

This thesis starts with a careful formal description of monomorphic refinement type infer-
ence. Chapter 2 centers around the inference rules in Figure 2.6 that describe refinement
type inference for expressions in terms of explicit assumptions about properties of the in-
formation from rectype Statements. The rest of that chapter consists of proofs that this
type inference system is sound, has principal types, and is decidable.

Chapter 3 dealswith rectype statements. The central inference systemsare Figure 3.6,
which describes how to infer a subtyping relation from a rectype declaration, and Fig-
ure 3.8, which describes how to infer the splitting relation. The rest of the chapter consists
of proofs that the assumptions made in Chapter 2 are satisfied, and a proof that refinement
typeinference for valuesis consistent with a semantics we givefor rectype statements.

Chapters 4 and 5 describe how to add polymorphism to this. Chapter 4 simply adds
type variables such as «, and is fairly smple. Chapter 5 add type constructors that take
type arguments, such as « list. Thisismore complex because we have to decide whether,
for example, (bev A bod) singleton < bev singleton. There are four possible ways a
refinement type constructor can change when we replaceitsargument by alarger argument:
either it gets larger, gets smaller, stays the same, or the new type is incomparable with the
old. We call these type arguments positive, negative, ignored, and mixed, respectively.
It is possible to create examples of al of these behaviors, and the theory has to deal with
them. Chapter 5 describes the changes necessary to the reasoning in Chapters 2 and 3 to
accommodate this.

Chapter 6 describes how to add the coercion operator <1 to the language. Thisisvery
straightforward, provided one erases al coercion operators from terms before evaluating
them.
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Chapter 7 describes the prototype implementation. The fundamental decision made
in the implementation was to implicitly represent refinements of functional ML types as
functions. Memoization isused extensively. We find fixed points by using pending analysis
[Jag89, Dix88], and we instantiate polymorphic refinement types using a novel unproven
strategy that appearsto yield correct answers in practice.



Chapter 2

Refinement Type Inference

2.1 Introduction

This chapter gives aformal description of asimple, monomorphic form of refinement types
that includes only primitivesfor functional programming and assumes that the programmer
has aready declared which distinctions he is interested in. In Chapter 3, we describe
rectype statements, which allow the programmer to declareinterest in specific distinctions.
The soundness results of this chapter depend on severa assertions that are proved in
Chapter 3. These assertions are labeled as “Assumptions’; for example, the first one
below is Assumption 2.2 (Constructors have Unique ML Types) on page 26. Chapter 4
expandsthetypeinferencein thischapter to include type variables, and then Chapter 5 adds
polymorphic constructors.

Perhaps the ssimplest example of refinement types is being able to reason about the
booleans. If the programmer has declared interest in the distinction between true and
false, refinement type inference can determine that the function

fn x => or (x, not x)
alwaysreturns true regardless of itsinput. To expressthisformally, we say
Ffn x => or (x, not x) : T — L.

Here T ;.. tt,and T4,,; — tt aredl refinement types. Informally we can think of refinement
types as standing for sets of values. The refinement type T ,,,; IS the set of al boolean
values, or {true,false}; it isthe set {true}; and T,,,; — ¢t is the set of al functions
with ML type bool — bool that map al valuesin T ,;,,; to valuesin tt.

If we think of refinement types as sets of values, each value in the set must have the
same ML type; we say that the refinement type refines the ML type. For example, T ;,,;
refines bool and T 4,,; — tt refines bool — bool. For the purposes of the examples in this

15
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chapter, the refinements of bool are

T 1001, COrresponding to the set {true, false}
tt, corresponding to the set {true}
ff, corresponding to the set {false}

L 4001, COrresponding to the set { }

where the symbol 1 ;,,; isatypeset version of the namebot_bool. The symbols“ 1" and
“T” by themselves have no meaning in thisthesis.

This example has some special featuresthat will not hold in general. Although thereis
awaysaleast refinement of every ML type, ingenera theremay bevaluesof that refinement
type, unlike this example where there are no values of type 1 ;,,;. The smplest instance
of this arises when the programmer has not asked for any refinement type distinctions;
when this happens, there is exactly one refinement of each ML type, and there are aways
values with that refinement type. Since we want the programmer to have the option of
ignoring refinement types, and having multiple refinements of an ML type slows down type
inference, we should only have multiple refinements of an ML type when the programmer
asksfor it.

In this example, there is a maximal refinement T,,,;. In Chapter 5 we will mention
examples involving polymorphism where there is no maximal refinement type.

In Forsythe [Rey88], there is a maximal type called “ns”. Every Forsythe expression
has this type, possibly among others; when the type system detects that an expression is
ill-behaved, it has only the type ns. We do not take this approach. Instead, the refinement
type system takes the more conventional approach of ensuring that ill-behaved expressions
have notype. Thisbeginsto beinconvenient in Section 2.9, whereto simplify the statement
of sometheoremsweintroduce the notion of “generalized refinement types’, each of which
iseither arefinement type or ns. Even then, ns isnot the refinement type of any expression.

The meaning of ns is entirely different from the meaning of T,,,;. There are perfectly
well-behaved expressions with the refinement type T,.;; however, ns is not a refinement
type, and it is not used to describe the behavior of well-behaved expressions.

According totheabovelist of therefinementsof bool, theintersection of two refinements
of bool isarefinement of bool. Thisisadesirable property, but we need to add an operator to
make it continue to hold for refinements of other ML types, for example, with the notation
introduced so far, we cannot write a refinement type that is the intersection of ¢t — ff and
ff — tt. We will call this operator “A”. For example, here are some of the refinements of
bool — bool and some of the elements of the set corresponding to each one:

T oot — Ut CcONtainstheelementsfn x => true
andfn x => or (x, not x)
tt — ff A ff — tt contains the elementsnot
andfn x => or (not x, not x)
Tioo1 — T poor CONtains al values with ML type bool — bool
tt — Thoor N Tioor — tt isequivalent to Ty, — tt
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Two refinement types are equivalent if they correspond to sets with the same elements,
otherwise they are distinct. For instance, the refinement type ¢t A ff A tt is equivaent
to L, A largest set of distinct refinements of bool iS {T 4001, tt, ff, Lisor}, SO bool has
only finitely many distinct refinements. It turns out that all ML types only have finitely
many distinct refinements; thisistrue for datatypes because the programmer only hastime
to specify a finite number of distinctions, and it is true for other ML types because the
operators” —” and “«” we useto construct ML types from other ML types do not introduce
infinite numbers of distinct refinements where there were none before. This is the crucial
property that makes refinement type inference decidable; we proveit in Section 2.9.

Refinement types become moreinteresting and useful when we use them with recursive
datatypes. A simple example of thisisrepresenting nonnegative integersas strings of bits:

datatype bitstr = Zero of bitstr | One of bitstr | Empty

Suppose the least significant bits are outermost, so that Zero (One Empty) represents
the integer 2. Every nonnegative integer has multiple representations in this system;
for example, another representation of 2 is Zero (One (Zero Empty)). Every positive
integer, however, does have exactly one representation that does not have Zero as the most
significant bit; call this*normal form”. We can define a refinement type nf containing just
the positive integers in normal form, and we can prove that straightforward functions for
doing arithmetic such as

fun add (One bl) (One b2) = Zero (add (add (One Empty) bl) b2)
| add (One bl) (Zero b2) = One (add bl b2)
| add (Zero bl) (One b2) = One (add bl b2)
| add (Zero bl) (Zero b2) = Zero (add bl b2)
| add Empty b = b
| add b Empty = b;

return values of type nf when passed values of type nf.

Refinement type inference determines the type of an expression by first finding types
for the subexpressions. Thus, we can only discover that One Empty hasthe type nf if we
first have atype for Empty. We will call that type em. We shall assume that bitstr has the
following refinements:

1 41154 COrrespondsto the empty set

em correspondsto { Empty}

nf correspondsto positive integers that are in normal form
T si15¢ COrrespondsto the set of all bitstrings

In this case the set of values of type nf is clearly infinite. This makes it clear that any
implementation must use some representation of refinement types other than sets of values.
In both the implementation and the formal description of refinement types, we assign
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refinement types to constructorsinstead of representing refinement types as sets of values.
Since, in this formalism, values are expressions, we can use refinement type inference to
determine which values are in which refinement types; for example, the assertion

Zero (One Empty) € nf

becomes
- Zero (One Empty) : nf.

In this chapter, we start by formally defining our object language in Section 2.2. We
also describe an aternative, more concise syntax in Section 2.3. A formal semantics is
in Section 2.4. To provide background for the description of refinement types, we define
a restricted version of the usual ML type system in Section 2.5. A smple version of
refinement types is defined in Section 2.6. We prove that it is compatible with ML type
inferencein Section 2.7, and sound in Section 2.8. We show that each ML type has finitely
many refinement types in Section 2.9, and use this fact to give a decision procedure for
refinement typesin Section 2.10.

2.2 TheFormal Language

Each language we define in thisthesiswill have two kinds of types. The more familiar kind
resembles the one commonly used for SML; we shall call these ML types. Inlater sections
of this chapter we will be defining more informative types with an intersection operator
“A”; weshall call these refinement types.

We shall use the metavariables ¢ and v to stand for ML types throughout this thesis.
The metavariable t¢ stands for an ML type constructor, so we can define the language of
ML types with the grammar

tiu=te|t*...xt|tunit |t —t.

In SML the type of a zero-way tuple is caled unit. Here we cal it tunit instead to
distinguish the ML type for empty tuples from the refinement type for empty tuplesthat we
will introduce | ater.

We could dightly smplify the presentation in this chapter by replacing the arbitrary-
length tuple types here with binary and nullary tuples. However, when we introduce
polymorphic constructors in Chapter 5, tuples will become a polymorphic data type very
similar to other polymorphic data types, and at that point arbitrary length tuples will add
little to the complexity of the theory. Thus we will use arbitrary length tuples here to
simplify the analogy between the system described in this chapter and the system described
in Chapter 5.

We use z, y, and f as metavariables to stand for object language variables, ¢ to stand
for constructors, and ¢ to stand for expressions. The metavariables z, y, and f that appear
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often in the mathematics should not be confused with the object language variables x, y,
and £ that appear often in the examples. Expressions have the following grammar:

el=x|fn x:t => e|e el|c e
case e of ¢ => e | ... | ¢ => ¢ end:t|
(e, ..y )| ()| elt_m_n €|

fix f:t => fn x:t => ¢

Notice that this grammer uses the “|” operator as meta-syntax to describe a language
containing the character | in the syntax of case statements. This language is roughly a
monomorphic version of Mini-ML [CDDK86].

Asthe grammar says, al constructorstake exactly one argument, which may be atuple.
We use () to mean atupleof zero elements. Common constructorsincludetrue and false;
thus true isnot asyntactically valid expression in itself, but true () is.

There are explicit types appearing at severa placesin the grammar. The ML types after
each variable binding in abstractions and fixed points ensure that each expression has at
most one ML type derivation; the need for this is discussed in the next section. The ML
type at the close of each case statement prevents obscure pathol ogical behavior that would
prevent Theorem 2.54 (Inferred Types Refine) on page 68 from being true; see page 68 for
adiscussion.

As in Standard ML [MTH90, MT91b], the fixed point operator can only apply to
functions. This outlaws oddities such asfix f => not f. It ispossible that the theory
below could be adjusted to permit recursive values, but they seem troublesome and not
particularly useful, so we shall avoid them.

2.2.1 Explicit or Implicit ML Types

One of the magjor features of SML isthat it isimplicitly typed. This frees the programmer
from most of the burden of type declarations. Since our goal is to analyze Standard ML,
the language our implementation starts with must also be implicitly typed. However, since
ML typeinferenceiswell understood, we have the option of assuming that the expressions
anayzed by the refinement type system described here have aready had explicit types
inserted by ML type inference. The purpose of this section is to explain why we take this
option.

The problem with implicit ML typesisthat there are sometimes multiple derivations of
an ML typefor an expression. For example, consider the SML declaration

val foo = (fn y => (fn z => z)) (fn x => x)

and suppose foo hasthe ML type bool — bool. Even though we know thetype of foo, there
are still many different ways to derive this type because we can give the subexpression
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fn x => xtheML type bool — bool or (bool * bool) —(bool + bool) or, ingeneral, t — ¢ for
any ML typet. Oncewe add polymorphictype variablesto the system in Chapter 4, wewill
be able to give examples where different ML type derivations lead to different refinement
types for the expression.

However, it seems that without polymorphism, the refinement type assigned to an
expression depends only on the ML type assigned to the expression, not on how that type
isderived. For instance, foo hasthe ML typet¢ — ¢ for any ¢. If we choose an ML type for
foo by choosing ¢ to be bool, then the expression has a principal refinement type

tt—tt /\ﬁ —>ﬁ A Tbool - Tbool/\ J—bool - J—bool

that does not depend on which ML type we assign to the fn x => x subexpression. It
seemsthat the ML type of an expression uniquely determinesits principal refinement typein
generd, sinceifthefn x => x subexpressionwereused, itsML typewould be constrained.

Sincethisproperty will not continueto hold when we add polymorphism, it seems better
to add explicit types to the terms now to ensure a unique ML type derivation than to prove
that knowing the ML typeis sufficient in the special case of monomorphic expressions. To
ensure a unigue ML type derivation, we write the ML type for each bound variable. For
example, the two derivations mentioned above of an ML type for foo correspond to these
trandations of the definition of foo into monomorphic expressions:

(fn y:bool — bool => (fn z:bool => z))
(fn x:bool => x)

and

(fn y:(bool * bool) —(bool * bool) => (fn z:bool => z))
(fn x:bool * bool => x).

2.3 TheConcise Language

For brevity, we will want to have implicit typesin our examples. Thus we shall also have
an informal, concise syntax where we omit the types with the understanding that the real
expression has some consistent ML types inserted. This notation is only unambiguous
when the concise expression has a unigque type derivation. Roughly speaking, our concise
languageisthe subset of SML that can be easily trand ated to fit thegrammar for expressions
on page 19. We will have the following differences between the concise language and the
formal language:

e The concise language has constant value constructors, but in the formal language
all constructors take one argument. Eliminating constant value constructors from
the formal language decreases the number of cases that have to be considered in the
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proofs. Since we can always encode a constant value constructor as a function one
that takes an argument of ML type tunit, this does not decrease the expressiveness
of the language.

e The concise language uses destructuring in £n expressionsto extract an element from
a tuple, but the formal language uses the elt_m_n primitive to extract the mth
element from atuple of » elements. Eliminating destructuring from £n expressions
simplifies the proofs. Encoding the length of the tuple in the operator for extracting
elements eliminates some ambiguity; for example, in SML theexpression #1 by itself
is not valid because it is not clear whether to give it the type a x 3 — « or the type
ax 3 x~v— « or oneof theinfinitely many other possibilities. Intheformal language,
this sort of ambiguity does not arise.

e Theconciselanguagehascase statementsthat bind variables, but theformal language
does not; in the formal language, the only constructs that bind a value to a variable
are abstractions and fixed points. For instance, if we assume that lists of booleans
have been defined with the datatype

datatype blist = nil | cons of bool * blist

the concise expression

case cons (true, nil) of
cons (x, y) =>y
| nil => nil

corresponds to the formal expression

case cons (true (), nil ()) of
cons => fn p:bool * blist => elt_2_2 p
| nil => fn ignored:tunit => nil ()
end: blist

e The concise language has only enough type declarations to uniquely determine the
type derivation, whereas the formal language has type declarations throughout the
code.

e The concise language has 1et statements, but the formal language does not. Since
the formal language does not have polymorphism, each statement of the form

let £ = e; in ey end
can be interpreted as the expression

(fn x:t => e3) €1
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in the formal language, for some appropriate¢.

e The concise language freely uses many of SML’s convenient syntactic features that
areomitted fromtheformal language, such aslet statementsand abstraction operators
that take cases, destructure tuples, and define curried functions.

For exampl e, the concise language expression

let fun double f x = f (f x)
fun not true = false
| not false = true
in
double not true
end

corresponds to exactly one formal expression:

(fn double: (bool — bool) — bool — bool =>
((fn not:bool — bool =>
double not (true ()))
(fn b:bool =>
case b of
true => fn ignored:tunit => false ()
| false => fn ignored:tunit => true ()
end: bool))
(fn f:bool — bool => fn x:bool => £ (f x)))

2.4 Semantics

This section describes how to evaluate closed expressions. We will call the result of
evauation avalue; every valueis aclosed expression of the form

vi=cv|(v, ..., v)] ()] fn x:t => e.

Since our values are expressions, we can apply the same type systems to both. This makes
a simple notion of soundness possible: atype system is sound if, whenever an expression
evauates to a value, the value always has all of the types that the expression has.

There are reasonable notions of soundness that are stronger than this. We could follow
[Mil78] and require that evaluation of a well-typed expression never “goeswrong’, in the
sense that semantic errors do not happen during evaluation. This would make the already
tiresome proofs of soundness in this thesis even longer, so we shall instead stay with the
weaker notion of soundness.
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Evaluation will require substituting closed expressions for variablesin expressions, so
we need to define substitution before we define evaluation. Sincewe only allow substitution
of aclosed expression for avariable, we do not need to be concerned about variable capture.

Definition 2.1 Substitution of an expression ¢ for an object language variable = in an
expression ¢’ (written as [e/z]e’) is the expression consistent with the following rules:

/
/
/
/
/
/
fix f:f => fn xv:u => ¢
le/x]fix f:t => fn y:u => € =
fix f:t => fn y:u => [e/z]d'ify £z and f # z
[xler ex = [e/x]er [e/x]ez
/ " =
/
/
/
/

(le/x]er, ..., [e/z]en)

€n)

elt_m_n € =elt_m_n [e/x]€

zle ¢ = ¢ [e/x]€
e/r|case eg of ¢4 => e1 | ... | ¢, => €, end:t =
case [e/z|eg of ¢1 => [e/x]er | ... | ¢, => [e/z]e, end:t

For example, evaluating the expression

(fn double: bool — bool =>
(double (fn x:bool => x) (true ())))
(fn £:bool — bool => fn x:bool => £ (f x))

would require computing the substitution

[fn f:bool — bool => fn x:bool => f (f x)/double]
(double (fn x:bool => x) (true ()))

which yields

(fn f:bool — bool => fn x:bool => f (f x))
(fn x:bool => x)

(true ()).

We will define evaluation only for closed expressions. This is convenient because it
eliminates the need for an environment mapping variablesto values.
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ABS-SEM:
fn z:t => e=fn x:1t => €
e1 = fn x:1 => €3
. €2 = V2
APPL-SEM:
[v1/x]e3 = v3
€1 €2 = U3
e=>v
CONSTR-SEM: _—
cC eE=CUV
for some: wehaveeg = ¢; v;
CASE-SEM. € V= U
case eg of ¢t =>¢e1 | ... | ¢, => €, end:t =0
fori e l...nwehavee; = v;
TUPLE-SEM:
(e1, «ovy €n) = (V1, ..uy V)
e = (v, ..., v
ELT-SEM: G )

elt_m_n e = v,

FIX-SEM: fix f:t => fn z:u => ¢ =
[fix f:t => fn x:u => ¢/f]fn z:u => ¢

Figure 2.1: Monomorphic Semantics Rules

Our evaluation relation iswritten
e = v

which means that the closed expression ¢ evaluates to the value v. The definition of the
relationisin Figure2.1. In some of theinferencerules, we usethenotationn . .. m to mean
the set of integers between » and m.

For example, if we use 71" to abbreviate the derivation

[TUPLE-SEM]
[CONSTR-SEM]

0=0

true () = true ()

then the following is a valid evaluation, except to make the derivation fit on the page we
omit the types after each variable binding and the -sem suffix on the name of each semantics



CHAPTER 2. REFINEMENT TYPE INFERENCE 25

rule:

[ABS] [TUPLE]

(fn x => x) = (fn x => x)

0=0

(fn x => X)_ (true ()) = (true. () [APPL] nil ():> nil () ES:_S;]R]
(fn x = x) (brue (), mil ()= (broe 0, 21 0) o

cons ((fn x => x) (true ()), nil ()) = cons (true (), nil ())

The case-seM rule differs dightly from the closest analogy available in our syntax to
true SML. In SML, case statements always evaluate the first case that applies. In this
language, the order of the cases makes no difference; if multiple cases apply, then this
semantics says the choice is made nondeterministically. For example, the expression

case true () of

true => fn _ => true ()
| true => fn _ => false ()
end : bool

evaluatesto both true () and false (). Thisoddity could be avoided by requiring all of
the constructors appearing in a case statement to be distinct, but we will have no need to
requirethis.

This semanticsdoes not formalize everything one might want to say about evaluation. A
more stringent notion of soundnesswould allow evaluation of well typed expressionsto fail
to terminate, but it would not permit evaluation to get an error. Unfortunately expressions
that do not terminate and expressionsthat get an error are not distinguished from each other
by our semantics. Both kinds of expression have no value.

This could be repaired by adding anew value “wrong” along with rules that ensure that
code with a type error evaluates to “wrong”. As mentioned earlier, we will not take this
route because of the added tedium.

2.5 ML Typing

The system described in this section checks that the ML types embedded in an expression
are consistent with each other, and it determinesan ML typefor the expression as awhole.
The ML type of an expression depends on the assumptions we make about the ML types of
constructors used in the expression, so we shall discuss that first.

If ¢ isavalue constructor, we say that ¢ mapsvalues of typet to elements of the datatype
te by writing

def
c it tc.

For example, the effect of the SML datatype declaration
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datatype blist = nil of tunit | cons of bool * blist

on the SML environment would be analogous to adding these assumptions to the environ-
ment: -
nil 37 tunit — blist
cons d:?f bool * blist — blist

The examplesin this chapter will also make these assumptions:

def .
true I tunit — bool

def .
false ' tunit — bool

In general, for a type system that uses assumptions about value constructors to make
sense, we need the assumptions to be consistent in certain ways. For the type system
described in this section, all we need to know isthat we have exactly one assumption about
each constructor:

Assumption 2.2 (Constructorshave Uniqgue ML Types) For each ¢, there are unique ¢
and tc such that
def
c .. t—tc

The ML type of an expression depends on the ML typeswe assign to the free variables
appearing in the expression, so our typing relation will describe the type of an expression
given apartial function VMVM from variablesto ML types.

The name VM is an example of a naming convention that will be used for al of the
partial functions used as environmentsin this thesis. Each name has two letters. The first
letter stands for the domain (V stands for “variable”) and the second letter stands for the
codomain (M stands for “ML type”). In later chapters, M will sometimes stand for “ML
type scheme”, but since the formal language is monomorphic, it just stands for “ML type”
here.

We use the notation VM [z := t] to mean the partial map identical to VM everywhere
except at =, which it maps to ¢t. The notation - means the partial map that is undefined
everywhere.

The ML typing relation iswritten as
VM FEe:it

which means that assuming that all free variables x in e have the type VM(z), then e has
the ML type ¢t. The definition of thisrelation isin Figure 2.2. These rules are similar to
the rules in Mini-ML [CDDK86], except we have no polymorphism and we separate the
operator for destructuring tuples from the operator for forming abstractions.

If this type system is sound, then we would expect that a closed expression has atype
and it evaluates to a value then the value has the same type. We can formally state this as
follows:
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VAR-VALID: M
' VMEz it
ABS-VALID: VM[z :=ti] ety
. VMFE (fn z:t1 => €) it1— 12
. VM Felito—1 VM F eyt
APPL-VALID: T
def B
CONSTR-VALID: cil—=le VM FEe:t
VM FE ¢ e te
VM F eg i te

. def
fordl : wehavec; i t; — tc

CASE-VALID: ]
fordl :wehaveVM F¢; i t; —u
VM| (case eg of ¢1 => e1 | ... | ¢, => ¢, end:u) lu
TUPLE-VALID: fordl : wehave VM F ¢; :: t;
' VM E (e1, ..., €n) iit1x... %1,
ELT-VALID: VMFEeiitix...xt,
) VM FE elt_m_n e t,
VM|[f =1t tol F (fn x:ty => it t
FIX-VALID: [fi=tiob] P (fn 2ty => ¢) hi—ts

VM F (fix f:t;—1tp => fn x:ty => €) it1— 1
Figure 2.2: Monomorphic ML Typing Rules

Fact 2.3 (ML TypeSoundness) If - Fe::tande = vthen-F v ::t.

We will not prove this. A partially mechanically verified proof of this theorem for a
similar languageisin [MP91].

We intend our ML type system to be an unambiguous framework that supports the
refinement type system. The following theorem states that it is unambiguous. Theorem
2.54 (Inferred Types Refine) on page 68 states in what sense the refinement type system is
supported by the ML type system.

Lemma 2.4 (Uniquelnferred ML Types) If VM F e ::tandVM F e 2 t' thent = t'.

Proof: By straightforward induction on e.
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Case: ¢ = x | Then the last inference in both of our hypotheses is VAR-VALID, with the
premises VM(z) = t and VM(z) = t'. Thust = ¢".

Case: ¢ = fn z:t1 => ¢’ | Thenthelast inferenceinboth of our hypothesesiSABS-VALID.

Since the ML type ¢; isexplicit in the syntax, we must havet = t; — t, and t' = t; — 5.
The premises of the two uses of ABS-VALID must be

VM[z =t F € ity

and
VM[z :=t1] F € i t5.

The induction hypothesisgivest, = t,, sowemust havet = ¢'.

Case: ¢ = e1 ¢ | Then thelast inference in our hypotheses must be APPL-VALID with the
premises

VM FEeg ity —t

and
VM Feq i th—t,

among others. The induction hypothesis applied to these gives ¢, —t = t}, —t/, which
impliest = t'.

Case: ¢ = ¢ ¢ | Thenthelast inferencein our hypotheses must be CONSTR-VALID with the
premises

def
clu—tc

and def

cu —td,
among others, wheret = tc and ¢’ = t¢’. Assumption 2.2 (Constructors have Unique ML
Types) on page 26 gives t¢c = tc¢’, which impliest = ¢'.

Casee e=caseegof ct =>e1 | ... | ¢, => e, end:u

Thelast inference of both of our hypotheses must be CASE-VALID, whichimmediately gives
t=vandt =u,s0t =1,

Casel e = (e1, ..., e,) | Then the last inference in the derivation of each of our hy-

potheses must be TUPLE-VALID with the premises
foral : wehave VM F ¢; :: ¢;

and
foral : wehaveVM F ¢; :: ¢!
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wheret =ty *...*t, andt’ =t} ... *t/ . Our induction hypothesisgivest; = ¢! for all
1,0t =1

Case: e = elt_m_n e’ | Thenthelast inferencein the derivation of each of our conclu-

sions must be ELT-VALID with the premises
VM E e ity x... %1,

and

VME e ity *... %t
wheret = t,, and ¢’ = ¢/ . Our induction hypothesisgivesty * ... xt, =t *...xt/, SO
we must havet = t'.

Case: e = fix f:ty—1p, => fn x:1; => ¢ | Then the last inference in the derivation

of each of our conclusions must be FIX-vALID. This immediately givest = ¢; — ¢, and
t' = t1—ty, whichimpliest = t'. a

If an expression has an ML type, then al of its free variables must be bound to an
ML typein the environment. This will be important later on when we are proving things
about the refinement type system because the refinement type rule for case statements has
apremiserequiring the case statement to have an ML type. To put it formally,

Fact 2.5 (ML Free VariablesBound) If VM F e :: ¢t and z is freein e, then VM(z) is
defined.

Proof of thiswould be by induction on the derivation of VM F ¢ :: ¢.

One step along the path to proving Fact 2.3 (ML Type Soundness) on page 27 is
showing that there is a natural kind of substitution on ML type derivations that preserves
soundness. We will use thisoncein Lemma 2.70 (Value Substitution) on page 93, which is
the refinement type analogue of thisfact. The useisin the CASE-TYPE case of that lemma.

Fact 2.6 (ML Value Substitution) If VM F ¢; :: ¢t; and VM[z = t3] F e, 2 5 then
VM F [61/1’]62 s 1o,

Proof of thiswould be a straightforward induction on the derivation of VM [z := #1] F e i
to.

2.6 Monomor phic Refinement Types

Now that we have given our version of the ML type system, we can give an analogous
description of refinement types for the same expressions. We shall use r, &, and p as
metavariables standing for refinement types.
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Syntactically, refinement types have an intersection operator “A”. This is the only
differencein structure between the syntax for refinement types and the syntax for ML types,
so we can define the syntax for refinement types with the grammar

ri=rAr|r—r|re|rs. k| runit.

Once again we have aspecial name for the empty tupletype; thistimeit is runit. Because
we give different namesto tunit and runit, inspecting atype tells usimmediately whether
itisan ML type or arefinement type.

In our concrete syntax we shall adopt the convention that — binds tighter than A. This
makes it easy to write types consisting of an intersection of many arrow types. Since
the principal type of each function has this form, being able to write these concisely is
convenient. For instance, the type of boolean negation is (tt — ff) A (ff — tt), which we
canwriteastt — ff A ff — tt.

The set of refinement types an expression may have depends on its ML type. For
instance, an expression with ML type bool — bool may have refinement type ¢t — tt or
Tior — ff, but not ¢t. We writethisas

tt — tt T bool — bool
T oot — ff T bool — bool

but not

tt T bool — bool.
The assertion » C ¢ can beread aloud as “r refines t”; hence the name “refinement types”.
We will call arefinement type that refines no ML type “malformed”.

Before we can formally define the C relation between refinement types and ML types,
we have to make some assumptions about which refinement type constructors refine which
ML type constructors. We shall write the assumption that a refinement type constructor rc
refines an ML type constructor ¢c as

def
rc C tc.

For example, after we formally define , our derivation of T ,,; — ff T bool — bool will
use the assumptions

T bool dEef bool
and o
ff C bool.
The examples below will also use these assumptions:
it dg bool
def
Lyoo1C bool

For our soundness proof to go through, we will need the dff relation to be well-behaved
in the following sense:
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riCt roCt
AND-REF.

riANroCt
r t t
ARROW-REF: 1Ch  r2b e
r1T—1r2 C tl — t2
def
RCON-REF: re C e
rc C tc

for:inl...nwehaver; C t;
rik ..k, Tk ki,

TUPLE-REF.

Figure 2.3: Monomorphic Refinement Rules

Assumption 2.7 (Unique Predefined Refinements) For all rc there is a unique tc such
that rc dff tc.

Also, for there to be any hope of manipulating refinement types with an algorithm, the
set of refinements of any ML type constructor must be finite:

Assumption 2.8 (Finite Predefined Refinements) For all tc, the set {rc | rc d|:ef tc} is
finite.
We formally define the C relationin Figure 2.3.

TUPLE-REF implies runit T tunit because we can choose n = 0, and runit and tunit
are our names for the empty tuples of refinement types and ML types, respectively.

Refinement types that refine some ML type are generally easier to reason about than
refinement types that do not:

Definition 2.9 (Well-formed Refinement Type) We say that a refinement type » is well-
formed if thereisan ML typet such that » C ¢. Otherwise we say it isill-formed.

From the rule defining C, it follows that each refinement type refines at most one ML
type. Stating thisformally,

Lemma 2.10 (Unique ML types) If r C ¢t and r C u thent = w.

The proof of thisis straightforward.

Proof: By inductionon r.
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Case: r =k Ap | The only way to derive r C ¢ is to use AND-REF where one of the

premisesis k£ C t. Similarly, the only way to derive r C w iSto use AND-REF where one
of the premisesis k C u. Applying the induction hypothesis to these two premises gives
t = u, which isour conclusion.

Case: r = re | Assumption 2.7 (Unique Predefined Refinements) on page 31 gives our

conclusion directly.

Case: r =ry*...*xr, | Wecanonly deriver C ¢ by using TUPLE-REF. Thust must have

theform¢y % ... x ¢,,, and from the premises of TUPLE-REF we know

for : between 1 and n we have r; C t;.
Similarly, r C u tellsusthat v hasthefromwuy * ... * u,, and

for : between 1 and n we have r; C u;.
Using the induction hypothesis gives

for : between 1 and » we havet; = u;.

Thust = u.

Case: r = runit | Then the only way to derive our hypotheses is by using UNIT-REF, and

t = u = tunit.

Case: r = r; — o | Thenthelast premise of the derivation of » C ¢ must be ARROW-REF,

so t must have the form ¢; — ¢, and the premises of ARROW-REF must be r; C ¢; and
ro C 1. Similarly, r C u tellsus that « has the form vy — up and ry C uwq and r, C uo.
The induction hypothesistellsusthat ¢; = v and t; = up, SOt = w. a

Since each refinement type refines at most one ML type, we can definea partial function
that maps each refinement type to the corresponding ML type, if thereis one.

Definition 2.11 If » C ¢ then we say ¢t = rtom(r). If thereisno ¢ such that » C ¢, then
rtom(r) is undefined.

The name rtom stands for “Refinement to ML”. We extend this in the natural way to
work on environments: rtom(VM)(z) = rtom(VM(z)).

As one would expect, if we know which ML typeisrefined by a refinement type, that
heavily constrains the form of the refinement type. For example, we have

Fact 2.12 (Tuple Refines) If r C 1 % ... x ¢, thenr hasthe form

Tk kTR AL AT R Lk Ty,
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Proof of thiswould be atrivial induction on the derivation of r T ¢ * ... * ¢;. Wewill use
thisin Lemma 2.26 (Tuple Subtyping) on page 42.

2.6.1 Subtyping

If two refinement typesrefine the same ML type, then it makes sense to compare them. Our
comparison operator iswritten <. For instance, in the presence of reasonable assumptions
about our refinement type constructors, the following assertions are true:

tt S Tbool
tt /\.[f SJ—bool
J—boolg tt /\.[f

(tt *.ﬁ) A (ﬁ * tt) < (J—bool * J—bool)
tt_)ﬂ‘/\ﬁ_)tt S tt_>—|—bool

and these assertions are false:

i
tt—ff <ff—tt.

The rulesdefining < must take into account some assumptions about how the refinement
type constructors behave. We need to know that some refinement type constructors are
subtypes of others, which we shall write as

def
re1 < reo.

We also need to be able to compute intersections of refinement type constructors, if they

both refine the same ML type constructor. We write this asa partial binary operation d/‘:iff on
refinement type constructors. For example, the definition of < we will give below allows
usto derive

tt— 1t A Tooot = fF <Lioor — Lioors

and the derivation uses these assumptions:

def
J—boolg it
def
J—boolg Tbool
def . def
tt A ﬁ SJ—bool .

L . def def . .
For our definition of subtyping to make sense, we need < and A to be consistent in
def
certain ways. First we need trangitivity and reflexivity of <:

def def
Assumption 2.13 (reflex-<) For all rcwe haverc < rc.



CHAPTER 2. REFINEMENT TYPE INFERENCE 34

i def def def def
Assumption 2.14 (trans-<) Ifrc; < rc;andre; < rezthenre; < rcs.

If two refinement type constructors are comparable, they must refine the same ML type
constructor:

) _ def def def . , def
Assumption 2.15 (Refines <) Ifrc < kcthenrc C tcif and only if ke C tc.

def | . . ;
We need to know A is defined for refinements of the same ML type constructor, and it
isagreatest lower bound in the set of those refinements:

Assumption 2.16 (d/if-defined) Ifrc dff tc and kc dff tc then rcd/(if kc is defined.

def def . def def def def
Assumption 2.17 (A Elim) Ifrc A kcisdefined, thenrc A ke < rcandrc A ke < k.

) _ def def def def def
Assumption 2.18 (and-intro-<) Ifrc < kcandrc < pcthenrc < (kc A pc).

Our subtyping operator < is defined by the rulesin Figure 2.4. Several of these rules
need to be explained:

Since runit isour namefor the empty tuple, we interpret the rulefor dealing with tuples
so they apply to runit aso.

Some of the rules resemble each other. The rules ARROW-SUB, TUPLE-SUB, and RCON-
SUB aresimilar, asare ARROW-AND-ELIM-SUB, TUPLE-AND-ELIM-SUB, and RCON-AND-ELIM-
suB. In Chapter 5wewill change the syntax for refinement types so that arrows, tuples, and
monomorphic refinement type constructorsare all aspecia case of polymorphic refinement
type constructors. After we do that, each triplet of ssimilar rules will collapse to onerule.

The rule ARROW-SUB is conventional for systems with subtypes, although it is often
surprising to the uninitiated. As the type on the right side of the arrow gets larger, the
entire type gets larger. However, as the type on the left side gets larger, the entire type
gets smaller. Another way to say thisisthat arrow is contravariant in itsfirst argument and
covariant in its second argument.

To understand thisit helpsto think of refinement typesas setsand to read “ <” as subset.
An arrow type r; — r, means the set of all functions that map all elements of the set r; to
elementsof r,. If int isthe set of all integersand ev isthe set of all even integers, then the
following subtype relations are true in our model:

ev<int
ev — ev<ev — int

mt — ev<ev — ev
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ﬁ
1

SELF-SUB:

ﬁ
IN
.

rCt kCt
rANk<r

AND-ELIM-R-SUB:

rCt kTt

AND-ELIM-L-SUB:.
rANk <k

r < ki r <k
AND-INTRO-SUB:

r S kl/\ kz
. r<p p<k
TRANS-SUB. Sk
kh<r ro < k
ARROW-SUB: 1="1 2=2

ri—ra < ki— ko

ri—(raAr3) C 1

ARROW-AND-ELIM-SUB.
r1—r2 Ar1—r3 < rp—(ra Ars)

def
re < ke

RCON-SUB. ="
re < ke

def
rc1 N rco C 1

RCON-AND-ELIM-SUB: def
rc1 N\ reo < reqg A rep

for al : wehaver; < k;
ok ok, <kik.oooxk,

TUPLE-SUB:

(raAry)*...

TUPLE-AND-ELIM-SUB: 7 ,>I<
(ros.oxrg) A(rpx. . kr,)

(ra AT )Tt
<(raAry) *.ox(raArl)

Figure 2.4: Monomorphic Subtyping Rules
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Thus the intuitive model is consistent with the inferencerule.

Following [Pie91b], we use subtyping inferencerulesto expressthefact that intersection
is a greatest lower bound. The rules AND-ELIM-L-SUB and AND-ELIM-R-SUB ensure that
intersection is a lower bound and AND-INTRO-SUB guarantees that it is a greatest lower
bound. Since intersection is a greatest lower bound, it is commutative, associative, and
monotone in both arguments. The usua proofs that any greatest lower bound has these
properties trandate directly into uses of the inference rules. For example, here is a proof
that intersection is monotonein itsfirst argument:

Lemma219 Ifri <mandri Ary ArsC ¢, thenri Arg < rs A ra.

Proof: The only way to deriver; A r, A rz T t isby repeatedly using AND-REF, SO we must
haver; C tandr, C ¢t andr3 T t. Therule AND-ELIM-R-SUB givesri A rz < r1. Applying
TRANS-SUB to this and our hypothesis givesri A r3 < r,. The rule AND-ELIM-L-SUB gives
r1Arz < r3. The previoustwo assertions and AND-INTRO-SUB giver; A rz < rp Arz, which
is what we wanted to show. O

Once we have a subtying relation, we can define a natural notion of equivalence:

Definition 2.20 We say that r; is equivalent to r, or in symbols vy = r, if r; < 1, and
2 f 1.

Thisrelation is an equivalence relation on the refinements of any ML type, but it isonly a
partial equivalence relation on refinement types as a whol e because some refinement types
refine no ML type. For example, the refinement type ¢t A tt — tt isnot equivalent to itself
according to this definition.

The subtyping rulesin Figure 2.4 ensure that the types involved are well behaved in the
following sense:

Theorem 2.21 (SubtypesRefine) If » < k, then there is a unique ML type ¢ such that
rCtandk C t.

Proof: By Lemma2.10 (Unique ML Types) on page 31, there is a most one ¢ such that
r C tand & C ¢, so al we need to show here isthat thereis at least one such ¢. We do this
by induction on the derivation of r < k.

Case: SELF-suB | Thenr = k and the premise of SELF-SUB givesat such that r C .

Case: AND-ELIM-R-SUB | Then r hastheform & A p and the premises of AND-ELIM-R-SUB

must be
kCt (2.1)



CHAPTER 2. REFINEMENT TYPE INFERENCE 37

and
pCt (2.2)

Applying AND-REF to these gives
ENpCt. (2.3)

Our conclusions are (2.1) and (2.3).

Case: AND-ELIM-L-SUB | Similar to AND-ELIM-R-SUB.

Case: AND-INTRO-SUB | Then k& hastheform &y A k, and the premises of AND-INTRO-SUB

must be

and
r < k; (2.5)

Using the induction hypothesis on (2.4) gives at such that
rCt (2.6)

and
kiC t. (27)

Using the induction hypothesis on (2.5) gives awu such that
rCu (2.8)

and
ko C u (2.9)

Lemma 2.10 (Unique ML Types) on page 31 applied to (2.6) and (2.8) givest = u, SO we
can use AND-REF to combine (2.7) and (2.9) to get

ki Nk Ct.

This and (2.6) are our conclusions.

Case: TRANS-SUB | Then the premises of TRANS-SUB arer < p and p < k. Applying the

induction hypothesis to both of these gives ¢ and « such that all of the following hold:

rCt
pCt
pLCu
k C u.

Unique ML Types applied to the middle two givesus ¢ = w, so thefirst and the last are
our conclusions.
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def
Case: RCON-SUB | Then r = r¢ and & = ke and the premise of RCON-SUB is r¢ < ke.

Assumption 2.7 (Unique Predefined Refinements) on page 31 givesa tc such that rc dff te.

) def def def
By Assumption 2.15 (Refines <) on page 34 and r¢ < k¢ we have k¢ C tc. RCON-REF
gives rc C tc and ke C te, which are our conclusions,

def .
Case: RCON-AND-ELIM-SUB | Then r = rep A rep; and k = req A rep. The premise of
RCON-AND-ELIM-SUB iS

r‘cld/(if rcp C L. (2.10)

def . i def
By Assumption 2.17 (A Elim) on page 34 and Assumption 2.15 (Refines <) on page 34,
req dff t and re; dff t. Because d[ef only relates refinement type constructors to ML
def .
type constructors, ¢ must have the form tc. By Assumption 2.17 (A Elim) on page 34,

def def . . def .
we know req A rep; < rep. By Assumption 2.15 (Refines <) on page 34, it follows that

def def
rcy A rep T te. By RCON-SUB,
def
rc1 N\ rco C te.

Thisand (2.10) are our conclusions.

Case: ARROW-SUB | Thenr = r; —rp and & = ky — k, and the premises of ARROW-SUB
are

k1 <mr

and
ro < k.

Applying the induction hypothesis to both of these gives ¢, and ¢, such that:

kl Ct
r1 C 11
ro C 12
ko T to.

Applying ARROW-REF to these gives
r1—1r2 tl — tz

and
k1—>]€2 C t1—>t2,

which are our conclusions.

Case: ARROW-AND-ELIM-SUB | Thenr = r;—(rp Arg)and k = r1 —rp Arg—rs. The

premise of ARROW-AND-ELIM-SUB iS

ri—(raAr3) C L. (2.11)
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The last inferences of the derivation of this must be ARROW-REF and AND-REF, SO we must

have
t= t1—>t2

r1 C 11
ro C 12
rs3 C 1o

Applying ARROW-REF and AND-REF to these in a different order gives
r1—roAri—rz3Ci1—1r

Thisand (2.11) are our conclusions.

Case: TUPLE-SUB | Thenr = ryx...xr, and k = ky*...xk, and thepremiseof TUPLE-SUB

isr; < k; for al « between 1 and n. Applying the induction hypothesis to this gives, for
each ¢ between 1 and n, at; suchthat r; C ¢; and k; C ¢;. TUPLE-REF gives

Tk ok, Clpk.. ok,

and
kys...xk, Cty®...x1,,

which are our conclusions. If wetake n = 0, this conclusion tellsus runit T tunit, which
is true and unremarkable.

Case: TUPLE-AND-ELIM-SUB | Thenr = (ry*...4r,) A(rp*...xr.)and k = (ry A1) *

... % (r, A 7!). The premise of TUPLE-AND-ELIM-SUB is

reAT ) ko (r, A1) T L 2.12
1 n

The only way to derive thisis with TUPLE-REF, SO we must havet = ¢; * ... * t,, and
(Ti A T;) C ti

for : between 1 and n. Each of these assumptions must follow from AND-REF, so for al @
we must have
r; C t;

and

T; C ti.
Applying TUPLE-REF to these gives

rik...kr, Ct

and
k.ol O
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Applying AND-REF to these gives
(rosk ...k ) A(rp®...x7) Ct.

Thisand (2.12) areour conclusions. If wetaken = 0, our conclusionsare runit A runit C t
and runit C t, both of which are true and uninteresting. O

Some usesof A areinessential. We do not need to be able to take intersections of tuples
or of refinement type constructors; every intersection of tuples can be simplified to atuple
of intersections, and every intersection of refinement type constructors can be smplified to
a refinement type constructor. These simplifications are necessary in many places in the
proofs appearing later in this chapter, so we will prove that they are valid now.

For example,
(tt * Tbool) A (ﬁ *ﬁ) EJ—bool *ﬁ

and
tt A Tbgol = tt.

We will provethat smplificationslike this are possible in the general case.

Lemma 2.22 (TupleIntersection) Ifry*...*xr, Ctand ky *...* k, C ¢ then

(rokoookr) A (k. kky) = (raAkr) xo ok (ry Aky).

Proof of (ri*...%7,) A(kr*...xk,) < (rae Aky)x...%(r, Ak,): Immediate from
TUPLE-AND-ELIM-SUB.

Proof of (ri A kq)*...x (rp, Aky) < (ro...xr,) A(ki*...xk,): USe AND-ELIM-L-SUB
and AND-ELIM-R-SUB to get

forhinl...nwehaver, A k, <rp

and
forhinl...nwehaver, Ak, < k.

Then TUPLE-SUB gives
(raAky) k. .ok(rp Aky) <rpk...xry,

and
(raAke) k. ok (rp Aky) <kis...xk,.

Finally AND-INTRO-SUB gives
(raAkp)x ook (ry Aky) < (rokoosr) A (krx...oxky),

which is our conclusion. O
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In amoment, we will present a simple algorithm that simplifies tuple refinement types.
Sincethisisthefirst algorithmwe present at themeta-level (thatis, it manipul atesrefinement
types as objects), we need to describe the notation we will use for these algorithmsfirst.

The notation is basically Standard ML, except we allow free use of set notation and
ellipses®...”, provided the meaning isunambiguous. Since setsin mathematicsand records
in SML are both written with braces, we must give up one or the other to avoid ambiguity;
we give up records. Our meta-level algorithmswill also occasionally lapse into English or
mathematics. As an example, we can give the smple algorithm for smplifying tuples:

fun tuplesimp (rag* ... %P A . AT1 % .. % Thy,) =
(T'll/\.../\Tln)*...*(T‘hl/\.../\T‘}m)

This algorithm uses SML'’s destructuring convention with ellipses to s multaneously bind &
and n. to nonnegative integers and the variables r;; to refinement types for « between 1 and
h and 7 between 1 and n. Then it uses ellipses again to construct arefinement typethat isa
rearranged form of the given refinement type.

This notation has advantages and disadvantages. Sinceit is based on area program-
ming language, it tends to remain comprehensible as the algorithms we describe get more
complex. Since it is based on Standard ML, it is likely to be understandable to people
reading this thesis. However, basing the metalanguage on SML aso invites confusion
between the metalanguage and the object language, and this form of metalanguage is not
necessary for smple algorithmslike tuplesimp that will appear early in this chapter. On
the whole, the advantages seem more important, and we will use this notation throughout.

By repeatedly using Lemma 2.22 (Tuple Intersection) on page 40, it is easy to show
that tuplesimp iSsound:

Fact 2.23 (Tuplesmp Sound) If r C t1 % ... * ¢, then tuplesimp r terminates and has
theformry ... *ry, and r = tuplesimp r.

We can show similar properties for refinements of any ML type constructor, and a
similar ssimplification procedure emerges.

Lemma 2.24 (Refinement Constructor Intersection) Ifrc; A ... Arc, C ¢ then

def def
ICLA...AIC, =TCL A ... AIC,.

Proof: By repeated use of RCON-AND-ELIM-SUB,

def def
rci N\ ... Nre, <rci A ... N\ rc,.

def def . def .
Toshow reg A ... A e, < reg A ... A ey, repeatedly use Assumption 2.17 (A Elim) on

page 34 to get
. def def def
fordl hinl...nwehaverci A ... A r¢c,, < rcy,.
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Then RCON-SUB gives

) def def
fordl ~inl...nwehaverci A ... A re,, < rey,

and repeated use of AND-INTRO-SUB gives

def def
rci N\ ... Nre, < rcyAN...N\rc,.

Thefirst and last displayed formulae imply our conclusions. O
Just as we did with tuplesimp, we can define a function that simplifies refinement
typesthat isjustified by Lemma 2.24 (Refinement Constructor Intersection) on page 41.

fun rconsimp (re1 A...Are,) =

def def
rc1 N\ ... N\ rcy,

Soundness of this follows from one use of Lemma 2.24 (Refinement Constructor I ntersec-
tion) on page 41.

Fact 2.25 (Rconsimp Sound) If r C tc then rconsimp r terminates and has the formrec,
and rconsimp r = r.

TupPLE-sUB tellsusthat one product refinement typeisasubtypeanother if corresponding
components are subtypes. It turnsout that the converse is also true, although to proveit we
must first strengthen the induction hypothesis as shown in the following theorem.

After we introduce polymorphic refinement type constructors, this will be a trivia
consequence of properties of the: operator that we use to prove that each refinement type
has finitely many distinct refinements; until then, we need a direct proof.

Lemma 2.26 (Tuple Subtyping) If
rll*---*Thl/\---/\Tln*---*Thn§kll*---*khl/\---/\klm*---*khm
then for all ; between 1 and » we have

T]']_/\.../\T'jngkjl/\.../\kjm.

Proof: By induction on the derivation of our hypothesis.

Case: SELF-suB | Then n = m and

forzinl...nandjinl...h wehaver; = kj;.
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and thereisat such that
TIL ko kA A oo AT kL kT, T
The only way to derive (2.13) is by using AND-REF with the premises

for:inl...nwehavery ... xry Ct.

and this can only be derived by using TUPLE-REF when ¢ has the form ¢, « .

premises of TUPLE-REF are
forsinl...nandjinl...h wehaver;; C t;.
Then AND-REF gives
forjinl...AwehaverjyA...Arj, Ct;
and then SELF-SUB gives
forjinl...hwehaverj A...Arj, <rpA...ATj,

which is our conclusion.

Case: AND-ELIM-R-SUB | Then n > m and

TIL*K ook TpI A s c AP koo kT =k ko ok kA A AN Ky

Thus
forjinl...handzinl...m wehaver; = k;;.

Thus AND-ELIM-L-SUB and AND-ELIM-R-SUB give
forj inl...hweha\/eTﬂ_/\ .../\Tjn < kjl/\ .../\k]‘m,

which is our conclusion.

Case: AND-ELIM-L-SUB | Similar.

INTRO-SUB are

(2.13)

..x t, and the

* khm-

Case: AND-INTRO-SUB | Then thereisanzin1...m — 1 such that the premises of AND-

rll*---*rhl/\---/\rln*---*'f}mSkll*---*khl/\---/\kli*---*khi

and

rll*---*rhl/\"'/\rln*---*rhnSkl(H—l)*---*kh(i—l—l)/\"'/\klm*---*khm-
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Two uses of the induction hypothesis give
forjinl...Ahwehaverjs A... A7, <kji A A k.

and
forjinl...hwehaver;i A... A1 < kjapy Ao A kj.

Combining these with AND-INTRO-SUB gives
forj inl...hweha\/eTﬂ_/\ .../\Tjn < kjl/\ .../\kjm,

which is our conclusion.

Case: TRANS-SUB | For thedurationof thiscase, wewill giverigk. . krp AL Ary, .. %1y,

the name r. Thereisap such that the premises of TRANS-SUB are
r<p

and
p<kppk...kkpr Ao AN kpnk.ox k.

By Theorem 2.21 (Subtypes Refine) on page 36, thereisat such that both » and p refine .
By the form of » we know that ¢ hasthe form ¢, * ... x ¢;, SO by Fact 2.12 (Tuple Refines)
on page 32 we know that p hastheform pay * ... % ppa A ... A p1g * ... % ppy.

Two uses of the induction hypothesis give
forj inl...hweha\/eT‘jl/\ .../\Tjn Spjl/\ .../\qu

and
forjinl...hwehavepjl/\.../\qu < kjl/\.../\kjm.

Then we can use TRANS-SUB to get
forj inl...hweha\/eTﬂ_/\ .../\T]'n < kjl/\ .../\k]‘m,

which is our conclusion.

Case: ARROW-SUB

Case: ARROW-AND-ELIM-SUB

Case: RCON-SUB

Case: RCON-AND-ELIM-SUB

None of these cases can arise becausethey are not cons stent with theform of our hypothesis.

Case: TUPLE-SUB | Then n = 1 and m = 1 and the premises of TUPLE-SUB are our

conclusion.
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Case: TUPLE-AND-ELIM-SUB | Then n = 2 and m = 1 and our hypothesis has the form

(pr* .ok pr) A(PL* .k py) < (prAPL) * ..k (pu A py).

SELF-SUB gives
forjinl...h wehavep; A p; < p; Ap,

which is our conclusion. O

From thisit trivially followsthat if avalid subtyping inference lookslikeit could have
been inferred by using TUPLE-SUB, then it can be inferred by using TUPLE-SUB:

Corollary 2.27 (TuPLE-SUB Inversion) If
Tek ok < kpk.lokky

then
for:inl...Ahwehaver; < k;.

Proof: UseLemma 2.26 (Tuple Subtyping) on page 42 withn = m = 1. O

The only use we ever make of Lemma 2.26 (Tuple Subtyping) on page 42 is in the
proof of Corollary 2.27 (TUPLE-SUB Inversion) on page 45. It istempting to conjecture that
we could eliminate Tuple Subtyping by using tuplesimp to prove TUPLE-SUB Inversion
directly. Unfortunately, this does not work. The attempted proof of TUPLE-SUB Inversion
has the same shape as the proof of Tuple Subtyping, except many cases vanish because
the hypothesis has such a special form. The TRANS-SUB case remains, though, and that is
where the proof goes wrong. To get the weaker induction hypothesis to apply, we must
first use tuplesimp on the premises of TRANS-SUB. But then we have no guarantee that the
induction makes progress, since using tuplesimp makes the type derivation larger.

Similar reasoning to Lemma 2.26 (Tuple Subtyping) on page 42 gives analogous facts
about refinement type constructors:

Fact 2.28 (Refinement Constructor Subtyping) If
rceA...Arc, <k A...Akc,

then
def def def def def
rceN...Arc, < kcg A...Akc,.

Fact 2.29 (RCON-suUB Inversion) If
rc < kc

then
def

rc < kc.
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After we introduce polymorphic refinement type constructors, both monomorphic re-
finement type constructors and tuples will be special cases of polymorphic refinement type
constructors. Then we will introduce Corollary 5.13 (Arbitrary Constructor Subtyping) on
page 250, which generalizesboth Fact 2.29 (RCON-suUB Inversion) on page 45 and Corollary
2.27 (TUPLE-SUB Inversion) on page 45.

2.6.2 Splitting

Under appropriate assumptions about the refinement types of or and not, we should expect
the expression

fn x:bool => or (x, not x)

to have the refinement type T,,,; — tt. The reasoning that leads to the conclusion that
the above function always returns a value of type ¢t relies upon the assumption that all
boolean values have one of the types ¢t or ff. This section formalizes this assertion as
T oot < {tt, ff }; thisassertion isused in type inferencein the SPLIT-TYPE rulein Figure 2.6
on page 2.6.

To see why we need to use the fact that T,,,; < {tt,ff}, suppose we made the
assumption false by adding a new constructor maybe with refinement type runit — T y,4;-
What is the best type we could expect fromnot if itis passed an argument withtype T ;,,;?

At thetypelevel, the behavior of not must be monotone. Since ¢t < T4,,; andnot has
thetype tt — ff, thetype we get fromnot must be at least ff. A similar argument leads to
the conclusion that it must be at least ¢¢, so thetype must be T ,,;.

We can repeat thisargument for or instead of not and concludethat if we pass something
of type (T 001 * Taoor) 10 or, then all we can know about the result is that it has the type
T io01- Thustheexpressionor (maybe (), not (maybe ())) hasthe besttype T,,;, SO &s
long as we have the maybe constructor, we cannot give the expression

fn x:bool => or (x, not x)

thetype T ,0; — .

2.6.21 Déefinition of Splitting

Therefore our type system has to reason about when a refinement type can be split into a
union of other refinement types. We write the assertion that al values of type » have one
of thetypesinthe set s as

rxs.
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For example, we have

Tbool = {ttaﬁ}

and
T oot * Thoot < {ttx Lttt + ff, ff x tt, ff * ff}.

We say the elements of s are fragments of » and that » splitsup into s.

The definition of the splitting relation < for expressionsin general relies upon assump-
tions about how the refinement type constructors behave. We will need to assume that
certain refinement type constructors have splits to show that some refinement types have
splits. We write the assumption that r¢ splits up into constructorsin the set sc as

def
rc X sc.

For instance, starting with the assumption

def
Tbool = {tt7ﬁ}

about the refinement type constructors T ,.;, ¢, and ff, we can reach theinsipid conclusion

Tbool = {ttaﬁ}

about the refinement types T,,.;, tt, ff. We can aso reach more interesting conclusions,
such as
Tbool * Tbool = {Tbool * tt) Tbool *ﬁ}

An important property of < isthat if a value has a refinement type » and » < s then the
value has some element of s asitstype. We will have to postpone proof of this until after
we define refinement type inference.

We define the < relation in Figure 2.5.

The RCON-SPLIT ruleis self-explanatory; it ssimply allows usto make use of our assump-
tions.

TupLE-sPLIT alows us to split up atuple if we can split any of its components. SML
represents functionsthat take multiple arguments either as curried functions or as functions
that take one argument, which is a tuple. Without this rule, type inference for the curried
functions would be much stronger than type inference for the functions that take atuple as
an argument.

The TRANS-SPLIT rule lets us use the other rules multiple times to split up a refinement
type. Without this, there would be no clear “best” split of some refinement types; for
example, TUPLE-TYPE QIVES T o1 * T poor < { Thoor * U, Thoor * [} @M T poor * Tpopr <
{tt * Tooot, ff * Tioor}, and neither of these splits is clearly better than the other. With
TRANS-SPLIT, We can use TUPLE-TY PE to split the fragments of either of these splitsto get

Tbool * Tbool = {tt * tt; it *ﬁvﬁ * ttaﬁ *.[f}7
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def
rc X sc

RCON-SPLIT:
rec X sc

kiXS
TUPLE-SPLIT: k1 ...k kg k ky x kipg % ...k Ky <
{kl*---*ki—l*p*ki-l—l*---*km |p€5}

r < sy U{k} k< s

TRANS-SPLIT.
r < s1Uso
r==k kxs
EQUIV-SPLIT-L:
rxs
n=k =
EQUIV-SPLIT-R: P " s {k}
r=suU{p}
= ] <
ELIM-SPLIT: r=sU ik p} ksp
r=<sU{p}
SELF-SPLIT: = {T}

Figure 2.5: Definition of Splitting

which is in some sense a better split than either of the two splits given earlier. See
Subsubsection 2.6.2.2 for adiscussion of principal splits.

EQUIV-SPLIT-L and EQUIV-SPLIT-R ensure that the splitting relation is invariant under
equivalence. For example, Lemma 2.43 (Split Intersection) on page 54 alows us to start
with the premise

Tbool = {ttaﬁ}

and use that to conclude
T bool /\ﬁ = {tt /\ﬁ,ﬁ /\ﬁ}

Without EQUIV-SPLIT-L, the best we would be able to conclude is that for some type r
equivalentto T,,,; A ff we have

r<{tt N[ . N

If we had EQUIV-SPLIT-L but not EQUIV-SPLIT-R, the best we could conclude isthat for some
ri equivalent to tt A ff and some r, equivalent to ff A ff,

Tbool /\ﬁ = {rlvr2}‘
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ELIM-sPLIT allowsusto eliminate unimportant elementsfrom splits. For example, given
T oot < {tt, ff, Lioor}, Wecan use ELIM-SPLIT and L, < ¢t toinfer Ty, < {tt, ff}. If
we read the assertion T ;,,; < {tt, ff, Lo} 8 “All valueswith type T,,; have one of the
types tt, ff, or L;,.;,” it becomes intuitively clear that L;,,; can be eliminated from the
split without losing any information.

If we did not have ELIM-SPLIT, then principal splits would not be unique because the
unimportant elements could differ. We could still generate a unique minimal set that
contained all the information from all of the splits, but without ELIM-SPLIT, that set would
not beasplit. Sincethisset would be usable asa split, thedistinction betweenit and thetrue
splitswould be formal but not practical. 1t seems better to erase the unimportant distinction
by keeping the ELIM-SPLIT rule.

SELF-SPLIT ensuresthat each refinement type has at |east one split. Thissimplifiessome
of the reasoning to come; in particular, Assumption 2.50 (Split Constructor Consistent) on
page 66 is flexible enough only because we have SELF-SPLIT.

Now we can prove several lemmas about how = interactswith < and C. First we will
assume that the fragments of a refinement type constructor are smaller than the refinement
type constructor itself:

def
Assumption 2.30 (Split Subtype Consistent) If rc ¥ sandke € sthenkc < rc.

A straightforward induction lets uslift Split Subtype Consistent from a statement about
def
«“©n and “ <” to a statement about “<" and “<”:

Theorem 2.31 (SplitsAre Subtypesl) Ifr < sU{k} andr C t thenk < r.

Proof: By induction on the derivation of » < s U {k}.

Case: RCON-SPLIT | Then r has the form r¢ and £ has the form k¢ and the premise of
RCON-SPLIT IS

re € scU {ke}.

def
By Assumption 2.30 (Split Subtype Consistent) on page 49, this implies that k¢ < re.
Using RCON-SUB on thisgives k¢ < re, which isour conclusion.

Case: TUPLE-SPLIT | Thenr hasthefrom ky ... k;_q * k; % k11 * ... * k,, and k hasthe

formky x ...x k;_1 % px k1 % ... % k,,, and the premise of TUPLE-SPLIT is
k; < s U {p}.

The only way we could have inferred » C ¢ is by using TUPLE-REF where ¢ has the form
1% ...*t, andoneof the premises of TUPLE-REF is

forjinl...m wehavek; C t;.
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Thisistruefor ; = 2 aswell, so we can use the induction hypothesisto give
p < ki

By SELF-SUB,
forjinl...m wehavek; < k;,

and TUPLE-SUB gives
kl*---*ki—l*p*ki-}—l*---*kmSkl*---*ki—l*ki*ki-l—l*---*kma

which is our conclusion.

Case: TRANS-SPLIT | Then s U {k} = s U s, where the premises of TRANS-SPLIT are

r < s U{p}

and
p X So.

If & € s1, then our induction hypothesis gives £ < r, and we are done.

If k& € s;, then we reach our conclusion less directly. Our induction hypothesis gives
p < r, and Theorem 2.21 (Subtypes Refine) on page 36 gives at such that p C— ¢. Then
we can use our induction hypothesis again to get £ < p, and then TRANS-SUB gives k£ < r,
whichis our conclusion.

Case: EQUIV-SPLIT-L | Then the premises of EQUIV-SPLIT-L arer = p and p < s. Theorem

2.21 (Subtypes Refine) on page 36 gives p C ¢, and our induction hypothesis gives &£ < p.
TRANS-SUB then gives £ < r, which is our conclusion.

Casel EQUIV-SPLIT-R | Then we must have s U {k} = s’ U {p} where the premises of

EQUIV-SPLIT-Rarep = p’ andr < s’ U {p'}.

If k € s',thenk € s"U {p'}, s0 we can use our induction hypothesisimmediately to get
kE<r.

If & = p, then our induction hypothesis only gives p’ < r. Since p = p/, TRANS-SUB
givesp < r, whichisour conclusion.

Case: ELIM-SPLIT | Then s U {k} = s" U {p} and the premises of ELIM-SPLIT are r <

s'U{p,p} and p’ < p. Since k must bein s’ U {p’, p}, our induction hypothesis gives
kE<r.

Case: SELF-SPLIT | Then £ = r, and SELF-SUB gives our conclusion. O

Itisatrivial consequence of this show that < and C interact reasonably:
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Corollary 2.32 (Split TypesRefinel) If r x sand k € sandr C ¢ then & C ¢.

Proof: Let k£ in s be given. By Theorem 2.31 (Splits Are Subtypes 1) on page 49, k£ < r.
By Theorem 2.21 (Subtypes Refine) on page 36, & C t. O

The following fact similar to Theorem 2.31 (Splits Are Subtypes |) on page 49 is
provable, but the proof istoo similar to the proof of Theorem 2.31 (Splits Are Subtypes )
on page 49 for it to be worthwhileto include it here.

Fact 2.33 (SplitsAre Subtypesl|l) Ifr < sU{k}and k C t thenk < r.

We have an immediate corollary to Fact 2.33 (Splits Are Subtypes 1) on page 51 that is
completely analogousto Corollary 2.32 (Split Types Refine I) on page 51.:

Fact 2.34 (Split TypesRefinell) Ifr x sandk € sand k C ¢ thenr C ¢.

Refinements of an ML type of theform ¢, — ¢, all haveasimple form. If r C ¢; — 5,
we can use SELF-SPLIT to infer » < {r}, and we can use EQUIV-SPLIT-R to replace the
element of that split by arbitrarily many equivalent elements. A simple induction on the
derivation of r < s for any s tells us nothing more interesting than this can happen. Thisis
important in the sPLIT-TYPE case of Lemma 2.70 (Value Substitution) on page 93.

Fact 2.35 (Splitsof Arrowsare Simple) Ifr C t; —t,andr < sand k € s thenr = k.

It is possible to imagine a refinement type having an empty split. This would be
consistent with the intuitive meaning of splitting if there were no way to construct a value
having that type; for instance, we might expect 1 ;,,; to split into the empty set. However,
allowing empty splits causes type inference to behave strangely; see the discussion of the
SPLIT-TYPE rule on page 62. We will outlaw refinement types with empty splits; thus
possible splitsof L ;,,; are { L.} andtrivial variantsof thissuch as{ L .1 A Lje0r}. First
we outlaw empty splitsfor refinement type constructors:

Assumption 2.36 (Refinement Constructor Splitsare Nonempty) If rc < sc then scis
nonempty.

Fromthisit is easy to show that no refinement type can have an empty split:
Fact 2.37 (Splitsare Nonempty) If r < s then s is nonempty.

This could be proved by induction on the derivation of r < s.
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2.6.22 Principal Splits

The definition of the =< relation gives infinitely many splits of each refinement type. For
example, ¢t has the splits {¢t}, {tt A tt}, {tt, ¢t A tt}, and infinitely many others. A
practical type inference algorithm will only have time to consider a finite number of these.
In this Subsubsection we will add an assumption that makes it possible for type inference
to consider only one split. This split will be a principal split in the sense we will define
below. If we identify two splits when there is a one-to-one correspondence between them
where equivaent elements correspond, then any well-formed refinement type has exactly
one principal split.

First, we shall make adistinction between splitswith fragmentsthat could be eliminated
by using ELIM-sPLIT and splits without such fragments. The unnecessary fragments add
complexity.

Definition 2.38 (Irredundant Splits) We say a split s is redundant if any two el ements of
s are comparable. Otherwise we say it isirredundant.

A given refinement type will have many splits, and some of them are more informative
than others. A split isinformative because it introduces smaller refinement types into the
environment. Thus oneirredundant split is more informativethan another if the former has
types smaller than the typesin the latter; to put it formally,

Definition 2.39 (Informative Splits) Given two splitss; and s, of r, we say that s; ismore
informative than s, if each element of s, isless than some e ement of s».

Our god isto have unique most informativeirredundant splits:

Definition 2.40 (Principal Splits) Wesaythat s isaprincipal split of r if s isanirredundant
split of » that is more informative than any other irredundant split of .

Once we have one principa split, we need not worry about looking for another because
there are no other principal splits that are different in any interesting way.

Theorem 2.41 (UniquePrincipal Splits) Given any two principal splits of a well-formed
refinement type, there is a one-to-one correspondence between them in which the corre-
sponding refinement types are equivalent.

Proof: Supposes and s’ areprincipal splitsof , and pisins. By symmetry, it is sufficient
tofindap’ in s’ suchthat p = p'.

Since s ismoreinformative than s’, thereisap’ in s’ such that p < p’. Since s’ ismore
informativethan s, thereisap” in s suchthat p’ < p”. By TRANS-SUB, theseimply p < p”.
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Since s isirredundant, we must have p = p”. Using thisto rewrite p’ < p” givesp’ < p.
Thisand p < p’ imply p = p’, which implies our conclusion. O

Generally speaking, refinement types that are not well-formed may not have principal
splits. For example, suppose

Tbool = {ttvﬁ}
and
Tbool = {tt,ﬁ, J—bool}-

In this case the malformed type (t¢ A runit) * T 4,,; Would have the splits
{(tt A runit) * tt, (tt A runit) * ff}

and
{(tt A runit) * tt, (tt A runit) * ff, (&t A runit)* Lo},

among others. These splits are both irredundant because ill-formed refinement types are
incomparable, and for the same reason neither split is more informative than the other.
By similar reasoning, no splits of (¢t A runit) * Ty,,; Will be redundant or more or less
informative than any other splits. Thus we only will be interested in principal types for
well-formed refinement types.

If we want to have unigue most informative splits, we need to have a split more
informative than any two given splits. Thus, if we have splits s; and s, of a well-formed
refinement type » then we need to be able to find an s3 such that

r X 83

and
forall k3 € s3thereisak; € sy suchthat k3 < k4

and
for all k3 € s3thereisak, € s, suchthat k3 < k».

Thiswill betrueif splitting interactsin anatural way with intersection: whenever p < s
and p and p’ refine the same ML type, we need to ensurethat p A p’ < {p”" A p' | p” € s}.
Thisisintuitively plausible becauseif avalueisinp A p’ isinboth p and p’. Sinceitisinp
it must bein some p” € s, and sinceit isin both p” and p’ it must bein p” A p'.

This property alows us to construct an s3 more informative than both s; and s,. Let
s3=1{k1 AN ky| k1 € spand ky € s5}.
The property mentioned in the previous paragraph guarantees that
forall k1 ins;wehave ks < {k1 A ky | k2 € 35}
and then we can repeatedly use TRANS-SPLIT to get

rx {ky Aky| ki€ syandky € 5o},
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which means that s3 has the properties we want.

What is the best way to ensure that splitting and intersection interact this way? It is
sufficient to assume that predefined splitting and predefined intersection interact this way
for refinement type constructors:

Assumption 2.42 (Predefined Split Intersection) Ifrc dff tc and kc dff tc and
def
rc < sc
then

def def
rcA ke & {rc’ ANkec|rc € sc}.

Now we arein aposition to provethat the anal ogous property holdsfor refinement types
in general:

Lemma 2.43 (Split Intersection) If» C ¢ and £ C ¢ and
rxs

then
rAkx<{r'Ak]|r € s}

Proof: By induction on the derivation of r < s.

Case: RCON-SPLIT | Then r has the form rc and ¢ has the form ¢c¢ and s has the form sc

and the premise of RCON-SPLIT iS

def
rc X Ssc.

def def
Since k C tc, weknow that & hastheform kci A ... A ke,,. Let ke = key A ... A ke,. By
Lemma 2.24 (Refinement Constructor I ntersection) on page 41,

re Nk =rc d/(if ke.
By Assumption 2.42 (Predefined Split I ntersection) on page 54,
re R ke € {rc’d/?fkc | v’ € sc}.
RCON-SPLIT and EQUIV-SPLIT-L give
re ANk < {'r’c'd/sfkc | 7’ € sc}.

By Lemma 2.24 (Refinement Constructor | ntersection) on page 41 weknow that for r¢’ € sc
def
we have r¢’ A k = r¢’ A ke. Thus repeated use of EQUIV-SPLIT-R gives

re Nk < {rd Nk |rc € sc}
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which is our conclusion.

Case: TUPLE-SPLIT | Thenr hastheformry*...+r, and thereisan: such that the premise

of TUPLE-SPLIT isT; < s’ where
s = {Tl*---*Ti—l*rll*ri-l—l*---*Tn | T//E S/}.

Sincer C t, we know that ¢t hasthe form ¢, ... ¢,. Since k C ¢, we know that £ hasa
form that allows us to repeatedly use Lemma 2.22 (Tuple Intersection) on page 40 to find
k, through &,, such that

k=ki*...xk,.

By induction hypothes's,
T A kZ = {T///\ kZ | T‘H € S/}

and TUPLE-SPLIT gives

(Tl/\kl)*...*(Tn/\kn) =
{(Tl A kl) * L.k (""i—l A ki—l) * (T” A kz) * (Ti—i—l A ki-l—l) * L.k (Tn A kn) | r’ e 8/}.

All that remains to do is to simplify this until it looks like our conclusion. Lemma 2.22
(Tuple Intersection) on page 40 gives

(resk.ookrg ) A (ki ok k) = (raA k) * .ok (ry Aky)
and trivia reasoning about A then gives
P Ak = (roAke) ok (e A k).
EQUIV-SPLIT-L gives
rAk = {(rank) .ok (rima A ki) * (P ARk (riga Akiga) %ok (r Aky) | 77 € 8T
Lemma 2.22 (Tuple Intersection) on page 40 givesfor r” in s’ we have

(roskoookrigkr"krpak ok ) A (k.. ok k,) =
(Tl/\kl)*---*(Ti—l/\ki—l)*(T///\ki)*(ri-}—l/\ki-}—l)*---*(Tn/\kn)

Trivial reasoning about A gives

(rokoookrm_pkr”srprk k) A (b k... xk,) =
(7"1*.__*T,i_l*T‘//*TZ'_Fl*...*'rn)/\k

so for " in s’ we have

(ros.ookr_g*krsrgpgk. k) Ak =
(Tl/\kl)* ---*(ri—l/\ki—l)*(r///\ki)*(ri+l/\ki+l)* *(Tn/\kn)
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Repeated use of EQUIV-SPLIT-R gives
rAkx{(ris.coxriaxr" sk oxr) Ak €5’}
and by ssmple manipulation and the definition of s thisimplies
rANkEx<{r'Ak]|r € s},

which is our conclusion.

Case: TRANS-SPLIT | Then s hastheform s; U s, where the premises of TRANS-SPLIT are

r < s U {p}

and
p X So.

By induction hypothes's,

rANkx<{r'Nk]|r es U{p}t}
and by set theory thisis equivalent to

rANkx{rAk]resi}U{pAk}.
By Corollary 2.32 (Split Types Refine ) on page 51, p C ¢. By induction hypothes's,
pANE=<{r"ANk|T € s}

Then TRANS-SPLIT gives

rAk < {r Ak |r €siU sy,

which is our conclusion.

Case: EQUIV-SPLIT-L | Then the premises of EQUIV-SPLIT-L are

TEp
and
p = s.

By Theorem 2.21 (Subtypes Refine) on page 36, p C t, SO we can use the induction
hypothesisto get
pAEx<{r'Ak|r € s}

Trivial reasoning about A givesr A k = p A k, SO we can use EQUIV-SPLIT-L to get

rAk=<{r"Ak]|r es},
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which is our conclusion.

Case: EQUIV-SPLIT-R | Then s hastheform s’ U p where the premises of EQUIV-SPLIT-R are

and

By induction hypothes's,
rAkE<{r'ANE|restU{p Nk}

Trivial reasoning about A givesp’ A k = p A k, SO we can use EQUIV-SPLIT-R to get
rAk=<{r'ANk|restU{pAk},

which is our conclusion.

Case: ELIM-SPLIT | Then s hastheform s’ U {p} where the premises of ELIM-SPLIT are

r= s U{p,p}

and
P <p
By induction hypothes's,

rANEx{r'ANE|resYU{pAkp Ak}
Trivia reasoning about A givesp’ A k < p A k, SO ELIM-SPLIT gives
rAkx<{r'"ANk|restU{pAk},

which is our conclusion.

Case: SELF-SPLIT | Then s = {r}, so our conclusionisr A k < {r A k}, which follows

from SELF-SPLIT. O

Just as some splits are more informative than others, some splits have no information
a al. For example, the split ¢t =< {tt, L;,,1} is useless because the meaning of it is a
truism: all values of type ¢t have one of thetypes ¢t or L ;,,;. Ingeneral, if afragmentina
split is equivalent to the type we started with, that split is useless. Formally, we have this
definition:

Definition 2.44 Ifr < sandthereisak € s suchthat r = k, then we say that s isa useless
split of . Otherwise we say it is useful.
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A simple argument tells us that elements of a principal split cannot themselves have
useful splits.

Lemma 2.45 (Principal Split Implies Useless Splitting Fragments)
Fragments of a principal split only have useless splits.

Proof: Suppose that an irredundant split of a well-formed refinement type r is s U {k},
where k£ has a useful split s’. Then by TRANS-SPLIT, » < s U s'. By definitions of
“informative” and “useful”, s U s’ is more informative than s U {k}. By Theorem 2.31
(Splits Are Subtypes |) on page 49, s U s’ isirredundant. Thus s U {k} is not a principal
split of 7. a

We aso have the converse:

Lemma 2.46 (Fragments of Principal Split have Useless Splits) Anirredundant split of
a well-formed refinement typeis principal if all of its fragments only have useless splits.

Proof: Suppose s is an irredundant split of a well-formed refinement type r, and r < s’
and p isin s. We need to show that thereisap’ in s’ such that p < p'.

By assumption, thereisat suchthat » C ¢. By Theorem 2.31 (SplitsAre Subtypes|) on
page 49, thisimpliesp < r, which meansthat p = r A p. Lemma 2.43 (Split Intersection)
on page 54 gives

rApx{r'Apl|res},

and then EQUIV-SPLIT-L gives
px{r'Ap|res'}.

By assumption, this split of p isuseless. Thusthereisap’ in s’ suchthat p = p’ A p, which
impliesp < p’, which isour conclusion. a

We will use these two lemmas to build an algorithm for finding principal splits in
Subsection 2.10.2.

2.6.3 Refinement Type I nference

Given the subtype relation described above, we can define refinement type inference. The
notation is entirely analogous to the ML case. We write

VREe:r

to mean that if we assume each free variable z in e has the refinement type VR(z), then e
has the refinement type r.
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If an expression has a refinement type, then it has an ML type, and the refinement type
refinesthe ML type; thisisan informal statement of Theorem 2.54 (Inferred Types Refine)
on page 68. Since each expression with an ML type has only one ML type, al refinement
types for an expression refine the same ML type. If thisis not true in general, then not all
terms would have principal refinement types. For example, if e has the refinement types ¢t
and runat, then e has no principal type because it, runit, and the malformed type ¢t A runit
are all incomparable.

Inferring refinement types for expressions requires making assumptions about the re-
finement types of constructors. We write the assumption that the constructor ¢ maps values
of refinement type r to values of refinement type rc as

def
C . T “—rc.

For example, true ® yunit — tt. Wewill describein detail the propertieswe assume for
the ® relation in Subsection 2.6.4 on page 64.

The rulesfor refinement type inference are in Figure 2.6. They are smilar to the rules
for ML; we have made only the following changes:

We added the AND-INTRO-TYPE rule for introducing intersections. This allows us to
infer one type for a function that describes its behavior for severa different inputs. For
example, since- - fn x:bool => x:tt —ttand -+ fn x:bool => x: ff — ff, we have
-Ffn x:bool => x:tt—tt A ff — ff. Wedo not need a corresponding AND-ELIM-TY PE
rule because we can use WEAKEN-TYPE and either AND-ELIM-L-SUB Or AND-ELIM-R-SUB t0
eliminate components from an intersection type.

The AND-INTRO-TYPE rule does not need to assume that » and % refine the same ML
type because Theorem 2.54 (Inferred Types Refine) on page 68 guaranteesthis.

We have added the WEAKEN-TYPE rule. This rule ensures that if an expression has a
type, then it also has any larger type. For example, since - - fn x:bool => x : tt — 1t
and ¢t — it < tt — Ty, Wecaninfer - = fn x:bool => x . tt — T 401

One would hope that if the environment VR has appropriate types for not and or, we
would be ableto infer

VRF fn x:bool => or (not x, x): Tjpe — I,

since this function looks simple and it does indeed return true () for any input. The
SPLIT-TYPE rule allows this. We can derive

VR[z ;= tt] F or (not x, x): 1t

and
VR[z := ff] F or (not x, x):

and then combine these with sPLIT-TYPE and T ,,; < {t, ff } tO get

VR[z := Tjpet] F or (not x, x):tt



AND-INTRO-TYPE:

WEAKEN-TYPE!

SPLIT-TYPE:

VAR-TYPE!

ABS-TYPE:

APPL-TYPE!

CONSTR-TYPE:

CASE-TYPE!

TUPLE-TYPE!:

ELT-TYPE:

FIX-TYPE:

CHAPTER 2. REFINEMENT TY PE INFERENCE 60
VRFEe:r
VRFe: k
VRFe:rT ANk
VREe:r r<k
VRFe:k
kxs
foral pinswehaveVR[z :=p|Fe:r
VR[z:=klFe:r
VR(z) =r rcCt
VRFEz:r
VR[z:=r|Fe:k rCt
VRE fn z:t => e:r—k
VR"@l:k—>T VRl_ez:k
VRE e ex:r
cd?frcerc VREe:r
VRFc e:rc
VRE eq: e
rCu
foraliinl...nanddl k, ife; ® k< rethen VRF ¢;: k—r
rtom(VR) - (case e of ¢1 => e1 | ... | ¢, => €, end:u) I u
VRIF (case eg of ¢ => e1 | ... | ¢, => €, end:u) i r
for:inl...nwehaveVRF ¢; . r;
VRE (e1, ..., €,) iri%... %1y
VREe:ri*... %1,
VRE elt_m_n e:r,
rCt1— 1t
VR[f:=r]F (fn x:t1 => €)' r

VRE (fix f:t1—ty => fn x:tp => e) 7

Figure 2.6: Monomorphic Refinement Typing Rules
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and then use ABS-TY PE to get
VRF fn x:bool => or (not x, x): Tjpp — 1,

which is what we want.

We could get the same result by deleting the sPLIT-TYPE rule and adding the rule

P {ry, .., r—kCt

SPLIT-SUB.
rm—kN... ANr,—k<r—k

to the subtyping relation. In this case, we would again start by deriving
VR[z ;= tt] F or (not x, x): 1t
and
VR[z := ff] F or (not x, x): (L.
Then we would apply ABS-TYPE to each of these to get
VRF fn x:bool => or (not x, x):tt—1t
and
VRF fn x:bool => or (not x, x):ff — (.

Combining these with AND-INTRO-TY PE gives
VRF fn x:bool => or (nmot x, x):ff =t Att—tt,
and then WEAKEN-TYPE and ff — tt A tt — it < Ty,,; — tt (from SPLIT-SUB) give
VRF fn x:bool => or (nmot x, x): Tjpe — I,

which is our conclusion.

If have SPLIT-TYPE but not SPLIT-SUB, thenthetypes ff — tt A tt — tt and T4,,; — tt are
not equivalent, even though all values with one type also have the other type. If instead we
have sPLIT-sUB but not SPLIT-TY PE, thisanomaly does not happen. In this sense, SPLIT-SUB
is cleaner than sPLIT-TYPE. It isan open question whether adding sPLIT-SUB would cause
inequivalent typesto always have different inhabitants.

However, after we add 1et statementsin Chapter 4, SPLIT-TYPE becomes stronger than
SPLIT-SUB. For example, if we assume the best type for the expression y mod 3 = 0 is
T 1001, We would till like the statement

let x = (y mod 3 = 0)
in

or (not x, x)
end
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to have the refinement type ¢¢. SPLIT-TYPE can do this, but SPLIT-SUB cannot because there
is no subexpression of the Let statement with an appropriate arrow type.

We could still have a strong system with spLIT-SUB if we defined 1et statements as
macros, for example, the above 1et statement would be an abbreviation for

(fn x: bool =>
or (not x, x))
(y mod 3 = 0).

Taking this approach when the 1et statement introduces polymorphism requires first-class
polymorphism, which is beyond the scope of thisthess.

At this point we need to combine all the above considerationsinto a decision. We will
keep SPLIT-TYPE because we want the proofs in this chapter to be a special case of the
proofsin Chapter 4. We will omit sPLIT-SUB for brevity, since there is no harm in having
inequivalent types with identical inhabitants.

ThespLIT-TYPE rule leads to at least two problems if we allow empty splits. The first
problem is that empty splits can be used to infer a malformed refinement type for an
expression. For example, if we supposethat L ;,,;< {}, thenwe can use SPLIT-TYPE to infer

[ = Lyoot] () 2 £ A (1t — t1).

This problem can be fixed by adding a premise » C ¢ to the SPLIT-TYPE rule. The revised
rule would read
k=xs
foral pinswehaveVR[z :=p]Fe:r
rCt
rtom(VR) - e :: ¢
VR[z :=k]Fe:r.

By explicitly requiringtheresulting refinement typeto refinethe ML typefor theexpression,
we outlaw malformed types.

Another problem with empty splits is more difficult to solve. Empty splits cause
variables in the environment that appear nowhere in an expression to affect the type of the
expression. For example, still assuming that L ;,,;< {}, we can use SPLIT-TYPE to prove

[ :=Lypot] F true () ff.

This conclusion is reasonable in an eager language because there are no values of type
1 3001. However, it is strange because if we changed the environment to [« := ff], wewould
no longer be able to prove true () : ff. Since we assume in many places that changing
types in the environment for unused variables does not affect the refinement type of an
expression, this would invalidate many of the proofs below. To make it clear where we
assume this, we will state it as afact now, and make explicit reference to thisfact when we
assumeit istrue.
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Fact 2.47 (Non-free Variablesare Ignored) If z isnot freeine, then VR[z :=r|F e k
ifandonly if VRF ¢ : k.

Proof of thisis by two trivial inductions, one on the derivation of VR[z := r] - e : k and
one on the derivation of VR F ¢ : k. In both cases, we have to use Fact 2.37 (Splits are
Nonempty) on page 51 in the case where the root inference is sPLIT-TYPE and the type of
x isbeing split. Inlogic, the “only if” case of this theorem is called “weakening” and the
“if” caseiscalled " strengthening”.

VAR-TYPE is analogous to VAR-VALID rule except we add the premise » C ¢. This
ensuresthat all types we use from the environment are well formed. We state thisformally
and sketch the proof in Fact 2.48 (Free Variables Refine) on page 64. If thiswere not true,
for many of the theorems below we would have to add an assumption that all variablesin
the environment are well formed.

The differences between CASE-TYPE and CASE-VALID have two causes. First, thereis
aways exactly one t and tc¢ such that ¢ ® s te, but in general there may be many r’s

and re’ssuch that ¢  » < re. This causesthe added quantification on & in the CASE-TYPE
rule.

Second, we do not want to require unreachabl e cases to have arefinement type. If acase
isnever reachable, we do not requireit to have arefinement type, so it would not necessarily
havean ML type unlessweexplicitly requiredit to. The last premise of CASE-TYPE requires
the case statement as a whole to have an ML type, and by CASE-VALID, this requires the
unreachabl e cases to have ML types.

Thereisanatural analogy between instantiating a polymorphic ML type and weakening
a refinement type, since both operations replace the type by aless informative type. The
analogy is not perfect; in particular, although there are infinite sequences of increasingly
instantiated polymorphic types, such as

a713—>77(5_)6)_)77"'7

straightforward reasoning tells us there are no infinite sequences of increasingly weak
refinement types. because the refinement types are increasingly weak, they must be com-
parable, so Theorem 2.21 (Subtypes Refine) on page 36 tells us they all refine the same
ML type; by Theorem 2.90 (Finite Refinements) on page 115, there are only finitely many
distinct refinements of any ML type, so the chain must befinite.

Unfortunately, standard notation obscures this analogy. If the refinement type r; is
weaker than the refinement type r1, wewrite r; < r,. Butin [DM82], among other places,
if the type scheme o, is an instance of the type scheme o1, wewrite o; > o,. We make no
use of the instantiation ordering in this thesis, so we are not faced with a choice between
internal inconsistency and external inconsistency.

The origina Damas-Milner type inference system [DM82] disallows instantiating the
type of the recursion variablein afixed point immediately before using it, and that system



CHAPTER 2. REFINEMENT TYPE INFERENCE 64

is decidable. The Milner-Mycroft type inference system [Myc84] is avariant that permits
instantiating the type of the recursion variablesin fixed points, and that change is sufficient
to make the type system undecidable [KTU89]. None of these questions arise for the ML
type inference we use in this chapter, because there is no polymorphism. But the following
guestion does arise: which of these systemsis refinement types analogous to, and how does
that affect decidability?

Both the Damas-Milner and the Milner-Mycroft type systems distinguish type schemes
(which can be instantiated) from types (which cannot). In the refinement type system,
WEAKEN-TYPE can be applied anywhere, so al refinement types are analogous to the type
schemes in polymorphic type inference. In particular, the refinement type of the recursion
variable in afixed point can be weakened before it is used. In this sense, refinement type
inference is analogous to the Milner-Mycroft system. However, refinement type inference
is decidable because there the ML type of the recursion variable is uniquely determined,
and thistightly constrains the search.

If an expression has a refinement type, then the variables it uses have well-formed types
in the variable environment. This is the refinement type analogue of Fact 2.5 (ML Free
Variables Bound) on page 29. To state it formally,

Fact 2.48 (Free VariablesRefine) If VR F ¢ : r and = isfreein ¢, then thereisa ¢ such
that VR(z) C t.

Proof of thisis by induction on the derivationof VR ¢ : r.

2.6.4 Propertiesof Constructors

This subsection describes the properties of value constructor that are directly used by
refinement type inference. Aswe mentioned earlier, we say that a constructor maps values
of type r to values of type rc by writing

def
C . T “—rcC.

For example, this assumption about true fitsits ordinary meaning:

def .
true . runit — tt

as does this assumption about false:
def .
false . runit — ff.

If aconstructor has a refinement type, it also has larger refinement types, so these assump-
tions are also reasonable: o
true | runit < T o0l

def .
false 7 runit — T jy0.
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Thus for any ¢ we may have many r’s and r¢’s such that ¢ * . <, re. This contrasts with
the unique ¢ and ¢c¢ such that ¢ e

For another example, we have these types for the bitstring constructor Zero:

Zero d?f Lpiestr = Lipitstr Zero d?f emply — T pisstr
Zero d?f Lpitstr — empty Zero d?f nf — nf

Zero d?f Lyitstr — nf Zero d?f nf — T pistr
Zero d?f Litstr = T pitstr Zero d?f Titstr = T pitstr

Now we will describe the properties * that are used by refinement type inference. We

congtrain how ' interacts with the refines relation “” ,the splitting relation “<”, and the
subtyping relation “ <”.

Constructorsand Refines  First, we need d?f to be consistent with d:?f.

Assumption 2.49 (Constructor Type Refines) If

def
c . r—1IC

and iy
c i t—=tC

def
thenr C— tandrc C tc.

By Lemma2.10 (UniqueML Types) on page 31, for each constructor ¢ therearet and tc

such that ¢ ® ¢ < tc. Therefore Assumption 2.49 (Constructor Type Refines) on page 65
constrains the refinement type of all constructors.

Constructorsand Splits  Theproperty of =< that makesit useful isTheorem 2.69 (Splitting
Va ue Types) on page 89, which saysthat if avalue hasatypethat splits, then the value has
one of the fragment types. Suppose the value has the form ¢ v and it has the type rc that
splitsinto {res, ..., re, }. The derivation that gives atypeto ¢ v will first infer atype for

v; cal thistype r, and we will assume that ¢ * < re. We need some way to conclude
that ¢ v hasone of the r¢;’s asits type.

. . . . def . . . .
A natural criterionistorequirec . r — rc; for some:. Thisrequirement istoo strong
to deal with many natural examples. For example, if we distinguish even length and odd
length lists of booleans with the declarations

datatype blist = nil | cons of bool * blist
rectype bev = cons (T * bod | nil (runit)
and bod = cons (T e * bev)
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we have et
cons . T aool ¥ T plist < | blist
and def
Tblz’st = {bev, bod}
but neither »
cons T o1k T piist — bev
nor

def
cons . ool * | plist < bod.

Instead, werequirefor each split of r, thereisasplit of r¢ such that ¢ mapseach fragment
of r to some fragment of rc. This seems to work well for many ordinary examples. In the
above example, r is T, * T 41i5; and we have the following:

Tbool * Tblist = {Tbool * bev, Tbool * bOd}
def
cons . 1 4ol * bev — bod

def
cons | 1 peol * bod — bev

This approach only makes sense if a refinement type splits whenever it refines some
ML type. For instance, consider the ML datatype

datatype pred = A of bool — bool
| B of bool— bool

and the refinement type declaration

rectype a = A (bool — bool)
and b = B (bool — bool)

The types for the value constructors arising from this are

A d:ef (Tbool - Tbool) — a

and iy
B (Tbool - Tbool) — b.

At this point it seems reasonable to have T ,,.; < {«,b}. Thiswould fail our criterion if
SELF-SPLIT did not ensurethat T,,; — T po0r SPlits.

Putting thisformally,

Assumption 2.50 (Split Constructor Consistent) If

def
c . r—1IC
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and »
rc < {rcy,...,rc,}

then there is some provable assertion of the form
r<A{ry, . Tt

such that for all ; between 1 and m thereisan : between 1 and » such that

def
c . rj—IGC.

Constructorsand Intersection Wewill need

Assumption 2.51 (Constructor And Introduction) If ¢ < rcand e ® < ke then
def
o (rc A ke).

Any use of CONSTR-TY PE that uses a® property that only exists because of Assumption 2.51
(Constructor And Introduction) on page 67 could be replaced by two uses of CONSTR-TYPE

followed by an AND-INTRO-TYPE and then a WEAKEN-TYPE to convert rc A ke to re d/(if ke.
We use Assumption 2.51 (Constructor And Introduction) on page 67 when we do not want
the derivation to have WEAKEN-TY PE a the root; thisis in the RCON-AND-ELIM-SUB case of
Lemma 2.67 (Piecewise Intersection) on page 84.

Constructors and Subtyping We need the assumed types for constructors to be con-
sistent with the subtyping relation on the left and the assumed subtyping relation on the
right.

Assumption 2.52 (Constructor Argument Strengthen) If ¢ *® < rcand k < r then
def
¢ . k—rc

def
Assumption 2.53 (Constructor Result Weaken) If ¢ < rcandrc < ke, then ¢ ot
r — Kc.

Neither of these rules change the set of types that can be inferred using CONSTR-TY PE.

Any use of CONSTR-TYPE that uses a™ property that exists only because Assumption 2.52
(Constructor Argument Strengthen) on page 67 requires it could be replaced by a use of
WEAKEN-TY PE followed by ause of CONSTR-TYPE. Similarly, any use of CONSTR-TY PE that

usesa™ property that existsonly because Assumption 2.53 (Constructor Result Weaken) on
page 67 requiresit could be replaced by ause of CONSTR-TY PE followed by WEAKEN-TYPE.

However, without these assumptions, the CASE-TYPE rule would have to use “:” where

it presently uses «%®» Thiswould make several of the proofs below much more complex,
since the behavior of the constructors in CASE-TYPE would depend on the results of type
inference rather than depending simply upon our assumptions.
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2.7 Compatibility With ML

In this section describe in what sense refinement type inference is compatible with ML
type inference. Under very general conditions, al terms with a refinement type have an
ML type. Also, under special conditions corresponding to complete absence of rectype
statements, all terms with an ML type have a refinement type.

The first property ensures that ssimple modifications to existing ML compilers will
allow them to compile programsthat have been checked with refinement types. The second
property ensures that substituting a compiler that checks refinement types for one that
checks ML types will not disorient naive users or break existing code.

2.7.1 Inferringan ML type Given a Refinement Type

The statement of the theorem we intend to prove here is very straightforward. It uses the
rtom function defined on page 32:

Theorem 2.54 (Inferred Types Refine) If
VRFe:r

then thereis at such that
rCt

and
rtom(VR) i e :: 2.

The proof of thisisan entirely straightforward induction on the refinement type deriva-
tion. Explicit provision had to be made in the CASE-TYPE rule to make the proof succeed.
The problem is that ML type inference for case statements requires all subterms of the
case Statement to have an ML type, but refinement type inferencefor case statements does
not require subtermsthat are obvioudy unreachable to have a refinement type.

This arrangement is necessary if we want refinement type inferenceto formalize ssimple
case-based reasoning humans routinely do when they think about a program. For instance,
if we assume that the function £ is well-behaved when passed true () asan argument but
not false (), then wewould expect the expression

case x of
true => fn ignored:bool => f x
| false => fn ignored:bool => true ()
end: bool
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to be well-behaved whether x istrue () or false (). Wecan formalize this reasoning in
refinement types by giving £ a type which specifies no behavior when passed an argument
of type ff; one such type for £ would be ¢t — ff. Then our assertion is that the case
statement above should have a refinement type even if we give x the type ff. Under these
assumptions, the expression £ x has no refinement type, so the rule for case statements
must not require unreachabl e cases to have a refinement type.

If refinement type inference completely ignored the unreachable cases in case state-
ments, then we could make termsthat have arefinement type but no ML type. For example,
if we assume that x has the refinement type ff, then the statement

case x of
true => fn ignored:bool => () ()
| false => fn ignored:bool => true ()
end: bool

would have a refinement type but no ML type. To solve this problem, the CASE-TYPE
explicitly requiresthe case statement to have an ML type.

Thereis at least one other way to solve the problem. We could allow some expressions
to have arefinement type but no ML type. In that case the best we could do here would be
to prove that if an expression has both a refinement type and an ML type, the refinement
type refines the ML type. Many of the theorems we prove below would need to have a
hypothesis added to ensure that some expression has an ML type. The extra hypotheses
would add bulk but no insight, so we shall use the CASE-TYPE rule asit stands.

If we eliminated the ML type after the end keyword that determines an ML type for
the case statement some case statements would have malformed refinement types. For
example, the refinement type assigned to a case statement where none of the cases were
reachable, such as

case (fix f:bool — bool => fn x:bool => £ x) () of
true => fn ():tunit => true ()
| false => fn ():tunit => false ()
end

could be a malformed refinement type such as ¢t A (tt — tt). If we took out the premise
r C u from the CASE-TYPE rule, we could infer thistype directly; if we left that premisein,
but omitted « from the syntax, then we would still be able to use AND-INTRO-TYPE to infer
this malformed refinement type for the case statement.

Without further ado, we will prove Theorem 2.54 (Inferred Types Refine) on page 68.
Proof: By induction on the derivationof VRt ¢ : r.

Case: AND-INTRO-TYPE | Then r hastheformr; A r, and the premises of AND-INTRO-TYPE
are

VREe:rs
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and
VRE e:ro.

Applying our induction hypothesis to each of these givest, and ¢, such the following hold:

r1 C 11
rrom(VR) - e :: t;
ro C t2
rtom(VR) I- e :: to.

Lemma 2.4 (Unique Inferred ML Types) on page 27 givest; = 12, SO AND-REF gives
ri AN ro C t1.

Thisand rtom(VR) - e :: t; are our conclusions.

Case: WEAKEN-TYPE | The premises of WEAKEN-TYPE must be

VRFE ek

and
kE<r.

By induction hypothesis, thereisat suchthat £ C ¢ and
rtom(VR) - e :: ¢.
By Theorem 2.21 (Subtypes Refine) on page 36,
rCt.

The last two are our conclusion

Case: sPLIT-TYPE | Then VR must have the form VR'[z := k]| where the premises of
SPLIT-TYPE are

kxs
and
foral pinswehave VR[z := p] F e : .

By Fact 2.37 (Splits are Nonempty) on page 51, s is nonempty; let p be any element of s.
By induction hypothes's,
rCi

and
rtom(VR'[z :=p]) I e :: ¢.

If rtom(k) is defined, then Corollary 2.32 (Split Types Refine I) on page 51 gives
rtom(k) = rtom(p) so we have

rtom(VR[z := k]) - e i1 ¢.
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Thisand r C ¢ are our conclusions.

If rtom(%) is undefined, then by a contrapositive of Fact 2.34 (Split Types Refinell) on
page 51, rtom(p) must be undefined also. By definition of rtom applied to functions, this
implies rtom(VR'[z := k]) = rtom(VR'[z := p]). Thusrtom(VR'[z := k]) I e :: ¢; this
and r [ ¢ are our conclusions.

Case: VAR-TYPE

Then e has the form x. The premises of VAR-TYPE are r = VR(z) and

r C t. By définition of rtom for functions, rtom(VR)(z) = ¢, so VAR-VALID immediately
givesrtom(VR) - z :: t, which isour conclusion.

Case: ABS-TYPE

Then e hastheformfn z:¢; => ¢’ and r hastheform r; — r, and the

premises of ABS-TYPE are

and

r1 C 11

VR[z :=m] F €' @ r.

Our induction hypothesis gives at, such that

and

ro C 12

rtom(VR[z 1= rq]) F ¢’ =i ta.

Sincer, C t1, we have

rtom(VR[z := r1]) = rtom(VR)[z := ¢4]

SO ABS-VALID gives

rom(VR) - fn x:t; => €' I t1— 1o

Fromry C ¢, and r, C ¢, We can use ARROW-SUB to get

ri—ro C 11— 1o,

The last two displayed formulae are our conclusions.

Case: APPL-TYPE

and

Then e hastheform e; ¢, and the premises of APPL-TYPE are

VRbFe:k—r

VR"Gz:k.

Applying induction hypothesis to each of these gives the following:

k—=rCu
rtom(VR) - e1 = u
kCth
rtom(VR) - ez 2 1]
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Theonly way toinfer k — r C u isby using ARROW-REF whereu = ¢, — ¢ and the premises
of ARROW-REFarek [ tyandr [ ¢.

By Lemma 2.10 (Unique ML Types) on page 31, from &  ¢1 and k£ C t| we can infer
t1 = t}. Thuswe can use APPL-VALID to get

rtom(VR) F e1 ez :i t.

Thisand r C ¢ are our conclusions.

Case: CONSTR-TYPE | Then e hastheform ¢ ¢’ and r hasthe form rc¢ where the premises

of CONSTR-TYPE are
def
¢ k—rc

and
VRFE ¢ : k.

By Assumption 2.2 (Constructors have Unique ML Types) on page 26, there are unique u

and ¢¢ such that
def
c .l u<— tc.

By Assumption 2.49 (Constructor Type Refines) on page 65, k£ C « and rc dff te.

Our induction hypothesis givesaw’ such that £ C «" and
rtom(VR) ¢’ =2 .

Sincek C— wand k C v/, Lemma2.10 (Unique ML Types) on page 31 tellsusthat u = v'.
Thus we can use CONSTR-VALID to get

rtom(VR) F ¢ €' :: te.
. def
Chooset = tc. Since re T tc, We can Use RCON-REF to get

rc C tc.

The last two displayed equations are our conclusions.

Case: CASE-TYPE

Then e has the form case e¢g of ¢c1 => e1 | ... | ¢, => e, end:{. Two of the
premises of CASE-TYPE are
rCt

and
rrom(VR) - e :: ¢,

which are our conclusions.
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Case: TUPLE-TYPE | Then r hasthe formry ... * r, and e has the form (e1, ..., e,)

and the premises of TUPLE-TYPE are
for:inl...n wehave VR ¢; : r;.
Applying the induction hypothesis to each of these gives ML typest; through ¢,, such that
for:inl...nwehaver; C t;

and
foriinl...n wehavertom(VR) I~ ¢; :: ¢;.

By TUPLE-REF,
Tk ok, Clpk.. ok,

and by TUPLE-VALID,
rOmM(VR) F (ex * ... * e,) ity %...xt,.

If wechooset =1 *...*t,, thisisour conclusion.

Case: ELT-TYPE | Then ¢ hastheform elt_m_n ¢’ andthe premise of ELT-TYPE IS

VREE iri*...%1,
wherer = r,,. By induction hypothesis, thereis a u such that
rik.. ok, Cu

and
rtom(VR) ¢’ = w.

We canonly infer rq * ... r, C u by usng TUPLE-REF wWhere v hastheformuy ... % u,
and
for:inl...nwehaver; C u;.

Since u hasthisform, we can use ELT-VALID to get
rtom(VR) - elt_m_n €' i t,,.

If we chooset = t,,, the last two displayed formulae are our conclusions.

Case: FIX-TYPE | Thene hastheformfix f:¢;—1, => fn x:1; => ¢ andthepremises

of FIX-TYPE are
rCt1—1

and
VR[f :=r]F fn x:t; => ¢
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By induction hypothesis, thereisat such that
rCt

and
rom(VR[f :=r])F fn x:t; => € 1t (2.14)

Sincer C tandr C t; — t, LemmaZ2.10 (Unique ML Types) onpage 31 givest = t1 — t5.
Since r C t1— t,, the definition of rtom gives rtom(VR[f = r|) = rtom(VR)[f =
t1 — t3]. Thuswe can use FIX-VALID on (2.14) to get

rtom(VR) - fix f:t1—tp => fn x:ly => €' it1— 1y
Thisand r C ¢; — ¢, are our conclusions. O

Because of this, if a value has arefinement type, the form of the refinement type gives
us information about the form of the value. We will use thisin Lemma 2.67 (Piecewise
Intersection) on page 84. For example,

Lemma 2.55 (Value Arrow Type) If VRF v : r; — rp thenv hastheformtn x:¢ => e.

Proof: By Theorem 2.54 (Inferred Types Refine) on page 68, thereisat suchthatr; — rp, C ¢
and rtom(VR) - v :: ¢t. Sincery —rp C t, weknow ¢ has theform ¢, — ¢,. Fromthe ML
type inference rules and the possible forms of v, the last inference of rtom(VR) - v :: ¢
must be ABS-VALID and v must havetheformfn z:¢ => e. O

Similar reasoning gives results for value constructors and tuples:

Fact 2.56 (Value Constructor Type) If VRF v : rcthenv hastheforme '.

Fact 2.57 (Value Tuple Type) If VRE v :ry*...xr,) thenv hastheform(vy,...,v,).

2.7.2 Inferring a Refinement Type Given an ML Type

Some pieces of ML code fail to have arefinement type in the presence of remarkably few
rectype Statements. For example, consider this program in the formal language:

datatype d = C of bool — bool
case C (fn x:bool => x) of

C => fn y:bool — bool => (y (true ()))
end: bool

The case statement has the ML type bool. 1n the absence of any rectype statements, the
ML type bool has only one refinement, which we can call T,,,;. The type of the case
statement is T bool-

However, if weinsert this rectype statement before the datatype declaration:
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true (runit)
false (runit)

rectype it

and ff

the following argument tells us the case statement no longer has a refinement type.

Informally, the problem isthat the constructor C loses all information about itsargument.
Thus type inference has to make the assumption that y can have any refinement type
whatsoever. The worst case is afunction that cannot be called legitimately with any value.
Sincewe call y with avalue, we fail.

The reader may object at this point that we cannot construct any function that cannot
be called with any value. This is true, but in Chapter 6 when we introduce the explicit
refinement type declaration operator <1, we will be able to write such expressions. One of
themis:

fn x:bool => (x < L)

We can also giveaformal argument that the case statement hasno type. Let us suppose
that the case statement had the refinement type r, and try to construct the type derivation.
The conclusion would clearly be

Fcase ... end :r.

Since r is arbitrary, we might as well assume the last inference in the derivation is CASE-
TYPE rather than AND-INTRO-TYPE Or WEAKEN-TYPE. If we use T, as the name for the
unique refinement of d, the first premise of CASE-TYPE must have the form

FC (fn x:bool => x) : T,.

The second premiseis
T4 C d,

whichistrivial. The third premise says that whenever C T ¢, we must have
F fn y:bool — bool => (y (true ())) i k—r.

Choose £ = 1, — T.0- By Lemma 2.68 (Subtype Irrelevancy) on page 88, if we can
derive this we can do it with ABS-TYPE as the root inference. The premise of ABS-TYPE
must be

Vi Lot = Tt Fy (true (O)) ir

and this requires using APPL-TY PE with the premise
y . J—bool - Tbool |_ true () . J—bool
whichis not derivable.

We can get the case statement to typecheck by adding a rectype statement so C does
not lose al information about its argument. One possible addition would be
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rectype total = C (T poo1 — T po0t) -

With this addition, there are now two refinements of the ML type d, namely T, and
total. A principa type of C (fn x:bool => x) is total. (It also has the principal type
total A\ total, among infinitely many others; wewill eventually show that all principal types
areequivalent.) The case statement getsthetype T ;,,;-

Generalizing from this example, if we alow the programmer to specify any refinement
type distinctions, there may be expressions with an ML type but no refinement type. Thus
we shall assume for the duration of this subsection that the programmer has made no
refinement type distinctions, and we shall prove that any expression with an ML type aso
has a refinement type. More formally, our temporary assumption is that each ML type

. . . def
constructor tc has exactly one refinement, and we will call that refinement mtor(¢c).

. def . def def
Assumption 2.58 (mtor Refines) For all tc we have mtor(tc) L tc.

Assumption 2.59 (Only n?tefor Refines) (assumed for this subsection only) For all tc and
alrc,ifrc ® tcthenrc = n(wjtefor(tc).

We then lift this construction in the natural way to refinements of general ML types:

Definition 2.60 We define mtor as the function mapping ML types to refinement types that
is consistent with the following equations:

def
mtor(tc) = mtor(tc)

mtor(t, — t) = mtor(t1) — mtor(z,)
mtor(ty # ... % t,) = mtor(ty) * ... * mtor(z,).

We extend mtor pointwise to operate on environments such as VM.

Trivia inductionson ¢ give:
Fact 2.61 (mtor Refines) For all ¢ we have mtor(t) C ¢.
Fact 2.62 (Unique Refinement) If r C ¢ then r = mtor(t).

Now we have enough notation to state that the value constructors behave properly:

Assumption 2.63 (Constructor mtor Consistent) If
c d:e:f t—tc

then iy
¢ mtor(¢) — mtor(tc).
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In the absence of any of the type declarationsintroduced in the next chapter, these con-
ditionsare satisfied trivially because each ML type constructor has exactly one refinement.
Each value constructor maps the unique refinement of its domain to the unique refinement
of itsrange.

Under these assumptions, we can show that each program with an ML type ¢ has the
refinement type mtor(t):

Theorem 2.64 (ML Compatibility) If
VMFEeiiu

then
mtor(VM) e : mtor(u).

Proof: Straightforward, by induction on the derivation of the hypothesis.

Case: VAR-VALID | Thene = z and u = VM(z). Using VAR-TYPE gives mtor(VM) F z :

mtor(u ), which is our conclusion.

Case: ABS-VALID | Thene = fn x:t; => ¢ andu = t; — t,. The premise of ABS-VALID

must be
VM[z :=t1] F € i tp.

Fact 2.61 (mtor Refines) on page 76 gives
mtor(¢1) C ¢;.
Our induction hypothesis gives
mtor(VM[z := t41]) - €' : mtor(¢,).
Since mtor(VM|z := t1]) = mtor(VM)[z := mtor(¢1)], we can use ABS-TY PE to get
mtor(VM) = £fn x:t; => €' : mtor(¢1) — mtor(tz).

Since mtor(t,) — mtor(¢,) = mtor(t, — t»), thisis our conclusion.

Case: APPL-VALID | Thene = e; e, and the premises of APPL-VALID are

VMFEe it—u

and
VM F ey i L.
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Applying the induction hypothesis to each of these gives
mtor(VM) F eq : mtor(t — u)

and
mtor(VM) I e, : mtor(t).

Since mtor(u — t) = mtor(¢) — mtor(w), we can use APPL-TY PE to get
mtor(VM) - eq ez : mtor(u),

which is our conclusion.

Case: CONSTR-VALID | Thene = ¢ ¢ and u = t¢ and the premises of CONSTR-VALID are

def
¢ . t—=tc

and
VM F € it

Assumption 2.63 (Constructor mtor Consistent) on page 76 gives

def
¥ mtor(¢) — mtor(tc)

and our induction hypothesis gives
mtor(VM) F ¢’ : mtor(t).
Using CONSTR-TY PE gives
mtor(VM) - ¢ €' : n?tefor(tc).

. def .. .
Since mtor(tc) = mtor(¢c), thisis our conclusion.

Case: CASE-VALID | Thene =case eg of ¢1 => e1 | ... | ¢, => e, end:uandthe

premises of CASE-VALID are
VM F eq i te,

. def
for al : wehavec; i t; — tc,

and
fordl : wehaveVM F ¢; i t; — u.

The induction hypothesis gives the first premise of CASE-TYPE:

mtor(VM) - eg : mtor(tc)
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Fact 2.61 (mtor Refines) on page 76 gives the second premise of CASE-TYPE:

mtor(u) C u

Suppose: and k aregiven, andthat ¢; Ll N rﬁffor(tc). Then Assumption 2.49 (Constructor
Type Refines) on page 65, k£ C ¢;, and Fact 2.62 (Unique Refinement) on page 76 give
k = mtor(t;). Our induction hypothesis gives

mtor(VM) I e; : mtor(t; — u).
By the definition of mtor, we have
mtor(VM) + e, : mtor(¢;) — mtor(u).

By ARROW-sUB and £ = mtor(t;) we have k — mtor(u) = mtor(t;) — mtor(u). Thus
WEAKEN-TYPE gives
mtor(VM) - ¢; : k — mtor(u).

Since this argument works for any : and £, the third premise of cAse-TYPE holds, so we
have our conclusion:

mtor(VM) I (case eg of ¢1 => e1 | ... | ¢, => e, end:u): mtor(u)

Casel TUPLE-VALID | Then e hastheform (e1, ..., e,)and u hastheformit; *...x*¢,.

The premise of TUPLE-VALID must be
fordl : wehave VM F ¢; :: t;.
Our induction hypothesis gives
for al : we have mtor(VM) F e; : mtor(¢;).
TUPLE-TYPE then gives
mtor(VM) = (e1, ..., €,) :mtor(ty) * ...+ mtor(t,)

which is our conclusion since mtor(¢1) * ... mtor(t,,) = mtor(ty * ... *t,).

Case: ELT-VALID | Then e hastheform elt_m_n ¢ and u = t,,, where the premise of
ELT-VALID IS

VM e ity % ... xt,.

Our induction hypothesis gives

mtor(VM) F ¢’ : mtor(ty * ... * t,,).
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Since mtor(¢q * ... * t,) = mtor(¢1) * ... * mtor(¢,), we can use this as the premise to
ELT-TYPE to get
mtor(VM) - elt_m_n €' :mtor(t,,),

which is our conclusion.

Case: FIX-VALID | Then e hastheform fix f:t;—t, => fn x:t; => ¢ and u hasthe

formt, — t,. The premise of FIX-VALID is
VM[f i=ti—t) b (fn x:t1 => €)1 t1—1a.
Fact 2.61 (mtor Refines) on page 76 gives
mtor(t1 — t2) C t1— to.
Our induction hypothesis gives
mtor(VM[f :=t1— 1)) F (fn x:tp => €') : mtor(t1 — t2).

Since mtor(VM([f := t1 —t5]) = mtor(VM)[f := mtor(t, — t2)], we can use FIX-TYPE to
get
mtor(VM) - £fix f:t1—t; => fn x:t; => ¢ : mtor(VM)

which is our conclusion. O

2.8 Simple Soundness Proof

Now we are ailmost in a position to prove that this type system is sound in an appropriate
sense. But first we must prepare the way with some lemmas.

First we will show that as the assumptions in the environment get stronger, the set of
types we can infer gets no smaller. At first glance this seems fairly straightforward: Pick
atype derivation that we can infer in the weaker environment; to rewrite it to work in the
stronger environment, just replace all uses of VAR-TYPE by a use of VAR-TYPE followed
by WEAKEN-TYPE, and leave the rest of the derivation the same. Unfortunately, this proof
sketch does not handle uses of the sPLIT-TYPE rule in the original derivation. Dealing with
SPLIT-TYPE is possible though; see that case of the following proof.

The refinement type inference rules AND-INTRO-TY PE, WEAKEN-TYPE, and SPLIT-TYPE
have the same expression in their premise that they have in their conclusion. All of the
other refinement type inference rules have smaller expressions in the premises than they
have in their conclusion. We say that the latter rules make “ syntactic progress’. It is often
useful to know that the root inference of aderivation of arefinement type for an expression
makes syntactic progress because then the form of the expression uniquely determines
which refinement type inference rule was used. Therefore we define this special notation
to say that the root inference of atype derivation makes syntactic progress:
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Definition 2.65 If VR e : r and there is a derivation of this that has a rule other than
AND-INTRO-TY PE, WEAKEN-TYPE, Or SPLIT-TYPE at theroot, thenwe say VRH-¢ : r.

We can think of Lemma 2.66 (Environment Modification) on page 81 as an agorithm
that maps a type derivation in the weaker environment to a type derivation in the stronger
environment. This algorithm is more useful if the output is a type derivation that makes
syntactic progress at the root whenever possible. This iswhen the original type derivation
makes syntactic progress and the expression isnot avariable. Thisoptimization isreflected
in the theorem by the additional hypotheses and conclusion after the phrase “Also, if in
addition”.

Lemma 2.66 (Environment Modification) If

VREFe:7r

and
VR’ has the same domain asVR
and
for « freein e wehave VR'(z) < VR(z)

then

VR e :r.

Also, if in addition

VRH¢:r

and
e isnot avariable

then

VR H-¢: r.

Proof: By induction onthederivationof VR |- ¢ : . Somecases apply only if VR F ¢ : r;
other cases apply if either VR F ¢ : r or VRH-¢ : r. We will put the cases that apply only
if VRE e:rfird.

Case: SPLIT-TYPE | Then thereisa y such that VR = VRy[y := k] and the premises of
SPLIT-TYPE are

k=xs

and
forpinswehave VR;[y :==p| F e :r.

We take cases on whether y isfreein e.
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SubCase: y notfreeine | ThusVR' = VR][y := k'] where

for al z freein e we have VR (z) < VRy(z).
Therefore, trivialy,
forall = freeine wehave VR![y = k](z) < VRy[y 1= k](z).

Our induction hypothesis gives

VRi[y =kl Fe:r
Fact 2.47 (Non-free Variables are Ignored) on page 63 gives

VR Fe:r,

and then Fact 2.47 (Non-free Variables are Ignored) on page 63 again gives

VRily :=k]Fe:r,

which is our conclusion.

SubCase: y freeine | ThusVR' = VR][y := k'] where

K<k

and
for = other than y freein e wehave VRi(z) < VRy(z).

By Lemma 2.43 (Split Intersection) on page 54,
EANE <{pANE|p € s}
Since k' < k, weknow that & A k' = k'. Thus EQUIV-SPLIT-L gives
E<{p ANk |p € s}

Since p’ A k' isalways asubtype of p’ when p’ isin s, it followsthat, for al p’ in s and all
x freeine,
VRily := p' A K](z) < VRu[y = p'](2).

Thus we can use our induction hypothesis to conclude
foral p'inswehave VR [y :=p' Ak ]Fe:r
Then we can use SPLIT-TY PE to get

VRi[ly :=k]Fe:r,
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which is our conclusion.

Case: VAR-TYPE | Then e has the form z, and VR(z) = r. Since z isfreein e, we must

have VR'(z) < r. VAR-TYPE gives
VR F z: VR (2)

and then WEAKEN-TY PE gives
VR Fz:r,

which is our conclusion.

Case: AND-INTRO-TYPE

Case: WEAKEN-TYPE

Since neither of these rules use or modify the variable environment, these cases are trivial.

Now we will give the cases that apply when e isnot avariableand VRH-¢ : r.

Case: ABS-TYPE | Then e hasthe form fn z:¢1 => ¢’ and r has the form r; — r,. The

premises of ABS-TYPE must be
r1 C 11

and
VR[z :=r] F €' .

SELF-SUB givesr; < rj, SO We can use our induction hypothesisto get
VR [z :=r| F € :ra

Then ABS-TYPE gives
VR'H-fn z:t1 => € 1r1— 7o,

which is our conclusion.

Case: FIX-TYPE | Thene hastheformfix f:t; —1t, => fn y:t; => ¢ andthepremises

of FIX-TYPE are
rCt1—1tr

and
VR[f :=r]F fn y:tg => € i1

SELF-SUB givesr < r, SO We can use the induction hypothesis to get
VR[f:=r|Ffn y:ty => € :r
and then FIX-TYPE gives

VR F fix fit1—tp => fn y:ly => ¢ ir,
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which is our conclusion.

Case: any other inferencerule | Theremaining inference rulesdo not reference or modify

the variable environment, so al remaining cases aretrivial. O

We already explicitly take the subtype relation into account in the WEAKEN-TYPE rule.
Our next lemmartells us that the subtype relation also describes the behavior of derivations
that do not end with WEAKEN-TYPE. This will allow us to eliminate uses of WEAKEN-
TYPE from the root of type derivationsfor valuesin Lemma 2.68 (Subtype Irrelevancy) on

page 88.
Lemma 2.67 (Piecewise Intersection) Iffor all z in1...n we have
Hov: kZ

and
kl/\.../\knfrl/\.../\?“m

and none of the r;’s or k;’s are themselves intersections of other types, then for all ; in
1...m wehave
Hv .

Proof: By induction onthederivationof k1 A ... Ak, <riA...Arp,.

Case: SELF-sUB | Then our hypothesisis our conclusion.

Case: AND-ELIM-R-SUB | Thenn > m andforzin1...m we must have r; = k;, SO our

hypothesis immediately implies our conclusion.

Case: AND-ELIM-L-SUB | Thenn > m andfor:inl...m wehaver; = k,_,,,;, SO ONCe

again our hypothesis immediately implies our conclusion.

Case: AND-INTRO-SUB | Then thereisan i such that the premises of AND-INTRO-SUB are

kl/\.../\anTl/\.../\T‘h

and
kl/\.../\kngrhﬂ/\.../\rn.

Using the induction hypothesis on each of these gives
forjinl...hwehave -Hv :r;

and
forjin(h+1)...mwehave-H-v :r;.
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Together these are our conclusion.

Case: TRANS-SUB | Then the premises of TRANS-SUB have the form

kl/\.../\knfpl/\.../\pq

and
PIN APy STIA L AT

Using our induction hypothesis on the first of these gives
forhinl...qwehave-H-v: p;

and then using it on the second gives
forjinl...mwehave-Huv:r,

which is what we wanted to show.

Case: ARROW-SUB | Then n = m = 1 and &, has the form k£ — &’ and r1 has the form

r—r'. By Lemma 2.55 (Value Arrow Type) on page 74, v has the form fn z:t => e.
Thusthelast inference of - H-v : k — k' iS ABS-TYPE, where the premises of ABS-TYPE are

[x:=k]Fe:k

and
kCt.

Lemma 2.66 (Environment Modification) on page 81 and » < k gives
[z:=r]Fe: &

and WEAKEN-TYPE gives
[z:=r]Fe:r.

Then we can use ABS-TYPE to get
‘Efn ozt = eir—r,

which is our conclusion.

Case: ARROW-AND-ELIM-SUB | Thenn = 2 and m = 1. The form of ARROW-AND-ELIM-

suB tell us k1 A k2 hastheform p; — po A p1 — ps and ry hasthe form py —(p2 A p3). Our
hypothesis tells us
Hovipi—p (2.15)

and
“H-v:pr— ps. (2.16)
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By Lemma 2.55 (Vaue Arrow Type) on page 74, v hastheform fn z:¢ => ¢, so thelast
inference of both (2.15) and (2.16) must be ABs-TYPE with the following premises:

prCt
[x:=p]Feips
[x:=p]Fe:ps
Using AND-INTRO-TYPE on the last two of these gives
[z :=pi] F e p2 A ps,
and then ABS-TYPE gives
-Ffn x:t => el pr—(p2 A ps),

which is our conclusion.

Case: RCON-SUB | Thenn = m = 1 and r1 has theform rc and k; has the form kc. The

def
premise of RCON-sSUB must be k¢ < re. By Fact 2.56 (Value Constructor Type) on page 74,
v has the form ¢ v, so the last inference in our hypothesis must be CONSTR-TYPE. The
premises of CONSTR-TYPE must be

def
c 1= ke

and
N
Assumption 2.53 (Constructor Result Weaken) on page 67 gives

def
c i r—rc

and then CONSTR-TYPE gives
Hc v e

which is our conclusion.

Case: RCON-AND-ELIM-SUB | Then n = 2 and m = 1. The shape of RCON-AND-ELIM-

SuB tells us that k; A &k, has the form keq A kep, and ry is lccldﬁf kcp. By Fact 2.56
(Value Congtructor Type) on page 74, v has the form ¢ v’, so the last inference of the
type derivations in our hypothesis must be CONSTR-TYPE. The premises of the uses of
CONSTR-TYPE must be
def
¢ Ty ker
i 4
c d?f rh < ke
o'
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AND-INTRO-TYPE gives
B i AT
Two uses of Assumption 2.52 (Constructor Argument Strengthen) on page 67 give

c® (riArp) = keq

and iy
c T (rpATh) = ke,

and then using Assumption 2.51 (Constructor And Introduction) on page 67 on these gives

def
¢ (ri Arg) — (kex A kea).

Then CONSTR-TYPE gives
def
‘H-c v key A keo,
which is our conclusion.

Case: TUPLE-SUB | Thenm = n = 1and k; hastheform kg « ... * &k} and 1 has the form

ry* ...+ ;. The premises of TUPLE-SUB are
forhinl...qwehavek, <rj.

By Fact 2.57 (Value Tuple Type) on page 74, v has the form (vq,...,v,). Thus the last
inference of - H-v : k1 must be TUPLE-TYPE and the premises of TUPLE-TYPE are

forhinl...qwehave-F v, @ kj.
Then WEAKEN-TY PE gives
forhinl...qwehave- v, @1}

and TUPLE-TYPE gives

which is our conclusion.

Case: TUPLE-AND-ELIM-SUB | Thenn = 2 and m = 1. By the shape of TUPLE-AND-ELIM-

SUB, k1 A k> must have the form

and 71 is
(K AkY) * oo (k) AKY).
By Fact 2.57 (Vaue Tuple Type) on page 74, v must have theform (v1, ..., v,) andthe

last inference of the type derivationsin our hypothesis must be TUPLE-TYPE. The premises
of the uses of TUPLE-TYPE must be

forhinl...qwehave-F v, @ k;
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and
forhinl...qwehave-F v, : k.

Using AND-INTRO-TY PE on these gives
forhinl...qwehave- v, @ kj Ak,
and then TUPLE-TYPE gives
M (vas ey vg) D (R ARY) Rk (R A K,

which is our conclusion. O

The previous lemma told us that we can eliminate WEAKEN-TYPE from the root of
derivations of a type for a value in an empty environment. The next lemma makes the
simple observation that we can eliminate AND-INTRO-TYPE aso, if the type is not an
intersection. SPLIT-TYPE cannot arise because the environment is empty, so we can always
make syntactic progress at the root of aderivation of a non-intersection type for a value.

Lemma 2.68 (Subtypelrrelevancy) If
cFviriALLUAT,
where none of the r;'s areintersectionsthen for all zin1...n wehave

“Hov:ir.

Proof: By induction on the derivation of our hypothesis.

Case: AND-INTRO-TYPE | Then there must be an £~ such that the premises of AND-INTRO-
TYPE are

Fviri AL AT

and
Fv i A AL ATy,

Applying the induction hypothesisto the first of these gives, for jin1... 4,
Hv .

Theinduction hypothesis applied to the second of these givesthesamefor jin(h+1)...n,
so the two of these are our conclusion.

Case: WEAKEN-TYPE | For somer’, the premises of WEAKEN-TYPE must be

o
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and
P <riAL AT,

Any r' must have the formr; A ... A ), where none of the r are intersections. By our
induction hypothesis, for j in1...m we have

‘Huv: r;.
Then Lemma 2.67 (Piecewise Intersection) on page 84 gives, for j in1...n,
Hv ey,

which is our conclusion.

Case: sPLIT-TYPE | Thisinference rule requires a nonempty variable environment, which

we do not have. Thus this case cannot happen.

Case: VAR-TYPE

Case: APPL-TYPE

Case: CASE-TYPE

Case: ELT-TYPE

Case: FIX-TYPE

All of these rules only apply to non-values, and v is a value. Thus these cases cannot
happen.

Case: ABS-TYPE

Case: CONSTR-TYPE

Case: TUPLE-TYPE

In these cases, n = 1 and the last inference of our hypothesis is neither AND-INTRO-TYPE
nor WEAKEN-TYPE. Thus our hypothesisis

‘Hvrg,
which is our conclusion. O

Now we will show that the =< relation behaves as one would intuitively expect: If a
value has atype that splits, then it has one of the fragments as a type. Formally, we have
the following theorem:

Theorem 2.69 (Splitting Value Types) If k < sand - - v : k, thenthereisan r in s such
that - v @ r.
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Proof: By induction on the derivation of k£ < s.

Case: RCON-SPLIT | Then k has the form k¢ and all elements of s are refinement type

constructors. The only possible form for v isc¢ v’. By Lemma 2.68 (Subtype Irrelevancy)
on page 88,
Hc v ke

The last inference of this must be CONSTR-TY PE with the premises

def
c T p—ke

and
o p.

By Assumption 2.50 (Split Constructor Consistent) on page 66, there is an s’ such that

p =< s, andfor al p' € s' thereisakc’ € s such that ¢ o p' — ke'. Sincep =< s', our
induction hypothesisgivesap’ € s’ such that

o pl
Let k' be an element of s such that ¢ ° p' — kc’. Then CONSTR-TYPE gives
ke vk,

which is our conclusion.

Case: TUPLE-SPLIT | Then there must be an 4 and a ¢ such that £ has the form &y % ... %

kpo * kp * knpq % ... % k, and ky, < s’ and
s={ki*...xk_1xp*rkya*...xk, | pes}

By Lemma 2.68 (Subtype Irrelevancy) on page 88,

M vtk ko gk kg ok kpgr %k Ky (2.17)
By Fact 2.57 (Vaue Tuple Type) on page 74, v has the form

(U1, «evs Vhols Uhy Uhgls --es Ug)
and the last inference of (2.17) must be TUPLE-TYPE. The premises of TUPLE-TYPE must be
forjinl...qwehave-F v; : k;.

By induction hypothesis, thereisap is s’ such that

“F o, p.
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Then TUPLE-TYPE gives
. |_'U:kl*---*kh—l*p*kh-l—l*---*kcp

which is our conclusion.

Case: TRANS-SPLIT | Then our hypothesisis £ < s1 U s, where the premises of TRANS-

SPLIT arek < s; U {p} and p < s,. By our induction hypothesis, thereisa k' in s; U {p}
such that
o k.

If ¥ € sy thisis our conclusion; otherwise &' = p and another use of our induction
hypothesis givesa k" € s, such that

Fo kY

which is our conclusion.

Case: EQUIV-SPLIT-L | The premises of EQUIV-SPLIT-L must be £ = p and p < s for some

p. WEAKEN-TYPE gives - - v : p, and then our induction hypothesis gives an r in s such
that
For

?

which is our conclusion.

Case: EQUIV-SPLIT-R | Thenthereisap such that s = s’ U {p} and the premises of EQuIV-

SPLIT-Rarep = p’ and k < s’ U {p’} for somep’. By induction hypothesis, thereis some r
ins"U {p'} such that
Fovir

If » isin s’ then we are done; otherwise, » = p’ and r = p. Thus WEAKEN-TY PE gives
Fuvip,

which is our conclusion.

Case: ELIM-SPLIT | Thens = s'"U{p} wherethe premisesof ELIM-SPLIT arek < s"U{p’, p}

and p’ < p. By induction hypothesis, thereisan r in s U {p’, p} such that
Foor.

If risins U {p}, wearedone. Otherwiser = p’, and WEAKEN-TYPE gives
Fuvip,

which is our conclusion.
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Case: SELF-SPLIT | Then s = {k}, so we can choose r = k, so our hypothesis- v : kis

our conclusion. O

We need to establish one more lemma, Lemma 2.70 (Value Substitution) on page 93.
This lemma says that substitution for expressions has a natural analogue that works for
refinement type derivations. We use this lemma to prove soundness for the semantics
rules that use substitution. These rules are APPL-SEM and FIX-SEM, SO we only have to be
concerned with substituting values or fixed point expressions. It turns out that we cannot
do much better than this; in particular, we cannot substitute refinement type derivationsfor
arbitrary expressions into each other.

Since we prove this lemma constructively, the proof of the lemma can be read as an
algorithmfor doing substitution for derivations. For example, if we perform the substitution

[(fn y:bool => false ())/z|(x (x (true ())))
we get
(fn y:bool => false ()) ((fn y:bool => false ()) (true ())).
Lemma 2.70 (Value Substitution) on page 93 will tell usthat, since
F fn y:bool => false () :tt—ff Af —ff (2.18)

and
xi=tt—=fFAff—tt]Fx (x (true ())) : ff, (2.19)

we can perform a corresponding substitution on the derivationsto get
-F (fn y:bool => false ()) ((fn y:bool => false ()) (true ())): ff. (2.20)

The strategy for doing thisis simple: the constructed derivation has the same shape as the
derivation of (2.19), except wherever that derivation examinesthe type of x, the constructed
derivation incorporates a copy of the derivation of (2.18). For example, if we choose this
derivation for (2.18):

y: it false (): ff y:ffFfalse () ff
-k fn y:bool => false ():tt—ff -F fn y:bool => false (): ff —ff
- fn y:bool => false ():tt—=ffAff—ff

and this derivation for (2.19) (using r as an abbreviation for tt — ff A ff — ff):

xirkxir r<tt—ff
x:rbx:ir r<ff—ff x:rbx:tt—ff x:rbktrue ()t
xirkExff—=ff z:rbkx (true () ff
zirkx (x (true () ff
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then (where we abbreviate fn y:bool => (false ()) as f and replace all copies of the
derivation of (2.18) with“...”)

Ffir rZtt—ff
Hfir v <ff=ff Efritt—=ff -k true ()
I 0 7 (ree 0) 0
- f ((fn y:bool => (false ())) (true ())):ff

Unlike Fact 2.6 (ML Vaue Substitution) on page 29, we cannot allow substituting
arbitrary expressions in a derivation. For instance, suppose we have a function called
yesno that asks the user a question to which she can answer yes or no. Our environment
VR should assert that yesno hasthe refinement type runit — T j,,;. ASsuming VR aso has
appropriate types for or and not, we can use SPLIT-TYPE to infer

VR[x := To| F or (not x, x): 1t

and we can infer
VR yesno () Tyou

but doing the substitution to get
VRF or (not (yesno ()), yesno ()):tt (2.21)

would lead to unsoundness, since the user could cause the expression to evaluate to false
by saying “yes’ toyesno () thefirsttimeand*no” thesecond time. Evenif usethefact that
the semantics saysthelanguageis completely functional and deterministic so the expression
yesno () must either aways evaluate to true or aways evaluate to false, the refinement
type system cannot infer (2.21). Incidentaly, this example shows that refinement types do
not rely upon determinacy.

The problemisthat thetype of yesno () hasthesplit {¢¢, ff}, but yesno () hasneither
of the types ¢t nor ff. Thus Lemma 2.70 (Value Substitution) on page 93 does not hold for
genera expressions. Fortunately, it does hold for values and for fixed point expressions,
which isall we need.

Lemma 2.70 (Value Substitution) If VR + e; : ri, where ¢; is a value or a closed
expression of the form fix f:t; => fn z:t; => ¢”, and VR[z = r1] F e, : rp, then
VR [e1/z]es : 7o

Proof: We prove this by induction on the derivation of VR[z := 1] F €5 @ ro.

Case: AND-INTRO-TYPE | Then r, must have the form r3 A r4 where the premises of
AND-INTRO-TYPE are

VR[z :=r1] F ez irs
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and
VR[z :=r1] F ez ry.

Applying the induction hypothesis to each of these gives
VRFEF [e1/x]ez 13

and
VR [e1/z]ez : ra.

Using AND-INTRO-TY PE to combine these last two gives
VRF [e1/x]ea:r3 ATy

which is what we wanted to show.

Case: WEAKEN-TYPE | The premises of WEAKEN-TYPE must be

VR[z :=r1]F ez i3 (2.22)

and
r3 < 1. (2.23)

Applying the induction hypothesisto (2.22) gives
VRF [e1/z]es i3

and applying WEAKEN-TYPE to thisand (2.23) gives
VRF [er/z]es )

which is the desired conclusion.

Case: spPLIT-TYPE | Either we are splitting = or some other variable.

SubCase: Splitting type of = | Then the premises of SPLIT-TYPE must be

ri s

and
foral » inswehave VR[z := '] F ez rp. (2.24)

SubSubCase: ¢; isaclosed fixed point | By Theorem 2.54 (Inferred Types Refine) on

page 68 and FIX-VALID, r; must refine an arrow type. Let r’ be any element of s; by
Fact 2.35 (Splitsof Arrows are Simple) on page 51, »’ = r;. WEAKEN-TYPE gives

VRF e 7
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and then our induction hypothesis gives VR F [e1/xz]es : r2, which is our conclusion.

SubSubCase: ¢; isavaue | Then Theorem 2.69 (Splitting Value Types) on page 89 tells

usthat thereisan+’ ins suchthat - - eq : r'. By Fact 2.47 (Non-free Variables are Ignored)
on page 63, thisimpliesVR |- ¢; : r'. Our induction hypothesis applied to this and (2.24)
then givesVR - [e1/x]ez @ 2, whichis our conclusion.

SubCase: Not splitting typeof = | Then VR has the form VR'[y := k|, where we are

splitting the type of y. SPLIT-TYPE gives

and

k=<s

for k' ins wehaveVR'[y := k', z :=r1] F ez i ).

For each £’ in s, our induction hypothesis gives

VR'[y := k'] F [e1/z]ez : 1a.

Then SPLIT-TYPE gives

VR[y := k] F [e1/x]en : o,

which is our conclusion.

Case: VAR-TYPE

SubCase: ex = =

We take subcases depending on whether e, = .

By VAR-TYPE, r1 = rp and [e1/z]ex = [e1/z]x = e1. Thus the

conclusion is one of the hypotheses.

SubCase: ¢; =y andy # = | Then [e1/z]ex = e,. One of the hypothesesis

VR[z :=ri] F y i ra.

By Fact 2.47 (Non-free Variables are Ignored) on page 63, thisimplies

VRFE y:r,

which is our conclusion.

Case: ABS-TYPE

T =y.

SubCase: = =y

Then e, must havethe form£n y:t => ¢’. We take cases on whether

Then [ey/x]ex = [er/x]fn z:t => ¢’ = fn x:t => ¢/ = ¢y, 0 the

conclusion is one of the hypotheses.
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SubCase: y # =

From ABs-TYPE we know that r, must have the form r; — r4. For some

t, the premises of ABS-TYPE must be

and

Thus

VR[z =11,y :=r3]F € irg (2.25)

raC t (2.26)

[er/x]ex = fn y:t => [er/x]e.

Applying the induction hypothesisto (2.25) gives

VR[y :=r3] F [er/z]€e iy

and applying ABS-TYPE to thisand (2.26) gives

VRF fn y:t => [er/z]e irz3—ry

which is our conclusion.

Case: APPL-TYPE

The conclusion of APPL-TYPE tells us that > has the form e; e4 and

the premises of APPL-TYPE have the form

and

VR[z :=r1] Fe3g:irzg—r;

VR[z :=r1] F eq:rs.

Applying the induction hypothesis to each of these gives

and

VR [e1/z]ez i r3— 1)

VR [e1/z]eq : 3.

Using APPL-TYPE on the last two gives

VR ([er/x]es) ([er/x]ea) : 12,

and since ([e1/x]es) ([er/x]ea) = [er/x](es ea), thisisour conclusion.

Case: CONSTR-TYPE | Then e, hastheform ¢ ¢’ and r, hasthe form rc. The premises of

CONSTR-TYPE must be

and

def
C . T“—rc

VR[z =7 ke :r.
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The induction hypothesis gives
VRF [er/x]e" i r

and then CONSTR-TYPE gives
VRFE ¢ [er/z]e : re.

Sincec [e1/z]e’ = [e1/x](c €'), thisisour conclusion.

Case: CASE-TYPE | Thene, hastheformcase e of ¢; => ¢} | ... | ¢,=> ¢! end:t

and the premises of CASE-TYPE are

VR[z :=r1| F eg: re,

ro C 1,
forallzinl...n andall &, whenever
¢ d?f k — rc we have (2.27)
VR[z :=r1] F el k—ry,
and
rtom(VR[z := r1]) F ez i t. (2.28)
Our induction hypothesis gives
VRF [e1/x]eg : re. (2.29)
Suppose
¢ L e (2.30)

Then by (2.27), we have
VR[z :=r]F el k—ry,

and our induction hypothesis gives
VRF [e1/z]el : k—rp. (2.31)
Theorem 2.54 (Inferred Types Refine) on page 68 and VR F ¢; : r; gives
rtom(VR) - eq :: rtom(ry).
Fact 2.6 (ML Value Substitution) on page 29 applied to thisand (2.28) gives
rtom(VR) I [e1/x]es 2 t (2.32)

Now we can use CASE-TYPE on (2.29), r, C t, (2.30) implies (2.31), and (2.32) to get

VR (case [e1/z]eg of ¢1 => [erfx]e) | ... | ¢, => [e1/x]el, end:t )r;
Since
case [er/z]eg of ¢1 => [er/z]e] | ... | ¢, => [e1/z]e!, end:t =
[e1/z](case ep of ¢1 => €} | ... | ¢, => €/, end:1),
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thisis our conclusion.

Case: TUPLE-TYPE | Then e, hastheform (eq, ..., e,) andr, hastheform sy ... xr/

and the premises of TUPLE-TYPE must be

forzinl...n wehave VR[z :=rq| F €} @ rl.

K3 K3

By induction hypothes's,
foriinl...nwehave VR [e1/z]el : rl.
Then TUPLE-TYPE gives
VRE ([er/x]ey, ..., [er/a]el) irix...xr .

Since ([e1/x]€y, ..., [er/z]el) = [er/x](€l, ..., €)andr, = r]* ...+, thisisour
conclusion.

Case: ELT-TYPE | Then e, hastheformelt_m_n ¢’ and the premise of ELT-TYPE must be

VR[z :=ri|F e iri*... 1)
wherer, = r! . Our induction hypothesis gives
VRE [er/z]e iry*... 1),

and ELT-TYPE then gives
VRFE elt_m_n [er/x]e' 7! .

Sincerp, =), and elt_m_n [e1/z]e’ = [e1/x]elt_m_n ¢, thisisour conclusion.

Case: FIX-TYPE | Thus e; hastheform £fix f:t1—t; => fn y:t; => €. Ifz =y or

x = f, then our conclusion is trivial because [e1/z]e; = e,. Otherwise, the premises of
FIX-TYPE are
roCti—ta (2.33)

and
VR[f =1y F fn x:ty => € .

Our induction hypothesis gives
VR[f =1 F [er/x]fn y:t1 => € ).

Sincex # y, thisis
VR[f =1 F fn y:t1 => [er/z]e’ i ).

Applying FIX-TYPE to thisand (2.33) gives

VRFE fix f:it;—tp => fn y:t; => [e1/z]e' @ ro.
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Sincex # y and « # f, thisisour conclusion. O

Now that we have established all of the lemmas we need for the soundness proof, we
are in a position to show that this version of the system is sound. So we come to the
guestion: What does it mean for the refinement type system to be sound? It turns out
that until we introduce explicit type declarations or references, all expressions that have an
ML type will aso have a refinement type. Thus the notion of ML type soundness used in
Fact 2.3 (ML Type Soundness) on page 27 istrivially true for refinement types, so it isnot
interesting here. The most interesting thing we can claim at thispoint isthat if we evaluate
an expression, the value has the same type as the expression:

Theorem 2.71 (Refinement Type Soundness) Ife = vand-Fe:r,then- v :r.

We could prove this by induction on the derivation of ¢ = v. At each step in the proof,
there would be three inference rules that could have been used to derive - ¢ : r. They
are WEAKEN-TYPE, AND-INTRO-TYPE, and oneinference rule that deals specifically with the
outermost syntax of e. (SPLIT-TYPE cannot happen here because it requires a nonempty
variable environment.) For example, if ¢ has the form e; e, the last inference rule in
the derivation of ¢ = v must be APPL-SEM and the possible inference rules at the root
of - - e; ex : r are WEAKEN-TYPE, AND-INTRO-TYPE, and APPL-TYPE. The step of the
proof dealing with ArPL-SEM would have to have another induction on the derivation of
- e1 ey rtostrip off the outermost uses of WEAKEN-TYPE and AND-INTRO-TYPE, before
we could use the outer induction to make more progress on the evaluation trace. Since each
step of the proof would have to have this nested induction, the proof would be too large to
manage.

It would not work to prove the theorem by induction on the type derivation. The
substitution in the APPL-SEM rule can make the expression larger, and thereforeit can make
the type derivation larger. Thusinduction on the type derivationisinvalid.

There are two kinds of ways to make progress in the above procedure: We can use
AND-INTRO-TYPE Or WEAKEN-TYPE to make the type derivation smaller while leaving the
evaluation derivation constant, or we can use any of the semantics rules to make the
evauation derivation smaller while possibly making the type derivation larger. All of
these possibilities make the ordered pair (evaluation trace, type derivation) lexicograph-
icaly smaller. Since any decreasing chain in the lexicographic ordering on the pair is
finite, proof by induction on the pair isavalid induction principle, and thisis the induction
principle we shall use.

The base cases of thisinduction are the minimal elementsin the lexicographic ordering.
These consist of a use of a semantics rule that requires no premise paired with a use of a
refinement type rule other than WEAKEN-TYPE, AND-INTRO-TYPE, Or SPLIT-TYPE. It turns
out that there are three base cases:

(ABS-SEM, ABS-TYPE)
(TUPLE-SEM, TUPLE-TYPE) for atuple of zero elements
(FIX-SEM, FIX-TYPE)
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Proof: The proof is by induction on the pair (derivation of e = v, derivationof - e : r).
We shall label each case with the with an indication of the pairs to which it applies. The
label will either be “any” if the case applies to pairs with any value for that component,
or the name of an inference ruleif the case applies only to pairs where that component of
the pair has that inference rule at the root of the derivation. The most interesting case is
(APPL-SEM, APPL-TY PE), Sincethat case uses the machinery devel oped earlier in thischapter.
There isan example after this proof on page 103.

Case: (any, AND-INTRO-TYPE) | Thenr hastheformr A r,. The premises of AND-INTRO-

TYPEMustbe- e :rpand- - e : ro. Applying the induction hypotheses to each of these
gives- - v :r;and- F v : rp. Combining these with AND-INTRO-TYPE gives

Fviri AT

which is our conclusion.

Case: (any, WEAKEN-TYPE) | The premises of WEAKEN-TYPE must be

Feir! (2.34)

and
r’ < (2.35)

Applying the induction hypothesisto (2.34) gives
o

Applying WEAKEN-TY PE to this and (2.35) gives
Foor,

which is our conclusion.

Case: (any, SPLIT-TYPE) | This case is unreachable because SPLIT-TYPE assumes the envi-

ronment is nonempty, but the hypothesis of thistheorem assumes it is empty.

Case: (ABS-SEM,ABS-TYPE) | By ABS-SEM, v = e. Thus our hypothesis- + ¢ : r isour

conclusion.

Case: (APPL-SEM,APPL-TYPE) | Then e must have the form e; e, and the premises of

APPL-SEM must be

e1= fn x:1 => e3 (2.36)
e = v (2.37)
[v'/z]es = v (2.38)
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and the premises of APPL-TYPE must be

‘Feir—r (2.39)
“Fepir. (2.40)

Applying the induction hypothesisto (2.36) and (2.39) gives
hHfn ozt => ezir’' =7
and Lemma 2.68 (Subtype Irrelevancy) on page 88 tells us
H-fn z:t => eg:r =
The last inference of this must be ABS-TYPE with the premise
zir' e (2.41)
Applying the induction hypothesisto (2.37) and (2.40) gives
Rl
and using Lemma 2.70 (Value Substitution) on page 93 to substitute thisinto (2.41) gives
F[v'/z]es iy
Applying the induction hypothesisto this and (2.38) gives
Fovrir

which is our conclusion.

Case: (CONSTR-SEM, CONSTR-TYPE) | Then e must havetheforme e’ and r must have the

form rc¢ and v must have the form ¢ v’ where the premise of CONSTR-SEM ise’ = v" and

the premises of CONSTR-TYPE are

def
c . k= rc

and
Fe k.
Our induction hypothesis gives
o'k
and then CONSTR-TYPE gives
ke Ve

?

which is our conclusion.

Case: (CASE-SEM, CASE-TYPE) | The e must have the form

case eg of ¢t => e1 | ... | ¢, => €, end:u.
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The premises of CASE-SEM must be
for some: wehaveeg = ¢; v;
and
€ UV, = U

and the premises of CASE-TYPE must include
“Feg:re,

r C u,

and
forall:inl...nandal k, if
def

¢ | k—rc (2.42)
then '

ke ik—r

Using the induction hypothesis on ¢ gives
e v e
Lemma 2.68 (Subtype Irrelevancy) on page 88 then gives
He vt ore.

The last inference of this must be CONSTR-TY PE with the premises

def
c; . k—rc

and
- Vi - k.
By (2.42), we have

-l—eiik—w".

Using APPL-TYPE on these gives- - ¢; v; : r. Using the induction hypothesis on this gives
- v r, whichisour conclusion.

Case (TUPLE-SEM, TUPLE-TYPE) | Then e hastheform (e1, ..., e,) and r hasthe form

r1*...*r, andv hastheform (vy, ..., v,). Thepremisesof TUPLE-SEM are
fori e l...nwehavee; = v;
and the premises of TUPLE-TYPE are

foriel...nwehave-F ¢; :r;.
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The induction hypothesis gives

fori € 1...nwehave-+ v; :r;,
and then TUPLE-TYPE gives

cF (uy, on, v Tk kT,

which is our conclusion.

Case: (ELT-SEM, ELT-TYPE) | Then e must have the form elt_m_n e’. The premise of

ELT-SEM must be
e = (v1, ..., v,)

wherev = v,,, and the premise of ELT-TYPE must be
e ik ok,

wherer = r,,. Our induction hypothesis gives

E (i, oo, vp) Tk kT,
By Lemma 2.68 (Subtype Irrelevancy) on page 88, thisimplies

H oy, oen, vp) Tk kT,
The last inference of this must be TUPLE-TYPE, and one of the premises must be

vy g,

which is our conclusion.

Case: (FIX-SEM, FIX-TYPE) | The e has the form £ix f:t' => fn z:t" => €. By FIX-

TYPE, t’ hasthe form ¢, — ¢, and t” = ¢;. The premises of FIX-TYPE must ber C ¢ — ¢,
and
[fi=r]Ffn x:ty => ¢ i r.

Using Lemma 2.70 (Value Substitution) on page 93 on this and

e
gives
“Fle/fl(fn x:t1 => €')ir (2.43)
By FIX-SEM, v is[e/f](fn x:t; => €'), S0 (2.43) isour conclusion. O

The role of sPLIT-TYPE in these theorems is interesting, since it can appear at a non-
root position in the type derivation in the hypothesis of Theorem 2.71 (Refinement Type
Soundness) on page 99, but none of the cases in that proof dea with that rule. The
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resolution to this paradox is that the proof of Lemma 2.70 (Value Substitution) on page 93
never constructs a derivation with SPLIT-TYPE at the root.

This can be most easily understood by walking through the reasoning in the APPL-SEM
case of Theorem 2.71 (Refinement Type Soundness) on page 99 for a carefully chosen
example. For the purposes of this example, let or stand for

fn pair:bool * bool =>
case #1,2 pair of
true => fn _:tunit => true ()
| false => fn _:tunit => #2,2 pair
end : bool

and not stand for

fn b:bool =>
case b of
true => fn _:tunit => false ()
| false => fn _:tunit => true ()
end: bool .

We shall choose e = (fn x:bool => or (not x, x)) (true ()) andr = ¢, SO we need
v = true (). We will abbreviateor (not x, x) ase’ and true () astr when necessary
to get the following derivations to fit on a page. The derivation of ¢ = v is

0=0

fn x:bool => ¢ = fn x:bool => ¢ tr=1tr or (not tr, tr) = tr
(fn x:bool => €') tr =1tr

and aderivationof - F e : ris

ziffEe it ittt Ty < {tt [}
T Thea ettt ‘Ftrue ()i tt tt < T
-k fn x:bool => €' Ty — 1t - true () T
-F (fn x:bool => ¢') (true ()): tt.

Notice the use of SPLIT-TYPE in this; it is the rule with the premise Ty,,; < {tt, ff}.
This example would be less than ideal if we had no size constraint because it is also
possible to derive our conclusion without ever using SPLIT-TYPE; we could smply start
withx @ ¢t = €' : tt, use ABS-TYPEtO infer - = fn x:bool => ¢’ : tt — tt, and then use
APPL-TYPE and - F true () : tt to infer our conclusion. For a more serious but larger
example, we could replacethe true () by an expression with the principal type T 4,,;, thus
requiring the use of SPLIT-TYPE to reach the strongest conclusion.
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However, let us instead show how the theorem manipulates the example as it stands.
First the theorem trivially applies the induction hypothesisto

fn x:bool => (or (not x, x)) = fn x:bool => (or (not x, x))

and
-k fn x:bool => (or (NOt x, x)): Thpe — Ut

to get
- fn x:bool => (or (NOt x, x)): T per — tt.

Then it uses Lemma 2.68 (Subtype Irrelevancy) on page 88 on thisto get
‘H-fn x:bool => (or (NOt x, x)): T oo — I,
Since the last inference of this must be APPL-TYPE, we must have
[z = T] - (Or (not x, x)): tt. (2.44)

Another trivial use of theinduction hypothesisuses true () = true () and- F true ():
T 001 tOINfer
-Ftrue ()@ T (2.45)

Then we eliminate the use of SPLIT-TYPE by substituting (2.45) into (2.44) to get
-For (not (true ()), (true ())): .

Using the induction hypothesis on thisand or (not (true ()), (true ())) = true ()
yields - - true () : ¢, whichisour conclusion.

This concludes the soundness proof of the monomorphic version of refinement types.
This proof has roughly the same shape as the proofs of soundness for polymorphic refine-
ment types and refinement types with declarations and references.

2.9 Finite Refinements, Principality

Now we shall give several lemmas |eading up to the proof that, roughly speaking, each ML
type has only finitely many distinct refinements.

This proof below is dightly more complex than necessary. A ssmpler proof would show
by induction on the ML type that each ML type has finitely many distinct refinements. In
this proof, the interesting induction case would happen when the ML type has the form
t — u; if t hasn distinct refinementsand « has m distinct refinements, then thereare at most
n * m digtinct refinements of the formr — & wherer C ¢ and & C u. Every refinement
of ¢t — u isequivalent to an intersection of some subset of these, so there are at most 2™
refinementsof ¢ — u.
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The problem with thissimple approach isthat it overestimatesthe number of refinements
of many ML types. For example, the refinement types T y,.; — tt A tt — tt and Ty, — 1t
are equivaent, but they are both counted in the enumeration implied in the argument above.
The implementation sometimes has to enumerate the refinements of an ML type, so it is
worthwhile to explore a more conservative enumeration in the finiteness proof.

The strategy behind the proof below isto interpret arefinement of ¢ — u asamonotone
function from equivalence classes of ¢ to equivalence classes of «. Two refinement types
are equivalent if and only if their interpretations are equal, and we can enumerate without
repetition all refinements of a functional ML type by enumerating all monotone functions
with an appropriate domain and codomain, as we shall describe below.

For any r refining afunctional ML type, we will define the interpretation /(r) of r in
terms of a simpler function :(r) that maps refinement types to refinement types instead of
equivalence classes to equivalence classes.

There is a natural way to read the interpretation :(r): If f has the type r and = has
the type &, then the best type we can infer for f z isi(r)(k). Our plan isto set up some
machinery that allows usto define : in terms of the subtype relation, and then to show that
two types & and £’ areequivalent if and only if (k) and :(k") are suitably similar. Then we
will define I to be: lifted in a natural way to operate on equivalence classes of refinement
types. It will turn out that any types k& and &’ are equivalent if and only if 7(k) and I(k’)
are equa. Then we finish the proof by showing that there are only finitely many distinct
valuesfor (k).

To make the proof more regular, we will use the symbol ns as the result of (r)(k)
when the corresponding expression would have notype. For example, i(tt — ff)(ff) = ns.
Adding ns requiresusto introduce notation for metavariablesthat can be either arefinement
type or ns. We will write these metavariables as r?, k£? or p? and call the values of these
metavariables generalized refinement types. Comparing them is straightforward:

Definition 2.72 We define the binary relation < on generalized refinement types by the
following cases:
r=<k ifandonlyifr <k
r < ns always
ns=<k never
ns < ns.

We can base a natural notion of equivalence on <:
Definition 2.73 Wesay r? ~ k?if r? < k?and £? < r?.

We could get the same effect by defining r? ~ £?to mean that either r? = k?orr? = k? =
ns.

We can also define intersection on generalized refinement types:
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Definition 2.74 We define the binary operation /A mapping pairs of generalized refinement
types to generalized refinement types by the equations:

rANk=rAk
rAns=nsAr=r
ns/AA ns=ns.

The A operation inherits commutativity, associativity, and idempotence from A.

The big advantage of /A over A isthat A has an identity, specifically ns. Thus we can
define A to work on afinite set of refinement types evenif the set is empty:
Definition 2.75 If s isa finite set of refinement types, then /A s isthe following generalized
refinement type:

If s isempty, then As = ns.

Ifs={ry,....,r},then As=ri AL ATy,

We shall continueto use s as afinite set of refinement types for the rest of this section.

This definition is slightly ambiguous, since the order of the elements in a set is not
determined and A is only commutative if we ignore the difference between equivalent
refinement types that are not equal. For example, A{tt, ff} could be ¢t A ff as well as
ff A tt. Thisambiguity makes no difference to the reasoning below, and we shall ignoreit.

When al refinement types in s refine the same ML type ¢, the generalized refinement
type As either refines ¢ or is ns. We extend the notion of refinement to include sets of
refinement types and generalized refinement types, so we can smply say that if s T ¢, then
As C t. Inthisextension of the meaning of , both the empty set {} and ns both refineall
ML types.

The A operator has several properties that follow from analogous properties of A,
commutativity and associativity of A, and trivial induction arguments:
Fact 2.76 (/A Elim Sub) Ifs D s’ and s C ¢ then
As < As'.

Fact 2.77 (A Intro Sub) If s1, s, and s3 all refine¢ and
AS]_ j ASZ

and
AS]_ j AS3

then
AS]_ j A(Sz U 83).
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Fact 2.78 (Trangitivity of <) If r? < k?and £? < p?thenr? < p?.
Now we have enough machinery to define () and prove some simple properties of it:

Definition 2.79 Supposek?C t —t'andr C t. If k?hastheformk; — ki A .. Ak, — k],
we define
i(k?)(r) = A{k} | jisbetweenlandn and r < k;}.

Otherwise £? = nsand we define :(k?)(r) = ns.

For example, if
k = tt—>—|—5001 A T5001—>ﬁ /\ﬁ—>tt

then
L(k)(tt) = Tbool /\ﬁ = ff
k) = AN tt = Lioo
(k) (T hoot) = I
i(k)(J_booz) = Tbool /\ﬁ Nt = J—bool-

Inthisexample, asr getslarger, «(k)(r) also getslarger. This property istruein general.

Lemma 2.80 (: Monotonein Second Argument) Ifr C tand k? C ¢t — ¢’ and

!
r<r

then
i(k?)(r) < (k) (r").

Proof: If £? = ns, then our result followsdirectly fromthedefinitionsof : and <. Otherwise
k?hastheformk; — E; A ... A k, — k!.. Asinthe definition of ¢, let

s ={k;|jbetweenlandn andr < k;}

and
s' = {k} | j betweenlandn and r’ < k;}.

Sincer < r' and < istrangitive, we have s O s'. Since k C t— ', al of the k!'s must
refinet’, so s C t'. Thuswe can use Fact 2.76 (A Elim Sub) on page 107 to get

As < As'.

According to the definition of ¢, thisisour conclusion. O

Itisalso truethat as k? gets larger, :(k?)(r) getslarger, but the proof is somewhat more
involved:



CHAPTER 2. REFINEMENT TYPE INFERENCE 109

Lemma 2.81 (: Monotonein First Argument) If r C t and £? C ¢t — ¢’ and
k? < p?

then
W(k?)(r) 2 i(p?)(r).

Proof: By induction on the derivation of £? < p?.

Case: p? =ns | Then(p?)(r) = ns, and our result follows from the definition of <.

Case: k? = ns | Then p? = ns, so the previous case holds.

Case: SELF-suB | Trivial.

Case: AND-ELIM-R-SUB | Since k? C ¢t — t’ we know that k? hastheformk; — K A ... A

k, — k. The shape of AND-ELIM-R-SUB tells us there is some n less than ¢ such that
p?=ki—kiA... Nk, — k.

Let
s={k} | j betweenland g and r < k;}

and
s' = {k; | j betweenlandn andr < k;}.

Sincen < ¢ wehave s D s'. ThusFact 2.76 (A Elim Sub) on page 107 gives
As < As',

and by definition of 7, thisis our conclusion.

Case: AND-ELIM-L-SUB | Similar.

Case: AND-INTRO-SUB | Then p? hasthe form p;1 A p,, where the premises of AND-INTRO-

SUB are
E?<p1

and
kE? < po.

Applying our induction hypothesis to these gives

t(k?)(r) = a(pa)(r)
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and

i(k?)(r) < i(p2)(r).
Since p? = p1 A po, the definition of ¢ tells us that ¢(p?)(r) = ¢(p1)(r) A i(p2)(r). Thus
Fact 2.77 (A Intro Sub) on page 107 gives :(k?)(r) < «(p?)(r), which isour conclusion.

Case: TRANS-SUB | Then the premises of TRANS-SUB must be

k2 <y

and
r' < p?.

Applying the induction hypothesesto these gives

i(k2)(r) 3 () (1)

and
i(r')(r) 2 i(p?)(r).

Using Fact 2.78 (Trangitivity of <) on page 108 on these gives our conclusion.

Case: ARROW-SUB | Then k£? has the form k; — k7 and p? has the form p; — p) and the

premises of ARROW-SUB are
p1 < k1

and

k1 < pj.
If :(p?)(r) = ns then our conclusion followsimmediately, so instead suppose that «(p?)(r)
is a refinement type. From the definition of : we must have » < p; and i(p?)(r) = pi.
TRANS-SUB and p; < k1 give r < k1, and the definition of ¢ gives «(k?)(r) = k7. Thus
kj < p} isour conclusion.

Case: ARROW-AND-ELIM-SUB | Then k?must havetheform £y — &} A ky — k5 and p? must

havetheform ky — (k1 A k). 1T ¢(p?)(r) = ns then the definition of < givesour conclusion
immediately. Otherwise the definition of : givesr < k; and

i(k?)(r) = K, A K,

and
i(p?)(r) = k3 A k5.

Before we use SELF-SUB to get our result we must find a«’ such that £ A k5 C u’. The
premise of ARROW-AND-ELIM-SUB iS
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This can only be derived by using ARROW-REF, so ¢t must have the form v — u’ and the
premises of ARROW-REF must be
kiCu
and
ki A ky Cou'.

The latter and SELF-SUB give our conclusion.

Case: RCON-SUB, RCON-AND-ELIM-SUB, TUPLE-SUB, TUPLE-AND-ELIM-SUB

None of these cases can happen because we assume that £? and p? refine a functional ML
type. O

This has asimple corollary:

Corollary 2.82 (Bound on Argument to : Gives Bound on ¢)
If & <r—ptheni(k)(r) < p.

Proof: The definition of : givesi(r — p)(r) = p. By Lemma 2.81 ( Monotone in First
Argument) on page 109, i(k)(r) < i(r— p)(r), and rewriting i(r — p)(r) to p gives our
result. O

We will cal rq,...,r, the components of the refinement typeri A ... A r,,.

From the definition of ¢, it is clear that if r — r’ is one of the components of %, then
i(k)(r) < r'. Theconverseof thisisfase; for example, if k = tt — ff A tt — ttandr = i,
then :(k)(r) = ff A &t but tt —(ff A tt) isnot one of the components of k. However, we
do have k < tt —(ff A tt), and this sort of assertion istruein general.

Lemma 2.83 (: Givesan Upper Bound) If k?C ¢t —t" andr C ¢, and
i(k?)(r) <7’

then
E?2<r—r'.

Proof: We know that k£? # ns, because if £? were ns then :(k£?)(r) would be ns and our
hypothesis would be fal se.

Since k? C t — t/, weknow that k? hastheform ks — kA ... Ak, — k! . Let
S ={jbetweenlandn | r < k;}.
We know that (k?)(r) is not ns because ns < ' cannot be true, so S is not empty. Let
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Since all components of &’ appear in £?, we have
E? < K.

Let
E'=AOr—k; | j €S}

Since each component of £’ is a subtype of the corresponding component of £, we have

k< K"
Let

K" = r—>A{k; |7 €S},

Repeated use of ARROW-AND-ELIM-SUB gives

k// < k///.
Since A{k! | j € S} = i(k?)(r) < r" isahypothesis of this|emma, RCON-SUB gives

' <r—r.

Repeated use of TRANS-SUB gives k? < r — r/, which isour conclusion. O

If we have two functions f1 and f, with common domain and codomain, and we can
compare elements in the codomain, then we can naturally compare f, and f> pointwise.
That is, f1 isgreater than f if for al = intheir common domain, f1(x) isgreater than f>(x).
It turns out that this ordering when used on (k) is the same as the subtype ordering on k.

Lemma 2.84 (Ordering on ) If k?and p?refinet — ¢’ and for all r refining ¢ we have

((k?)(r) 2 1(p?)(r)

then
k? < p?.

Proof: If k? = ns, then for al r refining ¢ we have i(k?)(r) = ns, S0 ¢(p?)(r) = ns.
This can only be the case if p? = ns, s0 by definition of < we have £? < p?, whichis our
conclusion.

If p? = ns then weimmediately get £? < p? by definition of <.

Otherwise, since p? C t — t/, we know that p? hastheform ps — pi A ... A p — 9.
By the definition of ¢, for all ; between 1 and m we have

i(p?)(p;) < Pl

By our hypothesis
((k?)(p;) < i(p?)(p;s)-
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TRANS-SUB gives
i(k?)(p;) < pf.
Lemma 2.83 (z Gives an Upper Bound) on page 111 gives

k? < p; —>p;
Sincethisistruefor al j, we can repeatedly use AND-INTRO-SUB to get
k? < p?,

which is our conclusion. O
Now we can show that : preserves all the information about its first argument. Thisis
our main result about ¢; the remainder of the argument after the following lemmais little
more than repackaging : to get our interpretation function 7, and trandating the following
lemmato a statement about /.
Lemma 2.85 (: Preserves Information) Suppose »?and »? both refinet — ¢’. Then
for all £ and &’ refining t we have k = k' implies«(r?)(k) ~ «(r?) (k') (2.46)
if and only if
r?=r7?. (2.47)
Proof of (2.46) implies (2.47): From (2.46) we get
for al k and &’ refining t we have k = k' implies:(r?)(k) < i(r?)(k")
Since k C t, we can choose £’ = k and we have k = k. Thus
for all k refining t we have:(r?)(k) < ¢(r?)(k)
and Lemma 2.84 (Ordering on ) on page 112 gives
r?2<r?.

A symmetric argument gives
r? <r?

and together these imply our conclusion.
Proof of (2.47) implies (2.46): From (2.47) we get
r?<r?,
and we can then use Lemma 2.81 (: Monotone in First Argument) on page 109 to get

i(r?2)(k) < i(r?)(k).
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The premise of theimplication in (2.46) gives
k<K,
and Lemma 2.80 (z Monotone in Second Argument) on page 108 gives
i(r?)(k) 2 i(r?)(K).
Fact 2.78 (Trangitivity of <) on page 108 gives
i(r?)(k) < i(r?) (k).

A symmetric argument gives
i(r?)(k) = i(r?)(k),
and together these are our conclusion. O
Now we will repackage : as a function mapping equivalence classes to equivalence
classes. First we must define some notation for manipulating equivalence classes:

Definition 2.86 If »? is a generalized refinement type, then the equivalence class C(r?)
containing r?istheset {r? | r? ~ r?}.

Definition 2.87 If¢isan ML type, then EC(¢) isthe set of equival ence classes of generalized
refinements of ¢, or in symbols, {C'(r?) | r? C t}.

We shall use ¢ as ametavariable standing for the equivalence class of arefinement type,
and ¢? asametavariable standing for the equivalence class of ageneralized refinement type.
Now we have the machinery to definetheinterpretation of refinement typesasamapping
from equivalence classes to equivalence classes:
Definition 2.88 If ¢? € EC(t') and ¢ € EC(¢) and r? C t — 1/, then we write
c? =1(r?)(c)
if thereisa k € c suchthat ¢? = C'(¢(r?)(k)).

By Lemma 2.80 (¢ Monotone in Second Argument) on page 108, we know that :(r?)
is afunction that maps equivaent refinement types to equivaent refinement types. Thus
I(r?) is afunction. We can also show that / maps equivalent refinement types to equal
functions:

Lemma 2.89 (/ Preserves Equivalence) Suppose £?and p? refinet — ¢'. Then
1(k?) = 1(p?)
if and only if
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Proof: By definition of equality for functions we have 1(k?) = I(p?) if and only if for
al cin EC(t) we have I(k?)(c) = 1(p?)(c). By definition of 7, thisistrueif and only if
whenever r = r’ we have:(k?)(r) ~ i(p?)(r’). By Lemma 2.85 (: Preserves Information)
on page 113, thisisequivalent to k? = p2. O

Theorem 2.90 (Finite Refinements) For each ML type u we have EC(u) isfinite.

Proof: By induction on u.

Case: u=uc | By Assumption 2.8 (Finite Predefined Refinements) on page 31, uc hasonly

finitely many refinements, so it can have only finitely many equivalence classes.

Case u =1y *...*t, | Any refinement of « must have the form

(FI kT A A (PP Rk,

By Fact 2.23 (Tuplesimp Sound) on page 41, thisis equivaent to arefinement type of the
form ky % ... % k,. By TUPLE-SUB, two refinements of « of thisform are equivalent if and
only if they are equivalent componentwise. Since our induction hypothesis tells us that
there are only finitely many equivalence classes for each component, there are only finitely
many equivalence classes of tuples without a toplevel A. Since each refinement of w« is
equivalent to one without atoplevel A, there are only finitely many equival ence classes of
refinements of «.

Cese: t = u— v’ | By our induction hypothesis, EC(u) and EC(u') are both finite. By

Lemma 2.89 (I Preserves Equivalence) on page 114, for al r refining ¢ we have C(r) is
uniquely determined by /(r). Since I(r) maps elements of £C () to elements of EC(u'),
thereare only finitely many distinct valuesfor /(r), and therefore only finitely many values
of C'(r) and only finitely many valuesin EC(t). O

Finite Refinements straightforwardly gives us principal refinement types. Later on we
prove that there is an algorithm that computes principal refinement types; this proof can
also beinterpreted as a proof that principal types exist, but it has the disadvantage of being
much more complex than the simple proof we give here.

Corollary 2.91 (Principal Refinement Types) If

VREe:r

then thereis a k such that
VRF e k

and for all p we have
VRFE e:pimpliesk < p.
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We prove this by choosing £ to be the intersection of all refinement types such that
VR I e : k, with suitable perturbations to ensure that thisintersection is finite.

Proof: By Theorem 2.54 (Inferred Types Refine) on page 68, thereisat such that » C ¢
and

rtom(VR) i e :: ¢. (2.48)
Let

sc ={c€ EC(t) | forsomerincwehaveVRFE e r}.

and for ¢ in sc let k. be an arbitrary but fixed element of ¢. By Theorem 2.90 (Finite
Refinements) on page 115, £C(t) isfinite. Thus sc isfinite and we can choose

k= Nk, |cé€ sc}

without creating an infinite syntactic object. Now we have to prove that £ has the two

properties required by our conclusions.

Proof of VR - e : k: By construction of sc, for each k. thereisa k! suchthat k. = & and
VRFEe: k.

WEAKEN-TYPE immediately givesVR - e : k., and repeated use of AND-INTRO-TYPE gives
VR e: k.

Proof of VR - ¢ : pimpliesk < p: Suppose VR I- ¢ : p. By Theorem 2.54 (Inferred
Types Refine) on page 68, thereisaw such that p C « and rtom(VR) F e :: . By Lemma
2.4 (Unique Inferred ML Types) on page 27, we must have v = t. Thus, by construction
of se, p must be in some equivalence class ¢ in sc. Since ¢ isan equivalenceclass, k. = p.
By repeated use of AND-ELIM-L-SUB and AND-ELIM-R-SUB, we have

k<p.
Sincethis argument isvalid whenever VR F ¢ : p, we have
VRF e:pimpliesk < p,

which is our second conclusion. O

210 Decidability

This section will describe an agorithm for finding the principal refinement type of an
expression. This requires being able to list one representative of each equivalence class
of refinements of an ML type and being able to decide whether one refinement type is a
subtype of another. These last two algorithms are mutually recursive, so we will describe
them together in Subsection 2.10.1. Then wewill givean agorithmfor finding the principal
split of arefinement typein Subsection 2.10.2. A notion of least upper bound for refinement
typesis defined in Subsection 2.10.3, then we use all of these in an agorithm for deciding
refinement typesin Subsection 2.10.4.
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2.10.1 Deciding Subtyping and Enumer ating Refinements

Now we will describe procedures for determining whether one refinement typeis a subtype
of another and for enumerating the refinementsof an ML type. The strategiesfor doing both
of these are very straightforward except when we are dealing with functional ML types.

To determine whether » < k& when both » and k refineafunctional ML typet; — t,, we
check whether, for al p refining ¢1, we have i(r)(p) < ¢(k)(p). If this condition istrue for
al p, thenr < k.

To enumerateall refinementsof afunctional ML typet; — ¢,, weenumerateall possible
monotone functions z(r) mapping refinements of ¢, to generalized refinements of ¢,, and
convert each function to a refinement type. Converting these functions to refinement types
is the job of the fntoref procedure described below; this procedure is the inverse of ¢,
since when we only specify the first argument of ¢, it maps a refinement type to amonotone
function from refinement types to generalized refinement types.

We will describe the algorithms for computing this in stages. In this introduction we
will briefly list the functions and give an intuitive idea of what they should do. Then
in Subsubsection 2.10.1.1 we will give a formal specification of the functions along with
pseudocode implementing them. Finally, in Subsubsection 2.10.1.2 we will prove each
function satisfies its specification.

The functionsinvolved are:

Afn sComputesthe intersection of refinement typesin s.
botfn tComputesthe least refinement of ¢.

allrefs tReturns a set containing one representative from each equivaence class of
refinements of ¢.

subtypep r? k? tDetermineswhether r? < k7?, assuming both »?and £? refinet.
ifn r? p tComputes:(r?)(p), assuming p C ¢ and for some u we have r? C t — u.

fntoref f tIf fisamonotonefunctionfrom refinementsof ¢ to generalized refinements
of some u, and r refinest, then f(r) ~ i(fntoref f)(r).

210.1.1 Specificationsand Definitions

We will describe the agorithm by using a mixture of SML and mathematical notation. In
this notation, we use braces ({ }) to denote mathematical sets, not SML records. We will
aso freely use dlipses (...) and set comprehensions ({ | }) when the meaning is obvious
and obviously computable. We will assume an infix operator x takes the cross product of
several sets of refinement types and combines them into tuples; for example,

{tt, ff} X { T oot} ¥ {runit} = {tt * T oo * runt, ff * Tyor * runit }.
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Afn  First we have atrivia utility procedure to compute A and give an example of our
notation for algorithms. If s isafinite set of refinement types, thefunctioncall Afn s must
return As. For example,

Nfn {tt, ff} = tt A ff.
We define A£n asfollows:

fun Afn {} = ns
| Afn {r} =r
| Afn ({r,k}Us) = r A(Afn ({k} Us))

Thelast case may bealittle confusing because we are using SML’s destructuring notation to
destructure a mathematical object. It means “whenever the argument to /Afn has the form
{r,k}Us, theresultisr A (Afn ({k} Us))”. Thisnotationisvague about which elements
of s we choose to name r and k; this vagueness (and similar vagueness in algorithms that
follow) makes no important difference, and we shall ignoreit.

The above function is the only one that does not participate in the mutual recursion to
come.

botfn  Thefunction cal botfn ¢ returnstheleast refinement of ¢. That is, if » C ¢, then
(botfn t) < r. Thecodefor botfnis:

fun botfn ¢ = A(allrefs t)

Note that there may be values of ML type ¢ with the refinement typebotfn ¢; for example,
if have adatatype d and with no declared refinements, there will be only one refinement of
d; cal it T,. Thenbotfn d = T4, which will be inhabited by all values with ML type d.

allrefs Thefunctioncall allrefs ¢ returnsalist of one representative of each equiv-
aence class of refinements of ¢ the refinements of ¢. If » T ¢, then there must be a
k € allrefs ¢t suchthat r = k. Also, for all ¢t we must have allrefs tisfinite.

For example,
allrefs bool = {tt, ff, T oo, Lioor }-

It would be consistent with the specification for allrefs bool to return {tt A tt, ff A
T oo, Thoots it A ff}. The code for allrefs follows. Asin Standard ML, when we have
multiple mutually recursive procedures, we introduce all but thefirst with the and keyword
instead of the fun keyword.
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and allrefs ({1%...%1,) = allrefs {1 X ... X allrefs t,
| allrefs (t—u) =
{fntoref f t|
f isafunctionfrom allrefs ¢ to (allrefs u)U {ns}
and f(botfn ¢) # ns
and foral rand k inallrefs ¢t wehave
subtypep r k t implies subtypep (f r) (f k) u}

def
| allrefs tc = {rc|rc C tc}

subtypep Thefunctioncall subtypep r? k? t determineswhether »? < k7?, assuming
that both r?and £? refine ¢. For example,

subtypep tt ff bool = true.

The code for subtype follows; note that it uses the tuplesimp and rconsimp functions,
which are defined on pages 41 and 42, respectively.

and subtypep _ ns _ = true
| subtypep ns k _ = false
| subtypep r k (t1%...%t;) =
let val ri*...x7r, = tuplesimp r
val ky*...*xk, = tuplesimp k
in
for y in 1...h wehave subtypep r; k; t;
end
| subtypep r k (t1—12) =
foral p € allrefs t; wehave subtypep (ifn r p t1) (ifn k p t1) 12
| subtypep r k t. =
let val rc = rconsimp r
val k¢ = rconsimp k
in
def
re < ke
end

We could make the t; — ¢, case more efficient by replacing it with

| subtypep r k (t1—1t2) =
let (ki— Kk A...Nk,— k) = k
in
foraljinl...n wehavesubtypep (ifn r k, t1) k, 12
end

but thiswould be dightly moredifficult to prove, and it does not work for the representation
of refinement types used in the serious exploration of efficiency in Chapter 7. Thus we will
stay with the ssimpler but less efficient version.
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ifn Thefunctioncal ifn r? p ¢ computes:(r?)(p), assuming that for some « we have
r?C t—wuandp C t. For example,

ifn (t =t Aff—ff) Lioor bool =ttt A ff

and
ifn (it —tt) ff bool = ns.

Thecodefor ifnis:

and ifn r? p t =
if r? = ns then ns
else
let val mm—riA...Ar,—r, = 1r?
in Afn {r}, |h € 1l...n and subtypep p 7, t}
end

fntoref Thefunctionfntorefisaninverseof sortsto ifn. If f mapsrefinements of ¢
to generalized refinements of some other ML type, and f ismonotone, and f(botfn t) is
not ns, then fntoref f tisarefinement type and for all % refining ¢ we have

f(k) = i(fntoref f t k).
We need to require f to be monotone because : is monotonein its second argument, so
the equivalence just displayed could not possibly be true if f is not monotone. We need

f(botfn t) to be something other than ns to ensure fntoref f tisalways arefinement
type. The code for fntoref is.

and fntoref f ¢ =
Afn {r— f(r) | r € allrefs t and f(r) # ns}
2.10.1.2 Soundness

To prove these algorithms sound, we need to prove they always terminate and they fit their
specifications. First we will show partial correctness, then we will give an informal proof
of termination.

Theorem 2.92 (Subtype Decidability) All of the functions discussed in Subsubsec-
tion 2.10.1.1 fulfill their specification when they terminate.

Proof: By induction on the evaluation of the function.
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Afn meetsitsspecification  Trivial.

botfn meets its specification We need to show that if » C ¢, then botfn ¢t < r. By
induction hypothesis, we can assumethat allrefsissound; thusthereisak inallrefs ¢
such that » = k. By repeated use of AND-ELIM-L-SUB and AND-ELIM-R-SUB we have
A(allrefs t) < k. Then TRANS-SUB gives A(allrefs t) < r, whichisour conclusion.

allrefs meetsits specification We need to show that for al ¢ we have allrefs tis
finite, and that if » C ¢, thereisak € allrefs ¢ suchthat r = k.

Case allrefs (f1*...*t,) | Thecodefor thiscaseis

fun allrefs ({1%...%%,) = allrefs {3 X ... X allrefs ¢,

Suppose r C 1 *...xt,. Then tuplesimp r must be defined and have the form
r1%...%7r,, and soundness of tuplesimp giveStuplesimp r = rp*...*r,. By induction
hypothesis, for 2 inl...n thereisapy inallrefs t;, suchthat r, = p,. Then TUPLE-SUB
gives

T1k...kT, =p1¥...%py,
and TRANS-SUB gives
T=prok...k Py,

The definition of x then gives
p1L*...%xp, € allrefs {1 X ... X allrefs {,.

Thus p; * ... * p, isthe member of allrefs ¢ that we seek. Since the cross product of a
finite number of finite setsisfinite, allrefs ¢ isafinite set, so we are done.

Case: allrefs t—u | Thecodefor thiscaseis

| allrefs (t—u) =
{fntoref f t|
f isafunctionfrom allrefs ¢ to (allrefs u)U {ns}
and f(botfn ) # ns
and foral rand kinallrefs ¢t wehave
subtypep r k timpliessubtypep (f r) (f k) u}

Supposer C t — u. Thenr hastheformry — i A ... A r, — r!. Define

F= k. {ns if i(r, k) = ns

any pinallrefs u suchthat p = i(r, k) otherwise.
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We will show that fntoref f tisinallrefs ¢— u,andthatr = fntoref [ t.

By definition of ¢, we know that f(botfn t)isri A...Ar,, whichiscertainly not ns.
Since:(r, k) is monotonein k& we know that f is monotone. Thus the code for this case of
allref tellsus

fntoref f tisinallrefs (t— u).

Let v’ = fntoref f t. Sincefntoref issound, we know that
for all k refiningt wehave f(k) ~ i(r', k).
By definition of f we have
for all k refining ¢t we have f(k) ~ i(r, k).
By transitivity of =, these imply
for all k refining ¢t wehave «(r', k) ~ i(r, k).

By Lemma 2.85 (: Preserves Information) on page 113, thisimpliesr’ = r.

Weknow that allrefs ¢t — wisfinitebecauseby inductionallrefs tandallrefs u
arefinite, and there are finitely many functions from afinite set to afinite set.

Case: allrefs tc | Thecodefor thiscaseis

def
| allrefs tc = {rc|rc C tc}

By Assumption 2.8 (Finite Predefined Refinements) on page 31, allrefs tc isfinite.

Suppose r C tc. Then r must have theform rcy A ... A r¢,,, wherefor al 7, re; C te.
Then Lemma 2.24 (Refinement Constructor Intersection) on page 41 gives

def def
r=rcyt N\ ...\ rcy,.

. def  def )

By Theorem 2.21 (Subtypes Refine) on page 36, rc1 A ... A re,, T te; this can only be
def def def def

inferred by using RCON-REFwiththepremiserciy A ... A r¢, d[ef te. Thusrey A ... A\ e, €

allrefs tc, whichiswhat wewanted to show.

subtypep meetsits specification  We need to show that if both »? and £? refine ¢, then
subtype r? k? treturnstrueif and only if r? < k7.

Case: subtypep r? ns _ | Thecodefor thiscaseis

and subtypep _ ns _ = true
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The definition of < givesr? < ns, which iswhat we wanted to show.

Case: subtypep ns k? _ | Thecodefor thiscaseis

| subtypep ns _ _ = false

The definition of < tellsusthat ns < k?isfase, which is what we wanted to show.

Case: subtypep r k ({1%...%xt,) | Thecodeforthiscaseis

| subtypep r k (t1%...%1y) =
let val ri*...x7r, = tuplesimp r
val ky*...*%k, = tuplesimp k
in
for y in 1...h wehave subtypep r; k; t;
end
Sincer and k both refine¢y * ... t,, tuplesimp r and tuplesimp k are defined and
tuplesimp r hastheformry*...*rp,
and
tuplesimp k hastheformky *...x k.

By soundness of tuplesimp,
TE=Trik.. kT

and
k=ki*x...xkyp.

Suppose

r<k. (2.49)
By TRANS-SUB, thisisequivalent to

rik ookt < kykooox k.
By TuPLE-suB and Corollary 2.27 (TUPLE-SUB Inversion) on page 45, thisis equivaent to
forjinl...hwehaver; <k;.
By induction hypothesis, subtypep issound, so thisisequivalent to
forjinl...h wehave subtypep r; k; t;. (2.50)

Summarizing the above argument, (2.49) isequivalent to (2.50). By definition of subtype,
thisis our conclusion.

Case: subtypep r k (11— t2) | Thecodefor thiscaseis
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| subtypep r k (t1—1t2) =
foral p € allrefs t; wehave subtypep (ifn r p ¢1) (ifn k p t1) t2

Suppose
r<k (2.51)

By Lemma 2.84 (Ordering on z) on page 112 and Lemma 2.81 (: Monotone in First
Argument) on page 109, thisis equivaent to

foral p' Tty we havei(r)(p') < i(k)(p'). (2.52)

Since we can assume by induction that recursive callsto allrefs aresound, for al p’ C 1
thereisap inallrefs ¢; suchthat p = p’. Thisand Lemma 2.81 (: Monotone in First
Argument) on page 109 give

foral p' C ty thereisap inallrefs t¢; such that
io(r)(p) = i(r)(p') and i(k)(p) ~ 1(k)(p').
We can use thiswith Fact 2.78 (Trangitivity of <) on page 108 on (2.52) to get
foral pinallrefs t; wehavei(r)(p) < i(k)(p).

By induction, we can assume that recursive callsto subtypep and ifn are sound, so thisis
equivalent to

foral pinallrefs ¢; wehave subtypep (ifn r p t1) (ifn k p t1) 1 (2.53)

Summarizing the argument so far, (2.51) isequivaent to (2.53). Thisis our conclusion.

Case: subtypep r k tc

The code for thiscaseis

| subtypep r k tc =
let val ¢ = rconsimp r
val k¢ = rconsimp k

in
def
re < ke

end

By assumption, » and k refine tc; therefore both callsto rconsimp arevalid. By Fact 2.23
(Tuplesimp Sound) on page 41, r = rc and k = kec.

Suppose r < k. By TRANS-SUB, thisis equivaent to r¢ < ke¢; by RCON-sUB and Fact
def
2.29 (RCON-suUB Inversion) on page 45, thisis equivaent to rc < ke. Summarizing the

def
argument so far, r < k if and only if r¢ < ke. By definition of subtypep, thisis our
conclusion.

ifn meetsits specification The codefor ifnis
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and ifn r p ¢ =
let val m—riA...Ar,—rl =T
in Afn {r, |h € 1l...n and subtypep p 7, t}
end

and we need to show that if r — t—w and p C ¢ then ifn r p t = i(r,p). Thisis
obvioudly correct, since we can assume by induction that the recursive calls to subtypep
are sound.

fntoref meetsitsspecification The codefor fntoref is

and fntoref f t =
Afn {r— f(r)|r € allrefs t and f(r) # ns}

and we need to show that if thereis a« such that
f mapsrefinements of ¢ to generalized refinements of «

and
f ismonotone

and
f(botfn t)isnotns,

then for all £ C ¢ we have
f(k) = i(fntoref f t)(k).
Since f(botfn t)isnotns, weknow that (botfn ¢) — f(botfn t¢)isone of the com-

ponentsinfntoref f t. Thusfntoref f tisnotns,andwecanletr = fntoref f t.

Suppose k£ C t. By definition of ¢,

i(r)(k) = A (p) [k < p}-

SELF-sUB gives k < k, so f(k) isin {f(p) | k¥ < p} and Fact 2.77 (A Intro Sub) on
page 107 gives

f(k) < A{f(p) | k < p}.
Sincef ismonotone, £ < p implies f(k) < f(p). Thusal elementsof {f(p) | k¥ < p} are
greater than f(k), so Fact 2.76 (A Elim Sub) on page 107 gives

A f(p) | k <p} < f(k).

Thus:(r)(k) ~ f(k), whichisour conclusion. O

Theorem 2.93 (Termination for subtypep and allrefs) All algorithmsdefined in Sub-
subsection 2.10.1.1 terminate for all inputs.
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The function A fn terminates because its argument isafinite set. An infinite execution
of any other function must involve infinitely many recursive calls to some function, call it
f. Examination of the code tells us / must have an argument that is an ML type, and that
ML type must get smaller from one call to f to the next. Since all ML types arefinite, this
isacontradiction. Thus al executions are finite. O

2.10.2 Deciding Splits

In the refinement type inference algorithm we present in Subsection 2.10.4, the SPLIT-TYPE
rule is aways done as early as possible; each variable is split exactly once when it is
added to the variable environment. For example, if the algorithmis considering what might
happen if = hastype T ;,,, it will split thisinto the possibilitiesz : ¢t and = : ff when x is
added to the environment, and it will not consider splitting = again. The appropriate split
to use is the principal split of the type of z, as discussed in Subsubsection 2.6.2.2. This
Subsection gives a procedure for computing principal splits.

2.10.2.1 Computing Principal Splits

We will give a constructive proof that principal splits exist which can also be used as an
algorithm for computing them. But first we will give an algorithm anysplit that returns
auseful split of arefinement type if thereis one. If there are none, then anysplit returns
the singleton set containing its argument.

fun anysplit r (t1%...%t})

let val ri*...xry, = tuplesimp r
in
anysplit r; X...X anysplit rp
end
| anysplit r tc =
let val rc = rconsimp r
in
if re hasauseful predefined split sec
then sc
else {r}
end
| anysplit r (t1—t2) = {r}

Soundness of his algorithm follows by induction on the ML type argument.

Assuming anysplit works, it is straightforward to find a principal split. Just split all
of the fragments so long as there is one with a useful split, and then use ELIM-SPLIT to
eliminate as many elements as possible.
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Theorem 2.94 (Principal Split Existence) If » C ¢ and r < s then we can construct an s’
that isa principal split of .

Proof: Lets; = s. For: > 1, if thereisan element r; of s; with auseful split s, then let

siv1 = (si — {ri}) Usl.
This process has to stop eventually, because by definition of useful the elements added to

each s; are strictly subtypes of the elements we take from s;, and ¢ has only finitely many
refinements. Let » be the last value of ; by construction, we know that

foradl k£ in s, al splitsof £ are useless.
By repeated use of TRANS-SPLIT,
fordl : wehaver < s;.

Once we eliminate as many elements as possible from s,, we will have our result. Thisis
straightforward: arbitrarily order the elements of s,, such that

{kl,...,km} = Sp.
Let
s'={k;|jinl...m and whenever k; € s, and k; < k, wehavek; =k, and h > j.}.

By construction, ELIM-SPLIT can eliminate no more elements from s’. By repeated use of
ELIM-SPLIT, r < s’. Since s’ isasubset of s,

fordl k ins', al splitsof & are useless.

Thus, by Lemma 2.46 (Fragments of Principal Split have Useless Splits) on page 58, s’ is
aprincipa split of r. O

2.10.3 Join

A refinement type for a case statement is an upper bound of the refinement types of the
reachabl e branches, and the principal refinement type of the case statement isthe least upper
bound of the principal refinement types of the reachable branches. Therefore we need to
be able to compute least upper bounds of refinement types. For example, assume that
we have an ML datatype type blist with only the refinement T ;;,, and afunction emptyp
with refinement type T i5: — T 00 @nd avaluenil () of type T 5. Theintuition is that
emptyp determines whether the list is empty, but the programmer has not declared interest
in the distinction between empty blist’s and nonempty blist’s, so refinement type inference
will not notice this. Then the expression emptyp (nil ()) has the principa type T 4.,
and computing the principal type of the statement
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case emptyp (nil ()) of
true => fn ignored:tunil => true ()
| false => fn ignored:tunit => false ()
end : bool

requires finding the least upper bound of the principal types of the expressions true ()
and false (), yielding T ;... In general, the least upper bound will not always exist; in
that case the case statement has no refinement type. For example, assuming x hasthetype
tt — tt and y hasthetype ff — ff, trying to find atype for the statement

case emptyp (nil ()) of
true => fn ignored:tunit => x
| false => fn ignored:lunit => y
end : bool — bool

requiresfinding aleast upper boundfor ¢t — t¢t and ff — ff. Thereisnone, and thisstatement
has no refinement type. (The reader may object that we cannot write an expression that
has the principal type ¢t — tt. Thisis true for the language constructs introduced in this
chapter, but it will be false after we introduce the <1 operator in Chapter 6. In any case, it
is consistent with the theory to hypothesize such avariable.)

We will call these least upper bounds “joins’ rather than “digunctions’ or “unions’.
Calling them digunctions would conflict with existing nomenclature used in type theory.
Cdling them unions would be misleading because if we interpret the refinement types as
sets, the interpretation of the join of two refinement types may be a proper superset of the
union of their interpretations. For example, thejoin of the refinement types T ;,; — ¢ and
Totist = [ 1S T piist — T poor- Thefunction emptyp isintheinterpretation of T 5 — T 40015
but it isnot in the interpretationsof either T ;;;,; — &t Or T 455 — ff, SOitisnot inthe union
of their interpretations.

According to John Reynolds [persona communication, 1993], type inference for
Forsythe uses a similar notion of least upper bounds for the same purpose.

2.10.3.1 Definition of Join
The least upper bound, if it exists, isthe greatest lower bound of al of the upper bounds.

Definition 2.95 If »? C ¢t and £? C ¢ then we define

r?U k?= A{p € allrefs ¢ | r? < pand k? < p}.

Wewouldsay “p C ¢” instead of “p € allrefs t” except A ismeaninglessfor infinite
sets, and if we compare refinements of ¢ by mathematical equality rather than refinement
type equivalence, there are infinitely many refinements of ¢.
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We also define ajoin operator for refinement type constructors:

Definition 2.96 Ifrc dff tc and kc dff tc then we define

def def
rel ke = d/if{pc | rc < pcand ke < pc}.

If the set is empty, then rc 13 ke is undefined.

It is easy to see that »? LI £?isan upper bound of »? and £7?in the < ordering; we can
derive r? < r? U k£? by using the definition of LI and repeated use of Fact 2.77 (A Intro
Sub) on page 107.

Itisalso easy to seethat it isaleast upper bound; if p isanupper bound of r?and £7?, itis
one of the componentsinr?L k£7?, so repeated use of AND-ELIM-R-SUB and AND-ELIM-L-SUB
givesr?U k? < p. The definition of < tellsusthat ns is aso an upper bound of »?and £7?
and that »?U £? < ns.

We can effectively compute LI because allrefs and < are both computable. Unfortu-
nately, the obvious algorithm derived directly from the definition is inefficient because the
size of the set returned by allrefs isexponentia in the size of the argument to allrefs.
In this section we will present a more efficient algorithm.

If the obvious sow algorithm were used to find ¢t — ¢t U tt — ff, it would first find
allrefs (bool — bool) and then taketheintersection of all typesin that set that are greater
than both ¢t — ¢t and tt — ff. The algorithm presented in this subsection would only
need to evaluate allrefs bool. The agorithm presented hereis still exponentia though;
for instance, it will evaluate allrefs (bool — bool) if asked to find (¢t — tt) — tt U
(tt — ff) — tt.

Theorem 2.97 (Join is Decidable) Thereisan algorithm joinf mapping two generalized
refinement types and an ML type to a generalized refinement type such that if

r?C t

and
k?C ¢

then all of the following are true:
r?<pand k? < pimpliesjoinf r? k? t <p
r?=<joinf r? k? t
k? < joinf r? k? ¢

computation of joinf r? k? ¢ terminates.
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Proof: We will present the definition of joinf as we prove it correct. The proof is by
induction on ¢. In each case we will omit the proof of £? < joinf r? k7? t becauseitis
essentially the same asthe proof of »? < joinf r? k7? t.

Since least upper bounds are unique, our conclusion is equivalent to

joinf r? k? t = r?U k72

Case: joinf ns _ Or joinf _ ns | Thiscasereads

fun joinf ns _ _ = ns
| joinf _ ns _ = ns

Both of these cases aretrivid. In all future cases, we will assume that » and k& are not ns.

Case: joinf r k (t1*...xt,) | Thiscasereads

| joinf r k (t1%...%ty) =
let val ri*...xr, = tuplesimp r
val ki *...%xkp

tuplesimp k

in
if foryinl...hwehave(joinf r; k; t;) # ns
then (joinf ri ki t1) *...* (joinf ry ky ty)
else ns

end

SubCase: » < pand k < pimplies(joinf r k t1%...%1y) < p | Suppose r < p and

k < p. By Lemma 2.22 (Tuple Intersection) on page 40, there are p; through p;,, such that
p1* ...% p, = p. By TRANS-SUB, Corollary 2.27 (TUPLE-SUB Inversion) on page 45, and
soundness of tuplesimp, we have

forjinl...Awehaver; < p; and k; < p;.
By induction we can assume that recursive callsto joinf are sound, so thisimplies
forjinl...hwehavejoinf r; k; t; < p; (2.54)
and then TUPLE-SUB and TRANS-SUB give
(joinf r1 k1 t1) *...% (joinf 7 kp ) < p.
(2.54) tellsus that for j in 1...~ we have (joinf r; k; t;) # ns, S0 the definition of

joinf gives
joinf r k (ft1*...*t,) < p,
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which is our conclusion.

SubCase: r < joinf r k t | By Fact 2.23 (Tuplesmp Sound) on page 41 we know that

r1*...* 7, = r. By soundness of therecursive call to joinf,

forjinl...hwehaver; < joinf r; k; t;.
If any of the joinf r; k; t;’sarens, then the definition of < gives

r < ns.
Otherwise TUPLE-SUB and TRANS-SUB give
r < (joinf r1 ki t1) *...x (joinf 7, kp th).
Either way, by definition of thiscase of joinf we have
r =< joinf r k (t1%...%1,),

which is our conclusion.

SubCase: joinf terminates. | Trivial.

Cese: joinf r k (t1—t2) | The code for this case uses the ifn function defined on

page 120 to compute the interpretation : of arefinement type. Hereitis:

| joinf r k (t1—t2) =
A{p— joinf (ifn r p t1) (ifn k p t1) to |
p € allrefs ¢; and
(joinf (ifn r p t1) (ifn k p 1) t2) # ns}

Before showing that this case of joinf works reasonably, we need to show that its inter-
pretation works reasonably. Formally, we will start by showing that if p C ¢4 then

i(joint r k (t1—12))(p) ~ i(r)(p) Li(k)(p).

Suppose pisgivenand p C t;1. Consider
i(joinf r k (t1—12))(p). (2.55)
By definition of joinf, thisisequa to
(AP = Joint (i(r)(p")) (i(k)(p)) t2]

p' € allrefs t; and

(joint (i(r)(p)) (:(k)(p')) t2# ns)})(p)
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and by definition of ¢, thisis equa to

A{joint (i(r)(p) (i(K)(p)) t2|
p' € allrefs t; and

(joint (i(r)(p)) (:(k)(p')) t2) # ns and
p<p}

By our induction hypothes's,
joinf (i(r)(p')) (:(k)(p')) t2 = i(r)(p") Ui(k)(p').

Thus (2.56) is~ to

(2.56)

A{a(r)(p') Ua(k)(p') |
p' € allrefs t; and

(joinf (i(r)(p')) (:(k)(p')) t2) # ns and
p<p'}

By Lemma 2.80 (: Monotone in Second Argument) on page 108 and monotonicity of LI,

(2.57)

p < p'impliesi(r)(p) Ui(k)(p) < i(r)(p') Ui(k)(p').

Since we can eliminate components from the set in (2.57) that are known to be greater than
other componentsin (2.57) we know that (2.57) is equivaent to

Afa(r)(p) Ui(k)(p) | (Joinf (i(r)(p)) (:(K)(p)) t2) # ns}.

By our induction hypothess, joinf (:(r)(p)) (¢(k)(p)) tzisns if and only if ¢(r)(p) U
i(k)(p) isns. Thusthissimplifiesto

i(r)(p) Ui(k)(p). (2.58)
Summarizing (2.55) through (2.58), if p C t1 then
i(joinf r k (t1—t2))(p) =~ i(r)(p) Ue(k)(p). (2.59)

SubCase: » < pand k < pimpliesjoinf r k (t1—12) < p | Supposer < pandk < p.

By Lemma 2.81 (z Monotone in First Argument) on page 109 we have
foral p' C ¢, wehavei(r)(p') < i(p)(p')
and likewise for £ gives
foral p' C t1 wehavei(k)(p') < i(p)(p').
Since Ll isaleast upper bound, thisimplies

forall p’ C ¢ty wehave:i(r)(p') Ue(k)(p") =< u(p)(p),
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and (2.59) gives
foral p' C ¢ty wehavei(joint r k (t1—12))(p') < i(p)(p),
and Lemma 2.84 (Ordering on z) on page 112 gives
joinf r k (t1—1t2) < p,

which is our conclusion.

SubCase: r < joinf r k (t1—12) | Sincell isaleast upper bound, we have

fordl p C t; wehavei(r)(p) < i(r)(p) Ui(k)(p).
By (2.59) and Lemma 2.81 ( Monotonein First Argument) on page 109, thisimplies
forall p C t; wehavei(r)(p) < i(joinf r k t1—t2)(p) Ui(k)(p).
By Lemma2.81 (z Monotone in First Argument) on page 109, thisimplies
r = joinf r k t;—ty,

which is our conclusion.

SubCase: Termination | The only loop in this code is over afinite set, and by induction

we can assume that the recursive calls to joinf terminate.

Case: joinf r k te | The code for this case uses rconsimp, which is defined on

page 2.6.1. Hereisthe code:

| joinf r k tc =
let val r¢ = rconsimp r
val k¢ = rconsimp k
in
. def :
if re U ke isundefined
then ns
def
else rc U ke
end

SubCase: r < pand k < pimpliesjoinf r k tc < p | Supposer < pand & < p. Then

p C te, S0 by Lemma 2.24 (Refinement Constructor Intersection) on page 41 thereis a pc
such that p = pe. Fact 2.25 (Rconsimp Sound) on page 42 gives

r=71rc
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and
k = kc.

def def def
Fact 2.29 (RcoN-suB Inversion) on page 45 gives re < pe and ke < pc. Therefore re Ll ke

is defined and
def def
re U ke < pe.

By RCON-SUB, TRANS-suB, and the definition of this case of joinf, this implies
joinf r k tcisnotns and
joinf r k te < p.

By definition of <, thisimplies
joinf r k te < p,

which is our conclusion.

SubCase: r < joinf r k tc | If joinf r k tc iSns, then by definition of < we are

done.
. def . . . def
Otherwise, r¢ U ke isdefined. By soundness of rconsimp, rc = r. By propertiesof LI,

def def
re < re U ke.

Using RCON-SUB, TRANS-SUB, and the definition of joinf, thisimplies
def
r < joinf r k te,

which is our conclusion.

SubCase: Termination | Trivial. 0O

We will also define asimple function sjoinf that finds the least upper bound of afinite
set of generalized refinement types:

fun sjoinf t {} = botfn ¢
| sjoinf ¢ ({r?} Us?) = joinf r? (sjoinf t s?) ¢

We use botfn ¢ as abase case for this recursive function because for al r refining ¢ we

have
(botfn t)Ur = A{p € allrefs ¢t | r < pandbotfn ¢ < p}

= A{p € allrefs t |r =< p}
=r.
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2.10.4 Deciding Refinement Types

In this subsection we will give an algorithm called infer and prove that it finds principal
refinement types. First in Subsubsection 2.10.4.1 we will give an overview of the algorithm
by giving examples of how it works for each case in the syntax. Then in Subsubsec-
tion 2.10.4.2 we will give atechnical lemma that makes the proof much simpler. Finally in
Subsubsection 2.10.4.3 we will describe the algorithm infer and proveit correct.

Thisalgorithmissimilar to the one actually implemented. The main difference between
the algorithm described here and the implementationisthe evaluation order; infer iseager
and the implementation is lazy. For example, when confronted with the expression

fn x:bool =>
case x of
true => fn _ => false ()
| false => fn _ => true ()
end : bool

infer eagerly findsatypefor thisby assuming x can have al possible refinements of bool,
yielding the result

J—bool - J—bool Nt _).ﬁ‘ /\ﬁ — it A Tbool - Tbool-

The implementation postpones evaluation as long as possible. It returnsa function that, for
instance, when passed ¢, will return ff. This strategy isfaster than eagerness when we are
only interested in evaluating functions on a few pointsin their domain. If pursued in the
simplest way, this strategy would be slower than infer if we evauate the function, say,
100 timesat ¢t. Theimplementationis ableto performwell in this case by memoizing. We
will discuss the implementation in more detail in Chapter 7.

2.10.4.1 Overview of the Algorithm

In this section we will present the algorithm informally by giving examples of how it
behaves for each variety of syntax.

Thealgorithm has oneinvariant that needsto be maintained: all typesintheenvironment
must haveno useful splits. Thisrequiresfindingaprincipal splitevery timeweadd avariable
binding to the environment. The only syntax that adds variable bindingsto the environment
is abstractions, so all the responsibility for maintaining this invariant falls on that case of
the algorithm.

Variablereferences This caseistrivid; just look the variable up in the variable envi-
ronment. For example, in the environment [« := ¢t], thetype we infer for x is ¢¢.

Abstractions  Except for the fact that we have to maintain our invariant, we could find a
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principal typefor fn x:bool => or (mot x, x) using thefollowing procedure: for each
refinement of bool, bind x to that refinement, and find a principal type for or (not x, x)
in the resulting environment. Then we would encode the results as an intersection of arrow
types, for example, if assuming x has the type ff leads to the conclusion or (not x, x)
has the type ¢¢, then one of the components of the result is ff — tt.

Modifying this procedure to enforce our invariant isfairly ssmple. Instead of binding x
to atyper in the environment, find a principal split of ». Bind x to each fragment of » and
find a principal typefor or (not x, x)in theresulting environment. Let & be the join of
the results; then the component we should add to our result in thiscaseisr — k.

For example, when we consider the refinement T ;,,; of bool, we find its principal split
{tt, ff}. Webind x to each of thefragmentsand find typesfor or (not x, x)intheresult-
ing environments, yielding ¢t and ¢¢. Then wejointhese, yielding ¢¢. Thefinal contribution
of this reasoning to our result is T;,,; — tt. Thetypefor fn x:bool => or (not x, x)
that results from this procedureis

Tt = N — N[ =N Lipgor — Lpoor

Applications  Applications become a call to : at the type level. For example, to find
a principa type for not x, first we find principal types for not and x; suppose we get
tt— ff Aff—tt A Tyor — Taoor @d tt, respectively. Then our result is

l(tt —>ﬁ N ﬁ — A Tbool - Tbool)(tt)7

which ISﬁ A T bool-

Constructor Applications This case is straightforward. Using the bitstr datatype first
introduced on page 17 as an example, if wewant to find the principal type of an expression
like One (Empty ()), wefirst find a principal type for Empty (), yielding em. Then our

result is the least type re such that One W em o rc; inthiscaseitisnf.

By Assumption 2.51 (Constructor And Introduction) on page 67, the least rc such that
def

one ® em < re isthe intersection of al of the re’s such that One ® em < re. This
intersection can be precomputed when the constructors are defined, so this does not affect
performance

Case Statements  Finding the principal type of a case statement starts as an approximate
dual of finding a principal type for constructor applications. First we find a principal type
for the expression the case statement is examining; we can use rconsimp discussed on
page 42 to smplify this type to something of the form rc. For each branch of the case

statement with a constructor ¢ we find the set of greatest »’s such that ¢ ® s re. These
r’s arethe possible types of the argument to ¢ that could have given rise to our case object.
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The analogy with constructor application is only approximate because we cannot join

al of the r’sin this set to get a £ where ¢ Rl AN re; in other words, there is no dual
to Assumption 2.51 (Constructor And Introduction) on page 67. This is case because A
accurately forms intersections of refinement types if we interpret them as sets, but LI only
returns an upper bound of the union.

If the set of possible r’s for some constructor is empty, then that branch is unreachable.
Recall that in the formal language, a branch of a case statement is a function that will
be applied to the arguments of the constructor. For each reachable branch e of the case
statement we find a principal type for the application of ¢ to some hypothetical value of
type r; by the argument we gave for the application case, thisis smply a use of ;. Since
we do not know which of the reachable cases will be taken during execution, we have to
take the join of all of these types as the principal type of the case statement.

For example, consider the case statement

case Zero (One (Empty ())) of
Zero => fn arg:bilstr => arg
| One => fn arg:bitstr => One arg
| Empty => fn arg:runit => (Empty ())
end: bitstr

From the earlier discussion of application, the principal type of Zero (One Empty)isnf.
The reachable constructors are Zero and One, Where Zero has the possible input type nf
and One has the possible input types nf or em.

The best type for fn arg: bitstr => arg applied to avaue of type nf is nf, and the
best type of fn arg: bitstr => One arg applied to avalue of type nf or em isnf. Thus
the principal type of the case statement is nf U nf, or nf.

Tuples The principal type for a tuple is smply the product of the principal types of
the components. For example, to find the principal type for (not, true ()) wefirst find
the principal types of not and true (), yielding tt — ff A ff — tt A Tyoor — T poer and 1t
respectively. Thusthetypefor (not, true ())is

(tt —)ﬁ /\ﬂ‘—> AT pool — Tbool) * tt.

Element Selection  To find a principal type of an expression of the form elt_m_n e,
find a principal type for ¢, smplify it with tuplesimp, and then select the appropri-
ate element. For example, a principal type for (true (), false ()) iS (¢ * T jo01) A
(T oot * ff). Then tuplesimp returns (tt A Tior) * (T roor A ff), SO @principal type for
elt_2_2 (true (), false ())iS T A ff, whichisequivaent to ff.

Fixed Points Wefind the principal type for afixed point by iterative approximation. Our
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first approximation to the refinement type of the function is the least refinement of its ML
type; each successive approximation is the principal type of the body of the fixed point,
assuming that recursive references to the function have the previous approximation as their
type. When the approximations stop increasing, the last approximation is our principal

type.
For example, determining atype for the expression

fix inc:bitstr — bitstr => fn n:bitstr =>
case n of
Empty => fn _:runit => One (Empty ())
| One => fn rest:bitsir => Zero (inc rest)
| Zero => fn rest:bilsir => One rest
end: bitsir

yields these successive approximationsto the fixed point:

TbitstT - J—bitstr
J—bitstr - J—bitstT N em — nf A TLf - TLf A Tbitstr - TbitstT
J—bitstT - J—bitstT N em — TLf A nf - nf A TbitstT - Tbitstr-

Since the last two approximations are equivalent, the process terminates and the last ap-
proximationis our result.

2.10.4.2 Technical Lemma for Principality

To show that the types from infer are principal, we will have to prove
if VRF e :rthen (infer VR ¢) <.

The premise VR |- ¢ : r isawkward to use because the root inference of its derivation may
be an inference rule that makes syntactic progress, or it may be WEAKEN-TYPE, AND-INTRO-
TYPE, Or SPLIT-TYPE. It turnsout that it is sufficient to show

if VRH-¢ : r then (infer VR ¢) <r

where the root inference of the premise must make syntactic progress. The SPLIT-TYPE case
of the proof is most interesting.

Lemma 2.98 (Syntactic Progress Decidability Sufficient) Let r' be given. If
for all »r wehave VRH-¢ : r impliesr’ < r

and
VREe:p
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and for all z in the domain of VR we have
all splitsof VR(z) are useless

then

r' < p.
Proof: By induction on thederivation of VR F ¢ : p. The proof isrelatively short because
we can trivially handle the cases where the root inference of this derivation makes syntactic
progress.

Case: AND-INTRO-TYPE | Thep hastheform p; Ap, wherethe premisesof AND-INTRO-TYPE
are

VRFEe:ps

and
VRF ¢ : po.

Two uses of the induction hypothesis give

r' < p1
and
' < pa
Then AND-INTRO-SUB gives
r' < p1 A pa,

which is our conclusion.

Case: WEAKEN-TYPE | Then the premises of WEAKEN-TYPE are

VREe:p
and
P <p.
By induction hypothes's,
r' <p,
SO TRANS-SUB gives
r < p

which is our conclusion.

Case: SPLIT-TYPE | Then VR hastheformVR'[y := k| wherethe premisesof split-type
are

k=<s
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and
for & ins wehave VR'[y := k'] F e : p.

By hypothesis, s isauseless split of &, so we can chooseak’ in s suchthat & = £'.

We will be putting £” in an environment and then using the induction hypothesis, so we
need to know that all splits of £’ are useless. To show this, suppose that £’ < s’. Then
EQUIV-SPLIT-L gives k =< s', and by hypothesisthereisthereforeak” in s’ such that £ = £”.
TRANS-SUB then gives k' = k”. Thus,

al splitsof &’ are useless.
Now we have to take cases on the form of ¢ to show that
VR'[y := K'[He:rimpliesr’ <r.

The most interesting of the following cases is when e is some variable other than y.

SubCase: e isnot avariable | Suppose that

VR[y :=K]He:r.
Lemma 2.66 (Environment Modification) on page 81 gives
VR[y :=k|He:r

and our hypothesis gives
r <.

Summarizing, the reasoning so far in this subcase gives

VR[y := k'|He:rimpliesr’ <r.

SubCase: ¢ hastheformy | Suppose

VR [y = K]ty :r
The last inference of this must be VAR-TYPE, sOr = k’. VAR-TYPE gives
VR'[y := k|Hy : k,

so our hypothesis gives
r < k.

Sincek = K/, thisimplies’ < r. Summarizing the stepsin this subcase so far,

VR[y := k'|Hy : rimpliesr’ < r.
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SubCase: e hasthe form z, where z £ y | Suppose

VR[y == KH 2z :r.
Since z # y, thisderivationignoresy, so we also have
VR[y := k|Hz:r.
By hypothesis, thisimplies
r' <.

Summarizing the stepsin this subcase so far,
VR'[y := k'|Hz : r impliesr’ < r.

Regardless of which subcase we use, one of the premises of SPLIT-TYPE is
VR[y .=kt e:p.
We can use the induction hypothesis on this and the result from whichever subcase we used
to get
' <p,

which is our conclusion.

Case: Any rulethat makes syntactic progress | In that case we have

VRH-€:p

so our hypothesis gives
r' < p

— ?

which is our conclusion. O

2.10.4.3 Déefinition and Proof of Refinement Type Inference Algorithm

The decision procedure for monomorphic refinement typesisin Figures 2.7 and 2.8. This
procedure takes an expression and an environment mapping variables to refinement types,
and it returnsa principa refinement type for the expression if there isone, or ns otherwise.
It has three interesting properties: it always terminates, it returns a refinement type for
the given expression, and the type is principal. We will prove one of these propertiesin
each of the next three theorems. The most interesting theorem in this Subsubsection is
Theorem 2.101 (Infer Returns Principal Type) on page 151; the most interesting cases of
each theorem deal with case and fix statements.

The portions of the algorithm that deal with case and fix statements use the “as”
keyword. This has not appeared so far in this thesis. It ssimultaneously binds a variable
to a structure and other variables to the parts of the structure; for example, binding the
pattern x as (y, z) tothevalue (true, false) bindSy to true, z to false, and x to
(true, false).
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fun infer VR y =
if for somet wehave VR(y) C ¢
then VR(y)

else ns
| infer VR (fn z:t => ¢') =

if thereisaw suchthat rtom(VR)[z :=t]F €' 1 u
then
let val u = theuniquewu suchthat rtom(VR)[z :=t]F €' 1 u
fun do_one r =
sjoinf u {infer (VR[z:=1']) ¢'|r’ € split r}
in
Afn {r—do_one r |r € allrefs ¢t and (do_one r) # ns}
end

else ns
| infer VR (e1 €2) =

let val r? = infer VR eg
val k? = infer VR e,
in
if r? = ns or k? = ns
then ns
else
let
val u—t = rtom(r?)
val u' = rtom(k?)
in
if u = v
then ifn r? k? u
else ns
end

end
| infer VR (c €') =
let val k£? = infer VR ¢
val t = theuniquet such that ¢ ® e te
in
Afn {rc|r € allrefs ¢ and subtypep k? r t and ¢ g re}
end

Figure 2.7: Decision Procedure for Refinement Types Part 1
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| infer VR (e as (case eg of ¢1 => e1 | ... | ¢, => e, end:t)) =
if not rtom(VR)F e 1t then ns
else let val r? = infer VR ¢g
in if r? = ns then ns
else let val rc¢ = rconsimp (r?)

in
sjoinf ¢ {ifn (infer VR e;) p u |
hel.n
def
and ¢, .. U — uc
and p € allrefs u
def
and ¢, . p<— rc}
end
end
| infer VR (e1, ..., €,) =
if forany:inl..n wehave infer VR ¢; = ns
then ns
else infer VR ¢; * ... * infer VR ¢,

| infer VR (elt_m_n €') =
let val k? = infer VR ¢
in
if k? = ns then ns
else let val ki *...*k, = tuplesimp (k?)
in k,, end

end
| infer VR (e as (fix f:t => fn x:t; => ¢€')) =

let fun loop r =
let val next? = infer (VR[f :=7r]) (fn x:t; => ¢)
in
if subtypep next? r t then r
else if next? = ns then ns
else loop next?
end
val t)—1p =t
in
if t] # 11 then ns
else if ML typeinferencedoesnot give rtom(VR) e it — 1,
then ns
else loop (botfn (t;— 1))
end

Figure 2.8: Decision Procedure for Refinement Types Part 2

143
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According to Theorem 2.54 (Inferred Types Refine) on page 68, the refinement type
inference rules in Figure 2.6 ensure that the refinement type environment gives a well-
formed refinement type for each free variable in the expression and that the expression
has an ML type. Since infer is an implementation of these rules, it does the same. The
aternative would be to assume we only use infer on terms and environments that are
consistent with ML typing. The extra hypothesis would complicate the proofs and obscure
the correspondence between the refinement type inference rules and the algorithm, so the
approach used bel ow seems best.

The algorithm has an invariant: the refinement types in the environment must have no
useful splits. Because of this assumption, we never need to consider using the SPLIT-TYPE
rule to split variablesthat are in the initial environment. As we execute the agorithm, we
maintaintheinvariant by taking the principal split of thetype of each new variablebeforewe
add it totheenvironment. Thediscussion of principal splitsabove should makeit intuitively
clear that this is appropriate; for a formal justification, see the cases for abstractions and
fixed pointsin the proof of Theorem 2.101 (Infer Returns Principa Type) on page 151.

We start with a simple lemma saying that the argument of the tail recursive loop in
the fix case of infer aways refines the same ML type. The hypothesis of the lemmais
alwaystrue sinceit isimplied by Theorem 2.100 (Infer Returns Some Type) on page 145;
the hypothesis saves us from having a lemma nested inside a theorem. Note that the
variables¢; and ¢, mentioned in the lemma are defined in the fix case of infer.

Lemma 2.99 (Fix Case of Infer isWell-Behaved) Inthe fix case of infer, we will ab-
breviate fn z:t, => ¢’ ase”. If, for all r,
infer (VR[f :=7r]) €¢”isnotns
implies
VR[f :=r]F ¢":infer (VR[f :=71]) ¢",
then the argument of 1oop alwaysrefinest; — t,.

Proof: By induction on the evaluation Loop.

Case: Initia call to 1loop | Thisistrivial, since the argument to theinitial call of 1oop is

botfn (f1— t2), which obvioudly refinest; — ¢».

Case: Recursivecalstoloop | We can assume the incoming argument r of Loop refines
t; — t,, and weneed to show that thevalue next? that will be passed to thenext recursivecall
asorefinest; — t,. Sincenext? = infer (VR[f :=r]) (fn x:t1 => ¢), our hypothesis
gives

VR[f :=7r]F €": neat?.
Theorem 2.54 (Inferred Types Refine) on page 68 then givesat’ such that next? C ¢’ and
rtom(VR[f :=r]) Fe" 2 1"
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Sincer C t1— iy,

rtom(VR[f := r]) = tom(VR)[f = t1 — 2]
If we ever call Loop then ¢ must have theform ¢; — ¢,, and we must aso have

rtom(VR) F e i1 t; — to.

The last inference of this must be FIX-VALID with the premise
rtom(VR)[f =11 — tz] e t1— 1o

Thus Lemma 2.4 (Unique Inferred ML Types) on page 27 gives t' = t; —t».

next? C t', thisis our conclusion.

145

Since

O

In the next theorem we have the hypothesis “infer VR e terminates’. By Theorem
2.102 (Infer Terminates) on page 160, thisis always true. Once again we are using these

always true hypotheses to break up the decidability proof into manageable chunks.

Theorem 2.100 (Infer Returns Some Type)
If infer VR eterminatesand infer VR e isnot nsthen

Proof: By inductionon e.

Since infer VR e is not ns, it is VR(e) and for some ¢ we have VR(e) C t.

VRG|E e :infer VR e.

Case: ¢ = y | Thecodefor thiscaseis

fun infer VR y =

if forsometwehaveVR(y) Ct
then VR(y)

else ns

VAR-TYPE givesVR - ¢ : infer VR ¢, whichisour conclusion.

Case: e = fn z:t => €

The code for thiscaseis

| infer VR (fn z:t => ¢') =
if thereisaw suchthat rtom(VR)[z =]+ ¢’ 1 u

then

let val u

fun do_one r =
sjoinf u {infer (VR[z:=171']) ¢ |r’ € split r}

in

Afn {r—do_one r|r € allrefs ¢t and (do_one r) # ns}

end
else ns

the unique v such that rtom(VR)[z :=t]F e’ 1 u

Thus
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Since infer VR e isnot ns, thereis a v such that rtom(VR) + ¢’ :: u. By Lemma 2.4
(Unique Inferred ML Types) on page 27, there is exactly one such w.

Since infer VR e terminates, soundness of Afn tells us that al calls to do_one
terminate. Since infer VR e is not ns, a least one of the calls to do_one returns a
refinement type instead of ns. Suppose do_one r does not return ns; by definition of
do_one, thisimplies

forall ' insplit r wehave infer (VR[z :=r']) ¢’ terminatesand isnot ns.
We can use our induction hypothesis to get
foral ' insplit r wehave VR[z :=r'| F ¢’ : infer (VR[z :=1']) €
By WEAKEN-TY PE and soundness of sjoinf, we get
foral r’ insplit r wehave VR[z :=r'| F ¢’ : do_one 7.
Soundness of split tellsusr < split r. Thus SPLIT-TYPE gives
VR[z :=r]F €' :do_one r.
Then ABS-TYPE gives
VRE fn z:t => ¢ :r—do_one r.

Thisistruefor al r refining¢ for whichdo_one r isnot ns, so repeated use of AND-INTRO-
TYPE gives
VRF fn z:t => ¢’ . infer VR e,

which is our conclusion.

Case ¢ = e1 e | Thecodefor thiscaseis

| infer VR (e1 €2) =
let val r? = infer VR eg
val k? = infer VR e,
in
if r? = ns or k? = ns
then ns
else
let
val u—t = rtom(r?)
val u' = rtom(k?)
in
if u = v
then ifn r? k? u
else ns
end
end
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Sinceinfer VR eisnotns, bothr?and £?must not bens. Call themr and & respectively.
Sincer = infer VR ¢;and k = infer VR ey, theinduction hypothesis gives

VREe1:r

and
VR €9 . k.

Sincer C u —t, we know that » hastheformry —r; A ... Ar, — r/. By soundness
of ifn,
ifn r ku=A{r;|jel...nandk <r;}.

SinceVRF ¢, : k, WEAKEN-TYPE gives
forjinl...n suchthat £ <r; wehave VR I- ¢, : r;.
SinceVR F ¢ : r, we can use WEAKEN-TYPE to get
foral jinl...n wehave VR e; : r; —>r;.
Therefore APPL-TYPE gives
forjinl...nsuchthat £ <r; wehave VRF e1 €5 r;
and repeated use of AND-INTRO-TY PE gives
VRFEe1 ex:ifn r k w.

By definition of this case of infer, thisis our conclusion.

Case: e = ¢ ¢ | Thecodeforthiscaseis

| infer VR (c €') =
let val k£? = infer VR ¢
val t = theuniquet such that ¢ ¥ 1 < e
in
Afn {rc|r € allrefs t and subtypep k? r t and c®ro re}
end

Since infer VR e isnot ns, soundness of Afn and subtypep tell usthat £? cannot be
ns. Thuswewill call it k. Thevalue of infer VR e must have the form

rci N\ ... \rcy,

where for 2 in 1...n we have an r; refining ¢ such that ¢ d?f r; — re; and k < r;. By
induction hypothesis,
VR € : k

?
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and by WEAKEN-TY PE,

forzinl...nwehaveVRF €' :r;.

Then CONSTR-TY PE gives

for;inl...nwehaveVRF ¢ €' : rc;

and repeated use of AND-INTRO-TY PE gives

VRFEc € :irei Ao A1y,

which is our conclusion.

Casel e =case eg of ¢1 => e1 | ... | ¢, => e, end:t | Thecodefor thiscaseis

| infer VR (e as (case eg of ¢1 => e1 | ... | ¢, => e, end:t)) =
if not rtom(VR)F e 1t then ns
else let val r? = infer VR ¢g
in if r? = ns then ns
else let val rc¢ = rconsimp (r?)

in
sjoinf t {ifn (infer VR e,) p u |
hel.n
def
and ¢, . U “— uc
and p € allrefs u
def
and ¢, . p < rc}
end

end

Let £ be the result of this case of infer. By hypothesis this case does not return ns, so
infer VR egisdefined. Ourinduction hypothesis, soundnessof rconsimp, and WEAKEN-

TYPE give
VRF eg: re.

Lethinl...n,u,andp’ C u begiven such that

ch ot p — rc. (2.60)

By soundness of allrefs, thereisap in allrefs u such that p = p’, and Assumption
2.52 (Constructor Argument Strengthen) on page 67 gives

def
ch . p < rc.

Then, by soundness of sjoinf, we have

ifn (infer VR e,) p u < k.
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By soundness of ifn and Lemma 2.83 (: Gives an Upper Bound) on page 111, thisimplies
infer VR ¢, < p—k.

By induction hypothes's,
VR ¢, :infer VR ¢y,

and then WEAKEN-TY PE gives
VRF ¢, :p—k.

Sincep = p’, wehavep — k = p’ — k, SO using WEAKEN-TY PE again gives
VRF e, :p —k.

Summarizing the argument from (2.60) to here,

foral hinl...n,
def
cp, . p—=rc
implies

VRFE e, :p —k.
The agorithm explicitly ensures that
rtom(VR) i e :: ¢.

Sincesjoinf ¢ s awaysreturnsarefinement of ¢,

kCt.
Thus we can use CASE-TYPE to get
VRF ek,
which is our conclusion.
Casel ¢ = (e1, ..., e,) | Thecodeforthiscaseis
| infer VR (e1, ..., €,) =
if forany:inl..n wehave infer VR ¢; = ns
then ns
else infer VR ¢; * ... * infer VR ¢,

Sinceinfer VR cisnotns,forhinl...nwehaveinfer VR ¢, isnotns. Byinduction
hypothesis, thisimplies

forhinl...nwehaveVRFE ¢ : infer VR ¢
and then TUPLE-TYPE gives
VRF (e1, ..., €,):infer VR ej*...* infer VR ¢,

which is our conclusion.

Case: e = elt_m_n ¢ | Thecodefor thiscaseis
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| infer VR (elt_m_n €') =
let val k? = infer VR ¢
in
if k? = ns then ns
else let val kp#*...%k, = tuplesimp (k?)
in k,, end
end

Since infer VR e isnot ns, infer VR ¢ must not be ns; cal it £. By induction
hypothesis we must have
VRFE ¢ : k.

By soundnessof tuplesimp, k1 *...xk, = k,and by WEAKEN-TYPE, VR F €’ : k... xk,.
Then ELT-TYPE givesVR \- elt_m_n ¢’ : k,,, whichisour conclusion.

Case: e = fix f:t => fn x:t; => ¢ | Thecodefor thiscaseis

| infer VR (e as (fix f:t => fn x:t; => €')) =
let fun loop r =
let val next? = infer (VR[f:=7]) (fn x:t1 => ¢)
in
if subtypep next? r t then r
else if next? = ns then ns
else loop next?
end
val t)—tp =t
in
if ¢} #t1 then ns
else if ML typeinference doesnot give rtom(VR) F e i1 — 1,
then ns
else loop (botfn (t1—12))
end

We will abbreviate fn x:t; => ¢’ ase”. Suppose infer VR e returnsr. The definition
of loop tellsusthat next? < r where

next? = infer (VR[f :=7r]) €".
Our induction hypothesis gives
VR[f:=r]F €" : neat?
and WEAKEN-TYPE used with next? < r gives

VR[f:=r]F " T
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Lemma2.99 (Fix Caseof InferisWell-Behaved) on page 144 givesr [ t; — t, SOFIX-TYPE
gives

VRE fix fiti—tp => € ir
which is our conclusion. O

The next theorem showsthat when infer returnsarefinement type, it returnsaprincipal
refinement type. One of the hypotheses is that infer terminates on its input. Theorem
2.102 (Infer Terminates) on page 160 tells us this is aways true, but we have to have an
explicit hypothesi s here because we have not yet proved that theorem. An aternativewould
be to prove both theorems at once; that would lead to one large proof instead of two smaller
Oones.

Theorem 2.101 (Infer ReturnsPrincipal Type) If
all splits of typesin VR are useless

and
infer VR e terminates

then
if thereisan r such that VR - e : r then

(infer VR ¢e) < r.

Proof: By induction on e. But first we need to derive the simple consequence of Lemma
2.98 (Syntactic Progress Decidability Sufficient) on page 138 that we will use to prove
principality:

Suppose
VRH-e : rimplies
(infer VR €e) < r. (2.61)
Also suppose
VRE e:r (2.62)

Clearly any derivation of (2.62) is going to include aderivation of VRH- ¢ : r’ for some r’.
Therefore, (2.61) gives
infer VR eisnot ns (2.63)

and Lemma 2.98 (Syntactic Progress Decidability Sufficient) on page 138 gives

(infer VR ¢e) <. (2.64)
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Thus (2.62) implies (2.63) and (2.64), whichis our principality result. Thereasoning so far
tellsus that (2.61) implies principality:

For all r,
(VRH-e :rimplies
(infer VR €) <)
implies (2.65)
For all r,
(VRF e:rimplies
(infer VR ¢) <)

In each case of the proof bel ow, we shall use (2.65) to establish principality instead of doing
it directly.

Case: ¢ = y | Thecodefor thiscaseis

fun infer VR y =
if forsometwehaveVR(y) Ct
then VR(y)

else ns

Suppose VRH-y : r. Then the last inference of this must be VAR-TYPE with the premises
VR(y) = randr C t. Since VR(y) C t, we know that infer VR y returns VR(y). By
SELF-SUB, this implies (infer VR €) < r, which in turn implies (infer VR ¢e) < r.
Thus (2.65) gives principality.

Case: e = fn x:t => €' | Thecodefor thiscaseis

| infer VR (fn z:t => ¢') =
if thereisaw suchthat rtom(VR)[z :=t]F ¢’ 1 u
then
let val u = theuniquew suchthat rtom(VR)[z :=t]F €' 1 u
fun do_one r =
sjoinf u {infer (VR[z:=7']) ¢'|r’ € split r}
in
Afn {r—do_one r|r € allrefs ¢t and (do_one r) # ns}
end
else ns

Suppose
VRH-(fn x:t => ¢€') 1 p.
Thelast inference of thismust be ABS-TYPE, where p hastheform £ — k&’ and the premises

of ABS-TYPE are
k// |: t
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and
VR[z := k"] F e K.

By soundness of allrefs, thereisak in allrefs ¢ such that £k = k. Suppose ' is
insplit k. Then ' < k, sor’ < k” and Lemma 2.66 (Environment Modification) on
page 81 gives

VR[z :=7r]Fe 1 K.

Because split issound, »’ has no useful splits. Thus we can use our induction hypothesis
to get
(infer (VR[z:=71"]) ¢') < k.

Because sjoinf issound and LI isaleast upper bound,
do_one k < k.

Thus ARROW-SUB gives
k—do_one k< k—k.

Since k = k", we can use TRANS-SUB and RCON-SUB to get
k—do_one k< k'— k.
Thus the definition of infer and repeated use of AND-ELIM-L-SUB and AND-ELIM-R-SUB

give
(infer VR ¢) < k" — k'

Summarizing the argument so far in this subcase,

VRH-fn z:t => ¢’ . pimplies
(infer VR €) < p.

By (2.65), thisimplies our conclusion.

Case ¢ = e¢1 e | Thecodefor thiscaseis
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| infer VR (e1 €2) =
let val r? = infer VR eg
val k? = infer VR e,
in
if r? = ns or k? = ns
then ns
else
let
val u—t = rtom(r?)
val u' = rtom(k?)
in
if u = v
then ifn r? k? u
else ns
end

end
Suppose VRH-¢; ey @ p'. Theonly way toinfer thisiswith APPL-TYPE with the premises
VRE e :ip—yp

and
VRF ey :p.

Since infer VR e terminates, both infer VR ¢e; and infer VR e; must terminate.
Thus we can use the induction hypothesis on each of these to get

infer VR e¢; <X p—7yp/
and
infer VR e; < p.
Abbreviate infer VR ¢; asr and infer VR ey ask.

Uninteresting reasoning about refinement types tells us that rtom(r) will indeed have
the form v — ¢ and that rtom(k) = w.

By definition of : we have i(p—p')(p) = p’. Lemma 2.81 (: Monotone in First
Argument) on page 109 implies :(r)(p) < i(p— p')(p), and Lemma 2.80 (: Monotone in
Second Argument) on page 108 implies(r)(k) < (r)(p). Thus

i(r)(k) < . (2.66)
Thusinfer VR eisnot ns. We can usethe definitionof infer to rewrite (2.66), yielding

infer VR e < p'.



CHAPTER 2. REFINEMENT TYPE INFERENCE 155

The argument in this subcase so far can be summarized as

VRH-e1 e :p implies
infer VR e¢ <X p'.

By (2.65), thisimplies our conclusion.

Case: e = ¢ ¢ | Thecodeforthiscaseis

| infer VR (c €') =
let val k£? = infer VR ¢
val t = theuniquet such that ¢ ® e te
in
Afn {rc|r € allrefs t and subtypep k? r t and c®ro re}
end

Suppose
VRH-¢ € :p.
The last inference of this must be CONSTR-TY PE, where p has the form pe and the premises

of CONSTR-TYPE are »
c . p/ — pc

and
VRE€ :p.
Our induction hypothesis gives
k?=<p'.

By Assumption 2.2 (Constructors have Unique ML Types) on page 26, there are unique ¢

and tc suchthat ¢ ® ¢ — te. By Assumption 2.49 (Constructor Type Refines) on page 65,
p' C t,s0thereisanrinallrefs t suchthat p’ = r. Then Assumption 2.52 (Constructor
Argument Strengthen) on page 67 gives

and TRANS-SUB gives

def
Thus pc € {rc | r € allrefs t and subtypep k? r tandc © r < rc}.

Since this set is not empty, this call to infer does not return ns. By repeated use of
AND-ELIM-L-SUB and AND-ELIM-R-SUB,

(A{rc|r € allrefs ¢t and subtypep k? r tandc o re}) < pe.

Summarizing the argument so far in this subcase,

VRH-¢e : pimplies
(infer VR €) < p.
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By (2.65), thisimplies our conclusion.

Casel e =case eg of ¢1 => e1 | ... | ¢, => e, end:t | Thecodefor thiscaseis

| infer VR (e as (case eg of ¢1 => e1 | ... | ¢, => e, end:t)) =
if not rtom(VR)F e 1t then ns
else let val r? = infer VR ¢g
in if r? = ns then ns
else let val rc = rconsimp (r?)

in
sjoinf ¢ {ifn (infer VR e) p u |
hel.mn
def
and ¢, I U “— uc
and p € allrefs u
def
and ¢, . p < rc}
end

end

Suppose we have an r such that VRH- e : r. Thelast inference of this must be CASE-TYPE

with the premises
VRF ¢q: ke,

rC{,

for hinl...n and all & such that

def
c, . k—kec (2.67)
we have
VRFE e, k—r,

and
rtom(VR) i e :: ¢.

Thus the ML type checking in this case of infer succeeds and this case of infer
evauates infer VR ¢p. Since this case of infer terminates, infer VR e¢g must
terminate. Thus our induction hypothesis gives (infer VR eg) < ke. Let re =
rconsimp (infer VR eg); soundness of rconsimp then givesre < ke.

Now we shall show that for all #in1...n and al p such that ¢,  p — re,

i(infer VR e,)(p) <.

First choose . in 1...n and p such that ¢, ot p — rc. By (2.67), thisimpliesVR I ¢, :
p — r. Then the induction hypothesis gives

infer VR e, < p—r.
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By Corollary 2.82 (Bound on Argument to : Gives Bound on z) on page 111, thisimplies
i(infer VR e,)(p) <r.

Sincethisholdsforal in1...n and al p such that ¢, ® p < re, the call to sjoint in
this case of infer does not return ns. Thus

infer VR cisnot ns
and sjoinf computes aleast upper bound, so
(infer VR €e) < r.
Summarizing the argument so far,

VRH-¢e : rimplies
(infer VR €) < r.

By (2.65), thisimplies principality.

Casel e = (e1, ..., e,) | Thecodeforthiscaseis

| infer VR (e1, ..., €,) =
if forany:inl..n wehave infer VR ¢; = ns
then ns
else infer VR ¢; * ... * infer VR ¢,

Suppose VRH-(e1, ..., €,):r. Thelast inference of this must be TUPLE-TYPE, SO r has
theformry * ... * r, and the premises of TUPLE-TYPE are

forhinl...nwehaveVRF ¢y, @ 1.
Our induction hypothesis gives
for hinl...n wehave (infer VR e;) < ry.

Thisimmediately tellsusthat infer VR e isnot ns. RCON-SUB gives

infer VR e *...+infer VR e, <ri*...x1r,
and by definition of this case of infer, thisis equivalent to

infer VR e < r.

Summarizing the argument so far,

VRH-¢e : rimplies
(infer VR €e) < r.

By (2.65), thisimplies principality.

Case: e = elt_m_n ¢ | Thecodefor thiscaseis
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| infer VR (elt_m_n €') =
let val k? = infer VR ¢
in
if k? = ns then ns
else let val kp#*...%k, = tuplesimp (k?)
in k,, end
end

Suppose VRH-elt_m_n ¢ : r. The last inference of this must be ELT-TYPE with the
premise VR F ¢ : ryx...*r, wherer = r,,. By induction hypothesis, infer VR ¢’ is
not ns; call it k. The induction hypothesisalso givesk < ry * ... * r,. By Theorem 2.21
(Subtypes Refine) on page 36, there must beat suchthat k — tandry ... % r, C t. We
canonly havery ...+ r, C ¢ if t hastheform¢, ... x ¢,,. Thus k isavalid input to
tuplesimp, and soundness of tuplesimp gives k = tuplesimp k.

Let ky*...xk, = tuplesimp k. Then TRANS-SUB givesk;x...xk,, < ri*...*xr,,and
Corollary 2.27 (TUPLE-SUB Inversion) on page 45 gives k,,, < r,,. But k,, = infer VR ¢
andr,, = r, sowehave (infer VR ¢e) <r.

Summarizing the argument so far,

VRH-elt_m_n € :rimplies
infer VR e¢ <X r.

By (2.65), thisimplies principality.

Case: e = fix f:t => fn x:t; => ¢ | Thecodefor thiscaseis

| infer VR (e as (fix f:t => fn x:t; => ¢€')) =
let fun loop r =
let val next? = infer (VR[f:=7]) (fn x:t1 => ¢)
in
if subtypep next? r t then r
else if next? = ns then ns
else loop next?
end
val th—tp =t
in
if t| #t; then ns
else if ML typeinference doesnot give rtom(VR) F e i1 — 1,
then ns
else loop (botfn (t1—17))
end

We will abbreviatefn z:t; => €’ ase”.
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Suppose
VRHfix f:t => " 1 k. (2.68)

The last inference of this must be FIX-TYPE, SO

t hastheformt; — ¢, (2.69)
and the premises of FIX-TYPE are
kCt1—1
and
VR[f :=k]F e 1 k. (2.70)

Wewill show by induction ontheexecution of thiscase of infer thefollowing properties
of the argument r of Loop:
r<k

and
infer (VR[f :=r]) €”isnot ns.

For the base case, » = botfn ¢t. Soundness of botfn givesr < k, and Lemma 2.66
(Environment Modification) on page 81 applied to (2.70) gives VR[f := r] - ¢” : k. By
Fact 2.35 (Splits of Arrows are Simple) on page 51, » has no useful splits; thus the outer
induction hypothesis tells us that infer (VR[f := r]) ¢” is not ns, which is what we
wanted to show.

For theinduction case, thiscall to Loop isfrom the body of 1oop. Thuswe can assume
by induction that » < k and we have to show that nest? < k and that infer (VR[f :=
next?)) €’ isnot ns. Lemma 2.66 (Environment Modification) on page 81 starting with
(2.70) gives

VR[f :=r]F " k.

The outer induction hypothesis applies because Fact 2.35 (Splits of Arrowsare Simple) on
page 51 tellsus r has no useful splits, so we have

infer (VR[f :=r]) €¢”isnotns; cal it next?

and
next? < k. (2.71)

Lemma 2.66 (Environment Modification) on page 81 starting with (2.70) again gives
VR[f := next?] - e" : k

and the outer induction hypothesis (using Fact 2.35 (Splitsof Arrowsare Simple) on page 51
to conclude that next? has no useful splits) gives infer (VR[f := neat]) €” isnot ns.
Thisand (2.71) are our conclusions. This completesthe inner induction.
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Now we have everything we need to show that infer VR e isnot ns. Theorem 2.54
(Inferred Types Refine) on page 68 applied to (2.68) givesat’ such that £ C ¢’ and

rtom(VR) e :: ¢'. (2.72)

Lemma 2.10 (Unique ML Types) on page 31 givest = t'. By (2.69) and (2.72), the if
statements before the initial call to Loop do not cause infer to return ns. By the most
recent induction, the call to 1oop does not return ns. Thus

infer VR eisnot ns.
The most recent induction also gives
(infer VR ¢e) < k.
Summarizing this subcase so far,

VRH-¢e: kimplies
(infer VR €) < k.

By (2.65), thisimplies principality. O

The next theorem showsthat infer alwaysterminates. The case of thistheorem dealing
with f£ix statements uses Theorem 2.101 (Infer Returns Principal Type) on page 151.

Theorem 2.102 (Infer Terminates) If
all splits of typesin VR are useless

then
infer VR e alwaysterminates.

Proof: By inductionon e. The cases areall very simple, except the casefor £ix statements.

Case: ¢ = y | Thecodefor thiscaseis

fun infer VR y =
if for sometwehaveVR(y) Ct
then VR(y)

else ns

and termination istrivial.

Case: e = fn x:t => €' | Thecodefor thiscaseis
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| infer VR (fn z:t => ¢') =
if thereisaw suchthat rtom(VR)[z :=t]F e’ 1 u
then
let val u = theuniquewu suchthat rtom(VR)[z :=t]F €’ 1 u
fun do_one r =
sjoinf u {infer (VR[z:=7']) ¢'|r’ € split r}
in
Afn {r—do_one r|r € allrefs ¢t and (do_one r) # ns}
end
else ns

By soundness of split, al »' in split r have no useful splits. Thus, by induction
hypothesis, therecursivecallsto infer al terminate. Since principal splitsare computable,
al calsto split terminate. Since the refinements of an ML type are enumerable, callsto
allrefs terminate. Thusthiscase of infer terminates.

Case ¢ = ¢ e | Thecodefor thiscaseis

| infer VR (e1 €2) =
let val r? = infer VR eg
val k? = infer VR e,

in
if r? = ns or k? = ns
then ns
else
let
val u—t = rtom(r?)
val u' = rtom(k?)
in
if u = u
then ifn r? k? u
else ns
end
end

By induction hypothesis, the recursive calls to infer terminate. By soundness of ifn it
aways terminates. Thusthiscase of infer terminates.

Case: e = ¢ ¢ | Thecodeforthiscaseis
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| infer VR (c €') =
let val k? = infer VR ¢’ iy
val t = theuniquet suchthat ¢ =7 ¢t — tc

in
def
Afn {rc|r € allrefs ¢t and subtypep k? r t and ¢ © r — rc}

end
All loopsin this case of infer loop over finite sets, and our induction hypothesis tells us

that the recursive call to infer terminates.
The code for thiscaseis

Case e=caseegofct =>e1 | ... | ¢, => e, end:t

| infer VR (e as (case eg of ¢1 => e1 | ¢, => e, end:t)) =
if not rtom(VR)F e 1t then ns
else let val r? = infer VR ¢g

in if r? = ns then ns

else let val rc¢ = rconsimp (r?)

in
sjoinf t {ifn (infer VR e,) p u |
hel.n
def
and ¢, . U “— uc
and p € allrefs u
def
and ¢, . p<— rc}
end

end

By induction hypothesis, all recursive callsto infer terminate. All other operationsin this
case are callsto functions that terminate or iterations over finite sets, so this case of infer

terminates.

The code for thiscaseis

Casel e = (e1, ..., €,)

| infer VR (e1, ..., €,) =
if forany:inl..n wehave infer VR ¢; = ns

then ns

else infer VR ¢; * ... * infer VR ¢,

By induction hypothesis, all recursive calls to infer terminate, so this case of infer

terminates.

The code for thiscaseis

Case e =elt_m_n ¢
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| infer VR (elt_m_n €') =
let val k? = infer VR ¢
in
if k? = ns then ns
else let val kp#*...%k, = tuplesimp (k?)
in k,, end
end

By induction hypothesis, therecursivecall to infer terminates. Callsto tuplesimp aways
terminate. Thusthiscase of infer terminates.

Case: e = fix f:t => fn x:t; => ¢ | Thecodefor thiscaseis

| infer VR (e as (fix f:t => fn x:t; => ¢€')) =
let fun loop r =
let val next? = infer (VR[f:=7]) (fn z:t1 => ¢)
in
if subtypep next? r t then r
else if next? = ns then ns
else loop next?
end
val ti—1p = 1
in
if ¢} #t1 then ns
else if ML typeinference doesnot give rtom(VR) F e i1 — 1,
then ns
else loop (botfn (t1—12))
end

We will abbreviatefn z:t1 => €' ase”.

If we never get to the call to loop in this case of infer, then we obviously terminate
and return ns. Otherwise, Theorem 2.100 (Infer Returns Some Type) on page 145 and
Lemma 2.99 (Fix Case of Infer is Well-Behaved) on page 144 tell us that the argument r
to loop awaysrefines t; — t,. By Fact 2.35 (Splits of Arrows are Simple) on page 51, r
has no useful splits, so our induction hypothesis applies and tells us al recursive calls of
the form infer (VR[f :=r]) €” terminate. Thus the computation progresses from each
recursive call to 1loop to the next. Now we have to show that there are only finitely many
recursive calls, and then we will know that the outer call to Loop terminates.

Let r1, 7o, ... be the values of r in the successive recursive callsto loop. Thusr; =
botfn ({1 — t2). Wewill show by induction that for all » > Owe haver, < rpy1.

The base case is trivial. Since r; = botfn (¢; — t2), we know that r; is a subtype
of any refinement of ¢; — ¢,. Earlier argument tells us that v, C ¢; — ¢, S0 thisimplies
1 S 2.
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For the induction case, we can assume that r;,_1 < r,. By definition of loop, rp11 =
infer (VR[f :=1;]) €”. Theorem 2.100 (Infer Returns Some Type) on page 145therefore
gives

VR[f = Th] F 6” s Tht1-

Then we can use Lemma 2.66 (Environment Modification) on page8land r,_; < rj, toget
VR[f = Th—l] e Thel-

Sincer,_1 C t1 — tp, Fact 2.35 (Splitsof Arrowsare Simple) on page 51 tells usthat r;,_;
has no useful splits. Thus Theorem 2.101 (Infer Returns Principa Type) on page 151 gives

(infer (VR[f :=ru-1]) €”) <X rag1.
By definition of 1oop, thisis equivaent to

Th < Thed,

which is what we wanted to show. This completesthe inner induction.

Repeated use of TRANS-sUB with the inner induction gives
h <jimpliesr, <r;.

By definition of 1oop and soundness of subtypep, we would not get to iteration 2 + 1 if
rpe1 < rp; thus, for al k& we have

rh—i—l f Ty,

From this we can use the following reasoning to show that no two of the r,’s are
equivalent. Suppose by way of contradiction that r;, = r; whereh < 7. Thenh + 1 < j,
so we have r;,41 < rj. Then we can use TRANS-sSUB onthisand r;, = r; to get 1 < 7.
This contradicts our result from the previous paragraph, so we cannot have r;, = r; when
h<j.

By Theorem 2.90 (Finite Refinements) on page 115, thesequencer, r,, .. . only contains
representativesfrom finitely many equivalence classes of refinementsof ¢, — ¢,. Sincethey
are al from distinct equivalence classes, there must be only finitely many of them. Thus
there are only finitely many r,,’s, and 1oop and this case of infer awaysterminate. a



Chapter 3

Declaring Refinements of Recursive
Data Types

3.1 Introduction

The previous chapter defined refinement type inference in terms of sets of refinement
type constructors refining each ML type constructor. This chapter describes rectype
declarations, which are acompact way to specify these sets of refinement type constructors
and the operations on them.

We shall call the types appearing in rectype declarations recursive types. These types
bear some resemblance to the recursive types of [AC90]; we compare the two systems on
page 169.

Because refinement type constructors must be closed under intersection, we must either
require rectype declarations to include enough definitions to ensure closure, or we need
to allow the theory to introduce refinement type constructors that do not appear in any
rectype Statement. For example, the declaration

datatype bool = true () | false ()
rectype {t = true (runit)
and ff = false (runit)

does not define a refinement type constructor for the intersection of ¢ and ff. It would
better to automatically synthesize such a definition than to require the programmer to
augment the rectype declaration. The theory below does this; the synthesized type is
tt & ff. Here & isan infix operator that combines one or more of the identifiers defined
by the rectype statement (which we shall call recursive type constructors) to form a
refinement type constructor. Since & isinfix, the assumption we have made so far that the
rectype Statement above definesthe refinement type constructors ¢¢ and ff istruewith this
interpretation.

165
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Another concern isinteracting smoothly with the global environment used in the previ-
ous chapter. In that chapter, we wrote assertions like

d . .
nil :?f runit — blist

as though they were simply true, instead of treating them as assumptions from an explicit
list of assumptions, or environment; to put it another way, the environment was an implicit
global variable. The environment never changed, so thiswas very convenient. In contrast,
the declarations introduced in this chapter specify new assumptions to add to the environ-
ment. We could clarify the manipulation of the environment by making the environment
explicit, but that would create notational problems when we refer to results from the previ-
ous chapter, so instead we will continueto manipulateit implicitly. Sincewe are describing
changes to the environment, we have “old” assertions that are already in the environment
and in this chapter we describe the “new” ones that will be added. The words “old” and
“new” will be used consistently in this sense throughout this chapter.

With this distinction in mind, we can give the following grammar for rectype State-
ments. The metavariable names in this chapter are dightly awkward because both “recur-
sive’ and “refinement” start with “r”. We resolve the ambiguity by using “n” (standing for
“new”) in the names of metavariables concerned with recursive types. For example, in the
grammar below, we use the terminal nrc to stand for recursive type constructors. We aso
use rc to stand for old refinement type constructors,  to stand for old refinement types, tc
to stand for ML type constructors, and ¢ to stand for new value constructors:

rstmt ;= rectype defn and ... and defn
defn := nrc = enr
enr = rc | nre | ¢ (enr) | r— enr |
enr * ...* enr | runit | bottom fc |
enr & enr | enr | enr

Inthisgrammar the name of the nonterminal enr standsfor extended recursive types (which

are dightly more flexible than the recursive types that will be introduced below). Notice
that the metasymbol “|” is used in the grammar to define a language construct containing
the character “1”. We shall assume throughout that the syntactic operators & and | are
associative, commutative, and idempotent; thus, for example, ¢t & ff and ff & tt are the
same syntactic object.

The intuitive meaning of these declarationsisfairly smple: think of them as anotation
for defining sets of values. The recursive type constructor on the left hand side of the “="
is defined by the extended recursive type on the right hand side. The extended recursive
type ¢ (enr) contains all values that can be constructed by applying the constructor ¢ to
some value in enr. The extended recursive type bottom (Zc) contains no values and it
refines tc; it should be distinguished from theidentifier L ;., whichisthetypeset form of the
identifier bottom _tc and canin principle be given an arbitrary definition by the programmer
(although definingit asanything other thanbottom (¢c)would beanunnecessary surprise).
The extended recursive type enry | enr, contains al values appearing in either enr; or
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enr,. The meanings of the other extended recursive types should be clear by analogy with
refinement types.

The notation ¢ (enr) is meant to resemble the use of value constructors to construct
values. We increase the resemblance by allowing ¢ (enry, ..., enr,) as syntactic sugar
for ¢ (enri*...x enr,). TOo make parsing easier, we require the parentheses to always
be present; this makes it possible to parse rectype statements without knowing in ad-
vance which identifiers are value constructors and which are refinement or recursive type
constructors.

As we did for refinement types, we shall use runit to stand for the empty tuple of
recursive types. Comparing this grammar with the one for refinement types on page 30
makes it clear that all refinement types look like extended recursive types; athough there
isanatural correspondence between the two, it is best to think of them as distinct. Context
will makeit clear which is meant. An alternative would be to add notation to make the two
kinds of types appear distinct; this seemstoo laborious.

The notation bottom tec givesaway to write typesthat contain no values; we shall say
that these types are empty. If there are two or more value constructors, we can aso write
an empty type as an intersection; for example, given the datatype declaration

datatype blist = cons of bool* blist | nil of tunit
we can write the empty type as
rectype Lyuse = cons (T ooty Lpiist) & nil (runit)

However, it seems better to provide the bottom notation as well, since thisis more direct
approach. When wetransform the syntax described hereinto anormal form, only the direct
approach will be available.

In this thesis, we will require the declaration of a datatype and the unique rectype
declaration specifying refinements of that datatype to appear together. A more generd
approachwouldallow declaring adatatypefollowed by someexpressionsusing that datatype
followed by a declaration of refinements of that datatype, or even rectype declarations
that have their scope limited by a let statement. In the general case, two problems arise:
what to do with the types of variables in the environment when entering the scope of a
rectype declaration and what to do when we leave the scope of a rectype declaration.
These problems seem solvable, but nevertheless beyond the scope of thisthesis. Because
weforbid separating corresponding datatype and rectype declarations, when we analyze
a rectype declaration it is possible to make a clear distinction between “new” value
constructors and ML type constructors and “old” ones. the new constructors appear in the
associated datatype statement, and the old ones do not.

The syntax of rectype statements above outlaws recursion on the left hand side of —
by only permitting old refinement types on the left hand side of —. This avoids situations
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where there is no obvious fixed point of a declaration; for example, suppose the restriction
were lifted and consider the declaration

datatype d = A of d— bool | B of tunit
rectype r = A of r—1{t

From an intuitive point of view, itis entirely unclear how to determine whether a particular
valueisin r because as we include more values in r, the definition of r tells us there are
fewer valuesin r. Formally, the problem with recursion on the left hand side of — isthat
the definition of membership of a value in a recursive type in Figure 3.2 ceases to be a
monotone function, so we no longer know that it has a fixed point. Thisis discussed in
more detail on page 182 after we present that definition.

3.1.1 Outline of this Chapter

A rectype declaration is accepted by type inference if it satisfies some minor semantic
restrictions described in the next section and it can be rewritten as a set of definitionsof the
form:
defn = nre = ¢(nr) | bottom (tc)
nri=r—nr|nr & nr|re| nre | nr* . ok nr | runit

Unlike the previous grammar, this one only allows value constructors at the top level, and
it disallowsthe symbol “ |”. We have also replaced the “=" with “>"; thisis meant to imply
that we now alow multiple declarations of a type for a given nre to (roughly speaking)
mean that nrc standsfor the union of all the definitionsthat appear. The meaningisformally
defined in Section 3.2. For example, rewriting the declaration

datatype blist = cons of bool * blist | nil of tunit
rectype bev = cons (T * cons (T e+ bev)) | nil (runit)

starts by creating a new type name (the implementation will select names that look like
g398) and resultsin the set

{bev = cons(T jor * g398),
bev = nil(runit),
398 = cons( T poor * bev),
T yiist = cons( T poor * T prist),
T piise = nil(runit)}

In Section 3.3, we describe how to infer that some recursive types are empty. For
example, we can infer that in the presence of the declaration above, the recursive type
bev & ¢398 contains no values. This inference system is only valid because our con-
structors are eager; if they were lazy, thetype bev & ¢398 would contain the infinite value



CHAPTER 3. DECLARING REFINEMENTS OF RECURSIVE DATA TYPES 169

cons (true (), cons (true (), ...)),whichcouldbeconstructed by using afixed point
operator.

In Section 3.4, we describe how to infer when onerecursivetypeis asubtype of another.
This inference system can reason about empty types; for example, if we add the definition

bem = nil(runit)

we caninfer bev & ¢398 < bem.

In Section 3.5, we describe how to infer that one type is contained in a union of other
smaller types. For example, we caninfer T, < {bev, 398 }.

In Section 3.6, we define the new refinement type constructorsin terms of the recursive
type constructors appearing in the declaration, and we prove that all of the assumptions
made in Chapter 2 about the behavior of refinement type constructors hold when they are
defined by rectype Statements. We also prove that whenever a value has a refinement
type, it has the corresponding recursive type.

3.1.2 Related Work

We can think of a recursive type as a recognizer for a sublanguage of the language of
values; in this sense, arecursive typeis similar to aregular tree automaton as described in
[GS84]. Onedifferenceisthat our language of valuesincludesfunctions; another difference
is that our procedure for deciding subtypes for recursive types is weaker than the decision
procedures for deciding inclusion of regular tree automata in [GS84], even for recursive
types that contain no function types. See the example on page 193.

Thealgorithmspresented in this Chapter aresimilar totheonesin[TZ91]. Our recursive
types differ from their term grammarsin that we have function types but they do not, and
their term grammarsare closed under union and complement but our recursivetypesarenot.
Some of the proofsbelow use an induction principlethat appearsin their paper, specifically
induction on the pair (complement of the trail, some tree) ordered lexicographically.

The agorithmspresented in this Chapter also resembletheonesin[AC90]. The abstract
declarations appearing here are very similar to the regular systems described in that paper,
and our algorithm for subtyping recursive types isaversion of the algorithm described on
page 24 of that paper, modified to deal with the features we have added to our type system.
Our recursive types disallow the recursion on the left hand side of arrows that is allowed
in [AC90], and our system has intersections, which do not appear in [AC90]. The proof
in this chapter that the algorithm used here is correct does not resemble theirs at all; they
reason about finite approximationsto infinite trees to show that their algorithmis consistent
with another axiomatization of subtyping, whereas we have axioms for determining when
avaue has arecursive type, and we prove that the inclusion relation from thisalgorithmis
consistent with membership of valuesin types.
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In both [AC90] and this chapter, there are two conceptually distinct fixed points in
the definition of membership of avalue in a recursive type. One fixed point converts the
recursive type to a potentially infinite non-recursive type; in [AC90], this is a least fixed
point. In this Chapter, we require each recursive definition to have the form nre = ¢(...);
since the constructor ¢ isaways present, the recursion makes progress and the infinite tree
isuniquely determined. (In [AC90], the recursive typeis rewritten to make the fixed point
unique before the subtyping algorithmis used.)

The second fixed point determines whether a value is in this potentialy infinite non-
recursive type. In this chapter, the fixed point is a greatest fixed point. In [AC90], enough
explicit types appear in the terms to uniquely determine the fixed point. Using a greatest
fixed point is appropriate, since we want to assign as many types to as many terms as
possible while preserving soundness.

There are four important relations axiomatized in this Chapter: membership of avaue
in a recursive type, emptyness of a recursive type, subtyping for recursive types, and
splitting for recursive types. All of these are greatest fixed points of the axiom system,
rather than the customary least fixed points. Informally, this means infinite proof trees
are permitted. Formally, we think of each inference system as a monotone function and
consider ajudgement to bevalidif itisamember of the greatest fixed point of the function.
A proof technique commonly used in the literature (and in this thesis) with greatest fixed
pointsis co-induction, as described in [MT91a], among other places.

3.2 Abstract Declarations

def
In the previous chapter, we assumed that information about the primitives d?f, <, and so

forth appeared in a global environment. When type inference encounters datatype and
rectype Statements, theglobal environment must be updated appropriately. Inthischapter,
we will assume that the datatype statement has aready been added to the environment,
and we will describe how to add the rectype statement.

The proofsand inference systems are smpler if we smply assume that & for recursive
types is commutative, associative, and idempotent.

Declarations given by the programmer need to be manipulated in severa ways before
they become regular enough for ssimple algorithms to apply to them. In this section we
will informally describe how the user’s declarations are converted to anormal form called
abstract declarations, and we will define well-formednessfor abstract declarations. All of
the algorithms described in future sections take well-formed abstract declarations as input.
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3.2.1 Expansion

Circular definitions of recursive type constructors are potentially confusing. For example,
consider the declaration

D of d
E of ¢
rectype loop = loop

datatype d
and e

We could decide that the fixed point by which we give meaning to these declarations is
aleast fixed point, as was done in [AC90]; with this interpretation this declaration would
mean that loop is an empty type. Alternatively, we could decide that it is a greatest fixed
point, in which case loop should contain al of the refinementsof some ML type. However,
thereisno natural way to determinewhich ML type loop refines, so instead this declaration
is considered an error. In this Subsection we will detect all errors of this kind by making
sure each definition of arecursive type constructor makes progress before recurring.

Define the toplevel of an extended recursive type to be the outermost subterms of the
recursive type that do not use the “&” or “|” operators. For example, the toplevel of the
extended recursive type

cons (T por * bem) & (cons (it * bnem) | bem)

consists of the subterms cons (T, * bem ), cons (¢t * bnem), and bem. To perform
expansion, repeatedly replace all refinement type constructors at the toplevel with their
definitions until there are no refinement type constructors at the toplevel, or some definition
is expanded more than once. If adefinition is expanded more than once, we have acircular
definition and the rectype declaration is rejected as meaningless.

For example, the declaration

datatype nat = Succ of nat | Zero of tunit
rectype loopl = loop?2

and loop2 = loopl

is rglected because attempts to expand the definitions of both loop! and loop2 fail to
terminate. On the other hand, the declaration

datatype nat = Succ of nat | Zero of tunit
rectype loopl = loop?2
and loop2 = Succ (loopl)

is accepted and the result of this manipulationis

datatype nat = Succ of nat | Zero of tunit
rectype loopl = Succ (loopl)
and loop2 = Succ (loopl).
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3.2.2 Flattening

Declarations given by the programmer will often require inventing new refinement type
names to get the expected effect. For example, with the declaration

datatype blist = cons of bool * blist | nil of tunit
rectype bev = cons (T e * cons (T e+ bev)) | nil (runit)

we would expect the expression cons (true (), cons (true (), nil ())) to havethe
refinement type bev. If the only refinement of blist is bev, we cannot infer this type for
this expression because we have no type for the expression cons (true (), nil ()).
To get the expected type for cons (true (), cons (true (), nil ())), we need to
automatically add another refinement of blist. In practice, the new refinement would be
given a nonmnemonic name like ¢ 398, and the rectype declaration would be treated as
though it were written

datatype blist = cons of bool* blist | nil of tunit
rectype bev = cons (T * ¢398) | nil (runit)
and ¢398 = cons (T .0 * bev)

(The programmer can define a usable name for odd length lists by doing this expansion by
hand, using some mnemonic name such as* bod” in place of “ ¢ 398”.) The manipulation of
the rectype statement that adds these new recursive type constructorsis called flattening.

The problem is that we have value constructors that are not at the toplevel, and the
solution is to introduce new recursive type constructors until al value constructors are at
the top level. To describe this formally, we will have to speak in terms of a context C,
which is an extended recursive type with ahole. For example, we can write

cons (Tt * cons (T e * bev)) | nil (runit)

as C[ T y01], Where C[-] = cons (- * cons (T e * bev)) | nil (runit). With this defini-
tion, we can formally specify how to flatten arectype declaration: whenever we encounter
adefinition of the form

nre = Clnr]

where the - in C'[-] does not appear at the toplevel, but all toplevel subexpressions of nr
havetheforme (nk) or bottom (tc), we chooseanew recursive type constructor nke and
replace this definition with the two definitions

nrc = Clnkc]

nkc

nr



CHAPTER 3. DECLARING REFINEMENTS OF RECURSIVE DATA TYPES 173

The requirement that - does not appear at the toplevel of C[-] is necessary ensure that
the manipulation actually makes the rectype ssimpler; without the requirement, the result
of applying this manipulation to the above example could be

datatype blist = cons of bool * blist | nil of tunit
rectype bev = ¢398
and ¢398 = cons (T * cons (T * bev)) | nil (runit)

which is hardly an improvement.

The requirement that &l toplevel subexpressions of nr have the form ¢ (nk) or
bottom (tc) is necessary to ensure that all refinement type constructors created by this
manipulation refine an ML type constructor, instead of refining some ML type. For exam-
ple, without this restriction the result of applying this manipulation to the above example
could be

datatype blist = cons of bool * blist | nil of tunit
rectype bev = cons (T * cons (¢398)) | nil (runit)
and ¢398 = Ty, * bev

which will not satisfy the semantic restrictionsthat appear bel ow because the new recursive
type constructor ¢ 398 refines bool x blist, which is not a new ML type constructor.

3.2.3 Simplification

Now we can manipulatethe rect ype statement to ensure that the toplevel of each definition
isssmply a call to a value constructor or bottom, rather than an intersection or union of

callsto value constructors or bottom. We can aso eliminate some unions; any unions not
eliminated by this manipulation cause an error.

Repeat the following rewrites until none of them apply:

o |f the definition hasthe form
nrc = enry | enrs

replace it with the two definitions

nrc ENTq

nre enro.

e If the definition has the form

nrc = ¢ (enry) & ¢ (enrz) & ...
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replaceit with
nre = ¢ (enr1 & enry) & ...
e |f the definition has the form
nrc = ¢y (enr1) & ¢z (enrp) & ...
where ¢; and ¢, are different, replace it with
nrc = bottom tc

where tc isthe ML type of the result of ¢;.

These rewrites will rewrite many rectype statements so each definition has the
form nrc = ¢ (enr) or nr¢ = bottom (tc). If they do not, then the rectype state-
ment is considered meaningless; for example, the results of rewriting may have the form
nre = enry— enrz OF nre = ¢ (enry) & (enrz * enrz). These are and should be disal-
lowed; the former because the user has apparently attempted to declare a new refinement
of —, and the latter because the new recursive type constructor must refine both the output
type of ¢ (which must be a datatype) and some tuple type.

3.2.4 Adding Top

Suppose we declare the booleans as

datatype bool = true of tunit | false of tunit
rectype {t = true (runit)
and ff = false (runit).

If this only gives rise to the refinement type constructors t¢, ff, and tt & ff refining bool,
then there would be no type for an expression when refinement type inference cannot infer
that it always evaluatesto true () or it always evaluatesto false (). For example, most
calsto the function samelength defined by

fun samelength (cons (x, tlx)) (comns (y, tly)) = samelength tlx tly
| samelength nil nil = true
| samelength _ _ = false

will get atype error. Our options at this point are to declare that most callsto samelength
cause atype error unless the user adds a definition

. and T = true (runit) | false (runit),
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or we could implicitly add the definition. Since there will often be expressions where
refinement type inference does not deduce precise information, we choose to implicitly add
definitions of catch-all typeslike T ;,,; t0 every rectype declaration.

When the value constructors have arguments, the added definitions will mention the
maximal refinement of other refinement types. For example, the definition we would add
to

datatype d = C of bool
rectype dirue = C (tt)

would be
. and Td =C (Tbool)~

When the datatype includes functions, the catch-all refinement type will have to have
minimal refinement types on the left hand side of each arrow, as well. For example, the
implicit definition of the catch-all type for the declaration

datatype d = C of bool — bool

rectype T4 = C ((tt & ff) = Tooot)
and not
rectype T4 = C (T oot = T poot)

because the | atter does not assign atype to an expression C x when x has the type ¢t — tt.
As explained in Subsection 2.7.2 on page 74, we cannot yet construct values with the least
type tt — tt, but we will be able to in Chapter 6.

The general procedure for creating catch-all types is straightforward and will not be
given here. It starts to break down when we introduce polymorphic type constructors; see
Subsection 5.8.3 on page 272.

This procedure is not meaningful with adatatype declaration that is recursive on the
left hand side of — such as

datatype d = A of d— bool | B of tunit

because the generated rectype declaration would have recursion on the left hand side of
the —, which is not consistent with the grammar given above for rectype statements.
The user cannot use a rectype Statement to specify refinements of d either, for the same
reason. The best approach seems to be to give datatypes like this exactly one refinement,
which would be called T ; in this case, and to give trivial definitions of the primitives used
in Chapter 2 that satisfy the assumptions made.
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3.2.5 Definition of Abstract Declarations

This chapter deals with recursive types, which we define in terms of recursive type con-
structors and refinement types. We shall use the following metavariablesin this chapter:

nre, nke, npe  Recursive type constructors.

nres, nkes, npes Sets of recursive type constructors.
nr, nk, np, ng Recursivetypes.
nrs, nks, nps Setsof recursive types.

This naming scheme is meant to be mnemonic; “n” stands for “new”, “s’ stands for “set”,
“c” stands for “constructor”, and “r”, “k”, “p” and “q” ssimply distinguish multiple names
of each type. We will also occasionally use metavariables defined in the previous chapter.

After we rewrite rectype statement given by the programmer as described above, we
can summarize the rectype statement as aset [ of expressions of the form nrc = ¢(nr)
or the form nre = bottom(tc).

For example, the declaration

datatype blist = cons of bool * blist | nil of tunit
rectype bev = cons (T, cons (T, bev)) | nil (runit)
and bod = cons (T, bev)
and Ly, = bottom (blist)

corresponds to the abstract declaration

{ Totise = cons(T o0 * T plist),
T piise = nil(runit),
bev = cons( T po0r * bod),
bev = nil(runit),
bod = cons(T pe1 * bev),
L st = bottom(blist)}.

The environments of most of the type inference rules below will include an abstract
declaration, usually called D. There will be no corresponding description of the ML type

environment; instead, we will assume that appropriate assumptions of the form ¢ Wi te
reflect the datatype declaration when ¢ is new. We do this because this thesis is not
concerned with ML type inference and the extra notation does not seem worthwhile. A
complete description of an ML dialect that included rectype declarations should have an
explicit environment that includes descriptions of the datatype declarations in effect as
well asthe rectype declarations.
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Figure 3.1: Monomorphic Recursive Type Refinement Rules

3.2.6 Waell-formedness
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In this section, we will give some conditions that abstract declarations used in this chapter
must satisfy. Rectype declarations giving rise to abstract declarations that do not satisfy

these conditions are rejected by type inference.

Given an abstract declaration, we must first check that it is well-formed. Since this
thesis is about refinement type inference and not ML type inference, we will assume

without further ado that assertions of the form ¢ % ¢ — t¢ derived from the datatype

statement are available. For instance, given the declaration
datatype blist = cons of bool * blist | nil of tunit

we should immediately have the assertions

def(

cons i (bool * blist) — blist

def . .
nil 7 tunit — blist.

Given these assertions, it is possible to use the inference rules in Figure 3.1 to infer that

certain recursive types refine certain ML types.

These rulesare anal ogousto the monomor phicrefinement rulesin Figure 2.3 on page 31,
except we have added a rule NEW-RECREFINES which is not similar to any rule from
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Figure 2.3. Thisrule makes clear the purpose of the “bottom” declarations that can appear
in D; they constrain the ML type of recursive type constructors that would otherwise
be entirely absent from D. This s the only place we will use the “bottom” declarations.
Without these declarations, acompletely empty recursivetype constructor would not appear
at all in the abstract declaration, so it could refine all ML type constructors, which would
make Fact 3.9 (Recursive Unique ML Types) on page 179 false.

Asin Chapter 2, we will consider runit and tunit to be tuples of zero el ements, so we
can use the TUPLE-RECREFINES ruleto infer D F runit C tunit.

Now that we can determinewhen arecursivetyperefinesan ML type, we can say what it
meansfor an abstract declaration to be well-formed. An abstract declarationiswell-formed
if the next six conditionsall hold. These conditionscan all be easily checked by a program.

First we require all definitionsin the abstract declaration to be consistent with the ML
types of the value constructors:

Condition 3.1 (Refinement Consistency) If D is well-formed then for all nrc = ¢(nr) €
D, there are must be ¢ and tc such that ¢ d:?f t—tcandDFnrcCtcand D Fnr C ¢,

The distinction between “new” and “old” constructors mentioned earlier is only useful
if the new constructors are limited in how they interact with the old ones. An appropriate
restrictionis.

Condition 3.2 (New Recursive Type Constructor s Defined) Every well-formed abstract
declaration must define all new recursive type constructors.

We need thisbecausethereisno way to determinethe ML typerefined by anew recursive
type constructor that does not appear inthedeclaration. Thisrestrictionissatisfied naturally
if the set of new recursive type constructors is taken as the recursive type constructors that
appear in the abstract declaration.

Condition 3.3 (New Value Constructors Defined) Every well-formed abstract declara-
tion must mention all new value constructors.

Without this restriction, the behavior of the new value constructors on refinement types
would not be determined. This restriction is enforced naturally when catch-all recursive
types are added.

Condition 3.4 (New Value Constructors Only) Every well-formed abstract declaration
must not mention any old value constructors.

Without this, the abstract declaration could define new refinements of old ML types. For
example:
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datatype bool = true of tunit | false of tunit
...somecode...

datatype blist = cons of bool * blist | nil of tunit
rectype tt = true (runit)

We have several more conditions that simply formalize some of the behavior of
datatype declarations. This restriction prevents incrementally declaring refinements of
existing data types:

Condition 3.5 (New Value Constructors Closed) The output type of each new value con-
structor must be a new ML type constructor.

Condition 3.6 (Declarations are Finite) All well-formed abstract declarations are finite.

The abstract declaration, as written, gives one or more definitionsfor some of recursive
type constructors. It is aso possible to think of it as giving one or more definitions for
some intersections of recursive type constructors; we call the set of al of the intersections
the closure of D, and formally defineit asfollows:

Definition 3.7 (Inter section Membership) Define D to be the set with elements of the
foomnrc; & ... & nrc, > ¢(nry & ... & nr,,) where for ¢ between 1 and » we have
nrc; = c(nr;) € D,

Simple reasoning tells us that Condition 3.1 (Refinement Consistency) on page 178
extends naturally to intersections of recursive type constructors:

Fact 3.8 (Intersection Refines) If ¢ ¢ < tcand &nres = e(nr) € D then
DEnrCt

and
DF &nrcsrC tc.

An analogue of Lemma 2.10 (Unique ML Types) on page 31 holdsfor recursive types.
Fact 3.9 (Recursive UniqueML Types) If DEnrCtand D F nr C w thent = w.

The proof of thisis a straightforward induction on nr.
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nrs hastwo or more e ements
AND-RECVALUE: for each nr in nrs wehave D v € nr
DFove&nrs

for al v and al v’ we have
ABS-RECVALUEF v irand (fn x:t => e) v = v imply D Fv' € nr
DF(fn xz:t => e) €r—nr

nre = ¢(nr) € D DFwvenr

NEW-RC-RECVALUE:
DFcwvé€nre

OLD-RC-RECVALUE: Cuire
) DFv Ere
foral : wehave D + v; € nr;

TUPLE-RECVALUE:
DF(v1, ..., v,) €Enrix...xnr,

Figure 3.2: Whether aValueisin a Recursive Type; Greatest Fixed Point
3.2.7 Meaning of Recursive Types

We can think of recursive types as standing for sets of values. In this section we will
specify when a value is in a recursive type. For technical reasons described below, the
inference system must be given an unusual interpretation that permits infinite proof trees.
The inference system isaso somewhat unusual in that some inferences can have infinitely
many premises. Fortunately, this inference system does not need to be decidable. First we
will explain why we need infinitely tall inferencetrees, and how to formalizethis. Then we
will explore various aternatives to the rule with infinitely many premises.

If one attempts to write inference rules for proving that a value has a recursive type,
apparent success comes quickly. If we write “with the abstract declaration D, the value v
has the recursive type nr” as D + v € nr, then we get the inference rulesin Figure 3.2.
(The need for the requirement of two or more elementsin nks in the AND-RECVALUE rule
and the meaning of the phrase “Greatest Fixed Point” in the caption will be explained in a
moment.)

An ordinary interpretation of these inference rules works well for al values without
functions embedded in them. Unfortunately, it is possible to use function objects to define
possibly infinitelazy listsin ML, and a straightforward interpretation of the inference rules
in Figure 3.2 draws wrong conclusions in this case. We can declare possibly infinite lazy
lists of booleans with the declaration

datatype lazy = A of tunit —(bool  lazy)
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and we can distinguish lazy lists where all elements are true () with this declaration:
rectype alltrue = A (runit — tt * alltrue)

The corresponding abstract declarationis
D = {alltrue = A(runit — tt * alltrue)}.

If the function object in a value with ML type lazy fails to terminate, then it vacuously
satisfies the ABS-RECVALUE rule. Thusif we let

vo=A (fn x => (fix f => fn x => (f x)))

we have
D F vy € alltrue

andif weletv, 1 =A (fn x => (true (), v;))for: > 0, weaso have

D Fv; € alltrue.
However, because the normal interpretation of inference systems disallows infinite proofs,
we cannot use the normal interpretation of this system to give atypeto theinfinitelazy list

A (fn _ => ((fix £ => fn _ => (true (), A f)) ())).

There are several possible ways to deal with this. In theory, one could imagine atype
system that gives no typeto the infinite lazy list. Distinguishing the infinite lazy list from
lists that have a finite number of elements followed by an infinite loop when the next one
isfetched is equivalent to the halting problem, so that type system would also haveto give
no type to somefinite lazy lists. This seems awkward.

Instead, we use an informal interpretation of the above inference system that permits
infinite proofs. Normally, the relation defined by an inference system is considered to be
the least relation consistent with the inference rules. Instead, we will interpret it as the
greatest relation consistent with the inference rules. Thisis the cause of the restriction of
AND-RECVALUE to sets of two or more elements; if we allow sets of one e ement, then the
conclusion of the ruleisthe same as the premise, and the greatest fixed point would include
al possible conclusions because for any value v and any recursive type » we would have
theinfinite inference tree

DbFover
DbFover

[AND-RECVALUE]
[AND-RECVALUE]

Formally, we interpret this inference system as the greatest fixed point of a function.
Take D asfixed for the time being. A greatest fixed point must be within some universe;
let our universe U be the set of all possible pairs of the form (v, nr). We can encode the
inference system in Figure 3.2 as afunction #" mapping subsets of I/ to subsets of U/. If we
abbreviate “nr hastheform ¢” as“nr o €”, the part of the definition of F' corresponding
to the AND-RECVALUE and ABS-RECVALUE rulesis:
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(v,nr) € F(Q) if and only if
(nr o< &nks where nks has 2 or mere elements, and
for al nk in nks we have (v, nk) € Q)
or
(nrocr—nk and v x fn z:t => e and
for all »" and v' we have
if -Fo":r
and (fn z:t => e) V" =0’
then (v', nk) € Q)
or
... Oomitted cases ...

where the omitted cases are alwaysfaseif nr « & nks where nks has 2 or more elements,
or nr o r— nk. With this definition of /', wesay D - v € rif (v,r) isin the greatest
fixed point of #, which we shall writeas gfp(#).

Itiseasy to seethat /' ismonotone. Aswe admit more premisesof theform D v € r,
we can use the inference rules in Figure 3.2 to infer more conclusions of that form. By
contrast, if we allow recursion on the left hand side of arrows, the natural version of
ABS-RECVALUE would be

for al v and al v we have
DFvenkand(fn xz:t => e) v=v imply D Fv' € nr
DF (fn z:t => €) € nk — nr

which is not monotone, since we have the premise D + v € nk on the left hand side of an
implication.

Another option that seems attractive at first is defining membership of a functionin a
recursive type in terms of some other type inference system. More specifically, we would
say that fn x:t => e hasthetype r — nr if, in some sense, when we assume that = has
the type » we can infer that ¢ has the type nr. Unfortunately, we do not have a type
inference system on hand that infers when an expression with free variables hasarecursive
type. We could make arecursive type inference system analogous to the refinement type
inference system in Chapter 2, but the description of such a system might be about as large
as Chapter 2. This inference system, on the other hand, is concise and sufficient for our
purposes.

We use co-induction to reason about these greatest fixed points, asdescribed in [MT91b,
page 216]:

Fact 3.10 (Co-induction) Let U be any set, and let F' be a monotonic function mapping
subsets of U to subsetsof /. For any ) C U, inorder to prove Q C gfp(F'), itissufficient
toprove ) C F(Q).

The first co-induction in this chapter is Theorem 3.20 (Emptyness Consistency 11) on
page 190.
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Before we turn away from membership of values in recursive types, we note that co-
induction is not necessary in the ssimple proof of an extended version of NEW-RC-RECVALUE
that appliesto intersections of recursive type constructors:

Fact 3.11 (Inter section Value Member ship) If &nrcs = ¢(nr) € D and D + v € nr then
D& c veé&nrcs.

3.3 Empty Types

The value constructorsin Standard ML are eager, but the ssmplest type systems are more
appropriate for lazy value constructors. The algorithm introduced in this section allows
rectype Statements to ignore certain distinctions that are unimportant in SML, but would
be important if we had lazy value constructors. For example, if we have the declarations

datatype blist = cons of bool * blist | nil of runit
rectype bev = cons (T * bod) | nil (runit)

and bod = cons (T 0 * bev)

and bnem = cons (T jeor * T piist)

and bem = nil (runit)

and value constructors are lazy, then bev & bod containsthe infinite value
cons (true (), cons (true (), ...)),

but if value constructors are eager, there are no infinite values and this type is empty. By
contrast, the type bem & bnem is empty regardless. Thus, if our type system takes no
account of the fact that value constructorsin SML are eager, we will have

bem & bnem < bod & bev

but not
bod & bev < bem & bnem.

This distinction isan unintuitive nuisance to a programmer who expects value constructors
to be eager.

These unnecessary distinctions seem to arise most often for empty recursive types. In
this section we define an algorithm that determineswhen arecursive typeisempty if value
constructors are call by value. The definition of subtyping for recursive types that appears
in the next section ensuresthat empty recursivetypes are always subtypes of other recursive
types that refine the same ML type. Thus, we will be able to derive

bod & bev < bem & bnem.
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def def def
rc1 N\ ... N\ rc, empty

Frep& ... & re, empty

RCON-EMPTY:

forsome:zinl...n wehavet ry; A ... A r,,; empty

REF-TUPLE-EMPTY
l_ (Tll* ...*rln)/\ .../\(rml* *rmn) ernpty

Figure 3.3: When a Refinement Type is Empty

We will describe the agorithm for determining whether a recursive type is empty in
several steps. First in Subsection 3.3.1 we shall postulate a property of refinement type
constructorsthat says whether they are empty. This can easily be extended to a judgement
F r empty that says when a refinement type r isempty. We assume that these judgements
are consistent in certain ways. Then in Subsection 3.3.2 we shall give declarative inference
rules for the judgement that a recursive type is empty, written D F nr empty, where D
is an abstract declaration and nr is the recursive type in question. Infinite proofs with
these inference rules will be allowed, as they were for the D - v € r judgement. We also
present type inference rules for arelation D; S = nr alg-empty which includes a set S’ of
intersections of recursive type constructors that are presumed empty. Proper use of these
inference rules only allows finite proofs, and can be easily read as an agorithm. Then in
Subsection 3.3.3 wewill prove several propertiesof these judgements; the most interesting
ones are that the algorithmic and declarative are equivalent and that types judged empty
actually contain no values.

3.3.1 Emptynessfor Refinement Types

We start by assuming that some refinement type constructors are empty. We write the

assertionthat rcisempty as re errqﬁcf)ty. If we assumethat certain refinement type constructors
are empty, it is straightforward to concludethat certain refinement types are empty. We call
the judgement for thist- » empty and define it by therulesin Figure 3.3.

For these rules to work properly, we need some consistency between the rc erﬂ%ty
and the - r empty judgements; we can also regard these as consistency conditions on the
implicit global environment, as were the assumptions listed in Chapter 2. First, if avalue
constructor returns something with an empty type, it was given something with an empty

type:
Assumption 3.12 (Emptyness Constructor) Ifrc enqlepf)ty andc ™ » < rcthenr r empty.

Also, if arefinement type constructor is empty, any smaller refinement type constructor
must also be empty:
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def
Assumption 3.13 (Emptyness Subtyping) If rc erﬂ%ty and kc < rcthen ke enqlepf)ty.

These assumptions are sufficient to show that emptyness for refinement typesis sound,
in the sense that empty refinement types contain no values:

Fact 3.14 (Soundness of Refinment Type Empty) If+- r emptyand - - v @ ¢t andr C ¢
thenwe donot have - F v : r.

The proof of thisisa straightforward induction on v that we shall omit.

3.3.2 Emptynessfor Recursive Types

Emptyness for recursive types is more interesting because we must either allow infinite
proofsto get correct behavior inthe presence of recursion, or usetrailsto ensuretermination.

For example, using the rectype declarations on page 183, we should be able to infer
that bev & bod isempty. Suppose, by way of contradiction, that a value has this type; then
the value will be in both bev and bod. By the declarations of these types, the outermost
constructor of this value must be cons, and the argument to cons will be in both of the
types T ;0.1 * bod and Ty,,; * bev. This can only be the case if there is some value in the
type bod & bev. We assumethat & for recursive typesis commutative, so thisisequivalent
to the problem we started with. We can either continue to produce an infinite argument, or
we can keep track of the set of subproblems already encountered (this set is called a trail)
S0 we can observe that we have encountered this problem before and stop. Since there are
actually no valueswith thistype, either approach should lead to the conclusion that the type
is empty.

If we take the approach of permitting infinite proofs, we get the inference system in
Figure 3.4. For thisexample, the infinite proof treefor D = bev & bod empty is

[NEW-INFER-EMPTY |
[REC-TUPLE-EMPTY |
[NEW-INFER-EMPTY |

D F bod & bev empty
DF T pool * bod & T bool * bev empty
D F bev & bod empty

Finding anintuitively meaningful reading isstraightforward, with the possible exception
of NEw-INFER-EMPTY. Trandating it into words yields “If the only way to construct an
element of arecursivetype nr is by starting with elements of other typesthat are all empty,
then nr isempty.”, which seems plausible.

If, instead, wetaketheapproach of using atrail to keep track of the pending subproblems,
we get the inference system in Figure 3.5. In this system, the trail is the set .S, which
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forall c and al rt such that & nres = ¢(nr) € D we have
NEW-INFER-EMPTY: D F nr empty
D = &nres empty

def def
A res empty
D I &res empty

OLD-EMPTY:

forsome:inl...nwehave D+ nry; & ... & nr,,; empty

REC-TUPLE-EMPTY .
DE(nrig*...xnry,) & ... & (nrpm1 * ..k nrpy,, ) €mpty

Figure 3.4: Declarative Emptyness for Recursive Types (Greatest Fixed Point)

& nres € S

ALG-NEW-ENV-EMPTY DS F &nres dg-empty

for al c and all rt such that & nres = ¢(nr) € D we have
ALG-NEW-INFER-EMPTY: D; S U {&nres} F nr alg-empty
D; S F &nres alg-empty

def def
A res empty
D; S F &res alg-empty

ALG-OLD-EMPTY:

forsome:inl...n wehave
ALG-REC-TUPLE-EMPTY: D;StFnry&...& nr,; ag-empty
D;SE (nra*...¥nr1,) & ... & (nrp,1 % ... % nry,, ) alg-empty

Figure 3.5: Algorithmic Emptyness for Recursive Types

contains the intersections of recursive type constructors that we are already attempting to
prove empty. For example, the following derivation is a proof that bev & bod isempty:

[ALG-NEW-ENV-EMPTY |
[ALG-REC-TUPLE-EMPTY|
[ALG-NEW-INFER-EMPTY |

D; {bev & bod} - bod & bev alg-empty
D; {bev & bod} = T o1 * bod & T je01 * bev alg-empty
D;{} F bev & bod alg-empty

This inference system can easily be read as an algorithm. Simply try to construct a
derivation starting at the root with an empty trail, and use ALG-NEW-ENV-EMPTY instead of
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ALG-NEW-INFER-EMPTY Whenever a choice arises. Informally speaking, the algorithm for
inferring D; S + nr alg-empty is sure to terminate because at each step either S staysthe
same and nr gets smaller, or S gets larger. Since D isfinite and S contains intersections
of sets of recursive type constructors mentioned in D, the largest possible S is finite.
Formalizing this requiresintroducing two new definitions. a measure of the size of nr that
we shall call depth(nr) and the maximal value of S which we call emptyU(D).

Because of the ALG-REC-TUPLE-EMPTY rule, we cannot say that if .S remains constant,
nr is replaced by a subterm of itself. For instance, given the problem D;S + (it
1) & (ff = ff) alg-empty, we would examine the subproblems D; S + tt & ff alg-empty
and D;S + ff & ff alg-empty. Neither of these recursive types appear literally within
(tt+ff) & (ff *ff). They aresmaller inthe sensethat their printed representationis smaller,
but thisisawkward to reason about. Instead weregard therecursivetypeasatree, and think
in terms of the height of the tree. Since & for recursive typesis assumed to be idempotent,
wehaveto givethesame*“height” to both ¢¢ & ¢t and ¢¢; thuswecall it “ depth” to distinguish
it from the ordinary notion of tree height, and we define it so intersection operators do not
increase the measure of arecursive type:

Definition 3.15 (Depth of a Recursive Type) We define the depth of a recursive type by
the equations

depth(&nrs) = max{depth(nr) | nr € nrs}
depth(r — nr) = depth(nr) 4+ 1
depth(rty * ...+ rt,) = max{depth(nr; |t € 1...n)} +1
depth(rc) =0
depth(nrc) = 0.

By Condition 3.2 (New Recursive Type Constructors Defined) onpage 178, all recursive
type constructors that can appear in S are defined in D. Thus we can define the universe
fromwhich S is chosen as all possible subsets of the types defined in D:

Definition 3.16 Define emptyU( D) to be {&nrcs | all nrc € nrcsaredefined in D}.
With these definitions, we can say that the natural algorithm derived from the rulesin
Figure 3.5 terminates because the pair (emptyU(D) — 5, depth(nr)) always lexicographi-

cally decreases. Not surprisingly, this measure will also ensure that some induction proofs
below make progress.

3.3.3 Propertiesof Empty

We shall show that the algorithmic and declarative versions of emptyness inference are
equivalent, and that types judged empty actually contain no values.
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Fact 3.17 (Algorithmic Emptyness Strengthening) If D; S; F nr alg-empty then
D; 51U S, F nr ag-empty.
Proving thisisatrivia induction on the derivation of the hypothesis. The derivation of
D; S1U S, F nr dg-empty has the same shape as the derivation of D; S; F nr ag-empty;
the only differenceisthat in the former derivation all of the trails are larger.
Lemma 3.18 (Empty Eliminable Assumptions) If
D; {}  &nkcs alg-empty

and
D; S U {&nkcs} - nr ag-empty

then
D; S+ nr ag-empty.

Proof: By induction on the derivation of D; S U {&nkcs} F nr alg-empty.

Case: ALG-NEW-ENV-EMPTY, nr = &nkes | Applying Fact 3.17 (Algorithmic Emptyness

Strengthening) on page 188to D; {} - & nkcs alg-empty gives D; S + & nkes ag-empty,
which is our conclusion.

Case: ALG-NEW-ENV-EMPTY, nr # &nkes | Then nr o< & nres wherethe premise of ALG-

NEW-ENV-EMPTY iS&nrcs € S U {&nkes}. Since nr # &nkes, thisimplies & nres € S,
and ALG-NEW-ENV-EMPTY gives D; S + & nres alg-empty, which isour conclusion.

Case: ALG-NEW-INFER-EMPTY | Then nr « &nres and the premise of ALG-NEW-INFER-

EMPTY must be

foral c and al nk such that & nres = ¢(nk) € D we have
D; S U {&nkes,&nres} F nk alg-empty.

By induction hypothes's,

for al ¢ and all nk such that Anres = c¢(nk) € D wehave
D; SU{&nres} F nk dg-empty.

and ALG-NEW-INFER-EMPTY gives our conclusion.

Case: ALG-OLD-EMPTY | Then nr o« &rcs and the premise of ALG-OLD-EMPTY is

def . .
F A res empty. ALG-OLD-EMPTY gives our conclusion.
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Casel ALG-REC-TUPLE-EMPTY | Then nr o< (nrig* ...k nry,) & ... & (nrpa* ... % nry,)

and the premise of ALG-REC-TUPLE-EMPTY iS
forsome:inl...nwehave D; S U {&nkes} - nry; & ... & nr,,; ag-empty.
By induction,
forsome:inl...nwehaveD;SF nry; & ...& nr,,; dg-empty,

and ALG-REC-TUPLE-EMPTY gives our conclusion. O

Now we can show that the algorithmic and declarative versions of emptyness infer-
ence are equivalent. We have separate proofs showing each is at least as strong as the
other. The first proof is by induction on the pair (emptyU(D) — S, depth(nr)) ordered
lexicographically; the second is thefirst co-induction in this chapter.

Theorem 3.19 (Emptyness Consistency 1) If D F nr empty and for all &nrcs € S we
have D F &nrcs empty then D; S + nr ag-empty.

Proof: By induction on the pair (emptyU(D) — .S, depth(nr)), ordered lexicographicaly.
The declarative emptyness rules constrain the form of nr, so we have the following cases:

Case: nr o< &nres | If nr € S, then ALG-NEW-ENV-EMPTY gives our conclusion.

Otherwise, the last inference of D + nr empty must be NEW-INFER-EMPTY with the
premise

for al c and all nk such that & nres = ¢(nk) € D wehave D + nk empty.
Combining the two hypotheses of this theorem,
forall &nkes € S U {&nres} wehave D F &nkes empty.
The induction hypothesis gives

for al c and all nk such that & nres = c¢(nk) € D we have
D; S U {&nres} F nk adg-empty,

and ALG-NEW-INFER-EMPTY gives our conclusion.

Case: nr o< &res | Then the last inference of D F nr empty is OLD-EMPTY with the

. def def . . .
premise A res empty and ALG-OLD-EMPTY gives D; S + nr ag-empty, which is our
conclusion.
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Casel nr o (nryz*...*nry,) & ... & (nrpm1* ... % nry,,) | Then the last inference of

D F nr empty iSREC-TUPLE-EMPTY with the premise
forsome:inl...nwehave D F nry; & ... & nr,,; empty.
The induction hypothesis gives
forsome:inl...nwehave D; S+ nry; & ... & nr,,; alg-empty.

and ALG-REC-TUPLE-EMPTY gives our conclusion. O
Theorem 3.20 (Emptyness Consistency I1) If D; {} - nr alg-empty then D F nr empty.

Proof: By co-induction. Take D to be fixed, and let F' be the natural encoding of the
rulesin Figure 3.4 as afunction from sets of recursive types to sets of recursive types. Let
Q = {nr | D;{} - nr dg-empty}; thusour goal isto show @) C gfp(F'). By co-induction,
it sufficesto show @@ C F(Q). Let nr be an element of (). We will show by cases on nr
that nr isin F(Q) aswell.

Case: nr < &nres | Thelastinferenceof D; {} + nr ag-empty must be ALG-NEW-INFER-

EMPTY with the premise
for al c and all nk such that & nres = c(nk) € D wehave D; {&nres} - nk ag-empty.
By Lemma 3.18 (Empty Eliminable Assumptions) on page 188 we have
for al c and all nk such that & nres = ¢(nk) € D wehave D; {} F nk alg-empty
and the definition of () gives
for all ¢ and al nk suchthat & nres = ¢(nk) € D wehave nk € Q.

By NEW-INFER-EMPTY, thisimplies & nrcs € F/(Q), which iswhat we wanted to show.

The next two cases aretrivial, but they are aso short, so we include them for complete-
ness.

Case: nr < &res | Thelast inference of D; {} - nr ag-empty must be ALG-OLD-EMPTY

. . def def .. . . .
with the premise A res empty. By OLD-EMPTY, this implies nr € F/(Q), which is our
conclusion.

Casel nr o< (nryz*...*nry,) & ... & (nrpm1* ... % nry,) | Then the last inference of

D;{} F nr alg-empty iS ALG-REC-TUPLE-EMPTY with the premise

forsome:inl...nwehave D;{} + nry; & ... & nr,,; ag-empty.
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The definition of () gives
forsome:inl...nwehavenry & ... & nr,; € Q.

REC-TUPLE-EMPTY then gives nr € F(Q)), whichis our conclusion. 0

We shall say that the last inferences of a derivation have some property if every path
from the root of the derivation starts with one or more inferences that have that property.
For an example, see thefirst case of the following proof.

Theorem 3.21 (Soundnessof Empty) Wenever have D + nr empty and D F v € nr.

Proof: By induction on v.

Case: v < ¢ v’ wherecisnew | Then thelast inferences of the derivationof D - v € nr

must be AND-RECVALUE and NEW-RC-RECVALUE, SO nr o« &nrecs. The last inference of
D F nr empty must be NEW-INFER-EMPTY with the premises

for al ¢ and all nk such that & nres = ¢(nk) € D wehave D + nk empty. (3.1)
The premises of AND-RECVALUE and NEW-RC-RECVALUE leadingup to D = v € nr must be

for al nrc € nres thereisanp,,. such that
nre = ¢(np,,.) € D and (3.2)
DFEv enp,,.

By definition of intersection membership,
&nres = c(&{np,,, | nrc € nres}) € D

thus (3.1) gives
Dt &{np,,. | nrc € nres} empty.

Applying AND-RECVALUE to (3.2) gives
DFV e &{np,, | nrc € nres}.

Theinduction hypothesisappliedto thelast two displayed formulaeyiel dsour contradiction.

Case: v x ¢ v wherecisold | Then the last inferencesof D F v € nr must be AND-

RECVALUE and OLD-RC-RECVALUE, SO nr < & res andfor all rc inres wehave- + ¢ v’ : re.
By AND-INTRO-TYPE We have
-Fe v &res.

def def
The last inference of D F nr empty must be OLD-EMPTY with the premise A res empty;

RCON-EMPTY then gives - & res empty and by Fact 3.14 (Soundness of Refinement Type
Empty) on page 185 we do not have

e v &res.
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Thisis our contradiction.

Casel v x (v1, ..., v,) | Thenthelastinferencesof D - v € nr must be AND-RECVALUE

and TUPLE-RECVALUE, SO nr o (nrig* ...* nry,) & ... & (nry,1 % ... % nry,,). Thusthe
last inference of D = nr empty must be REC-TUPLE-EMPTY with the premise

forsome:inl...nwehave D F nry; & ... & nr,,; empty. (3.3)
The premises of AND-RECVALUE and TUPLE-RECVALUE leadingup to D - v € nr must be
forallzinl...nandaljinl...mwehaveD I v; € nrj
and AND-RECVALUE gives
foralzinl...nwehave Dt v; € nri; & ... & nr,,;. (3.4)
Our induction hypothesis applied to (3.3) and (3.4) gives our contradiction.

Case v x fn z:t => e | Thenthelastinferencesof D F v € nr must be ABS-RECVALUE

and AND-RECVALUE, SO nr « r1—nr1 & ... & r, — nr, and there is no way to infer
D+ nr empty. O

The intersection of an empty recursive type and any other recursive type is a'so empty,
if it the intersection is well-formed. We include the proof to give another example of
an ordinary co-induction proof, dightly more complex than Theorem 3.20 (Emptyness
Consistency I1) on page 190.

Theorem 3.22 (Empty Intersection) If D = nr empty and D - nr & nk C ¢ then D +
nr & nk empty.

Proof: By co-induction. Take D asfixed, and let F' be the natural description of the rules
in Figure 3.4 as a function from sets of recursive types to sets of recursive types. Let
Q = {nr & nk | D F nr empty and thereisat suchthat D - nr & nk C t}. We need to
show ) C gfp(F); by co-induction, it suffices to show ) C F(Q). Let nr & nk bean
arbitrary element of (); it sufficesto show that nr & nk € F(Q). Wetake cases on theform
of nr.

Case: nr o< &nres | Then by definition of () we have D + &nres empty and D +

(&nres) & nk C t. We can only infer the latter if nk o« &nkes. The last inference of
D F &nres empty must be NEw-INFER-EMPTY with the premise

for al c and all nr’ such that & nres = c(nr') € D wehave D  nr’ empty.

Let c and np begiven suchthat & (nres Unkes) = ¢(np) € D. By definition of intersection
membership, wecanwrite np asnr’ & nk’ where& nres = ¢(nr'). By Fact 3.8 (Intersection
Refines) on page 179, thereisawu such that D - nr' & nk’ C u, so the definition of @ gives

for al c and all np such that & (nres U nkes) = c(np) € D wehave np € Q



CHAPTER 3. DECLARING REFINEMENTS OF RECURSIVE DATA TYPES 193

Thus, by NEW-INFER-EMPTY, & (nres U nkes) € F(()), whichisour conclusion.

Case nr ox &res | Since D + nr & nk T t, weknow nk x &kes. Thelast inference of

. def def . .
D F nr empty must be OLD-EMPTY with the premise A recs empty. Simple reasoning about

def
d/(if gives (d/(if rCs) d/?f(d/(if kes) < (d/(if res), SO Assumption 3.13 (Emptyness Subtyping) on

pagelSSgives(d/(if 7CS ) d/(if(d/(if kes) errqﬁcf)ty. OLD-EMPTY thengives(&res)& (& kes) € FI(Q),
which is our conclusion.

Casel nr o< (nryg*...*nry,) & ... & (nrp* ... x nrpy,) | Since D F nr & nk C t,

we must have nk o (nkig * ... % nk1,) & ... & (nkgy * ... % nk,,). The last inference
of D F nr empty must be REC-TUPLE-EMPTY with, for some ¢, the premise D F nry; &
... & nr,,; empty. Simple reasoning about recursive refinement types gives a u such
that D F nry; & ... & nr,; & nk1; & ...nk, T w. The definition of @ then gives
nry & ... & nry; & nky; & ... onky € Q, then REC-TUPLE-EMPTY gives nr & nk € F(Q),
which is our conclusion. a

3.4 Subtyping

The type inference system for subtyping recursive types is smilar to the system in the
previous section for inferring when a type is empty. For subtyping we have two similar
systems, one declarative using a greatest fixed point and no trail, and one agorithmic
using a least fixed point and atrail. Inthis case atrail is a set with elements of the form
(&nres, & nkes); each element represents the assertion that we are already working on the
problem D F &nres < &nkes.

The declarative system is described in Figure 3.6, and the agorithmic system is Fig-
ure 3.7. The oLD-RECSUB and TUPLE-RECSUB rules are self-evident; explanations of the
other two follow.

One way to understand the NEw-INFER-RECSUB rule is by walking through a sketch of
that case of Theorem 3.34 (Recursive Subtype Soundness) on page 204. Suppose some
value ¢ v isin &nres. Then there must be some definition of & nres of the form ¢(nr)
wherev isin nr. If nr isempty, then we have a contradiction and we are done. Otherwise,
if thereis adefinition of & nkes of the form ¢(nk) for some nk larger than nr, then v isin
nk and ¢ visin &nkcs.

Although thisruleissound, it could be stronger. For example, consider the declaration

datatype d = C of bool
rectype d; = C (T poot)
and d; = C (i) | C (ff)
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DF & nres C tc
DF & nkes C tc
for al c and all nr such that & nres = c(nr) € D
either D - nr empty
or thereisa nk suchthat & nkes = c(nk) € Dand D F nr < nk
D+ &nres < &nkes

NEW-INFER-RECSUB:

DF &{ri—nr;|i€l...n}Ct
ARROW-RECSUB:forj € 1...mwehave D+ &{nr; |i € 1...nand k; < r;} < nk;
DF&{ri—=nr;|i€l...n} <&{kj—nk;|j€1...m}

def def  def
(A res) < (A kes)
Dt &res < &kes

OLD-RECSUB:

foreel...nwehave DF nry & ... & nrp < nkyuy & ... & nky

TUPLE-RECSUB: DE(nrig*...%knry,) & ... & (nrpr* .. % nrpy) <
(nkia* ... x nk1,) & ... & (nkg* ... % nkyy,)

Figure 3.6: Declarative Rules for Recursive Subtyping (Greatest Fixed Point)

With this declaration, al valuesin d; areasoin d,, but if we convert this declaration into
an abstract declaration D we cannot infer D F d; < d,. The cause of thisisthat T,,; iS
lessthan theunion of ¢t and ff, but it isnot lessthan either ¢z or ff takenindividualy. Since
it is possible to decide whether the language recognized by one regular tree automatonis a
subset of the language recognized by another ([GS84]), and rectype statementsthat do not
contain “—" are essentially descriptions of regular tree automata, it isin principle possible
to make apractical system that is complete in the first-order case.

The ARROW-RECSUB rule is motivated by Lemma 2.83 (: Gives an Upper Bound) on
page 111. It would probably be possible to take the approach of Chapter 2 and have smple
axioms defining recursive type inference and then restructure the system completely to find
a practical algorithm that uses ARROW-RECSUB, but such an analysis might be as long as
Chapter 2. Our grammar doesnot admit & with zero arguments, so thisruledoesnot apply if
any of the sets mentioned are empty. For example, suppose D includesthe usua definitions
of refinementsof bool and we aretrying to provethefalseassertion D - tt — ff < ff — tt;
then one of the premiseswould havetobe D = A{} < t¢, which is malformed.

The agorithmic and the declarative systems are consistent in the same sense the systems
for emptynesswere consistent. The proof isentirely analogousto the proof that the systems
for emptyness are consistent. We start by establishing that we can manipulate the trail:

Fact 3.23 (Subtype Strengthening) If S’ C Sand D; S’ nr < nkthen D; S F nr < nk.
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Dt & nres C tc
DF & nkes C tc
(&nres, &nkes) € S
D;SF &nres < &nkcs

ALG-NEW-ENV-RECSUB.

Dt & nres C tc
DF & nkes C tc
for al c and all nr such that & nres = c(nr) € D
ALG-NEW-INFER-RECSUB: either D - nr empty
or thereisa nk such that
&nkes = ¢(nk) € D and D; S F nr < nk
D;SF &nres < &nkcs

DF &{ri—nrliel...n}Ct
forj € 1...m wehave
D;SE&{nr;|iel...nandk; <r} < nk;
D;SE&{ri—nr;|tel...n} <&{kj—nk;|j€l...m}

ALG-ARROW-RECSUB:

def
(d/(if res) < (d/(if kes)

D;SF &res < &kes

ALG-OLD-RECSUB:

for: € 1...n wehave
D,S"TLT’]_Z&& nrngnkh&&nqu
D;SE(nrik...#nr1,) & oo & (nrp1 . % nrpy,) <
(nkip* ... x nk1,) & ... & (nkg* ... x nky,)

ALG-TUPLE-RECSUB:

Figure 3.7: Algorithmic Rules for Recursive Subtyping

The proof is asimpleinduction on the derivation of D; S’ - nr < nk.

Fact 3.24 (Subtype Eliminable Assumptions) If D;{} + &nrcs < &nkcs and D; S U
{(&nrcs, &nkes)} = nr < nkthen D; S + nr < nk.

The proof is by induction on the derivation of D; S U {(& nres, &nkes)} F nr < nk.

Aswedidfor therulesfor emptyness, we must defineauniverse of al possiblemembers
of thetrail:

Definition 3.25 Define subtypeU(D) to be

{(nr,nk) | nr € emptyU(D) and nk € emptyU(D)}.
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and continue with separate proofs for the if and only if cases:

Fact 3.26 (Recursive Subtype Consistency 1)
If D F nr < nkand for all (&nrcs,&nkes) € S we have D = &nrcs < &nkes then
D;SEnr<nk.

Proof is by induction on the pair (subtypeU(D) — S, depth(nr)), ordered lexicographi-
caly.

Fact 3.27 (Recursive Subtype Consistency I1) If D; {} - nr < nkthen D F nr < nk.

Proof is by co-induction, and is similar to the proof of Theorem 3.20 (Emptyness
Consistency I1) on page 190.

Ananaloguefor Theorem 2.21 (Subtypes Refine) on page 36 holdsfor recursivetypes:

Fact 3.28 (Recursive SubtypesRefine) If D F nr < nk then thereisa ¢ such that D +
nrCtand D F nkC t.

Proof is by induction on the depth of nr.

For refinement types, we explicitly assumed that intersection is a greatest lower bound.
For recursive types, we must prove it. The proof is not very interesting; it is included
because it is aproof about recursive subtyping that has no analog in Section 3.3.

Lemma 3.29 (Recursive Intersection Lower Bound) If D -nr < nkandD Fnr&np C
tthenD Fnr & np < nk.

Proof: By co-induction. Take D as fixed, and let /' be an encoding of the declarative
subtype inference system in Figure 3.6 as a function from sets of pairs of recursive typesto
sets of pairs of recursivetypes. Let

Q= {(nr& np,nk) | Dt nr < nkandforsomet wehave D - nr & np C t}.

Then our goal isto show @ C gfp(F'), and by co-induction, it sufficesto show Q) C F(Q).
Let (nr & np, nk) be any element of @; if we can show (nr & np, nk) € F(Q), we are
done. We must have D + nr & np C t, SO nr must have one of the following forms:

Case nr «x &nres | Thenthelastinferenceof D + nr < nk must be NEW-INFER-RECSUB,

S0 nk < & nkes and the premises of NEW-INFER-RECSUB are

DF & nres C te
DF & nkes C te
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where tc is new and

foral cand al nr’ suchthat & nres = ¢(nr') € D
either D F nr’ empty (3.5)
or thereisa nk’ such that & nkes = c(nk’) € D and D + nr’ < nk'

Let ¢ and np” be given such that (& nres) & (&npes) = c(np”) € D. By definition of
intersection membership, np” o nr’ & np’ for some nr’ such that & nres = c(nr') € D.
By Fact 3.8 (Intersection Refines) on page 179, thereisau such that

DFnr'&np'Cu (3.6)

By (3.5) we have the following cases:

SubCase: D F nr’ empty | By Theorem 3.22 (Empty Intersection) on page 192 we have

D F nr' & np' empty.

SubCase: otherwise | Then by (3.5) there is a nk’ such that & nkes = ¢(nk') € D and
D+ nr' < nk'. By definition of Q, thisimplies (nr' & np’, nk') € Q.

End SubCase
Summarizing,

for al c and all np” such that (& nres) & (& npes) = c(np”) € D we have
either D + np” empty
or thereisa nk’ such that & nkes = c¢(nk’) € D and (np”, nk') € Q

Thus NEW-INFER-RECSUB gives ((&nres) & (&npes), nk) € F((Q), which is what we
wanted to show.

Case: nr < &{r; —nr; |t € 1...n} | Thenthelastinferenceof D - nr < nk iSARROW-

RECSUB and nk = &{k; — nk; |+ € 1...m}. The premises of ARROW-SUB include
forjinl...mwehave D+ &{nr;|i€l...nandk; <r;} < nk;.

Thelast inferencesof D - nr & np C ¢t must be AND-RECREFINES and ARROW-RECREFINES
0 np x &{r;—mnr; |1 € n+1...q} andt x t; —t, and the premises of ARROW-
RECREFINES are

for: € 1...qwehaver; C t;

and
fore€1...qwehave D F nr; C t5.

Using AND-RECREFINES gives

forjel...mwehave DF & {nr; |t €l...qandk; <r;} C to
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The definition of () gives
forjinl...mwehave (&{nr; |t € 1l...qandk; <r;},nk;) € Q

and then ARROW-RECSUB gives (nr & np, nk) € F(()), whichisour conclusion.

Case nr x &res | Thenthelast inferenceof D F nr < nk must be OLD-RECSUB, where

. . def def  def .
nk o & kes and the premise of OLD-RECSUB is (A res) < (A kes). The last inferences of
D F nr & np C t are AND-RECREFINES and OLD-RECREFINES, SO np o« &pes and t o« tc
where tc is old and the premises of OLD-RECREFINES include

def
for rc € res U pes wehave re C te.

By Assumption 2.16 (d/(if defined) on page 34, d/?f(rcs U pes) is defined, and by Assumption
def

217 (dﬁf Elim) on page 34 we have d/?f(rcs U pes) < d/(if kes. The OLD-RECSUB gives

(dff(rcs U pcs),d/%f kes) € (), whichisour conclusion.

Casel nr o< (nryz*...*nry,) & ... & (nrpm1* ... % nry,) | Then the last inference of

D+ nr < nk iSTUPLE-RECSUB, SO nk o (nk11*...% nk1,) & ... & (nkg*...*nky,)and
the premises of TUPLE-RECSUB are

foreel...nwehave D F nry & ... & nrp; < nky & ... & nky.

Thelast inferencesof D - nr & np C t must be AND-RECREFINES and TUPLE-RECREFINES,
SOt o< ty*...kt, @A np o< (N7 (rg1)1 * oo * P (ng1yn) & ... & (01,1 % .. % 0y, ) @nd the
premises of TUPLE-RECREFINES must be

foreel...nandj €1...2wehave D & nrj; C t,.
AND-RECREFINES then gives
foriel...nwehave DF nri; & ... & nr,; C t;,
and the definition of () then gives
fori e 1...nwehave(nry & ... & nr,;, nky; & ... & nky) € Q.
TUPLE-RECSUB then gives (nr & np, nk) € F(Q)), whichis our conclusion. ]

Intersection isalso a greatest lower bound for recursive types.

Fact 3.30 (Recursive Intersection Greatest) If D - nr < nkand D F nr < np then
Dt nr <nké& np.



CHAPTER 3. DECLARING REFINEMENTS OF RECURSIVE DATA TYPES 199

The proof is a straightforward co-induction, and we omit it.

All recursive types that refine some ML type are subtypes of themselves, but to make
the co-induction go through we must first instead prove a stronger assertion:

Lemma 3.31 (Self Recsub) If D F &nrsC tthenfor anynks C nrswehave D - &nrs <
&nks.

Proof: By co-induction. Take D asfixed and let F' be the natural encoding of theinference
rulesin Figure 3.6 as a function from pairs of recursive types to pairs of recursive types.
Let @ = {(&nrs,&nks) | D F & nrs C t and nks C nrs}. Then our goal is to show
) C ofp(F'), and by co-induction it suffices to show @ C F((). Proof is by cases on

& nrs.

The most natural statement of thistheorem would only allow nrs and nks to beidentical,
each with exactly one element. The case for arrow types required strengthening the co-
induction hypothesis to include the possibility that nrs contains more than one element.
Onceweallow nrs to contain morethan oneelement, the casefor recursivetype constructors
required including the possibility that nks has more than one element.

Case: &nrs = &nres | Then & nks o< & nkes. Let ¢ and nr’ such that & nres = ¢(nr') €

D be given. By definition of intersection membership, nr’ « &nrs’, and there is a
nks' C nrs’ suchthat & nkes = c(&nks') € D. Definition of Q) gives(&nrs’, & nks') € Q.
Summarizing this case so far (and adding an otherwise unnecessary disunction to makethe
summary have the right form),

for al c and all & nrs’ such that & nres = (& nrs') € D
either D - & nrs’ empty
or thereisa & nks’ such that & nkcs = ¢(&nks') € D and D F & nrs’ < & nks’

By NEW-INFER-RECSUB, thisimplies (& nres, & nkes) € F(Q), which iswhat we wanted to
show.

Casel &nrs < &{r;—nr; |t € 1l...n} | Then &nks «x &{r,—nr; | ¢+ € 1...m}

wherem < n. By SELF-SUB we have
forjinl...mwehaver; <r;
and some simple set manipulation and the definition of () gives
forjinl...m wehave (&{nr; |t €1l...nandr; < r;},nr;) € Q.

ARROW-RECSUB then gives (& nrs, & nks) € F(Q), which is what we wanted to show.

Case: &nrs oc &res | Then & nks o< & kes, where kes C res. Simple reasoning about d/(if

def
gives (d/(if res) < (d/(if kes), and by oLD-RECSUB this implies (& nrs, & nks) € (), which is

our conclusion.
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Casel nrs o< (nrig* ... % nry,) & ... & (nrgr* ... x nry,) | Then &nks o< (nrag * ... *

nri,) & ... & (nry,) where g < m. Set manipulation and the definition of ) give
forsinl...nwehave (nry; & ... & nrpi,nry; & ... & nry) € Q

and TUPLE-RECSUB gives (& nrs, &nks) € F(Q), which isour conclusion. ]

Now we can move on to prove that recursive subtyping istransitive, which is somewhat
more work. Since the subtyping rules mention emptyness, we need to first show that a
type smaller than an empty type is aso empty. Proving this requires a dightly unusual
co-induction; we include the case of the proof that makes the unusual ness necessary:

Theorem 3.32 (Empty Transitivity) If D F nk empty and D - nr < nk then D +
nr empty.

Proof: Take D asfixed, and let F' be the natural encoding of the rules for emptyness in
Figure 3.4 as a function from sets of recursive types to sets of recursive types. Let ' =
{nr | thereisank suchthat D - nk empty and D - nr < nk}, andlet Q) = Q' U gfp(F).
(Thisdefinition of ) allows thefirst subcase of the first case below to work.) Our theorem
istrueif Q" C ofp(#'), whichistrueif and only if () C gfp(F’). By co-induction it suffices
to show @) C F(Q). Proof isby cases on some nr € Q).

If nr € ofp(F'), then by definition of greatest fixed point, nr € F(gfp(F')), and by
monotonicity of /' wehave nr € F((Q)). Thusour result aways holdsif nr € gfp(F'), and
we only need to consider nr € Q' in the cases below.

Case nr «x &nres | Thenthelastinferenceof D F nr < nk must be NEW-INFER-RECSUB,

S0 nk < & nkes and the premises of NEW-INFER-RECSUB are

DF & nres C te
DF & nkes C te

forall c and al nr’ such that & nres = c(nr') € D
either nr’ € gfp(F) (3.7)
or thereisa nk’ such that & nkes = c(nk’) € D and D + nr' < nk'.

Thelast inference of D + nk empty must be NEw-INFER-EMPTY with the premise
for all ¢ and al nk’ such that & nkes = c(nk') € D wehave D - nk" empty  (3.8)
and by NEW-INFER-EMPTY it suffices to show

for al c and all nr’ such that & nres = c(nr') € D wehave nr' € Q

Let c and nr’ such that & nres = c(nr') € D begiven. By (3.7), we have these cases:
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SubCase: nr’ € gfp(F) | Then, by definition of ), we have nr’ € Q. (Thisisthe step
that requires () to be larger than ()’.)

SubCase: Otherwise | Then thereisa nk’ such that & nkes = c(nk’) € D and D + nr' <

nk'. By (3.8), thisimplies D + nk’ empty. Definition of Q' gives nr’ € ', and then
definition of ) gives nr’ € ().

End SubCase
Summarizing the above two cases,

for al c and all nr’ such that & nres = c(nr') € D wehave nr' € Q

NEW-INFER-EMPTY then gives & nrcs € F(Q)), which is what we wanted to show.

Case: Otherwise | The remaining possibilities are al straightforward and are omitted. O

Theorem 3.33 (Subtype Transitivity) If D - nr < nkand D F nk < npthen D F nr <
np.

Proof: By co-induction. Take D as fixed, and let F' be the encoding of the recursive
subtyping relation in Figure 3.6 as a function from pairs of recursive types to pairs of
recursive types, and let

@ = {(nr,np) | for some nk wehave D - nr < nk and D  nk < np}.

We need to prove () C gfp(F'), and by co-induction it suffices to show @ C F(()). Proof
is by cases on an nr such that (nr, np) € (). Delicate use of the fact that intersection for
recursive typesis aleast upper bound is necessary in the case where nr refines an arrow

type.

Case: nr o< &nres | Let nk be as given in the definition of (). Since D - nr < nk, by

NEW-INFER-RECSUB We have nk « & nkes and the following:
DF & nres C te

DF & nkes C te

forall c and al nr’ such that & nres = c(nr') € D
either D - nr’ empty (3.9)
or thereisa nk’ such that & nkes = c(nk') € D and D + nr' < nk'.

Similarly, since D + nk < np, by NEW-INFER-RECSUB we know np « & npes and the
following:
DF & npes C te
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for al c and al nk' such that & nkcs = ¢(nk') € D
either D + nk' empty (3.10)
or thereisanp’ such that & npcs = ¢(np’) and D + nk' < np’

Our goal isto prove (& nres, & npes) € F(Q), and by NEW-INFER-RECSUB it sufficesto
show

foral cand al nr’ such that & nres = c(nr') € D
either D = nr’ empty (3.11)
or thereisanp’ such that & npcs = ¢(np') € D and (nr’, np’) € Q

To prove this, let ¢ and nr’ such that & nres = c¢(nr') € D be given. By (3.9), either
D + nr’ empty (in which case we aredone) or thereisank’ such that & nkes = ¢(nk') € D
and D + nr' < nk’. Applying (3.10) to this gives two cases:

SubCase: D + nk' empty | Because D + nr’ < nk’, Theorem 3.32 (Empty Transitivity)

on page 200 gives D  nr’ empty, which implies (3.11).

SubCase: Otherwise | Then thereisanp’ such that & npes = ¢(np’) € D and D F nk' <
np'. The definition of @) then gives (nr', np’) € Q.

End SubCase
Summarizing, (3.11) istrueregardless. By NEW-INFER-RECSUB, thisimpliesour conclusion.

Casel nr < &{r;—nr; |1 € 1...n} | Then thelast inference of D F nr < nk must be

ARROW-RECSUB, SO nk « {k; —nk; | j € 1...m} and, smilarly, np < {p. —np, | z €
1...q}. The premises of ARROW-RECSUB must include

DF &{ri—nr;|i€l...n}Ct (3.12)
forjel...mwehave D &{nr; |t €1...nandk; <r;} < nk; (3.13)
forzel...qwehaveD - &{nk; |j€1...mandp, <k;} < np, (3.14)

By theform of nr, we must havet o« t; — 5.

By repeated use of Lemma 3.29 (Recursive Intersection Lower Bound) on page 196
with (3.13) we have

forzel...qandj’ € 1...m wehave
p. < k; implies
DF&{&{nr;|i€l...nandk; <r;}|jel...mandp, <k;} < nkj

and Fact 3.30 (Recursive I ntersection Greatest) on page 198 then gives

forz € 1...qwehave
DF&{&{nrijiel...nandk; <r}|j€l...mandp, <k;} <
&{nk; |7’ €l...mandp, < k;}.
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Set manipulation gives

{&{nr; i€ l...nandk; <r;}|j€l...mandp, < k;}

{nrileel...nandjel...mandp, < k;andk; < r;}.
By TRANS-SUBTYPE, p, < k; and k; < r; impliesp, < r;, 0
{nriltel...nandjel...mandp, <k; andk; <r;}
C
{nr;]i€el...nandp, <r;}.

Thus Lemma 3.29 (Recursive Intersection Lower Bound) on page 196 gives

forz € 1...qwehave
DF&{nr;jeel...nandp, <r;} <&{nkj|j ' €l...mandp, < k;}

From this, (3.14), and the definition of (), we can infer
forzel...qwehave (&{nr; |t €l...nandp, <r;},np,) € Q,

and ARROW-RECSUB then gives (nr, np) € F(Q), whichisour conclusion.

Case nr o &rcs | Then the last inference of D + nr < nk iSOLD-RECSUB and nk o

def
&kes. Similarly, np o« &pes. The premises of OLD-RECSUB are (d/(<f res) < (d/(<f kes)
def def  def . def def def
and (A kes) < (A pes). By Assumption 2.14 (trans-<) on page 34 we have (A res) <

def . . . .
(A pes), and then OLD-RECSUB gives (nr, np) € F(Q), which isour conclusion.

Casel nr o< (nryg*...*nry,) & ... & (nrpm1* ... % nry,) | Then the last inference of

D F nr < nk iSTUPLE-RECSUB, SO nk o (nki1 * ... * nk1,) & ... & (kg1 * ... % nky,).
Similarly, np o« (npyy * ... % npy,) & ... & (np,1 * ... * np,, ) and the premises of TUPLE-
RECSUB are

foreel...nwehave DF nry; & ... & nrp < nkyuy & ... & nky;

and
foreel...nwehave DF nky; & ... & nkyi < np; & ... & np,,.

The definition of () then gives
foriel...nwehave(nry & ...& nrp;,np,; & ... & np,;) € Q,

and TUPLE-RECSUB then gives (nr. np) € F/(()), which isour conclusion. ]

Finally, we can show that recursive subtyping is sound:
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Theorem 3.34 (Recursive Subtype Soundness) If D - nr < nkand D + v € nr then
DFovenk

Proof: By co-induction. Take D to be fixed, and let F' be the natural encoding of the
recursive subtyping relation defined in Figure 3.6 as a function from pairs of recursive
typesto pairs of recursive types, and let

Q = {(v, nk) | for some nr wehave D + nr < nkand D v € nr}.

We want to show ) C gfp(#'), and by co-induction it sufficesto show @ C F(Q). Proof
isby caseson a (v, nk) € ). The proof is straightforward, but we include it because the
result isimportant.

Case: nk « & nks where nks hastwo or more elements | Then there is an nr such that
Dt nr < &nksand D+ v € nr. By Lemma 3.31 (Self Recsub) on page 199,

for al nk’ € nks wehave D - &nks < nk’
and by Theorem 3.33 (Subtype Transitivity) on page 201,
for al nk’ € nks wehave D - nr < nk'.
By definition of @), thisimplies
for al nk' € nks we have (v, nk’) € Q

and by AND-RECVALUE thisimplies (v, & nks) € F(()), which isour conclusion.

Case: nk « k— nk' | Thenthereisan nr suchthat D F nr < k—nk’and D F v € nr.

The only way to infer the first of these is by using ARROW-RECSUB, SO nr o« &{r; — nr; |
¢ € 1...n} and the premises of ARROW-RECSUB are

DF &{ri—nr;|i€l...n}Ct

and
DFE&{nr;|iel...nandk <r;} < nk'. (3.15)

The last inferences of D + v € nr must be AND-RECVALUE and ABS-RECVALUE, SO v o
fn x:u => e andthe premises of ABS-RECVALUE are

forzinl...n,dl v, and al v"” such that

-+ kand

(fn z:u => e) v = (3.16)
we have

DFv € nr;
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We want to show ((fn x:¢ => e),k —nk') € F(Q). We can only infer this by using
ABS-RECVALUE with the premise

for all v" and v such that

" kand

(fn z:t => e) V' = (3.17)
we have

(v',nk") € Q

To prove this, let v* and " begiven such that - - v” : k and (fn z:t => e) v = o'
By (3.16),
ifiel...nandk <r;thenDtF v € nr;,

and then AND-RECVALUE gives D F v’ € &{nr; |71 € 1...nand k < r;}. Then (3.15) and
the definition of Q imply (v', nk') € Q. Thus (3.17) istrue, which implies our conclusion.

Case: nk o« nke | Thelast inferencein D + nr < nk must be NEW-INFER-RECSUB Where

nr « &nres and the premises of NEW-INFER-RECSUB are

DF & nres C te
Dt nke C te

for al c and al nr’ such that & nres = c¢(nr’) € D
either D = nr’ empty (3.18)
or thereisank’ suchthat nkc = ¢(nk') € Dand D + nr' < nk'.

The last inferences of D - v € nr must be AND-RECVALUE and NEW-RC-RECVALUE where
v o ¢ v’ and the premises of NEW-RC-RECVALUE are

for al nre € nres we have some nr/ . such that
nrc = ¢(nr!,.) € D and

nrc

DEv e nr

nrc

Let np = &{nr!,. | nrc € nres}. By definition of intersection membership, & nres =
c(np) € D. By AND-RECVALUE, D I v’ € np. By Theorem 3.21 (Soundness of Empty)
on page 191, we cannot have D + np empty, so (3.18) implies there is a nk’ such that
nke = ¢(nk') € D and D F np < nk’. By definition of @, thisimplies (v, nk’) € @, and

NEW-RC-RECVALUE then gives (¢ v’, nkc) € F(Q), which is what we wanted to show.

Case: nk « kc | Thenthelastinferenceof D F nr < nk iSOLD-RECSUBWherenr o & res

. . def def )
and the premise of OLD-RECSUB iS (A res) < ke. Thelast inferencesof D = v € nr must
be OLD-RC-RECVALUE and AND-RECVALUE with the premises

for r¢c € res wehave- F v : rc.
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. . . . . def .
Simplemanipulation of refinement typesthengives: - v : A res; then WEAKEN-TY PE gives
- F v 1 ke and OLD-RC-RECVALUE gives (v, k¢) € F/(()), whichisour conclusion.

Case nk o< nk1*...* nk, | Thenthelast inference of D - nr < nk iS TUPLE-RECSUB

and nr o« (nrig*x ...k nry,) & ... & (nry1*. . % nry,, ) and the premise of TUPLE-RECSUB
is
foriel...nwehave Dt nry; & ... & nr,,; < nk;.

The last inferencesof D F v € nk must be AND-RECVALUE and TUPLE-RECVALUE where
v x (v1,...,v,) and the premises of TUPLE-RECVALUE are

foreel...nandj € 1...mwehave D F v; € nrj;.
AND-RECVALUE gives
forrel...nwehaveD Fv;, € nr; & ... & nr,,;.
Then the definition of () gives
fori € 1...n wehave (v;, nk;) € Q

and TUPLE-RECVALUE then gives ((v1,...,v,), nk1 * ... * nk,) € F(Q), which is our
conclusion. O

3.5 Splitting

This section describes atype inference system for inferring the relation ¥ trom an abstract
declaration.

The type inference rules for splitting recursive types are in Figure 3.8. The x operator
used in the TUPLE-RECSPLIT rule was introduced on page 117. The ARROW-RECSPLIT and
TUPLE-RECSPLT rules are straightforward; we shall explain the other two.

The main idea behind the NEW-RECSPLIT rule is, wherever the type & nres has the
definition ¢(nr), there must be some consistency between the splits of nr and the splits of
& nres. One way to understand the details is by stepping through an explanation of why it
issound. Suppose avauec v isin &nres; then we need to know it is in some fragment
& nkes of & nres. There must be some definition ¢( nr) of & nres such that v isin nr. Thus
v isin some fragment nk of nr. If thereis some definition ¢(np) of & nkes such that np is
larger than nk, then we know that v isin np and ¢ v isin & nkes.

Another way to understand it is to look at an example. |If we take the datatype
declaration

datatype blist = cons of bool * blist | nil of runit
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s iIsanonempty set, and
for al nk inswehave D + nk < &nres, and
for al c and nr such that & nres = c(nr) € D
thereisan s’ such that
NEW-RECSPLIT: Dt nrxs
for dl nk € s, thereisan & nkcs € s and anp such that
&nkes = c¢(np) € D
DbEnk <np

DF & nres < s

ARROW-RECSPLIT.
DFri—nm&...&r,—nr, <{rm—nrm&...&r,—nr,}

def def def def
rea N oo N ey, X {N res | res € s}

OLD-RECSPLIT:
DbFnri&...& nr, <X {&res | res € s}

foriel...nwehave Dt nry & ... & nr,,; < s;
DE(nrigs...xnry,) & .. & (nrp1 koo k nry,) X s1 X ... X Sy,

TUPLE-RECSPLIT:

Figure 3.8: Splitting for Recursive Types (Greatest Fixed Point)

and the abstract declaration

D = {T yiise = cons(T po01 * T piist)
T piise = nil(runit)
bev = cons( T po0r * bod)
bev = nil(runit)
bod = cons(T j,0 * bev)},

we can infer D = Ty < {bev,bod}. The root inference of the derivation of this is
NEW-RECSPLIT with the premises:

{bev, bod } isanonempty set
D bev S Tblist
D bod S Tblist
DF Tbool * Tblist = {Tbool * bev, Tbool * bOd}
bev = cons( T e * bod) € D
Dr Tbool * bod S Tbool * bod
bod = cons(T 01 * bev) € D
D Tt * bev < Tyoor * bev
D F runit < {runit}
bev = nil(runit) € D
D runit < runit
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Despite the lack of intuitiveness of thisrule, it seemsto work well in practice.

A previous version of OLD-RECSPLIT sSsmply said

def def def
rcit N\ ... \Nrc, Xs

DFnri&...& nr, <s

which is straightforward. The problem with this definition is that we need to prove an
analogue of Lemma 2.43 (Split Intersection) on page 54 for recursive types. This requires
sometimes having intersections of recursive types as fragments of recursive types; the
previous version does not permit this, but the rule as stated alowsiit.

It is not clear how to make an efficient agorithm for this inference system. The
implementation attemptsto use abrute-force search to find the principal splitsdirectly; | do
not know if that strategy is sound. Roughly speaking, the implementation enumerates all
fixed points of the function arising from this inference system such that each intersection
of recursive type constructors has exactly one split, and that no two elements of that split
are comparable. A fixed point that contains the smallest types in the splits is chosen, and
we assume it contains principal splits. | do not know whether there will always be a fixed
point with the least types.

We can show if avalueisin arecursivetype, thenitisin somefragment of that recursive
type.

Theorem 3.35 (Recursive Split Soundness) If D - nr < nksand D + v € nr then for
some nk € nkswe have D - v € nk.

Proof: By induction on v.

Case: v x ¢ v wherecisnew | Then the last inferencesof D + v € nr must be AND-

RECVALUE and NEW-RC-RECVALUE S0 nr hasthe form & nres and the premises of NEw-RC-
RECVALUE are
for nre € nres wehave nre = ¢(nry,,.) € D (3.19)

and
for nrc € nres wehave D + v’ € nr,,.. (3.20)

Thelast inferenceof D + nr < nks must be NEW-RECSPLIT with the premises
nks iSanonempty set
fordl nk € ktswehave D F nk < &nres
and

forall ¢ and all nr’ such that & nres = ¢(nr') € D
thereisan s’ such that
DFnr' =<
foral np' € s’ thereisan & nkcs € nks and anp such that
&nkes = c(np) € D
DEnp' <np

(3.21)
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Let nr’ = &{nr,. | nre € nres}. Using the definition of intersection membership and
(3.19) gives & nres = ¢(nr') € D. Thuswe can use (3.21) to get an s’ such that

DFEnr<§

and
foral np’ € s’ thereisan & nkes € nks and a np such that

&nkes = c¢(np) € D (3.22)
DF np' < np.

Using AND-RECVALUE on (3.20) gives D + v’ € nr’, so our induction hypothesis gives a
np’ € s’ suchthat D F v € np’. Thus (3.22) gives a & nkcs € nks and a np such that
&nkes = c¢(np) € Dand D + np’ < np. Theorem 3.34 (Recursive Subtype Soundness) on
page 204 gives D F v’ € np, and Fact 3.11 (Intersection Value Membership) on page 183
thengives D - ¢ v’ € &nkes, whichisour conclusion.

The remaining cases are simple, but they are also short, so we include them for com-
pleteness.

Case v < fn z:t => e | Thenthelastinferencesof D + v € nr must be AND-RECVALUE

and ABS-RECVALUE where nr o« r1 —nr1 & ... & r, — nr,. Thusthe only way to infer
D F nr < nks isby using ARROW-RECSPLIT SO nks = {nr} andour premise D - nr < nks
isour conclusion.

Case: v x ¢ v’ wherecisold | Thenthelastinferencesof D + v € nr are AND-RECVALUE

and OLD-RC-RECVALUE where nr « & res and the premises of OLD-RC-RECVALUE are
for nr € rcs wehave-+ ¢ v’ : re.
The last inference of D + nr < nks must be OLD-RECSPLIT where for some set s of

sets of refinement type constructors, kts = {&kes | kes € s} and the premise of OLD-
. def  gef def : : , :

RECSPLIT iS A res X {A kes | kes € s}. Simple reasoning about refinement types gives

- ¢ v &res and Theorem 2.69 (Splitting Value Types) on page 89 givesa & kes € nks

def .
suchthat - - ¢ v’ : A kes. By WEAKEN-TYPE, OLD-RC-RECVALUE, and AND-RECVALUE this
implies D F ¢ v € &kes, which isour conclusion.

Casel v x (v1, ..., v,) | Then the last inferences of D F v € nr must me AND-

RECVALUE and TUPLE-RECVALUEWherenr o (nrig* ...k nry,) & ... & (nrp1% .. % nrpyy,)
and the premises are

foreel...nandj € 1...mwehave D F v; € nrj;.

The last inference of D + nr < nks must be TUPLE-RECSPLIT where nks o< s1 X ... X s,
and the premises of TUPLE-RECSPLIT are

forrel...nwehave Dt nry & ...nrp; X s;.
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AND-RECVALUE gives
foriel...nwehave Dt v; € nry; & ... & nr,,;,
and then our induction hypothesis gives
for: € 1...nthereisank; € s; suchthat D F v; € nk;.

TUPLE-RECVALUE then gives D + (v1, ..., v,) € nky*...* nk,. The definition of x
gives nky % ... * nk, € nks, whichisour concluson. O

It is also possible to show that intersection interacts with splitting in a natural way.
Compare thisto Lemma 2.43 (Split Intersection) on page 54.

Fact 3.36 (Recursive Split Intersection) If DFnr<sandDFnrCtand D - nk C ¢,
then D Fnr& nk< {np& nk | np € s}.

Proof of thisisa straightforward co-induction.

3.6 Recursive Types provide Refinement Type Construc-
tors

In this section we show that the assumptions made in Chapter 2 and the assumptions made
about enqlepf)ty in this chapter actually hold for recursive types as defined in this chapter.

In Subsection 3.6.1, we define the operatorsthat were taken as predefined in Chapter 2
in terms of recursive type operations defined in this chapter. Then in Subsection 3.6.2 we
enumerate the assumptions from Chapter 2 and prove them. Finally, in Subsection 3.6.3
we will prove agrand soundness result for thisentire chapter: if refinement type inference
concludesavalueisin arefinement type, then it isalso in the corresponding recursive type.

3.6.1 Defining the Primitives

. . . def def . .
First we need to define the primitives A, <, d?f, and so forth in terms of recursive type

inference as defined in this chapter. We assume at this point that there is some specific
abstract declaration D we are adding to the global environment, and the primitives are
being expanded to include the new declaration. For example, we expect ¢ * s urtobe
trueif either it was true before we encountered the declaration D, or ¢, r and nr satisfy the
definition we give below.

If two refinement type constructors refine the same ML type constructor, then by
Assumption 2.16 (d/(if defined) on page 34 their intersection (using d/(if) is a refinement type
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constructor. This is not true for recursive type constructors, so we cannot ssimply define
the new refinement type constructors to be the new recursive type constructors. Instead,
we define a refinement type constructor to be any intersection (using &) of recursive type
constructorsthat al refine the same ML type constructor.

We can easily promotethisway to construct refinement type constructorsfrom recursive
type constructors to a way to construct refinement types from recursive types. However,
since we consider & for recursive types to be associative, commutative, and idempotent,
but we do not assume the same for A for refinement types, there are many refinement types
corresponding to one recursive type. For example, the recursive type bem & bod & T ;s
corresponds to any of the refinement types

bem A bO(l A Tblish
bod N bem A (T piist & bem),
bem & bOd & Tblz‘st;

or infinitely many others. We could represent this as a one-to-many relation between
recursive types and refinement types. Instead, we will represent it as the inverse of a
many-to-one function rtort from refinement types to recursive types. (Hence the name
rtort.) Formally, we have the following definition:

Definition 3.37 Define the function rtort from refinement types to recursive types by the
recursion equations

rtort(ry — rp) = r1 — rtort(r,)
rtort(rq A rp) = rtort(rl) & rtort(ry)
rtort(rc) =
rtort(&nres) = & nrcs
rtort(rq * ... % r,,) = rtort(ry) * ... rtort(r,)

It is very straightforward to define when a refinement type constructor refines an ML
type constructor in terms of the behavior of the recursive types:

Definition 3.38 Wesay &nres © teif D - & nres tc.

With this definition, recursive types refine ML types if and only if the corresponding
refinement types refine the same ML types.

Fact 3.39 Under the assumptions arising from D we have » C t if and only if D
rtort(r) C ¢

Proof of thisisby inductionon r.

To find the intersection of constructed refinement type constructors, we take the inter-
section at the recursive type level:
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Definition 3.40 We say &nres A &nkes = & (nrcs U nkes) whenever thereisat such that
D F & (nresuU nkes) C t.

The definition of subtyping refinement type constructorsin terms of subtyping recursive
typesisaso straightforward:

def
Definition 3.41 We say &nrcs < &nkesif D F &nres < &nkes.

With this definition, the subtyping relation for refinement types coincides with the one
for recursive types.

Fact 3.42 (Refinement and Recur sive Subtyping Equivalence) Wehave D + rtort(r) <
rtort(k) if and only if, under the assumptions arising from D, we have r < k.

One proof of this takes the “if” and the “only if” cases separately. To prove the “if”
case, use Theorem 2.21 (Subtypes Refine) on page 36 to find at that both r and £ refine, and
proceed by induction on that ¢. To prove the “only if” case, we use Fact 3.28 (Recursive
Subtypes Refine) on page 196 to find a ¢ that both rtort(r) and rtort(k) refine, and again
proceed by induction on that ¢.

This implies that, whenever two refinement types coerce to the same recursive type,
they are equivalent:

Corollary 3.43 (Equivalencertort) If rtort(r) = rtort(k) andr C t and k C ¢ thenr = k.

Proof: By Lemma 3.31 (Self Recsub) on page 199, D F rtort(r) < rtort(k), and Fact 3.42
(Refinement and Recursive Subtyping Equivalence) on page 212 gives r < k. Similarly
k < r, and together these imply r = k. O

This can be used to show that recursive splitting and refinement type splitting are
consistent:

Fact 3.44 (Refinement and Recursive Split Consistency) If D  rtort(r) =< {rtort(k) |
kestandr C tthenr < s.

The proof of thisisa straightforward induction on ¢.

Whenever we have &nres = c(rtort(r)) € D, we can say that ¢ o &nres.
In general, the converse does not hold, because Assumption 2.52 (Constructor Argument
Strengthen) on page 67 and Assumption 2.53 (Constructor Result Weaken) on page 67 place

constraints on the behavior of ' that may not be satisfied by our abstract declaration. For
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example, in the presence of the example abstract declaration appearing on page 183, these
constraintsgive

cons d?f (

T oot * (bev & bod)) — bev

def
because bev = cons(T o, * bod) € D and (bev & bod) < bod. Reasoning about oef
requiresfirst defining a version of intersection membership that allows the argument to the
constructor to be strengthened and the result to be weakened:

Definition 3.45 (Weakened | nter section Membership) We define D to contain all ele-
ments of theformé&nres > ¢(nr) where there are nk and nkcs such that & nkes = ¢(nk) € D
and D - nr <nkand D F &nkcs < &nrcs.

This relation makes a natural statement about membership of valuesin recursive types:

Fact 3.46 (Weakened I ntersection Soundness) If &nrcs > c(nr) e Dand D - o' € nr
then D = ¢ v’ € &nrcs.

The proof islittle more than two uses of Theorem 3.34 (Recursive Subtype Soundness)
on page 204.

We can sometimes use the definition of recursive subtyping to eliminate one of the
subtyping assertions in the definition of Weakened I ntersection Membership:

Lemma 3.47 (Weakened Intersection Simplificationl) If nrc > ¢(nr) then either D +
nr empty or thereisank such that D - nr < nk and nrc > ¢(nk) € D.

Proof: The definition of weakened intersection gives npcs and np such that

& npes = ¢(np) € D (3.23)
DFnar<np (3.24)
D F &npes < nre (3.25)

The last inference of (3.25) must be NEW-INFER-RECSUB with the premise

for al c and all np’ such that & npces = ¢(np') € D
either D + np’ empty .
or thereisank such that nrec = ¢(nk) € Dand D F np’ < nk

Using (3.23) and (3.25), we get

either D + np empty

or thereisank such that nrec = ¢(nk) € Dand D F np < nk’ (3.26)
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If D+ np empty, then Theorem 3.32 (Empty Transitivity) on page 200 and (3.24) give
D F nr empty, which implies our conclusion.

Otherwise, let nk be as given in (3.26). Thus nre = ¢(nk) € D and D + np < nk;
Theorem 3.33 (Subtype Transitivity) on page 201 and (3.24) give D + rc¢ < nk. These
imply our conclusion. a

We can also do the same simplification if we replace nrc by anintersection of recursive
type constructors:

Lemma 3.48 (Weakened Intersection Simplification I1) If &nrcs > ¢(nr) € D then ei-
ther D - nr empty or thereisank suchthat D - nr < nkand &nrcs = ¢(nk) € D.

Proof: By Lemma 3.31 (Self Recsub) on page 199,
for al nrc € nres wehave D F & nres < nre.

By definition of weakened intersection, & nres > c(nr) € D impliesthere are & nkes and
nk such that
&nkes = c¢(nk) € D,

D & &nkes < &nres,

and
DE nr <nk.

Theorem 3.33 (Subtype Transitivity) on page 201 gives
for al nrec € nres wehave D F & nkes < nre
and definition of weakened intersection then gives
for al nrc € nres wehave nre > c(nr) € D.
and then Lemma 3.47 (Weakened Intersection Simplification 1) on page 213 gives

for all nre € nres, either
D+ nr empty

or thereisank,,. such that (3.27)
DFEnr<nk,.
nre = ¢(nk ) € D

If D F nr empty, we aredone. Otherwiselet nk = &{nk,,. | nrc € nres}. By (3.27)
and the definition of weakened intersection, we have & nres = ¢(nk) € D, and by (3.27)
and Fact 3.30 (Recursive Intersection Greatest) on page 198 we have D F nr < nk. These
last two are our conclusion. O

We can define ' in terms of this. To make Assumption 2.50 (Split Constructor Consis-

tent) on page 66 hold, we need to also say that ¢ ® < re whenever r is empty; seethe
counterexample that arises if we do not assume this in the discussion of Split Constructor
Consistent on page 217.
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Definition 3.49 We say ¢ * - < &nrcsif either &nres > c(rtort(r)) € D, or all of the
following hold:
D F rtort(r) empty

and for some ¢ and tc we have
def
c Tt —tc,
DF &nrcsC tc,

and
D F rtort(r) C t.

We define enqlepf)ty in terms of emptyness for recursive types:

Definition 3.50 We say &nrcs enqlepf)ty if D &nrcsempty.

Finally, we define splitting for constructed refinement type constructors in terms of
splitting for recursive types:

Definition 3.51 If D F & nrcs < s, then we say &nres € {&nkcs | &nkes € s}.

With these assumptions, refinement type emptyness and recursive type emptyness co-
incide:

Fact 3.52 (Emptyness Consistency) If D + rtort(r) empty then under the assumptions
introduced by D we have - r» empty.

The proof is by induction on depth(rtort(r)).

3.6.2 Proving the Assumptions

In this subsection we enumerate the assumptions made in Chapter 2 about predefined
properties of refinement type constructors, and prove that they hold for refinement type
constructors derived from recursive types as described in this chapter. This is only non-
trivial for Split Constructor Consistent, which is discussed on page 217.

Some assumptions are not addressed in this list because they concern only ML type
inference, which for the purposes of this thesis we assume iswell-understood. We include
them in the list with the statement that the assumption is entirely about ML types.

Assumption 2.2 (Constructors have Unique ML Types) on page 26: For each ¢, there

are unique ¢t and ¢¢ such that

def
c it tc.
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Thisisentirely about ML types.
Assumption 2.7 (Unique Predefined Refinements) on page 31: For al rc thereis a
unigue tc such that rc dff te.

Proof: If rcisold, thisfollowsfrom Unique Predefined Refinements beforeweincorporated
D into the environment.

Otherwise, rc isnew and hastheform & nrecs wherethereisatc suchthat D F & nres C
te. Thusthereisat least one rc C te.

To show there is at most one, suppose D = & nres C tc and D F & nres T tc'.
Let nre be any element of nrcs. By AND-RECREFINES we must have D + nre C te and
D F nre C te’. Thelast inference of these must be NEw-RECREFINES with the premises

for al ¢ and nr such that nre = ¢(nr) € D

thereisat such that ¢ ™ ¢ — te
for al ¢ and nr such that nre = ¢(nr) € D

thereisat such that ¢ d:?f t— tc'

By Condition 3.2 (New Recursive Type Constructors Defined) on page 178 these universal
guantifications are not vacuous, so by Assumption 2.2 (Constructors have Unique ML
Types) on page 26, tc = tc'. O

Assumption 2.8 (Finite Predefined Refinements) on page 31: Immediatefrom Condition
3.6 (Declarations are Finite) on page 179.

def
Assumption 2.13 (reflex-<) on page 33: Immediate from Lemma 3.31 (Self Recsub)
on page 199.

def
Assumption 2.14 (trans-<) on page 34: Immediate from Theorem 3.33 (Subtype Tran-
sitivity) on page 201.

def
Assumption 2.15 (Refines <) on page 34: Immediate from Fact 3.28 (Recursive Sub-
types Refine) on page 196 and Fact 3.9 (Recursive Unique ML Types) on page 179.

Assumption 2.16 (dﬁf defined) on page 34: Immediate from the definition of refinement
type constructors.

Assumption 2.17 (dﬁf Elim) on page 34: Immediate from Lemma 3.31 (Self Recsub) on
page 199.

def
Assumption 2.18 (and-intro-<) on page 34: Immediate from Fact 3.30 (Recursive
I ntersection Greatest) on page 198.

Assumption 2.30 (Split Subtype Consistent) on page 49: Immediate from the second
premise of NEW-RECSPLIT.
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Assumption 2.36 (Refinement Constructor Splitsare Nonempty) onpage51: Immediate
from the first premise of NEW-RECSPLIT.

Assumption 2.42 (Predefined Split Intersection) on page 54: Immediate from Fact 3.36
(Recursive Split Intersection) on page 210.

Assumption 2.49 (Constructor Type Refines) on page 65: Straightforward from Fact
3.28 (Recursive Subtypes Refine) on page 196.

Assumption 2.50 (Split Constructor Consistent) on page 66: If

def
C . T“—rc

and »
re X {rey, ..., re,}

then there is some provable assertion of the form

P {ry, .. Tt

such that for all j between 1 and m thereis an : between 1 and » such that

def
c . Tj = T1C;.

If instead we defined ¢ “ < & nres to mean &nres > c(rtort(r)) € D, thiswould
not be true. A counterexample presumes the datatype declaration

datatype d = a of tunit | b of tunit | c of d

and the abstract declaration

D = {em > bottom(d),
neml = a(runit)
neml = b(runit)

)

?

2
nem?2 = a(runit

(

(
nem2 = c(em),
nem3 = a(runit),
nem4 = b(runit)}.

?

The names em and nem stand for “empty” and “nonempty”, respectively. Because
D F nem! < nem?2, we have nem! > c(em) € D. We adso have D + nem! x
{nem3, nemj }, so Split Constructor Consistent would give a split of em where ¢ maps
each fragment to either em3 or em/. Since the fragments must aII be subtypes of e¢m, the
only possible splitis {em}. If we had the smpler definition of ¢ this would imply that
either nem3 > c(em) € D or nem4 > c(em) € D, neither of WhICh is true. With the
actual definition of ,we haveboth ¢ ® em < nem3 andc ® em — nem4 . Infact, we

can prove that Split Constructor Consistent istrue in genera for the actual definition of .
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Proof: We must have nr oc &nres. By definition of d?f, either D F rtort(r) empty
or &nres > c(rtort(r)) € D. In the latter case, Lemma 3.48 (Weakened Intersection
Simplification I1) on page 214 gives

either D F rtort(r) empty

or thereisa nk such that
D F rtort(r) < nk
&nres = ¢(nk) € D.

If D+ rtort(r) empty, by SELF-SPLIT we can choose s = {r}. Let ke be any element of
sc; then the definition of o immediately gives ¢ s ke, which isour conclusion.

Otherwise, thereisank such that D + rtort(r) < nk and &nres = ¢(nk) € D. If we

let s¢’ = {rtort(p) | p € sc} the definition of ¢ gives D | & nres < sc’; thelast inference
of thismust be NEW-RECSPLIT with the premises

sc¢’ isanonempty set,

foral np € s¢’ wehave D - np < &nres,
and

for al ¢ and nk such that & nres = ¢(np) € D
thereisan s’ such that
DF nk < s, and
for al np ins’ thereisan & nkes € s¢’ and ang such that
&nkes = ¢(ng) € D, and
DFnp < ng.

Applying the last of theseto nk and ¢ gives an s’ such that
DFnkxs

and
for al np in s’ thereisan & nkes € sc¢’ and a ng such that

&nkes = ¢(nq) € D, and (3.28)
DFnp < ng.

By Fact 3.36 (Recursive Split Intersection) on page 210,
D F nk & rtort(r) < {np & rtort(r) | np € s'}.

Lets = {p&r | rtort(p) € s'}. By Fact 3.44 (Refinement and Recursive Split Consistency)
on page 212, if we choose p such that nk = rtort(p), we have p & r < s. Since D
rtort(r) < nk, wehavep & r = r, SO EQUIV-SPLIT-L givesr < s.

Letk € sbegiven; thusk « p&r wherertort(p) € s'. By (3.28), thereisan & nkes € s’
andang suchthat & nkes = c¢(nq) € D and D - rtort(p) < ng. By Lemma3.29 (Recursive
I ntersection Lower Bound) on page 196, this implies D + rtort(p) & rtort(r) < ng, and
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the definition of rtort immediately gives D - rtort(k) < ng. The definition of weakened
intersection then gives .
& nkes > c(rtort(k)) € D

and the definition of ® givesc ® & < & nkes. Since & nkes € sc’, Ankes isin se, so this
is our conclusion. O

Assumption 2.51 (Constructor And Introduction) on page 67: If ¢ *® s e and

def
cd:efrcakcthencd?fTC—)(rc/\kc).

Proof: The proof is very straightforward despite its length and may be skipped on the first
reading.

If cisold, then Constructor And I ntroduction continues to be truefor it as it was before
we added the declaration D.

If weinfer either of our hypotheses because D + rtort(r) empty, then the definition of
o gives our conclusion immediately.

Otherwise, rc o &nres and ke o &nkes and by the definition of ' we have & nres >
c(rtort(r)) € D and &nkes > c(rtort(r)) € D. By definition of weakened intersection,
thereare np,, npcsq, np,, and npcs, such that all of the following are true:

&npesy = c(npy) € D
Dt rtort(r) < np,
D &npesy < &nres
&npes, = c(np,) € D
D rtort(r) < np,
D F &npes, < &nkes.
The definition of intersection membership gives
& (npesy U npes,) = c¢(npy & np,) € D.
Fact 3.30 (Recursive Intersection Greatest) on page 198 gives
D Frtort(r) < np; & np,
and Lemma 3.29 (Recursive Intersection Lower Bound) on page 196 gives

D+ &(npesy U npes,) < &nres

and
D &(npesy U npes,) < &nkes

and Fact 3.30 (Recursive I ntersection Greatest) on page 198 then gives

D &(npesq U npes,) < &(nres U nkes).
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Finally the definition of weakened intersection then gives

& (nres U nkes) > c(rtort(r))

I def def . def def I .
and the definitionsof = and A givec © r — re A ke, whichisour conclusion. a

Assumption 2.52 (Constructor Argument Strengthen) on page 67: If ¢ *® s reand
k §rthencd?fk;> rc.

Proof: If we inferred ¢ “ » < ¢ because D rtort(r) empty, then Theorem 3.32
(Empty Trangitivity) on page 200 gives D F rtort(k) empty, and our conclusion follows
immediately. Otherwise our conclusion follows from Theorem 3.33 (Subtype Transitivity)
on page 201. a

def
Assumption 2.53 (Constructor Result Weaken) on page67: If ¢ s reand re < ke,
then ¢ S ke

Proof: If wecaninfer ¢  r — rc because D - rtort(r) empty, then we get our conclusion
immediately. Otherwise it followsfrom Theorem 3.33 (Subtype Trangitivity) on page 201.
O

Assumption 3.12 (Emptyness Constructor) on page 184: If rc enqlepf)ty and ¢ ® 1 e
then - r empty.

Proof: By definition of ¢ s e, dither D rtort(r) empty or rtort(rc) > c(rtort(r)) €
D. If the former is true, then Fact 3.52 (Emptyness Consistency) on page 215 gives our
concluson. Otherwise the statement of NEW-INFER-EMPTY, two uses of Theorem 3.32
(Empty Transitivity) on page 200, and Fact 3.52 (Emptyness Consistency) on page 215
give our conclusion. a

def
Assumption 3.13 (Emptyness Subtyping) on page 185: If rc enqlepf)ty and k¢ < re then
ke enqlepf)ty. Immediate from Theorem 3.32 (Empty Transitivity) on page 200.

3.6.3 Value Containment

Here we will show that if avalue has arefinement type, it has the corresponding recursive
type.

Theorem 3.53 (Value Containment) Under the assumptionsintroduced by D, if - - v @ r
then D + v € rtort(r).

Proof: Take D as given, and let F' be the natural encoding of the rules for recursive type
membership in Figure 3.2 as afunction, and let ) = {(v, rtort(r)) | - - v : r}. We need to
show @ C gfp(#') and by co-induction it sufficesto show @ C F(Q). Proof isby caseson
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apair (v,r) in Q. The proof is straightforward and is included only because the result is
important.

Cese: r ox 11 & 1 | Then rtort(r) = rtort(r1) & rtort(r;). We can use WEAKEN-TY PE and

-Fov:rtoinfer-Fwv:rpand- F v rp. Thus, by definition of (), we have

(v, rtort(r1)) € @
and
(v, rtort(rz)) € Q.

Then AND-RECVALUE gives (v, rtort(r1) & rtort(rz)) € F(Q), which is what we wanted to
show.

Case: v oxx ¢ v/, cisnew, and r < nre | By Lemma2.68 (Subtypelrrelevancy) on page 88

and - F v : nrc we have
-H-v : nre.

The last inference of this must be CONSTR-TY PE with the premises

c d?f k — nre (3.29)

and
o k.

If we were able to infer (3.29) because D + rtort(k) empty, Fact 3.52 (Emptyness Con-
sistency) on page 215 gives - k& empty, and Fact 3.14 (Soundness of Refinement Type
Empty) on page 185 contradicts - + v’ : k. Thus we must have inferred (3.29) from
nre > c(rtort(k)). By Lemma 3.47 (Weakened Intersection Simplification I) on page 213,
either D - rtort(k) empty or thereisa np such that

D F rtort(k) < np

and
nre = c¢(np) € D.

We have already show that D + rtort(k) empty cannot betrue. Thusthe other branch of the
digunction istrue, so we can choose a p such that rtort(p) = np. By Fact 3.42 (Refinement
and Recursive Subtyping Equivalence) on page 212 we have k < p, and then WEAKEN-TY PE
gives- - v’ : p. Thusby definition of () wehave (v', rtort(p)) € ), and NEW-RC-RECVALUE
then gives (¢ v/, nre) € F(Q), whichis our conclusion.

Case: v x ¢ v/, cisnew, r < &nres where nres has two or more elements.

WEAKEN-TYPE immediately gives

foral nrc € nres wehave - = v : &{nre}.
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Then the definition of () gives
for al nre € nres we have (v, nre) € Q)

and AND-RECVALUE then gives (v, & nres) € F(Q), which isour conclusion.

Case: v x ¢ v/, cisold, r  re¢ | Then we can immediately use OLD-RC-RECVALUE to get

(v, rc) € F(Q), whichisour conclusion.

Casel v x fn x:t => eandr «x r1—rp | Suppose- F v” iriand(fn z:t => ¢e) v =

v'. Then, by APPL-TYPE, we have - + (fn z:t => ¢e) v” : rp, and by Theorem 2.71
(Refinement Type Soundness) on page 99 we have - - v’ : r,. The definition of ¢) then
gives (v', rtort(r)) € Q.

Thus, by ABS-RECVALUE we have ((fn z:t => e), nr —rtort(rp)) € F/(Q). By defi-
nition of rtort, thisis our conclusion.

Case: v ox (v1, ..., vp) @andr ocry*...xr, | By Lemma 2.68 (Subtype Irrelevancy)

on page 88 we have - H- (vy, ..., v,) :r1*...x7r,. Thelast inference of this must be
TUPLE-TYPE with the premises

forzinl...n wehave-F v; @ r;.
By definition of ) thisimplies
foriinl...n wehave (v, rtort(r;)) € Q,

and the definition of rtort and TUPLE-RECSUB give ((vy, ..., v,),rtort(r)) € F(Q), which
isour conclusion. O



Chapter 4

Refinement Type Variables

There are two changes that need to be made to add polymorphism to refinement types. We
need to add type variables and refinement type constructors that take type arguments. This
chapter discusses the former, and Chapter 5 discusses the latter.

Adding thetypevariablesisfairly smple. After looking at the various plausible options
in Section 4.1, wewill concludethat it seems best for each ML type variableto have exactly
one refinement, which is a refinement type variable. Then in Section 4.2 we will describe
the changes we must make to the machinery in Chapters 2 and 3 to accommaodate this.

4.1 Adding Type Variables

The motivating examples behind refinement types have not made interesting use of poly-
morphism so far. Since ML isindeed a polymorphic language, we need a straightforward
correct way to deal with polymorphism. For some examples, the desired behavior isclear.
For instance, since true has the refinement type ¢t and false has the refinement type ff,
we would like the statement

let val id = fn x => x
in

(id true, id false)
end

to get the refinement type ¢t * ff.

Notation to represent the typefor id seems straightforward. The most general ML type
scheme for id iswritten as
V(ia).a—«a
By analogy with the notation for the ML type scheme, we shall also write the refinement

type scheme as
V(a).a— a.

223
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4.1.1 Instantiation

Next we need to understand how to instantiate the refinement type. Instantiating the ML
typeissimple; ML typeinferencetells usthat in this examplethe « in the ML type scheme
should be instantiated to bool, giving a resulting type of bool — bool. Instantiating the
refinement type scheme is a little more complex because it must have both of the types
tt — tt and ff — ff. We could take the path used in [Pie91a] and instantiate the refinement
type schemeto alist of refinement typesthat isexplicitly givenintheexpression; inthiscase
we would be instantiating the o in V(a).ao — o to { ¢, ff } to get thetype tt — tt A ff — ff.
However, we know that all of the typesin the list must be refinements of bool, and since
bool has finitely many refinements, we can put all of those refinements into the list. We
might as well put all possible refinementsinto the list since that will yield the most precise
possible result; since thereistherefore only one reasonable list, we can omit thelist instead
of explicitly specifyingit.

Thus, to instantiate a refinement type scheme, we instantiate each refinement type
variable to an ML type. The result is the intersection of all distinct results of substituting
refinements of that ML type for the refinement type variable. For example, instantiating
the refinement type variable o to bool in the refinement type scheme V(«).a — o yields

tt—tt /\ﬁ _)ﬁ A Tbool - Tbool/\ J—bool - J—bool

Once we move on to more complex examples, more choices arise. Consider the
expression skeleton:

let val strictif = fn x => fn y => fn z => if x then y else z
in

end
What should be the refinement type scheme for strictif? The ML schemeis
V(a).bool = a— a — a.

It istempting to permit multiple refinements of each ML type variable, since we could give
this expression an informative type scheme like

Vi pB)tt —a—f—a A
Jf—a—=p5—-p A

Tiool Y —a—a A
J—bool_>0v/_>a_)J—oz

Unfortunately, if we permit arbitrarily many refinements of each ML type variable, then
there are expressions with no principal type. We will illustrate this with an example.

In the example, we shall use the datatype
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datatype a option = SOME of « | NONE

to represent a value which may or may not be present. Note that NONE has no argument;
we are using the concise version of the syntax for this example. We want to distinguish
the two constructors of this datatype at the refinement type level, so we use the following
rectype statement:

rectype « some = SOME («)
and o none = NONE

(Although the value constructor NONE takes no argument, the refinement type constructor
none doestake one argument becauseit refinesthe ML type constructor option which takes
one argument.)

Suppose we have a collection of rewrite rules which only apply sometimes. We can
represent one of these rules as a function with the type

a— « option

If the rewriterule rew appliesto avalue =, then rew = = SOME y, wherey istheresult of
rewriting . If the rewrite rule does not apply, then rew = =- NONE.

One natural thing to do with a rewrite rule to repeat it until it no longer applies; the
result isarewriterule. We can write this as a straightforward higher-order function:

fun repeat rew x =
case rew x of
NONE => SOME x
| SOME y => repeat rew y

which hasthe ML type (« — « option) — o — « option.

Now, assuming an infinite number of refinement type variables refine each ML type
variable, what is the type for repeat? Suppose the refinement type of the value bound
to x is «;. Perhaps the value bound to x will be rewritten zero times; this happens if the
argument to repeat hastype a; — a, none, SO repeat hasthetype

(a1 — ap none) — ag — aq some
The value bound to x may also be rewritten once. This happensif the rewriter has type
a1 — ap some N\ ap — a3 none,
S0 repeat aso hasthe type

(a1 — ap some A ag — ag none) — ag — ap SOME.
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We can continuein thisfashion, giving typesfor repeat that describeits behavior when
the rewrite rule applies any nonnegative number of times. The only typethat includesall of
thisinformation is the infinite intersection of al of these possible types. Our system only
has finite refinement types, so repeat doesnot have aprincipa typeif we permit infinitely
many refinements of an ML type variable. The only natural choices for the number of
refinements of each ML type variable seem to be one or infinitely many. Since we have
ruled out having infinitely many, we shall have only one.

4.1.2 ML Polymorphism vs. Refinement Typing

Once we decide that each ML type variable has only one refinement (or any other fixed
number), ML polymorphism interferes with refinement typing. For example, consider the
expression

let val not = fn x => if x then false else true
val double = fn f => fn x => f (f x)

in
double not true

end

There are two ways to derive an ML type for this expression. Either we can have a
polymorphic double with the type scheme

V(a).(a—a)—a—a

and instantiate « to bool when double is used, or we can have a monomorphic double
with the type scheme
Y().(bool — bool) — bool — bool

which does not need to be instantiated beforeit is used.

These two ways to derive an ML type for the above expression have different conse-
guences for refinement typing. If double is polymorphic, then clearly the only refinement
type scheme it can haveis

Va.(a—a)—a—a

Instantiating « to the refinements of bool gives an intersection with four components:

(tt— tt) — tt — tt A
=== A
(Tbool - Tbool) - Tbool - Tbool A
(J—bool - J—bool) - J—bool - J—bool

If double has this refinement type, then what is the refinement type of
double not true? The first two components do not help us determine this type, since
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not has neither of thetypes it — t¢ nor ff — ff. The last component isirrelevant because
true does not have the type L;,,;. Thus the only usable component is the third and the
best typefor double not trueisS T y,,;.

If, on the other hand, double is monomorphic, then its typeis much moreinformative.
In the definition of double

fn £ => fn x => f (f x)

we can assume that £ hasthetype it — ff A ff — tt and that x hasthe type ¢t¢. Then £ x
hasthetype ff,and £ (f x) hasthetype ¢, S0 the best typefor double not trueistt.

Thus, the programmer using refinement types will have to have in mind the same
derivation of the ML type that the compiler has in mind if he wants to predict what
refinement types the compiler will assign to a particular expression. This should not be
too difficult, since the algorithms actually used in the compilers aways generate the most
general ML type at every opportunity. Thus in the example above the programmer can
expect the compiler to use the most general type for double, which results in the less
informative refinement type for the let statement. If the programmer wanted the let
statement to have the more informative type, he could use explicit ML type declarationsto
reduce the polymorphism. One way to do this would be to declare the second argument of
double to have type bool, asin:

let val not = fn x => if x then false else true
val double = fn f => fn x: bool => £ (f x)
in
double not true
end

In thisthesis we avoid a choice among the various algorithmsthat could conceivably be
used for ML type inference by stipulating that our terms must have enough embedded ML
type information to uniquely determine how the ML type is derived. This requires us to
at least explicitly specify which variables each 1et statement generalizes over. Thisisn't
quite sufficient though; consider the let statement

let id = A(a). fn x => x
in

id true
end

This expression has type bool. We could have derived this type by giving id the type
scheme V(«).« — o and instantiating « to bool immediately before using id, or we could
have derived it by giving id the unusual type scheme V(«).bool — bool and instantiating
« to something arbitrary before using id. To eliminate this ambiguity, we must have an
explicit declaration each place atype variable could be introduced, which means an explicit
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declaration each time a variable is used and for each abstraction. Because SML eagerly
evauates values bound by both 1et and fn, we can make our language more uniform by
declaring an instantiation for every variable reference, including nonpolymorphic variables
such as x in thisexample. Thusthe fully explicit form of the above 1et statement is:

let id = A(). fn x:a => x|
in

id[bool] true
end

The constructor true does not need the square brackets because it is not a variable
and because constructors will not be polymorphic until Chapter 5. Constructors can be
distinguished from variables because they are explicitly mentioned in the grammar for the
language and in the inference rules.

4.2 Formally Incorporating Type Variables

We will write type variables as «, ; the mathematical variable that can stand for any
type variable is written «; context should make it clear whether we are talking about one
particular type variable or an arbitrary type variable.

The new grammars for ML types and refinement types have no surprises, we simply
add productionsfor type variables:

ti=te|t*...xt | tunit |t —=1]|
ri=rAr|r—or|re|rk. ok | runi | o

We write a possibly empty vector of type variables as @. We also have vectors of
refinement types 7, and so forth. We can substitute a vector of refinement types = for a
vector of type variables @ in a refinement type r by using the notation [7 /@]r. The length
of the vector @ iswritten length(@), and the " th element iswritten @{:}. Thefirst element
isa@{1}, not &@{0}.

We define ML type schemes to have theform (@).t, and refinement type schemeto have
theformV(@).r.

The only changes we must make the object language grammar on page 19 isadding 1et
statements and adding instantiations after each variabl e reference as discussed on page 228;
the entire grammar is:

e=z[t]|fn z:t => e|e e|c €|
case e of ¢ => e | ... | ¢ => ¢ end:t|
(e, ..., €)|()|elt_m_n €|

fix f:t => fn x:t => ¢|

let © = A(@).e in e end

n o~ >
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let double = A(a).fn f:a—a => fn x:a => £[] (£f[] x[])
in
let not = A(). fn arg:bool =>
case arg|[] of
True => fn _ => False ()
| False => fn _ => True ()

end : bool

in
double[bool] not[|] (True ())
end
end

Figure 4.1: Sample Expression Using Polymorphism

We define an expression scheme to have the form A(@).e, as appears in the grammar for
let statements. If avariableis bound by alet, then the substitution after it specifies how
to instantiate the expression scheme before use. If the variable is bound by a fn, then
the substitution must be trivial (that is, both the vector of ML types and the vector of type
variablesmust have zero length). For thischapter, we assumethat our value constructorsare
still monomorphic. An example of the syntax isin Figure 4.1. The problem of converting
human readable code into this syntax issimply ML type inference.

In Chapter 2, we defined substitution of closed expressionsfor variablesin expressions.
Because the expressions were closed and there were no type variables in the language at
the time, the problem of variable capture did not arise. In the present case, we still limit
substitution to expressions with no free object language variables, but they may have free
type variables that can be bound by let statements; thus we now have to deal with the
possibility of type variable capture during substitution. For example, the terms

let y = Ale).x[] in

y[bool] (true ()) (4.1)
end
and
let y = A(f).x[] in
y[bool] (true ()) (4.2)
end

have the same meaning in some intuitive sense. If we ignore the issue of variable capture
while substituting A().fn z:« => z [] for x in each of these, we get

let y = A(a).fn z:a => z [] in
y[bool] (true ())

end
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and
let y = A(f).fn z:a => z [| in

y[bool] (true ()) (4.3)
end.
Something has gone wrong here because these expressions no longer have intuitively
equivalent meanings; in fact, in the ML type system we define below, the first has well-
formed ML types but the second does not. The problem occurred when we substituted an
expression with afree « into a context in which o was bound. There are severa ways we
could have prevented the problem.

First, we could ssimply forbid substitutionsthat cause variable capture. Thiswould mean
that (4.1) and (4.2) are no longer equivalent, because the substitution above is forbidden
for (4.1) but permitted for (4.2). Thisis aesthetically unpleasing, but similar to approaches
taken by others in the past; for example, with dightly different notations, the papers
[Car87, CDDK86, DM82, Myc84, Tof88] al define systems that allow one to derive

firabFfn x => x V30> 0

but not
firaklFfn x => x Vaa—a.

There are other approaches, such as higher-order abstract syntax|PE88, MNPS91,
HHP93] and de Bruijnindices [Bar80, dB72], that solve the problem by changing or elimi-
nating the notion of “named variable’. These seem too radical for the task at hand.

Instead, we will circumvent the problem by giving a different meaning to (4.1) and
(4.2) so they are actually the same mathematical object, as was done in [Bar80, page 26]
and [CR36]. In this approach, we identify two expressions if we can transform one into
the other by renaming bound variables, and whenever we write an expression, we really
mean the equivalence class containing that expression. In this case the proper definition of
substitution still forbidsvariable capture asaspecial case, but we can alwaysfind an e ement
of the equivalence class that makes the substitution go through. With thisinterpretation, the
correct result of the substitution mentioned aboveis (4.3). We use the same strategy to dedl
with binding object language variables, thus fn y:bool => y[| andfn x:bool => x[] are
the same term, as are

let x = A(a).fn z:a => z[] in x[bool] end
and
let y = A(a).fn z:a => z[| in y[bool] end.

Now that we have a clear policy for dealing with type variable capture, we can modify
the definition of substitution on page 23 so we now substitute expression schemes (not
expressions) for variables in expressions. Only a few of the clauses of the substitution
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definition changeinanon-trivial way; thefirst clause listed usesthe operation of substituting
ML typesfor typevariablesin expressions, whichisasimpleoperationwe shall not formally
define here:

[A(@).c/z]|(x[t]) = [t /a]e if length(a) = length()
[A(@).e/x](z[t]) fails otherwise
(A(@)-/al(y[E]) = y[F) i y # =
[A(@).e1/z](let y = A(B).e2 in e3 end) =
(let y = A(ﬁ).[A(a).e_l/:[:]ez in [A(@).e1/z]es end)

where x # y and @ and # have no elementsin common.
For example, substituting A(«).fn x:a => x[] fory iny[bool] (true ()) yields
(fn x:bool => x[]) (true ()),

and substituting A().true () forxin(x[], x[]) yidds(true (), true ()).

The grammar for values is unchanged, but the meaning changes dightly because the
grammar references expressions, and expressions have changed:

vi=cv|(v, ..., v)|()|fn x:t => e

The changes to the evaluation relation defined in Figure 2.1 on page 24 consist of adding a
rulefor 1et and modifying rulesthat do substitution to construct trivial expression schemes
so we can use the modified definition of substitution above:

€1 = U1

LET-SEM: [(A(@).v1)/z]e2 = v2
let @ = A(@).e1 in ez end = vy

e1 = fn x:t => €3
€2 = V2
[(AQ).va)/x]es = vs
€1 €2 = U3

APPL-SEM:

FIX-SEM: fix f:t => fn x:u => ¢ =
[(A().fix f:t => fn z:u => e)/flfn z:u => e

Noticethat the let-sem rule saysto eagerly evaluate the variablein 1et statements. There

have been proposals to evaluate them lazily under some circumstances; we could do that
with the alternative rule

[(A(@).e1)/z]e2 = v2
let @ = A(@).e1 in e end = vy

LET-SEM’:

Since we do not have polymorphic type constructorsyet, our value constructorswill not
have polymorphic outputs. Thusit would be peculiar for them to have polymorphicinputs;
for example, consider this declaration:
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datatype foo = Bar of «

Standard ML disallows datatype declarations where the constructors have type variables
free in the input type (« in this example) that are not free in the output type (foo in this
example), so we shall forbid them aso. Since we cannot have a polymorphic output type
in this chapter, we will outlaw type variablesin the input type atogether:

Assumption 4.1 (Free Type Variablesin Constructors) If
c def t—tc
then ¢ has no type variables.

The modifications to the ML type system introduce few surprises. The environment
VM now maps variable names to ML type schemes. For uniformity, it maps all variable
namesto ML type schemes, even the variablesbound by fn and £ix; asthe ABS-VALID rule
below says, all such variables are bound to vacuous ML type schemes that quantify over
zerotype variables. We add arulefor 1et statements, and make slight modificationsto the
rulesfor variables, abstractions, and fixed points to accommodate the new environment:

VM F e1 .11
fordl o in@ we have a isnot freein VM
VM[z :=V(a).t1] Fex it
VM FE let @ = A(@).e; in ez end it

LET-VALID:

VM(z) =V(a).t
VAR-VALID: length(@) = length(?)
VM F z[t] :: [t /@]t

VM[z :=V().t1) F ety
VM FE (fn z:t1 => e) i t1— 12

ABS-VALID:

VM[f = \Vl()tl—>tz] F (fn T:t1 => 6) Tti1— 1

FIX-VALID:
VM F (fix fit;—1lp => fn x:ly => €) it1— 1o

Fact 2.3 (ML Type Soundness) on page 27 and Lemma 2.4 (Unique Inferred ML Types) on
page 27 till hold for the modified language, as do Fact 2.5 (ML Free Variables Bound) on
page 29 and Fact 2.6 (ML Value Substitution) on page 29.

We augment the refinement rules in Figure 2.3 on page 31 by asserting that each
refinement type variable refines the corresponding ML type variable:

VAR-REF:

C o
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We say 7 C ¢ if length(7) = length(?) and, for 7 between 1 and length(7), we have
r{i} C ¢{i}. A refinement type scheme refines an ML type scheme if they quantify over
the same variables and, after stripping off the quantifiers, the underlying refinement type
refines the underlying ML type.

Lemma 2.10 (Unique ML Types) on page 31 is still true; the added case to the proof is
trivial, and we shall omit it. We augment the definition of rtom on page 32 so it also works
on substitutions mapping type variables to refinement types; for example,

rtom([tt/c, ff/6])(fn x:ax § => x[]) =
[bool/a, bool /B](fn x:a*x 3 => x[]) =
fn x:bool * bool => x[].

Fact 2.12 (Tuple Refines) on page 32 is till true.

We need to make no change to the subtyping rules in Figure 2.4 on page 35, since the
SELF-SUB rule ensures that refinement type variabl es are subtypes of themselves. Similarly,
we do not need to change the rules for splitting in Figure 2.5 on page 48 because the
SELF-SPLIT rule deals with refinement type variables.

Now that we have both substitution and subtyping, we have to show that they interact
with each other in the natural way:

Fact 4.2 (Type Substitution Preserves Subtyping) If » < k, then for any well-formed
substitution s, we have s(r) < s(k).

The proof of thisisby induction on the derivation of r < k.

We also need to prove that substitution and splitting interact in a natural way:

Fact 4.3 (Split Substitution) If r < {rq,...,r,}, thenfor any ' and « we have
[r'/a]r < {[r'/a]re,...,[r/a]r.}-

The proof of thisisasimpleinduction on the derivation of the hypothesis.

The changes to refinement type inference are entirely analogous to the changes to ML
typeinference. The variable environment VR now contains refinement schemes rather than
simple refinement types. Starting with the rules in Figure 2.6 on page 60, we add a rule
for Let, change therulefor variables, and make minor changes to the rules for abstractions
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and fixed points:

VR €1 .71
LET-TY PE: for al o € @ we have « not freein VR
' VR[z :=V(a@).r Fex:r
VRF let & = A(@).e1 in e end:r
VR(z) = V¥(a@).r

FCt
VAR-TY PE:

rCt

VRF z[t]: [F/a]r

ABS.TY PE: VR[z :=V()r]F ek rCt

VREF fn z:t => e:r—k

rCit1—1
FIX-TYPE:  VR[f :=V().r]F (fn x:t1 => €) i r
VRE (fix f:ti—ty => fn x:ty => e) v

In the syntax example in Figure 4.1 on page 229, using the LET-TYPE rule on the outer 1et
statement leads us to add the type scheme

Via).(a—a)—a—a

for double to the type environment before inferring a type for the inner 1et statement.
Then we add the trivial type scheme

V(O).tt = tt A JF— [FA Lioot = Lioot AT boot = T boot

for not. The only way we can instantiate double that allows the application

(double[bool] not[]) (True ())
to have atypeisto substitute T ;,,; for «; if we do this,

double[bool]
getsthetype (T oot = Tio0t) = T bool = T bools
double[bool] notl]

getsthetype T ;o010 — T 4001, @Nd

(double[bool] not[]) (True ())

and the 1et statement as awhole hasthetype T 4,,;-
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Compatibility with ML is unaffected by the new rules added. We will omit the ssimple
case for 1et that must be added to the proof of Theorem 2.54 (Inferred Types Refine) on
page 68, and the proofs of Lemma 2.55 (Vaue Arrow Type) on page 74 and Fact 2.56
(Value Constructor Type) on page 74 are unchanged. We must add this equation to the
definition of mtor on page 76:

mtor(«) = «;

the proofs of Fact 2.61 (mtor Refines) on page 76 and Fact 2.62 (Unigue Refinement) on
page 76 are till trivial, and the case we must add to deal with 1et statementsin Theorem
2.64 (ML Compatibility) on page 77 is smple and we will omit it.

Updating the soundness proof is somewhat more work, and constitutes most of the
remainder of this chapter. The statement of Lemma 2.66 (Environment Modification) on
page 81 does not change; the VAR-TYPE case of the proof changes dlightly: The statement
of Lemma 2.66 (Environment Modification) on page 81 does not change; the proof only
changes dightly:

Lemma 4.4 (Environment M odification) If

VREe: 7

and
VR’ has the same domain asVR
and
for z freein e wehave VR (z) < VR(z)

then

VR e :r.

Also, if in addition

VRH-¢:r

and
e isnot avariable

then

VR H-¢:r.

Proof: By induction on the derivationof VR ¢ : r.

Case: VAR-TYPE | Then e hastheform z[¢], and r hastheform [7 /a]k where the premises

of VAR-TYPE are:

TCt (4.4)
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SinceVR(z) < VR'(z), we know that
VR (z) o V(@).k' (4.5)

for some k' < k. By the version of Theorem 2.21 (Subtypes Refine) on page 36 that holds
for this system, &' C ¢. Then we can use VAR-TYPE with the premises (4.5), (4.4), and
k' ttoget

VR F z[t] : [7/a]k.
Then Fact 4.2 (Type Substitution Preserves Subtyping) on page233 gives|r /alk’ < [F /alk,
and WEAKEN-TYPE then gives VR' - z[t] : [F /@]k, whichis our conclusion.

Case: Otherwise. | Omitted. O

Lemma2.67 (Piecewiselntersection) on page 84 and Lemma 2.68 (Subtypelrrelevancy)
on page 88 are unchanged because values do not have let statements at the top level.
Theorem 2.69 (Splitting Value Types) on page 89 is changed dightly because it has to use
Fact 4.3 (Split Substitution) on page 233.

Lemma 2.70 (Value Substitution) on page 93 becomes dlightly more interesting. We
haveto add acasefor 1et declarationsand make nontrivial changesto the casefor variables.
Thenew typeinferencerulefor variabl es specifies arefinement type substitution, sowe need
to be able to substitute refinement types for type variables in refinement type derivations:

Fact 4.5 (Refinement Type Substitution) Suppose VR F e @ r and s is a substitution
mapping type variables to refinement types where for all « in the domain of s we have s(«)
iswell formed. Then

s(VR) F rtom(s)(e) : s(r).

The proof of thisisasimple induction on the derivation of VR - ¢ : . The SPLIT-TYPE
case uses Fact 4.3 (Split Substitution) on page 233.

This fact is useful in variable case of Value Substitution; we shall restate that lemma
and give the 1et and variable cases of the proof:

Lemma 4.6 (Value Substitution) If
VRF ey,
where e; isavalue or a closed expression of theformfix f:¢; => fn z:t, => ¢, and
VR[z 1= V¥(@).ri) F ez : 7o,

and noneof thevariablesina arefreein VR, and the substitution [( A(@).e1) /2] e, Succeeds,
then
VRF [(A(@).e1)/x]ez : To.
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Proof: By induction on the derivation of VR[z := V(@).r1] F €2 @ r2.

Case: VAR-TYPE | Then e, hasthe form y]...] for some y. If y isnot z, then the desired

conclusionisVR + e; : r,. We can get this by eliminating the unused variable = from the
hypothesis VR[z := V(@).r1] F ez : 7.

Otherwise, e, has the form z[¢]. By the shape of VAR-TYPE, r, has the form [7 /a]r;.
The premises of VAR-TYPE must be 7 C ¢ and, for somet, r; C ¢. By Fact 4.5 (Refinement
Type Substitution) on page 236,

[7/a](VR) F rtom([7 /a])(e1) : [F/@](r1). (4.6)

By hypothesis, noneof thevariablesin@ arefreein VR, so [7 /@](VR) = VR. By definition

of subgtitution, [(A(@).c1)/z]e2 = [(A(@).e1)/z](z[t]) = [t/aler = rtom([7/a])(eq).
Sincer, = [¥ /a]r1, (4.6) is our conclusion.

Case! LET-TYPE | Theneyhastheformlet y = A(f).es in es endforsomey. Rename

variablesif necessary to ensurethat y and = are ditinct, and that @ and 3 have no variables
in common. For some r3, the premises of let-type must be

VR[z :=V(@).r1] F e3: rs,

foral 8 € 3 wehave 3 not freein VR[z := V(@).r4),

and

VR[z :=¥Y(@).r1,y :=V(8).r3] b ea:ra.
Let 7 abbreviate A(@).es; then our induction hypothesis gives
VRFE [L/z]es:rs

and _
VR[y :=V(8).rs] F [L/x]es: ra.

Then LET-TYPE gives
VRt let y = A(B).[L/z]es in [L/x]eq : 12

by definition of substitution, thisisour conclusion.

Case: Otherwise | Omitted. O

We arefinally ableto give the modifications of Theorem 2.71 (Refinement Type Sound-
ness) on page 99 necessary for the system described in thischapter. Although the statement
of the theorem does not change, we will repeat it here:

Theorem 4.7 (Refinement Type Soundness) Ife = vand- -+ e :r,then-+ v :r.
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Since e isclosed, itis not avariable; thus the only change we need to make to the previous
version of the proof isto deal with the possibility that ¢ may be alet statement.

Proof: By caseson the pair (root inference of ¢ = v, root inferenceof - - ¢ : r).

Cese: (LET-SEM, LET-TYPE) | Then e must have theform let « = A(@).e; in e; end.

The premises of LET-SEM must be
€1 = v1 (4.7)

and
[(A(@).v1)/x]e2 = v. (4.8)

For some r, the premises of LET-TYPE must include
- €1:.7T1 (49)

and
VR[z :=V¥(a@).ri) F ez (4.10)

Using the induction hypothesis on (4.7) and (4.9) gives
Forinm
Value Substitution and (4.10) then give
-F [(A(@).v1)/z]ez : 7.

Using the induction hypothesis on this and (4.8) gives- - v : r, which is our conclusion.

Case: Otherwise | Omitted. 0O

The proofs of Theorem 2.90 (Finite Refinements) on page 115 and Corollary 2.91
(Principal Refinement Types) on page 115 are essentially unchanged.

The only significant change to the decision procedure is modifying the infer function
defined in Figures 2.7 and 2.8 on pages 142 and 143 to deal with 1et statements and the
new syntax for variable references. The new cases are:
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fun infer VR y[t] =
if VR(y) isundefined or
VR(y) doesnot havetheform V(a@).r
where r refines some
then ns
else
let val V(a).r = VR(y)
in
Afn {[F/a]r | length(7) = length(@) and
forall : wehave 7{i} callrefs({{:})}
end
| infer VR (e as (let & = A(@).eq in ey end)) =
let val k£ = infer VR ¢4
val s = split (k)
val u = theuniquew suchthat rtom(VR) - e :: u
in
sjoinf u {infer (VR[z :=V(@).p]) e2|p € s}
end

The correctness proof for the revised case for variables has no surprises, and the proof for

the 1et case uses no concepts that do not appear in the application or abstraction cases, so
we shall omit them.

By Assumption 4.1 (Free Type Variables in Constructors) on page 232, there cannot
be any type variablesin rectype declarations. Thus the argument in Chapter 3 needs no
revisions to accommodate the type variables introduced in this chapter.

To summarize, once we decide that each ML type variable is refined by exactly one

refinement type variable, the formal description of refinement types with type variables
follows straightforwardly.



Chapter 5

Polymor phic Refinement Type
Constructors

Programmers intuitively know that all even length lists of true’s are also even length
lists of booleans. With polymorphic refinement type constructors, we can write this as
it ev < Ty ev, Where ev is the type of lists with even length. This chapter is about
formalizing that intuition in the type system.

We say that the type argument to ev is a positive type argument, since as the type
argument of ev getslarger, thetype asawhole getslarger. There are other possibilities; for
example, suppose we have the declaration

datatype a pred = Pred of a — bool
rectype « tpred = Pred (a—it)
and « fpred = Pred (a—ff)

Using anintuitive reading of thisrectype declaration, we would expect to be able to apply
Pred to afunction with type ¢t — ¢t and get avalue of type it tpred; smilarly, we would
expect to be able to apply Pred to a function with type T ;,,; — ¢ and get a value of type
T oot tpred. SINCE T 4pp — tt < 1t — tt, We expect Ty, tpred < it tpred. We say the
type arguments of pred, tpred, and fpred are al negative.

There are two other possibilities. We can have a type variable that appears on both the
left and the right side of an arrow, such as

datatype @ m = M of a— «a,

where ¢t T, isincomparablewith T;,,; T,,. We say the type argument of m is mixed.

We can aso have type variables that appear nowhere in the type, such as

datatype a ¢ = B of bool

240
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wherett T; = Ty, T;. Wesay thetypeargument of 7 isignored. It turnsout that positive,
negative, mixed, and ignored are all the possibilities.

Since our type system isan approximation instead of an all-knowing oracle, we have the
option of ignoring any or all of the above distinctions, so long asthe resulting approximation
isconservative. We could take the least informative approximation in all cases; thiswould
mean treating all type arguments as mixed type arguments. 1n this case the refinement types
tt ev and Ty,,; ev would beincomparable. With thisinterpretation, ¢ ev would no longer
be a principal type of cons (true, cons (true, nil)), Sincethetypett ev A T o0 €v
would be another typefor that expression that isstrictly smaller. Thisapproach has not been
explored enough to determine how many unpleasant surprisesit gives the programmer, but
nevertheless we will not go that way.

Another approach isto simplify things by outlawing some of the possibilities; since all
of the possibilities are permitted in Standard ML, this implies becoming less compatible
with Standard ML. The current implementation does this; it outlaws mixed type arguments
and it treatsignored type arguments as though they were positive. However, in this chapter
we will permit and accurately model all four possibilities.

Thus, in general, each polymorphic refinement type constructor will have four kinds of
type arguments. We will represent the different kinds by grouping them together, separated
by semicolons, in the order negative, positive, mixed, and ignored. For example, the true
formof tt evis(; tt;;) ev.

Each ML type constructor takesafixed number of typearguments, each of theseiseither
negative, positive, mixed, or ignored. We will assume these type arguments are grouped
as described in the previous paragraph, so we can describe the number of arguments an
ML type constructor takes with a tuple of four nonnegative integers saying how many
arguments it takes of each type. We call this tuple the arity of the ML type constructor,
and if we call the ML type constructor ¢ then we writeits arity as arity(¢c). For instance,
arity(list) = (0;1;0;0) and arity(m) = (0;0; 1;0). Assumption 2.2 (Constructors have
Unique ML Types) on page 26 still holds, so we can assumethat the arity function isdefined

for ML type constructors, and define arity(rc) to be arity(tc¢) for the unique ¢c such that
def

rc C lc.

With these conventions, we can define arrow and tuple types as uses of ordinary type
constructors. With thisinterpretation, many of theinferencerules concerning tupleor arrow
types are subsumed by more general rules. Specifically, we shall treat the “—" operator
that appearsin ML typesasan ordinary ML type constructor with arity (1; 1; 0; 0); we shall
cal it tarrow when we are thinking of it in this context. We also have an *—" operator in

refinement types, we will call it rarrow, and we have the assumption rarrow d|:ef tarrow.
We will continue to use “—", but now it is a readable abbreviation for a use of rarrow
or tarrow, rather than part of the syntax. For example bool — bool is Syntactic sugar for
(bool; bool; ;) tarrow and tt — ff is syntactic sugar for (¢; ff; ;) rarrow.

Similarly, we can represent tupling of ML types as an ordinary ML type constructor.
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For example, we give the ML type constructor that takes arguments «, 3, and ~ and
constructs « * 3 * « the name ttuple; which has arity (0; 3; 0; 0). In general we have an
ML type constructor ttuple, for tuples of each nonnegative size n, and arity(ttuple,) =
(0;n; 0;0). Refinement type tuples get their own constructor, named rtuple,,, and for all

. def . .
nonnegative n we have rtuple, C ttuple,. We will continue to use the old syntax as
syntactic sugar for the new; for example, runit stands for (;;;) rtuple, and bool * bool
stands for (; bool, bool; ;) ttuple,.

We will make the examples more readable by using some other syntactic sugar too.
When a refinement or ML type constructor has no arguments, we eliminate the argument
list entirely; thus we write bool instead of (;;;) bool. Also, if al of the arguments are
positive, we omit the semicolons, and if there is only one argument and that argument is
positive, we omit the parentheses; thus we write bool list instead of (; bool; ;) list.

To make the rest of this chapter more concise, we will introduce special notation for
groups of four vectors of types or type variables. We abbreviate (7 1; 72; 73;74) as 7. We

define 7 asasimilar grouping of four 7's.

With this said, it should not be surprising that after we expand all the syntactic sugar,
the grammarsfor ML and refinement types have become simpler:

to=(1)te | «
ri=rAr|(F)re|a

We change the grammar for expressions by stating explicitly how to instantiate each
value constructor before using it. We do this for the same reason we had an explicit
instantiation after each variable in Chapter 4: we need the object language to uniquely
determine the ML type derivation. We specify the ML types of value constructors with

assumptions of the form

i (a)te,

so the easiest way to specify the substitution is by giving a quadruple of typesto substitute
for the type variables @. Thus the new grammar for expressionsis:

eu=z[t]|fn z:t => e|e e|[l] €|
case e of ¢ => e | ... | ¢ => ¢ end:t|
(e, ..., €)|()|elt_m_n €|

fix f:t => fn x:t => ¢
let © = A(@).e in e end

Aswe did with type constructors, we may omit the substitution after a value constructor if
it is empty; thuswe will writetrue () instead of truef;;;] ().

| ntersections of vectors of refinement types happen pointwise; tht is, if 7 and & have
the same length, then ¥ A & has that length too, and (7 A k){i} = 7{i} A k{:} for:
between 1 and length(7).
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The arguments in this chapter are a modification to the arguments in Chapters 2 and 4.
We will disregard trivial changes made to accommodate the change in syntax of the object
language.

The definition of substitution on page 231 does not change, nor do the semantics rules
on page 231.

51 ML typing

Now that we have polymorphic type constructors, we can have polymorphic datatype
declarations. To permit this, we need to revise Assumption 4.1 (Free Type Variables in
Constructors) on page 232:

Assumption 5.1 (Free Type Variablesin Constructors) If

c d:?f t—(a)tc

then all type variablesfreein¢ appear in @.

The only change to the appearance of the ML typing relation specified in Figure 2.2 on
page 27 and updated on page 232 are to the rules for constructors and case statements:

c®ro (@ite  VMEen[l/a

CONSTR-VALID: = =
VM | ¢[t] e (T)te

VM F eg i (?)tc
t

- def _
CASE-VALID: fordl : wehavec; 7 t; j (_a)tc
foral:wehaveVM k¢, [t/a@]t; — u
VM| (case eg of ¢1 => e1 | ... | ¢, => ¢, end:u) Il u

The meaning of these rules have changed, though, because now — and * are syntactic sugar
for uses of polymorphic ML type constructors instead of primitive symbols. The modified
system has al the usual properties; Fact 2.3 (ML Type Soundness) on page 27, Lemma 2.4
(Unique Inferred ML Types) on page 27, Fact 2.5 (ML Free Variables Bound) on page 29,
and Fact 2.6 (ML Value Substitution) on page 29 till hold.

5.2 Subtyping

Because arrows and tuples are no longer primitive, we can eliminate some of rules for
the refines relation “—” defined in Figure 2.3 on page 31 and updated on page 233. The
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VAR-REF.

al «a
riCt roCt
AND-REF.
riANroCt
y FCl
RCON-REF: retic TrE

[Flre T [E]te
QUADRUPLE-REF: Tt b r2C 12 rsC _3_ _TaC l4
' (F1iT2 T3 7a) C (11; 12, T3; 14)

length(7) = length(?)
VECTOR-REF: for al 7in1...length(7) wehaver{i} C t{i}
Tt

Figure5.1: Polymorphic Refinement Rules

complete set of rulesisin Figure5.1. In these ruleswe use the abbreviation 7 ¢ to mean
that the quadruples 7 and ¢ have the same shape and, for each r in 7 and the corresponding

tint, wehaver C t. We are able to get the effect of the old ARROW-REF rule because we
have the RCON-REF and we assume

def
rarrow C larrow.

Similarly, we get the effect of TUPLE-REF by using RCON-REF and the assumption

def
rtuple, C ttuple,
for al nonnegative .

Lemma 2.10 (Unique ML Types) on page 31 is still true, and we shall omit the proof.
The definition of rtom on page 32 is unchanged, as is the addition that defines its effect on
substitutions on page 233.

For the same reason, we can simplify the subtyping rules that originally appeared in
Figure 2.4 on page 35. First we generalize RCON-SUB and RCON-AND-ELIM-SUB to deal with
polymorphism, then we eliminate ARROW-SUB, ARROW-AND-ELIM-SUB, TUPLE-SUB, and
TUPLE-AND-ELIM-SUB because those rules are now subsumed by the generalized RCON-SUB
and RCON-AND-ELIM-SUB. The entire set of rulesisin Figure 5.2.

To use RCON-sUB with arrows and tuples, we need arrow and tuple refinement type
constructorsto be subtypes of themselves, thus we need to have

def
rarrow < rarrow
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SELF-SUB:

AND-ELIM-R-SUB!

AND-ELIM-L-SUB:

AND-INTRO-SUB.

TRANS-SUB: —
F<k =
RCON-SUB: — e = e
rre<kke
(Fi,Fa ATy Ta;Ta) C L
RCON-AND-ELIM-SUB: (T1, 72,73, T4) re N (T2, T T3 Ta) ¢’ <
def
(T1; T2 AT T3 Ta) (re A re)
k1 <71  To<ky, Ta=ks TiC1 ksCt
QUADRUPLE-SUB; —— AL — SAL A
(T1;, 72, T3 Ta) < (k1) ko k3 ka)
length(7) = length(% )
VECTOR-SUB: for:inl...length(7) wehave7{i} < k{:}
F<k

VECTOR-EQUIV:

Figure 5.2: Polymorphic Subtyping Rules
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and, for al nonnegative n,
def
ttuple, < ttuple,,.

Theorem 2.21 (SubtypesRefine) on page 36 still holds. Lemma2.22 (Tuplelntersection)
on page 40, Fact 2.23 (Tuplesmp Sound) on page 41, Lemma 2.24 (Refinement Constructor
Intersection) on page 41, and Fact 2.25 (Rconsimp Sound) on page 42 will be immediate
corollaries of theorems we will prove below as part of the proof that each refinement type
still hasfinitely many refinements. Sincewe only need these theoremsfor thetypeinference
algorithm, we will postpone discussion of them until Section 5.5.

Fact 4.2 (Type Substitution Preserves Subtyping) on page 233 still holds, as does Fact
4.3 (Split Substitution) on page 233.

5.3 Finiteness of Refinements

Because we have made polymorphism more general, the lemmas used to prove that each
ML type has only finitely many refinements become much more useful. Thus we shall
describe the appropriate generalization of that proof now, before we use the lemmasin the
soundness and decidability proofs.

In Section 2.9 on page 105, we created two interpretations of each refinement type.
Two refinement types » and k& were equivalent if and only if their interpretations /() and
I(k) were equal, which was true if and only if their interpretations «(r) and (k) mapped
equivalent refinement types to equivalent generalized refinement types.  This section
preserves this property while generalizing / and : to apply to arbitrary refinement types
with polymorphic type constructors. The definition of 7 intermsof : is straightforward, so
we will discuss generalizing :.

The proper generalization of ¢ is fairly clear once we determine what its inputs and
outputs should be. Since in this chapter we have converted the “—" refinement type
operator from Chapter 2 into an ordinary refinement type constructor with one negative
and one positive argument, reasoning by analogy with the definition of : from Chapter 2
leads one to expect that the new : will take negative type arguments for input and produce
positive type arguments in its output.

It is possible to declare refinement types that behave similarly to rarrow, except the
output of the function isrepresented as a refinement type constructor instead of asapositive
type argument. For example, we can reuse the pred datatype:

datatype («;;;) pred = Pred of a— bool
rectype («;;;) tpred = Pred (a— tt)
and (a;;;) fpred = Pred (a— ff)
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In this case, it is obvious, for example, that afunction f has the refinement type tt — tt A
ff— ffifandonlyif Pred f hastherefinementtype(tt;;;) tpred A(ff;;;) fpred. Thuswe
expect refinement type constructors to have an analogous role to positive type arguments:
they are outputs from the interpretation.

The problem of determining therole of mixed type argumentsremains. We will usethis
example:

datatype (;;a;) mir = Mix of a—(a * bool)
rectype (;; ;) tmiz = Mix (a—(a*t))
and (;;a;) fmiz = Mix (a—(a* ff))
and (;;a;) botmiz = Mix (o —(ax L))

In this case, the following types are all distinct:

(5 tt;) tmiz A (55 T hoors ) botmia
(i tt;) tmiz A (55 T ooty ) tmia
(55 tt;) botmiz A (55 Tieor; ) botmix
(55 tt;) botmiz A (5 Tioor; ) tmia

It seems most natural to give different interpretations to these distinct types by making
mixed type arguments an input to the interpretation. From this example, it is clear that
mixed arguments give rise to more distinct refinements than do negative arguments. We
must theref ore have moredistinct interpretations of refinement typeswith mixed arguments,
this happens because the interpretation in general is monotone for the negative arguments
but not for the mixed arguments.

In Chapter 2 we had“ generalized refinement types’, which were either arefinement type
or ns. Intheargument below, we use generalized pairsfor asimilar purpose. A generalized
pair iseither apair consisting of a vector of refinement types corresponding to the positive
arguments of some refinement type constructor and a refinement type constructor, or it is
ns. We will use the metavariables rr?, kk?, and pp? to stand for generalized pairs. The
operations on generalized refinement types can aso be defined on generalized pairs; for
example, the new definition of < is entirely analogous to the definition on page 106:

Definition 5.2 We definethe binary relation < on generalized pairs by the following cases:

def

(7;rc) < (k;ke) ifand onlyif 7 < k and rc < ke
(7;rc) < ns always

ns < (k; kc) never

ns =< ns.

The definition of ~ is also analogous:

Definition 5.3 Wesay rr? ~ kk?if rr? < kk? and kk? < rr?.
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Definition 5.4 We define the binary operation /A mapping pairs of generalized pairs to
generalized pairs by the equations:

(7:rc) A (R ke) = (7 A F:rcA ke)
(7;rc) Ans=nsA (7;rc) = (T, rc)
nsAns=ns

Definition 5.5 Suppose s isa finite set of generalized pairs; then we define /A s asfollows:
If s isempty, then As = ns.

Ifs={rr?,,....rr2, }, then As=rr2L A ... A2,
7 2

L - . _ def
Definition 5.6 Wesay rr? C (Z;tc) ifrr?=nsor rr? o (7;rc)and 7 C ¢ and rc L tc.

Definition 5.7 If s is a finite set of generalized pairs, then we define s C (7;tc) to mean
that for all elementsrr? of s, we haverr? C (#;tc).

Fact 2.76 (A Elim Sub) on page 107, Fact 2.77 (A Intro Sub) on page 107, and Fact
2.78 (Trangitivity of <) on page 108 transplant easily to this new context, and they continue
to hold.

As discussed earlier, the new interpretation of a refinement type takes as input two
sequences of refinement types corresponding to the negative and mixed arguments and
it outputs a generalized pair. Interpretations have a smple property that can almost be
used as a definition: the interpretation : of a type r is a function f such that for all
well-formed 7, 7", and 7" of appropriate length, if there is a least pair (7’; rc) such
that » < (7; 77", 7")re, then f(7;7") = (7';rc); if there is no (7'; r¢) such that
r < (7; 77", 7")rc then f(7;7") = ns. To avoid acircular proof, we cannot yet argue
that theseareall the possihilities; in principletherecould be an infinitechain of distinct pairs
.. < (E:g, kC3) < (Ez, kCz) < (El, kcl) such that for al : we have r < (F; E“ ' F’”)kci.
Thus we will not use this simple property to define ; instead give a different, more
constructive, definition of ¢ and then prove that the  defined this way satisfies the ssmple

property.

Definition 5.8 (Interpretation of a Refinement Type) Suppose & has the form

(ki ky kR ke A A (ks B kD ke,
and suppose k T (7;1;7";7")tcand 7 = 7 and 7" C #". Then we definei(k)(7;7") to

be
A{(k};ke,) | hisinl...nand7 < k,and 7" = &} }.
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We extend : to give an interpretation to generalized refinement types by defining
i(ns)(7;7") = ns.

For example, if we eliminate some of the syntactic sugar from the refinement type
tt— ff N Tt — tt We get (tt; ff;;) rarrow A (T oo tt;) rarrow. The interpretation
of thisis a function; if we pass the function the pair (t¢; ) consisting of the sequence of
refinement types ¢t with length 1 followed by the empty sequence of refinement types, the

. : def . . :
result isthe generalized pair (¢t A T yo01; rarrow A rarrow). Thishasthe sameinformation
asthe interpretation we had in Chapter 2.

For another example, we can compute:((tt;;; ) tpred A(ff; ;) fpred); thisisafunction
which, among other things, mapsthe pair (¢t A ff; ) to (; tpred d/(if fored).
We also give an example using the datatype mixz. The refinement type (;; ;) tmiz A
(35 Tioor; ) friz isnot equivalent to any simpler refinement type; we have
i((55 ;) tmiz A (G5 Tooors ) friz) (5 tt) = (; tmix),

(53 tt;) tmiz A (5 Tooor; ) fmiz)(; fF) = (; fmiz),

and
(55t ) tmix A (5 Tooors ) fmiz)(5 T hoot) = 1S,

After updating the notation, the theorems proved about : in Chapter 2 are till provable.
Theonly real differencein the proofsisthe convol utedness of the notation, so we shall omit
the proofs.

The new version of Lemma 2.80 (z Monotone in Second Argument) on page 108 has
two parts, because the mixed type arguments are treated differently from the negative type
arguments:

Fact 5.9 (:(k)(7;7") Monotonein 7) If
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Lemma 2.81 (z Monotone in First Argument) on page 109 requires little change:

Fact 5.11 (- Monotonein First Argument) If
k<p
and7 CZand7 C 1" andk C (;1;7";7")tc, then

(k)7 7") 2 i(p)(F 7).

250

The corollary to Lemma 2.81 (: Monotone in First Argument) on page 109 is ill

smple:

Fact 5.12 (Bound on Argument to: GivesBound on ) If

k<(m 77" 7" rc

then
i(k)(T;7") 2 (7';rc).

Using the facts stated above, we can prove the following generalization of Lemma
2.26 (Tuple Subtyping) on page 42 and Fact 2.28 (Refinement Constructor Subtyping) on

page 45:

Corollary 5.13 (Arbitrary Constructor Subtyping) If (?)kc < (7)rc, then

def
kc < rc.

7 and

Proof: Suppose ¥ « 77 ;7" ;7" and k o k;k;k ;% . By Fact 5.12 (Bound on

Argument to : Gives Bound on 2) on page 250 we have
i((F)ke)(7;7") = (7' re).

Thusi((z)kc)(F; 7"} isnot ns, and the definition of : gives

and

(5.1)
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and
def

ke < re. (5.2)

Theorem 2.21 (Subtypes Refine) on page 36 holds for this system, so thereisa 7" such

that £ = 7" and ¥ — 7". Then the definition of < for sequences gives k¥ < 7. This

and (5.2) are our conclusion. O

We state the generadlizations of the remaining lemmas and theorems from Section 2.8 so

a determined reader will be able to reconstruct the details of the reasoning without going

astray. Nothing very interesting is happening here, so other readers can skip to the next
section.

Fact 5.14 (: Givesan Upper Bound) If
i(k)(7;7") 2 (F';rC)
T

andk C (7,7, 7", 7" )tcand 7" C 7", then

k<(r;77";7"rc.

Fact 5.15 (Orderingon:) If,forall & — 7 andall " = 7", we have
i)k R <i(p) (ki k),

andr C (7;1;1";7"tcandp C (7;7;7";7")tc, then

IN

T P
Fact 5.16 (i Preserves Information) Suppose that ; and r, both refine (7;7';7";7")tc.

Then _ _ — _
forall ki Ctand k, — T and

kiCi"andk, 1"
we have

if and only if

Definition 5.17 Wedefine the equival ence class of a generalized refinement type r? (written
C(r?) tobetheset {r? | r? = r?}.

We define the equivalence class of a generalized pair rr? (written C(rr?)) to be the set
{rr? | rr? = rr?},

We define the equivalence class of a sequence of refinement types 7 (written C'(7)) to
betheset {7’ | 7' =7 }.
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Definition 5.18 We define the set of equivalence classes of refinements of an ML type ¢
(written EC(¢)) to be {C(r?) | r? C t}.

We definethe set of equival ence classes of refinementsof apair (7; tc) (written EC(?; tc))
tobe {C(rr?) | rr?C (Z;tc)}.

W\e define the set of equivalence classes of refinements of a sequence ¢ (written EC(?))
tobe {C(T)|F Ct}.

We shall use ¢ as ametavariable standing for the equivalence class of some refinement
type, ¢? asametavariable standing for the equival ence class of some generalized refinement
type, cc? asametavariable standing for the equival ence class of some generalized pair, and
¢ as ametavariable standing for the equivalence class of some sequence.

Definition 5.19 If » — (7;7;7";7")tc and cc? € EC(7';tc) and ¢ € EC(7) and ¢” €
EC(7") then we write
cc?=I(r)(e;¢")

if thereisak anda % in¢” such that
cc?= C(i(r)(k; &)

By Fact 5.9 (:(k)(7; 7") Monotone in 7) on page 249 and Fact 5.10 (:(k)(7; 7") Respects
Equivalence in 7") on page 249, for al » we know that 7(r) isafunction.

Fact 5.20 (1 Preserves Equivalence) If » and ' refine (7;7;7"; 7" )tc then
r=r

if and only if
for all ¢ € EC(7) and all ¢” € EC(#") wehave I(r)(c;c") = I(r')(c; ").

And finaly,
Fact 5.21 (Finite Refinements) For each ML type u we have EC(w) isfinite.

and, once we define type inference, the same ssimple argument for principal types used in
Chapter 2 will hold:
Fact 5.22 (Principal Refinement Types) If

VREe:r

then thereis a k such that
VRF e k

and for all p we have
VRFE e:pimpliesk < p.
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54 Splitting

Splitting does not simplify as much as subtyping did. We only need a syntactic change to
makethe RCON-SPLIT rulein Figure 2.5 on page 48 accommodate pol ymorphic constructors:

def
rc X sc

(7)re < {(T)ke | ke € sc}

RCON-SPLIT:

None of the other splitting rules in the system change; in particular, the TUPLE-SPLIT rule
does not change. It is tempting to “generalize” it to get an incorrect rule for splitting
polymorphic types where all the arguments are positive:

ki =S
BOGUS: (;; k1,. .+, ki_1, ki kiz1y v v, k) Jre <
{(;;kly---7ki—l7p7 ki-}-lw"akm;)rc | pE< ‘S}

Thisincorrect rulewouldallow ustouse T ,,; < {t, ff } toderive T ., ev < {tt ev, ff ev}.
Thisisnot sound; for example, thevalue cons (true, cons (false, nil))hasthetype
T .01 €v but it does not have either of thetypes it ev or ff ew.

To maketype inference tractable, we assume that if arefinement type constructor splits,
it has no negative or mixed type arguments. Formally,

Assumption 5.23 (Split Positive) If rc “ {rca,...,rc,}, then arity(rc) has the form

(0; x; 0; y) for some nonnegative integers « and y.

Without this assumption, there might be splittable refinement types that can only be ex-
pressed as an intersection of other refinement types;, for example, we could have the
declaration

datatype (a;;;) doublepred = Predl of a— bool | Pred2 of a— bool

rectype («;;;) tpredl2 = Predl of a— 1t | Pred2 of a—tt
and (a;;;) tpredl = Predl of a—tt
and (a;;;) tpred2 = Pred2 of a—tt
and (a;;;) fpred12 = Predl of a—ff | Pred2 of a—ff

where tpred12 ¢ {tpred1,tpred2}. Then we might have to determine that the principal
split of the refinement type (t¢; ;; ) tpred12 A (ff;;;) fpred12 is

{(tt;;) tpredl N (ff;;;) fpred12, (tt;; ;) tpred2 A (ff;5;) fpred12}.

In general, it seem that we might have to search over al of the supertypes of the type we
start with to find splits, and then combine these to get the principal split. The assumption
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above saves us from that; with the assumption, al splittable types are equivalent to atype
of theform (7 )rc where rc has a predefined split.

The theorems Theorem 2.31 (Splits Are Subtypes 1) on page 49, Corollary 2.32 (Split
Types Refine 1) on page 51, Fact 2.33 (Splits Are Subtypes 11) on page 51, and Fact 2.34
(Split Types Refine I1) on page 51 continue to hold for the new system. To get Fact 2.35
(Splitsof Arrowsare Simple) on page 51 to hold in the new system, we need to assume that
rarrow has no interesting splits:

Assumption 5.24 (Arrow Does Not Split) Thereis no sc such that rarrow Y

Fact 2.37 (Splits are Nonempty) on page 51 continues to hold, as do Lemma 2.43 (Split
Intersection) on page 54, Lemma 2.45 (Principal Split ImpliesUseless Splitting Fragments)
on page 58, and Lemma 2.46 (Fragmentsof Principal Split have Useless Splits) on page 58.

5.5 Refinement Type Inference

The assumptions we make about val ue constructors now have type variables embedded. To
say that a constructor ¢ maps values with type r to values with type (@) rc, we write

c d?f r— (a)rc.

This notation impliesthat ¢ maps all instances of r to the corresponding instances of (@ )re.

Only two refinement type inference rules appearing in Figure 2.6 on page 60 and updated
on page 4.2 have to change to accommodate this:
def

cC . T —

VREe:]

C

VRF ([t] e: (F)re

o)re

/

~—~

)y

—

CONSTR-TYPE:

el
ST

VRE eo: (Tr)rei Ao A(To)rem
rCu
rom(VR) - (case eg of ¢1 => e1 | ... | ¢, => ¢, end:u) i u
foral:inl...nanddl ry,...,r,, whenever

CASE-TYPE:. . def
foral jinl...mwehavec;, 7 r; — (@)rc;

we have
VRE et ([Fi/@]rN ... A[Fm/@rm) —r
VRF (case eg of ¢1 => e1 | ... | ¢, => e, end:u):r

The cONSTR-TYPE rule is fairly intuitive. To infer that a value constructor returns a
polymorphic type (7 )re, we check that 7 is well-formed, that the value constructor maps



CHAPTER 5. POLYMORPHIC REFINEMENT TYPE CONSTRUCTORS 255

some type r to re¢, and that the argument of the value constructor has an appropriate
instance of r asitstype. For example, we can use thisrule to conclude that the expression
cons[bool] (truel] (), nilf[bool] ()) has the type (;tt;;) od, assuming we have the
premises
cons d?f (ax*(Gas;) ev) = (Ga;) od,
-F (true[] (), nill[bool] ()):tt=*(;tt;;) ev,

and
tt  bool.

The case-TYPE ruleis somewhat more complex; the difficult part is the premise begin-
ning with “for all 2 in 1...»...”. Anintuitive reasonable reading of this complex premise
of CASE-TYPEiS

for al branches of the case statement and all inputsto the constructor in that branch, if
giving an input to the constructor for this branch yields the type of the case object
then
giving that input to the type of this branch must yield the type of the case statement.

We can trand ate this into the formal notation used in the inference rule as follows:

e “For al branches of the case statement” becomes“forall zinl...n".
e “The case object” is“eq”.

e “Thetype of thecase object” iS(T1)rc1 A ... A (T ) rcm.

e “The constructor in that branch” is“¢;”.

¢ “Foral inputstotheconstructor inthat branch” becomes“foral ry, ..., r,.”. Roughly
speaking, theinput to the constructor iS[F1/@|r1 A ... A [Fm /@] 1.

e “Giving an input to the constructor of this branch yields the type of the case object”
trandates approximately to

‘ot ([Fa/@lra N o AN [Tr/@rm) =((T)rea A oo AT ) rem)”.

However, thisis not well formed, since constructors by themselves are not expres-
sions. Doing this one component at atime yields the still ill-formed trandation

“foral jinl...mwehavec;: [F;/@|r; —(Tm)re,”.

We can make awell-formed trand ation without changing the meaning in any impor-
tant way by omitting the instantiation in the type of ¢;; thisyields

.. def —
“fordl jinl...mwehavec; T r; — (@)re;”.
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e “Thetype of the case statement” issmply “r”.
e “Thisbranch” is“e;”.

¢ “Givingthat input to thetype of thisbranch must yield thetype of the case statement”
trandatesto “VR I ¢; : ([?1/3]7‘1 VANPAN [?m/ﬁ]rm) — 7.

For example, if we use the pred datatype introduced on page 240, then the expression

case Pred (fn x:bool => x[|) of
Pred => fn f:bool — bool => f]
end : bool — bool

hasthetype tt — tt A ff — ff because the following premises hold:
-+ Pred (fn x:bool => x[|): (t;;;) tpred A (ff;;;) fpred,

tt—tt N ff — ff C bool — bool,
- F (case ... end:bool — bool) :: bool — bool,

and o
Pred © (a—tt) — (a;;;) tpred and
Pred (a—ff) = (a;;;) fpred imply :
-k £n f£:bool — bool => £[|:tt =ttt Nff —ff

5.5.1 Positions of Type Variables

We need to make some assumptions about how the type variables appear in the * relation.
First we must assume that the type variables appear in the proper position; for example, if
« isin the positive position of @, and ¢ s (a)re, then [k/a]r should become larger
as k becomes larger. We will give aformal definition of thisassumption below, but first we
will give aconcrete example where refinement type inference is unsound if the assumption
does not hold.

We will assume adatatype («; ; ; ) box with one negative type argument, one refinement
Tz, and one value constructor Box. We shall assume the constructor Box has these
behaviors: iy

Box :f a— (a;;;) box

Box & o (a;53) T oz
Since « occupiesthefirst positionin the quadruple («; ; ; ) and thefirst position is negative,
this behavior for Box violates the assumption we are discussing: as a type substituted for
« gets larger, the type o on the left hand side of the — also gets larger, but the type
(a;5;) T ONtheright side getssmaller.
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We will also use the value constructor true for the booleans. If we do not use any of
the convenient abbreviations we have introduced so far, true has these behaviors:

true d:?f (;33) ttupleg — (;;) bool
true d?f (;33) rtupleg — (55;) tt
Using the abbreviations, we can make these look more familiar:
true d:?f tunit — bool
def .
true . runit — it
def
We will also use the assumption that 1 ;,,; < tt.

In this context, we can now show that the expression

case Box[bool;;;]| (true ()) of
Box => fn x:bool => x|
end : bool

has the refinement type L;,,;. Since this expression evaluates to true (), and true ()
does not have the type L ;,,;, our type system is not sound with the assumptions we have
made so far.

First we find atype for Box[tt;;;] (true ()). The expression true () obviously has
the type tt. By CONSTR-TYPE and the assumed behavior of Box, the expression

Box[it;;;] (true ())

then has the type (#¢;;;) T4... Now we can do the step where we lose soundness. since
Ljo01< tt, by RCON-SUB we have (t;;;) Tioe < (Lioors ;) T bor; thus by WEAKEN-TYPE
we can infer that Box[tt;;;] (true ()) hasthetype (Lioor;:;) T bos-

Now we can continueto find atype for the case statement as awhole. Thisis a use of
CASE-TYPE with the premises

- Box[tt;;;] (true () : (Looorsss) T boas
J—boolE bOOl,

- case ... end:bool :: bool,

and
Box ° a—(a;;;) T ad:-F £fn x:bool => x[] i Lo — Lioor
The conclusion of CASE-TYPEis- |- (case ... end:bool) : tt. Asdiscussed above, if this

expression hasthis type, then typeinference is not sound.

To prevent this, we need to define what it means for a type variable to be positive,

negative, mixed, or absent from a refinement type, and we will require that whenever
¢y (@)re, the positive type arguments of rc are positivein r, the negative ones are

negative, and so forth. The definition is somewhat wordy, but very regular.
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Definition 5.25 (Negative, Positive, Ignored) We say a type variable o is negative (or
positive or ignored) in a list of refinement types 7 if « is negative (or positive or ignored,
respectively) in each element of 7.

Atypevariable « isnegative in a refinement type r if

e r < r1 A rp and « isnegative in both r; and r5, or
o r x fwhere 3 # «, or

o r x (T1;T2 T3 Ta)fcand « ispositivein 71, negativein 7,, and ignored in 7 3.
Atypevariable « ispositive in a refinement type r if

o r 1 A rpand « ispositiveinry and r, or
e r x 3 (whether or not o = f3), or

e r «x (F1;T2 F3; Ta)fcand « isnegativein 7, positivein 7, and isignored in 7 3.
Atypevariable « isignored in a refinement type r if

e r < r1 A rp and « isignored in both r; and r, or
o r x fwherea # 8

o r x (T1;T2 T3 Ta)fcandaisignorediny, 7, and 73. (It does not matter whether
it appearsin7,.)

Definition 5.26 (Varies properly) Wesay that a quadruple of type variables @y; @,; @s; @,
variesproperly inarefinement typer if all thevariablesin@; arenegativein r, all variables
ina, are positivein r, and all variablesin a, areignored inr.

Assumption 5.27 (Variance) If ¢ s (@)rc, then @ varies properlyinr.

Fact 5.28 (Variant Weakening) If & variesproperlyinr,and 7 < 7, andr C t, then

F/alr < [F /&)

The proof is by induction on r.
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5.5.2 Intersection and Polymor phism

In this Subsection we will make an assumption that eliminates the need to use RCON-AND-
ELIM-SUB to reason about types for constructors. The assumptionis:

Assumption 5.29 (Predefined I nter section Distributivity) For all value constructors c,
if
c®r o (@)rc

and
def =\,
c T r—(ajrc
and @ has the form (@y; oiz; @s; @), then for any well-formed % and %' of appropriate
length, we have B B o
(& Jai)r A [k e’ < [k AE Jag)(r Ar').

Now we can explain which uses of RCON-AND-ELIM-SUB this makes unnecessary. Sup-
pose an expression e has the type [% /aiz]r A [k’ /@]r’. By WEAKEN-TYPE it has each of
the types [k /aiz]r and [E'/aiz]r’. Then we can use CONSTR-TYPE twice to determine, for
an appropriate 7, that c[] e has each of the types (aix; & ; as; @) re and (aig; & as; @) e’
Then AND-INTRO-TYPE tells us it has the type (ay; k; @3 aq)re A (ay; E';m;m)rc’, and

_ - def
WEAKEN-TY PE and RCON-AND-ELIM-SUB tellsusit hasthetype (ay; k A% ; as; @a)(rc A re').

Predefined Intersection Distributivity tells us we can come to the same conclusion
without using RCON-AND-ELIM-SUB. First we use WEAKEN-TY PE to conclude that ¢ has the
type [k A &' /a](r A r'); then by Assumption 2.52 (Constructor Argument Strengthen)

on page 67 and Assumption 2.51 (Constructor And Introduction) on page 67 we have

¢ rar o (@) (re N re'), and then by CONSTR-TYPE we know that ¢[7] e hasthe type

(@ k A k'@ 54)(7’0(1/?f rc').

Having an assumption that makes it unnecessary to use certain inference rules with
constructorsis somethingwe have donebefore. For example, Assumption 2.51 (Constructor
And Introduction) on page 67 makes it unnecessary to use AND-INTRO-TY PE iNn SOMe Cases,
and Assumption 2.52 (Constructor Argument Strengthen) on page 67 and Assumption 2.53
(Constructor Result Weaken) on page 67 make some uses of WEAKEN-TYPE unnecessary.
All these assumptions eliminate the need to use refinement type inference to infer types for
constructors from the CASE-TYPE rule. Perhapsit would be possible to make a system with
fewer assumptions but a more complex proof if we used refinement type inference for the
constructorsin case statements; but that is beyond the scope of thisthesis.

There are no interesting changes to the theorems asserting compatibility between re-
finement type inference and ML type inference.
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5.6 Soundness

The statement and proof of Lemma 4.4 (Environment Modification) on page 235 do not
change. Thenew version of Lemma2.67 (Piecewise | ntersection) on page 84 needsto make
nontrivial use of Predefined I ntersection Distributivity; we will restate the lemmaand show
how it depends on Predefined I ntersection Distributivity before we show the modifications
to the proof.

Lemma 5.30 (Piecewise Inter section) If
forall iin1...m wehave H v : (k;)ke; (5.3)

and

(FO)keL A oo A (k) < (FOICLA ... A (NG, (5.4)

thenfor all yin1...n wehave

Without Predefined I ntersection Distributivity, thisisfalse. For a counterexample, suppose
we have the declarations

datatype (a;;;) d = C of bool — «
rectype (o;;;) 2 =C (tt—a) | C (ff— )

Then, if it werenot for Predefined I ntersection Distributivity, we could use astraightforward
procedure to determine that C' has the behaviors

Cd:ef(tt—>oz)°—>(oz;;;)z

and iy
C7T(ff—a)=(a;;)z

but not
def

C

Then these premises of Piecewise Intersection could be true:

(Lpoor — ) = (a;;;) 2.

-H-C[bool] (fn x:bool => x[]): (tt;;;) =

‘H-C[bool] (fn x:bool => x[|): (ff;:;) 2
(tt;5:) 2 A1) 2 < (Lpootsss) 2
but we would not have the conclusion

-H-Cl[bool] (fn x:bool => x[]): (Lseois;;) 2
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because the only way to derive this conclusion uses WEAKEN-TYPE as the last inference,
and the meaning of H- specifically excludes WEAKEN-TYPE as the last inference.

Proof: Byinductiononthederivationof(?chl/\.../\(?m)kcm < (Fo)rean.. .N(T)re,.

Case: RCON-SUB. | Then m = n = 1 and the premises of RCON-SUB are ?1 < 7, and

def
ke1 < req. From here we take cases on the form of v.

SubCase: v x c[tl] v'. | Thelast inferenceof - H-v : (?chl must be CONSTR-TYPE with

the premises
¢ (@)ke,
- o' (k@]
and B )
El Ct.

def
By Assumption 2.53 (Constructor Result Weaken) on page 67 and kcy < req, we have

s (@)res. (5.5)

By Assumption 5.27 (Variance) on page 258 we know that @ variesproperly inr. ThusFact
5.28 (Variant Weakening) on page 258 gives [k1/a]r < [F1/@]r, and then WEAKEN-TY PE
gives
o [T/ a]r
and CONSTR-TYPE and (5.5) give
- c[?] o' (Fa)req,

which is our conclusion.

SubCase: Otherwise. | Omitted.

Case: RCON-AND-ELIM-SUB. | Then (5.4) hasthe form

— — — —7 = —

_ _ _ - - def
(k1 ko ks ka)kea N (k1 ko ks ka)kea < (k1 ka2 A klzi ks ka)(ker A kea).

From here we shall take cases on the form of v.

SubCase: v x c[t] v'. | Then (5.3) says

Hc[T] v (Ba)key
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and

H[T] v (Ro)kes
The last inferences of each of these must be CONSTR-TY PE with the premises

Then AND-INTRO-TYPE gives
k' [ky/a@)k A [k 2/ @) ko

Suppose @ has the form @y ; @y; as; a4; then Assumption 5.29 (Predefined Intersection
Distributivity) on page 259 gives

[ o/aiallky A [k @a)ka < [ka A Fofais] (ks A ko).
Using Fact 4.2 (Type Substitution Preserves Subtyping) on page 233 on this gives
[Ev/@k1 A [k 2/ @ ks < [Fr/@) (ko A ko).

Then WEAKEN-TY PE gives
' [%1/5](1@_ A kz)

def
Assumption 2.18 (and-intro-<) on page 34 and Assumption 2.52 (Constructor Argument
Strengthen) on page 67 give

¢ (kL A ko) o (@) (ker R kea),
and then CONSTR-TYPE gives
] o (F) (kea R kea),

which is our conclusion.

SubCase: Otherwise. | Omitted.

Case: Otherwise. | Omitted. O

Lemma 2.68 (Subtype Irrelevancy) on page 88, Theorem 2.69 (Splitting Value Types)
on page 89, and Fact 4.5 (Refinement Type Substitution) on page 236 continue to hold
with no interesting changes. The version of Value Substitution as revised in Chapter 4
on page 236 aso has only notational changes. Refinement Type Soundness as revised in
Chapter 4 on page 237 has no interesting changes either; the only nontrivial changes needed
to deal with polymorphic type constructors are in the lemmas, not in the main theorem.
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5.7 Decidability

The changes in this chapter only affect the cases of the type inference algorithm that deal
with constructorsand case statements. The changesrequiredto thealgorithmsareintuitive;
the changes required to the proofs are simple, except the proof that the algorithm derives
principal typesfor case statementsis awkward.

Since types have become more general, we need to generalize some of the utility
functions used by infer. First, we make versions of allrefs that find refinementsfor a
vector or quadruple of refinement types:

fun vallrefs ¢ =
{7 | length 7 = length ¢ and
for : € 1...length ¢ wehave
7{i} € allrefs t{:}}
fun qallrefs t1to ta ts =
{T1,72,T3 T4 B
71 € vallrefs ¢ and
7o € vallrefs ¢, and
73 € vallrefs {3 and
T4 € vallrefs {4}

The new definition of the interpretation : works for arbitrary refinement types, instead of
just functions. We call the function for computing this iconstr by analogy with the ifn
function defined on page 120. In this definition, iconstr »? (7;7") (7;7") computes
i(r?)(p; p"), assuming that 7 C 7 and p” C ¢" and, for some t¢, 7', and "' we have
r? C (1;1;7",17")tc. This definition assumes that Afn has been revised to work on
generalized pairs, and that vsubtypep is a generalization of subtypep that works on
vectors; both of these are easy to write.

fun iconstr r? (7;7") (£;1") =
if r? = ns then ns
else
let val (Fy Py Tl FY ) rea Ao A (T Tl T T e, = r?
in
Afn {(7}; ren) |
hel...n and vsubtypep p 7, t and
vsubtypep p” 7/ 1" and vsubtypep 7/ 7" 1"}
end

It iseasy to give an aternative definition of the old function ifn intermsof iconstr.
Here ifn r? p t evaluates to :(r?)(p), using the old definition of : from Chapter 2,
assuming that p C ¢ and for some v wehave r? C ¢ — u.
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fun ifn r? pt =
case icomnstr r? (p;) (f;) of
ns => ns
| (k; rarrow) => k

Wea sodefineautility function deval that de-eval uatesaconstructor; more specificaly,

it ¢ 1+ — (@)re, then there is some type equivalent to  in deval ¢ re. Thisis used
only inthecase of infer for case statementsthat appears below. Because there arefinitely
many possibleinputsto deval, it can beevaluated quickly by tablelookup at typeinference
time. The implementation does this.

fun deval ¢ rc =
let val u = theuniqueu such that ¢ ® s (a)tc
in
{r|r € allrefs u and c AR (@)re}
end

The new cases of the infer agorithm are:

fun infer VR (c[t] ¢/) =
let val k£? = infer VR ¢
val t = theuniquet such that e ¥+ < te
val s = allrefs (?)
in
Afn {(F)re |T € s andfor some r € allrefs t wehave

c¥ro (@)re and subtypep k? ([F/a]r) t}

end
| infer VR (e as (case eg of ¢1 => e1 | ... | ¢, => e, end:t)) =
if not rom(VR) F e 1t then ns
else let val r? = infer VR e¢g
val v = theuniqueu suchthat rtom(VR) - eg :: u
in if r? = ns then ns
else let val (Ty)rei A ...(Fp)rcy, = 1?
fun seq h = (deval ¢, rcp X ... x deval ¢, 1¢y,)
in
sjoinf ¢
{ifn (infer VR e, [F1/@]riA...A[Tn/Q|rm) u |
hel...n and (r1,...,7,) € (seq h)}
end
end

A full proof of this would require replacing two of the cases in each of the proofs of
Theorem 2.100 (Infer Returns Some Type) on page 145, Theorem 2.101 (Infer Returns
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Principal Type) on page 151, and Theorem 2.102 (Infer Terminates) on page 160. Most of
these new cases would be very similar to the cases they replaced, so we shall omit them.
The exception is the case of Infer Returns Principal Type for case statements, which we
give below, after alemma.

Before we can prove that the algorithm for inferring types for case statements returns
a principal type, we must show that as the refinement type of the case object becomes
stronger, the type inferred for the case statement as a whole becomes stronger. To state
thisformally, we speak in terms of the premises of CASE-TYPE:

Lemma 5.31 (Case Statement Body) If

(FOCL Ao A (Fo)iCn < (R1)ker A ... A (K )k, (5.6)

and, for all k4, ..., k, we have

for all hinl...n wehavec kn — (@)key,
implies (5.7)
VRE e ([ky/aTlki Ao Ak /@kn) — 7

and
forall jinl...m wehavec o r; — (@)re; (5.8)

then
VREe: ([Fr/@]riA ... AN [Fn/@|rm) — .

The proof is not particularly interesting, but it is long enough that it was a nuisance to
discover, so we include it here.

Proof: Suppose that % » has the form

s

ko kk,

and 7 ; hastheform

— =l . =, =
ri, 7"]', Tj y Tj
and @ hasthe form
a, a/, a//; a///7
and let p abbreviate (71)re1 A ... A (T, re,,. By Fact 5.12 (Bound on Argument to : Gives
Bound on z) on page 250 and (5.6),

forh e 1...nwehavei(p)(kn; k) < (k' key). (5.9)

Define
=1

sthy={jel..m|k, <7 andk, =77} (5.10)
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Then, by definition of 7 and (5.9),
for h € 1...nwehave A{(7;re;) | j € s(h)} < (ky; ken)
which implies
forh € 1...nwehave A{F' | j € s(h)} < &, (5.11)

and
def
forh € 1...nwehaved/$f{rcj | j €s(h)} < kep. (5.12)

We can use (5.8) and Assumption 2.52 (Constructor Argument Strengthen) on page 67 to
get

forh € 1...nanddl jins(h)wehavec o Nrj g € s(h)} — (@)re;
and then Assumption 2.51 (Constructor And Introduction) on page 67 gives
def ) . def )
forhel...nwehavec T A{r;|j€s(h)} — (@)(A{rc;|jes(h)})
and Assumption 2.53 (Constructor Result Weaken) on page 67 with (5.12) then gives
forhe1...nwehavec® A{r; | j € s(h)} — (F)ken. (5.13)

Define &, tomean A{r; | j € s(h)}. Then by (5.7), we have

VRE e ([ky/alki Ao Ak /@ks) — 1. (5.14)

The remainder of the proof consists of showing that

((ka/a@lki Ao A [k /@lky) =1 < ([Fo/@IrLA oo A [T /& 1) — 1
Once we prove this, we can use WEAKEN-TY PE with (5.14) to get our conclusion.
By Assumption 5.27 (Variance) on page 258, for h € 1...n and al j € s(h) we have
@ varies properly inr;. By definition of s(k), we have
forh € 1...nwehavej € s(h) impliesk, <T;
and
forh € 1...nwehave; € s(h) impliesk;, = 7.
By SELF-SUB,
forh € 1...nwehave; € s(h) implies7’ < 7.
Thus by the definition of < for quadruples we have

-

forh €1...nandal j € s(h) wehaveT; < k7% kps k-

Then Fact 5.28 (Variant Weakening) on page 258 gives

=

forh € 1...nandalj € s(h) wehave[7;/@)r; < (ki 7 &y by /@]r;.
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Then
forh € 1...n wehave

MI3/Elrs | € s(h)} < (5.15)

Mk T ks Ry /@l | € s(h)}

because each element of the set on the left hand side is a subtype of the corresponding
element of the set on the right hand side.

It is easy to use induction to generalize Assumption 5.29 (Predefined Intersection
Distributivity) on page 259 to apply when more than two refinement types are involved in
the intersection; thus we have

forh e 1...n wehave
NMIrs/alri | g € s(h)} <

(AT 15 € s(h)}/a@(Mri | g € s(h)})
Then Fact 5.28 (Variant Weakening) on page 258 used with (5.11) gives

forh € 1...n wehave
(AT 15 € st} /@) (Mrs | 5 € s(h)}) < [Ry/@)(A{r | ] € s(h)}).
Then TRANS-SUB applied to these gives
forh € 1...nwehave A{[F7/a']r; | j € s(h)} < (& /&) (A{r; | j € s(h)}).
By Fact 4.2 (Type Substitution Preserves Subtyping) on page 233, thisimplies

forh € 1...n wehave

[k 1; kh’ k), @, a’J(Alrs/ari |5 € s(h)}) <

-

[fns By B, /@ ' @[k /@) (Mri | € s(h)}),
and the definitions of substitution and &, then give

forh € 1...n wehave

MER Tk by jaa @@ | j € s(h)} <
[kh/a]kh
Then TRANS-suUB with (5.15) gives
forh € 1...nwehave A{[F;/@|r; | j € s(h)} < [kn/akn.
By repeated use of AND-ELIM-L-SUB and AND-ELIM-R-SUB, thisimplies
forhel...nwehave[Ti/alri A ...\ [Tn/a]r, < [?h/i]kh,

and by repeated use of AND-INTRO-SUB, thisimplies

Fo/TrA . AT/ < [k/@ka A A (k)T k.
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Finally, we can use RCON-SUB to infer

([E1/@Vka A o ATk /@hn) = 7 < ([F1/@Jra A oo A [T /@ rn) — 7

and then WEAKEN-TY PE with thisand (5.14) gives our conclusion. O

Now we can give the case case of Theorem 2.101 (Infer Returns Principal Type) on
page 151. We will restate the theorem first.

Theorem 5.32 (Infer ReturnsPrincipal Type) If

all splits of typesin VR are useless

and
infer VR eterminates
and
VREe:7r
then

(infer VR ¢) <r

Proof: By inductionon e. Asin Chapter 2 on page 152, we will use

For all r,
(VRH-€e :rimplies
(infer VR €) <)
implies (5.16)
For all r,
(VRF e:rimplies
(infer VR €) <)

Case: e x case ¢g of ¢; => e1 | ... | ¢, => ¢, end:t | Suppose we have an r
such that

VRH-€e: . (5.17)

The last inference of this must be CASE-TYPE with the premises

VRF eo: (kr)ker Ao A (,)kes,

rC{,
foral hel...nanddl &y, ..., k,,, whenever

foral¢el...zwehavec, o k, — (@)ke,
we have

VRE ey ([ko/@lki Ao Ak, /@ks) >,
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and
rtom(VR) i e :: ¢.

Since infer VR e terminates, infer VR ¢p must terminate. By induction hypothesis,

infer VR e < (k1)ker AL A (?Z)kcz

Suppose infer VR eg hastheform (7q)rei A ... A (7, ) re,,. Wewill show that for al £
andall (rq,...,r,)inseq h, wehave
ifn (infer VR e, [Fi/alriA...A[Fn/a@]ry) <
Then trivia propertiesof join will give infer VR e < r, whichisour conclusion.
First, chooseany hinl...n and (r1,...,r,) inseq h. By the definition of seq, this

implies

forj € 1...m wehavec, ot r; — (@)re;.
Lemma 5.31 (Case Statement Body) on page 265 then gives

VR € - ([?1/5]7“1 FANPAN [?m/ﬁ])rn — 7.

Sinceinfer VR eterminates, infer VR ¢, must aso terminate. Our induction hypoth-
esisthen gives
infer VR ¢, < [Fi/@|ri A .. A[Fn/@]r, —r.

Hence, by Fact 5.12 (Bound on Argument to : Gives Bound on z) on page 250 we have
ifn (infer VR e, [Fi/@|riA .. A[Fn/@]rn) <

Since this holds for al A and al (ri,...,7r,) in seq h, soundness of sjoinf gives
infer VR e < r. Summarizing (5.17) to here,

VRH-¢e:rimpliesinfer VR e < r

By (5.16), thisimplies our conclusion.

Case: Otherwise. | Omitted. O

5.8 Declaring Polymorphic Type Constructors

Three new issues arise when analyzing rectype declarations with polymorphic type con-
structors. we must determine which type arguments are mixed, positive, negative, and
ignored; we must ensure that Assumption 5.29 (Predefined Intersection Distributivity) on
page 259 holds; and we must construct default refinement types that expressions written
without concern for refinement types can inhabit.

Except for these issues, analyzing rectype declarations with type variables is very
similar to analyzing the same declarations with all the variables replaced by constants, so
the theory from Chapter 3 applies directly.
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5.8.1 Separating Mixed, Positive, Negative, and | gnored

We can use a straightforward abstract interpretation of the type declaration to distinguish
the different kinds of arguments to type constructors. We separately infer whether a type
variable appearing as an argument occurs positively and whether it occurs negatively inthe
definition of the type; if neither is true, the argument is ignored, and if both are true, the
argument ismixed. For example, given the datatypeq

datatype («, ) mir = Mix of a—(a*f3)

we immediately determine that « is mixed and /3 is positive. When several mutually
recursivetype constructors are declared simultaneously, we may haveto iterateto determine
the best classification. For example, given the declaration

datatype (o, ) ml =
A of (a,3) m2 | B of a*«

and (v,6) m2 =
C of (v,6) ml | D of 6—¢

we will have to use at least two iterations to determine that o« and ~ are positive and 3 and
6 aremixed. Implementing thisis straightforward.

5.8.2 Enforcing Predefined I nter section Distributivity

The best way to enforce Assumption 5.29 (Predefined Intersection Distributivity) on
page 259 is unclear. The following theory says it is possible to effectively discover
declarations for which this assumption is not true; we could simply reject them, but it
would be better to silently repair declarations to cause the rule to be true. It is not obvious
how to repair the declarations.

The following fact has an immediate corollary which leads to an algorithm that rec-
ognizes declarations for which the assumption is not true. The main idea is that we can
determine whether the assumption istrue for all vectors of refinement types we could sub-
stitute by checking it in one special case. The special case usesavector ¢ of monomorphic
ML type constructors and two vectors @ and b of monomorphic refinement type construc-
tors, where all three vectors have the same length and the type constructorsin al three of
these vectors are distinct from each other and from any other type constructors mentioned
inthelemma, andfor all i € 1...length(7c), theonly refinementsof Zc{:} area{:}, b{i},

and @ {:} N b{i}. Similarly, we use the vectors @, @, and @” where all three vectors have
the same length as 7c and no type variable appears more than once in al three vectors.
Then we have:
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Fact 5.33 (Predefined I ntersection Distributivity Technical) Supposea and b areasde-
scribed above, and that % and % are vectors of refinement typeswhere & A & refines some
t. Let
s=la/a,b/a,(aAb)/a"]
and
s'=[k/a,k ja,(kAE) /")

Then, for any refinement types £ and £’ in which none of the a{:}’s or 6{:}'s appear, if

then

The proof of thisisastraightforward induction on the derivation of s(k) < s(k’). Thenwe
have the following corollary:

Corollary 5.34 (Predefined I nter section Distributivity Decidable) Suppose@ and b are
as described above, and that % and % are vectors of refinement typeswhere & A % refines
some ¢. Then, for any refinement types k& and £’ in which none of thea{:}'sor 4{:}'sappear,
if
[@/a]r A [b/a)r’ < [a Abja)(r Ar')
then
[k /alr A& [alr’ < [k AE [a](r Ar).

Proof: Usethe previousfact, withk = r A [@/a]r and k' = [@" /a](r A ). O

At this point, an admittedly slow algorithm for checking the assumption is clear: each
time we analyze arectype declaration, for each constructor ¢ where

[ def t— (al; Qip, a3, 54)750,
temporarily introduce new c, @, and b as described in the corollary above. Enumerate all
r, ', re, and r¢’ such that ¢ d?f r— (a)rcandc d?f r’ — (@)re’; in each case, verify that
[@ /a)r A [b/ar’ < [a@ A b/a).
There may be faster algorithms for doing this test, and there may be ways to repair

rectype declarations that fail this test without violating the intuitive expectations of the
programmer. All thisis future work.
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5.8.3 Default Refinement Types

As the example in Subsection 2.7.2 on page 74 shows, if any ML type has more than one
refinement, there will be programs with an ML type that have no refinement type. Once
we permit mixed type arguments, we get into an even stranger situation: there will be ML
types with no maximal refinement. For example, assuming the usua refinements of the
booleans and the declared ML type m on page pagerefexample:mixed, the refinements of
bool m arett T, ff Ty Lioot Tms Taoot T m, @ndintersections of these. Thereisno
refinement of bool m that is greater than both T4,,; T,, and ¢t T,,.

Since there is no refinement type that includes the others, the terminology “catch-
al type’ that we used in previous chapters is not appropriate. Instead, the purpose of
the default type is to provide a refinement type that terms with an ML type can inhabit
whenever the strangeness from Subsection 2.7.2 does not happen. With thisunderstanding,
constructing the default type of a given ML datatype is still straightforward: define the
default refinement type to be any constructor that constructs the ML datatype, applied to
the default type refining the argument ML type of the constructor. For example, given the
datatype

datatype (;;a;) miz = Mix of a —(a * bool)
the default refinement type is defined as

rectype (;; ;) Tomiz = Mix (a—(a* T )



Chapter 6

Declaring Refinement Types for
EXpressions

In this chapter we add explicit refinement type declarationsto the language of expressions;
for example, the expression

fn x:bool => (x[1 < tt)

will have the type tt — ¢t but not the type ff — ff. Adding this feature is surprisingly
simple.

The < operator is coercive, in the sense that the best refinement type of a expression
of the form e < r will be r, if it has any type at all. We can aso imagine a non-coercive
version, which we shall call <1’. The best type of ¢ <1’ » would be the best type of e, if that
typeislessthan r; otherwise the expression has no type.

Both operators are simple, but <1 is more elegant because we can use <1 to implement
<’, but not vice versa. To use <1 to implement <1/, regard the expression e <1’ r as an
abbreviationfor (fn z:t => ((fn x:t => fn y:t => x[]) z[] (z[]d r))) e, wheretis
avalid ML typefor e.

Type inference for <1 issimple. First we add the syntax to the language; we will still
have ause for expressionswithout any <1 operators, so wewill keep the metavariable e with
the meaning it was given on page 242 and use the metavariable d to stand for expressions
that may have <1 operators. Thus the grammar for d is.

di=ddr|
z[T] | fn 2:t => d|d d|[T] d|
case d of ¢ =>d | ... | ¢ => d end:t|
(d, ..., d)|()|elt_m_n d|

fix f:t => fn x:t => d |
let © = A(@).d in d end

273
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Our language of types is unchanged, so results such as Fact 5.21 (Finite Refinements) on
page 252 continueto hold. Typeinferencefor expressonswith refinement type declarations
is the same as type inference for expressions without refinement type declarations, except

we add thisrule:
VREd:r

VRE(d<dr):r

Strictly speaking, we also need to take the rulesin effect for e (see page 254) and assert that
they still hold, except al ¢’s in those rules should be changed to d’s.

DECL-TYPE:

Instead of using coercive declarationstoimplement non-coercive declarations, we could
treat non-coercive declarations directly by adding thisrule:

VREd:r r<k

DECL-TYPE'. VRF (d<]' k) r

The presence or absence of thisrule has little impact on the reasoning below.

With these declarationsthere comes anew phenomenon: expressions can now havefree
refinement type variables. Attemptsto directly define anotion of evaluation on expressions
with declarations lead to pointless questions about how to instantiate free refinement type
variables while evaluating 1et statements. To avoid these questions, we simply erase the
refinement type declarations before evaluating:

Definition 6.1 (Erase) We use the notation erase(d) to mean d with all of the refinement
type declarations erased.

Our soundness result therefore reads as follows:
Theorem 6.2 (Refinement Type Soundness) If erase(d) = vand-+ d: r,then- F v :r.

Proof: We can use induction to prove that - - d : r implies - - erase(d) : r. Thus
- - erase(d) : r, and we can apply Theorem 4.7 (Refinement Type Soundness) on page 237
to get our conclusion. O

The algorithm for inferring refinement types for expressions with refinement type dec-
larationsis also simple. We add the following case:

fun infer VR ddr =
if rtom(VR) F erase(d) :: ¢ then
let t = theuniquet such that rtom(VR) I erase(d) :: ¢
in
if subtypep (infer VR d) r ¢ then r else ns
end
else ns

The soundness proof for thisis straightforward and we omit it.



Chapter 7

| mplementation

An implementation of refinement type inference has been written in Standard ML. It
corresponds well with the theory developed in the previous chapters, and it runsreasonably
quickly. This chapter discusses the technical issues that had to be resolved to create
this implementation; this chapter is not meant to be complete instructions for using the
implementation.

Sincethe language of the implementation resembl esthe object |language, thereis poten-
tial for confusion between the object and the implementation languages. Worse, examining
types of expressionsin theimplementation language is useful when trying to understand the
implementation, so we must add yet another kind of type to the discussion. We call types
in the implementation language “ SML types’, to distinguish them from the “ML types’ in
the object language described in the previous chapters.

The syntax for the expressions recognized by the implementation is similar to the
grammar appearing on page 274, except we implement ML type inference so explicit ML
types need not appear in terms. The grammar does not closely resemble true SML. A
simple interaction with the implementation is below. In the example, the refinement type
declaration operator “<1” iswritten as“<:” and the operator “ —" iswritten as“->". Input
typed by the user is preceded by >- or >=.

275
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\%
|

datatype bool = true of unit | false of unit
rectype tt = true (unit) and ff = false (unit);
>- true;
it: (unit -> bool) ::
(unit -> tt)
>- true <: ff;
Failed to unify (unit -> bool) and bool
while ML type checking true <: ff.
ML type check failed.
>- (true ()) <: ff;
it: bool ::
<: invalid for term (true[] ()).
It actually had the type:
tt
You tried to coerce it to the type ff.
>- (true ()) <: tt;
it: bool ::
tt
>_

\4
1]

As is the case in the theory described in previous chapters, al value constructors take
exactly one argument. Noticethat at no point do we calculate a value; this implementation
of refinement type inference does not implement any kind of evaluation.

The implementation has many boolean flagsthat the user can manipulate to turn on and
off various performance optimizationsin thetype checker. Theflagsareall false by default;
the flags are defined in such away that the default is usually best. A given flag f can be
set with the top level command “setflag f;” or cleared with the top level command
“clearflag f;”. A list of al flags with a description and the present value of each is
printed whenever the flag argument to setflag or clearflagisinvalid.

Most of the optimizations discussed below can be turned off by setting some flag. We
justify most optimizations to type inference by citing how turning off the optimization
makes some example run more slowly. All run times in this chapter were measured on a
SPARCstation iPX.

7.1 Representations

This section discusses how the various mathematical objects discussed in previous chapters
are represented in the implementation.
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7.1.1 TypeConstructors

The Definition of Sandard ML [MTH90] makes a distinction between a type name and a
type identifier. Type identifiers are smply the strings appearing in the program text that
refer to various types,; for example, if we have a declaration of the form type t = ...
that is shadowed by alater declaration of the form datatype t = ..., both of the types
have the same identifier t. In contrast, type names are unique for each type; since the two
types with identifier t are different, they will have different type names.

In the implementation refinement types we make even more distinctions. First we have
refinement type identifiers (refconid’s) and ML type identifiers (mlconid’s), which are
both implemented as strings. Then we have refinement type names (refconname’s) and
ML type names (mlconname’s), which are unique identifiers. These are equality types,
so they can easily be used as keys for tables. Finaly, we have ML type constructors
(mlconstructor’s), which have an mlconname and other information describing al the
refinements of that ML type name.

Refinement type identifiers and names are represented as follows:

type refconid = string
type refconname = {refconid : refconid, uniqueid : int, index : int}

The uniqueid field of refconname’s is used to distinguish different refinement type
constructors with the same name. If an ML type constructor t¢ isrefined by the refinement
typeconstructorsrey, .. ., rc,,, thenthe index field of therepresentations of these refinement
type constructors will be distinct integersin the range O, ...,n — 1, in some order. This
allows us to implement functions mapping a refinement of ¢c to some other value as a
simple array reference.

ML type identifiers and names are represented as follows:

type mlconid = string
type low_mlconname = mlconid * int
datatype mlconname =
Tuple of int
| Arrow
| Custom of low_mlconname

This is all very straightforward: Tuple n stands for ttuple,, Arrow stands for tarrow,
and Custom (s, 1) stands for the user-defined ML type constructor with the name s. The
integer : has the same role astheuniqueid field of refinement type constructor names.

Note that mlconname’s distinguish separate cases for arrow and tuple types, but
refconname’s do not. This does not create ambiguity because whenever the implemen-
tation uses a refinement type constructor, it always has on hand the ML type constructor
that this refinement type constructor refines. Thus if a refinement type constructor refines
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an ML type constructor with the name Arrow, it must be the representation of rarrow. In
this case we put arbitrary valuesinthe refconid, uniqueid, and index fields. We do the
same for tuple refinement type constructors.

The ML type constructor itself is a record containing the ML type constructor name,
along with other information describing its refinements. The meanings of the fields are
discussed below.

datatype mlconstructor =
MLConstr of
{name : mlconname,
unique_refinements : refconname list,
nonunique_refinements : (refconname, refconname) S.substitution,
bottom : refconname,
bottom_emptyp : bool,
top : refconname,
tor : (refconname * refconname) -> refconname,
tand : (refconname * refconname) -> refconname,
tleq : (refconname * refconname) -> bool,
negargpos : int list,
posargpos : int list}

The unique_refinements and nonunique_refinements fields are used to keep redun-
dant refinements of an ML type from slowing refinement type inference. For example, if
this declaration is given to refinement type inference:

datatype bool = true of tunit | false of tunit
rectype tt = true (tunit)

and ff = false (tunit)

and 1., = bottom bool;

_ def . .
then the refinement types t¢ A ff and L;,,; will be equivalent. Theunique_refinements

. . . . . def
field has a list of the refinements we will use (which excludes tt A ff), and
nonunique_refinements has a substitution mapping each refinement we will not use

, : . o def .
into the corresponding one we will use (inthiscase, tt A ff is mapped to L ,,;).

Skipping forward, the tor, tand, and tleq fields contain functions that can join,
intersect, and compare the refinements of this ML type constructor. The functionstor and
tand only have elements of unique_refinements as their range, to make it possible to
pay as little attention as possible to the redundant refinement type constructors.

The fields bottom and top have the least and greatest refinement of this ML type
constructor, respectively. These fields are redundant; we could compute them by us-
ing the functions stored in the tand and tor fields to combine the types listed in
nonunique_refinements.
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The bottom_emptyp field is used to evaluate the - » empty judgement described in
Chapter 3. If thisflag is true, we assume that the refinement in the bottom field is empty,
otherwise we assume it is not. We assume that all nonredundant refinements other than
the onein the bottom field are not empty, since otherwise they would be equivalent to the
refinement in the bottom field, and therefore they would be redundant.

All type arguments in the implementation are either positive or negative. Mixed
arguments are outlawed and ignored arguments are treated as positive. Syntactically, each
ML type constructor has one linear list of arguments, as they do in SML; but internaly,
we treat the negative type arguments very differently from the positive ones, so we keep
them segregated into separate lists. The posargpos and negargpos fields say how to do
the segregation. If we sequentially assign numbers (starting with zero) to the syntactic
type arguments, then posargpos isalist of the numbers for positive type arguments and
negargpos isalist of the numbers for negative type arguments. For example, given the
declaration

datatype («,,7) d = D of Bx*(a—7)

argument number O («) is negative and arguments 1 (3) and 2 () are positive, so the
negargpos field of ¢ will be [0] and the posargpos field will be [1, 2].

7.1.2 ML typesand type schemes

We represent ML types with the datatype

datatype mlty =
MLCon of {neg : mlty list,
pos : mlty list,
con : mlconstructor}
| MLTyvar of V.tyvar

where V.tyvar is a representation of type variables. This is a direct encoding of the
grammar for ML types given on page 242, except we have already segregated the negative
and positive type arguments; from thenegargpos and posargpos fields of the constructor,
it isobvious how to mergetheneg and pos fields to get the type arguments in the order the
user expects.

The encoding of ML type schemes is straightforward as well:

datatype mlscheme =
MLScheme of (V.tyvar list * mlty)

These encodings of ML types are straightforward enough that we will ignore them in
this chapter, and use the same notation for ML types in this chapter that we have used in
previous chapters.
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7.1.3 Refinement Types

The implementation has different representations for the refinement types appearing in
explicit declarations (such as ¢t in (true ()) < tt) and refinement types that are inferred
for an expression by the implementation. After we describe both representations, we will
explain below how the specia representation for refinement types in explicit declarations
allows quick checking of the assertions in expressions containing <.

The representation for refinement types appearing in explicit declarationsis ssmple, and
similar to the representation of ML types:

datatype syntp =
SAnd of syntp list
| SCon of {pos : syntp list,
neg : syntp list, refcon : refconname}
| SVar

Since we usually know which ML type a refinement type refines, we only have one
representation SVar for all type variables appearing in explicitly-declared refinement types.

We represent inferred refinement types with afunction that computes the interpretation
¢ of the refinement type as in Definition 5.8 on page 248, along with afew other fields that
make some optimizations possible. The representation of refinement typesis:

datatype tp =
RefCon of (teqopt * bool * mlconstructor *
(tp list -> (tp list * refconname)))
| Reftyvar

Reftyvar isanalogousto SVar; it stands for atype variable, but it does not bother to say
which one, because there is generally an ML type on hand that makes that clear. If the
refinement type is not a type variable, then the constructor isRefCon with atuple of four
components as its argument.

Skipping ahead, the fourth component of the tupleisthe interpretation, represented asa
functioninthe obviousway. We only have one argument to the function because we outlaw
mixed type variables.

The first component of the tuple has the type teqopt which we have not yet dis-
cussed. Thistypeis used for memoizing refinement type equality, and it is discussed with
memoization in Subsection 7.2.4 below. In practice, the implementation uses a utility pro-
cedure called eRefCon that insertsthe teqopt; eRef Con takes as argument a tuple with the
last three components of the argument to RefCon, it constructs and inserts an appropriate
teqopt, and it callsRefCon and returnsthe resulting tp.

The implementation of refinement types uses references when it finds atype for afixed
point. As the values stored in these references change, the behavior of the functional
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component of some refinement types can change; we say these refinement types are not
constant. It isimportant not to memoize these refinement types, because the information
stored in thememo tablemay not be accurate by thetimeitisused. Toensurethis, weusethe
second component of the tuplein each refinement type created by Ref Con to record whether
the refinement type is constant. For a more complete discussion, see Subsection 7.2.2.

The third component of the tuple is the ML type constructor. This is redundant and
could be eliminated; it is presently used so we can recognize arrow and tuple types when
printing refinement types during debugging, and so we can form intersections and joins of
refinement types without having to pass around the ML type that they refine.

Given the functional component of a tp and a syntp, one can efficiently determine
whether the tp is a subtype of the syntp. If the syntp is an intersection, then the tp
is a subtype of the syntp if and only if it is a subtype of al of the components of the
intersection. If the syntp is SVar, then ML type inference should have ensured that the
tp iISReftyvar, S0 the tp isasubtype of the syntp. Lastly, if the syntp isa SCon, then
we use the definition of ¢ to convert the negative arguments of the syntp into a tp, we
pass those negative arguments to the functional component of the tp, and we recursively
compare the result of the function call to the positive arguments of the syntp.

7.2 Refinement Type Inference

Refinement type inference is similar to the type inference algorithm described at the ends
of Chapters 2, 4, and 5. The main change is the lazy representation of refinement types;
this immediately leads to the needs for memoization, pending analysis for fixed points,
and an interesting instantiation algorithm. Lazy representations of types also appear in
[HM94]. Once these issues are understood, there is little to be gained by writing out the
entire algorithm; instead, we will only deal with interesting cases of it below.

7.2.1 Laziness

Often a function will only be used at a few of the types for which it is defined. This
tendency is especialy strong for higher-order functions, since functional ML types can
have so many distinct refinements. For example, assuming the usual rectype declaration
for the booleansisin effect, the refinement type given to double by the declaration

val double = fn f => fn x => f (f (x:0bool));

is an intersection of 112 components. By representing refinement types as functions that
can compute the relevant components of the intersection on demand, we can usualy avoid
computing al 112 components and storing them in memory.
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The case of typeinferencethat reflectsthisprinciplemost clearly deal swith abstractions.
Using the notation in the original definition of the type inference algorithm in Figure 2.7
on page 142, thisis the modified algorithm:

| infer VR (fn z:t => ¢') =
if thereisaw suchthat rtom(VR)[z :=1t]F e 1 u
then
let val u = theuniquewu suchthat rtom(VR)[z :=t]F €' I u
fun do_one r =
sjoinf u {infer (VR[z:=7']) ¢' |7’ € split r}
in
RefCon (..., ..., tarrow, fn [x] => ([do_one x], rarrow))
end
else ns

where we have omitted the first two components of the argument of RefCon. In the actual
implementation, the ML type « of the entire abstraction is stored in the abstract syntax of
the abstraction, so refinement type inference does not have to invoke ML typeinference.

7.2.2 Fixed Points

The method for finding least fixed points in the fix case of the algorithm in Figures 2.7
and 2.8 on pages 142 and 143 is an instance of a general technique: start with the least
possible value, and repeatedly apply the function we want the fixed point of until the result
stops changing. This technique does not work well with lazy representations of refinement
types because comparing the results of one iteration to the results of the next causes us to
evaluate both results completely.

Instead, we use a technique called pending analysis. This technique allows one to
evauate the abstract interpretation of a fixed point at any given point; this evaluation
examines a minimal number of other points. It is easiest to explain this with an example;
for a more formal description, see any of [Jag89, Dix88, You89]. The tables of pending
values resembl e the minimal function graphs of [IM86].

Suppose we have the declarations
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datatype «a list = cons of a*a list | nil of tunit
rectype a ev = nil (tunit) | cons (a*a od)

and a od = cons (a*«a €v)

and a em = nil (tunit)

and a nem = cons (a*a Ts)

and a Ly, = bottom (« list);
datatype bool = true of tunit | false of tunit
rectype tt = true (tunit)

and ff = false (tunit)

and l;,,; = bottom bool;

and (using the concise syntax) the function definitions

fun not (true ()) = false ()
| not (false ()) = true ()

fun boolmap (f:bool -> bool) ((nil ()):bool list) = nil ()
| boolmap f (cons (hd, tl)) = cons (f hd, boolmap f tl)

or, in the formal syntax, the function definitions

val not = fn x:bool =>
case x of true => false | false => true end:bool;
val boolmap =
fix boolmap:(bool — bool) — bool list — bool list =>
fn f:bool — bool => fn 1:bool list =>
case 1 of
nil => fn _:tunit => nil ()
| cons => fn p:bool * bool list =>
cons (f (elt_1_2 p), boolmap f (elt_2_2 p))

end: bool list;

and suppose we want to find the principal type for

boolmap not (cons (true (), nil ())).

We start with an abstract interpretation using a strategy very similar to the strategy for
actually evaluating the expression. This becomes interesting when we must take steps to
ensure that abstract interpretation terminates even in the presence of recursion. Thetype of
boolmap hastheform

RefCon (teqoptl, true, tarrow, boolmapfn’),

where tarrow is an ML constructor representing arrow types and boolmapfn’ iS some
function. Similarly, thetype of not issome unimportant structurewrapped around afunction
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we shall call notfn’. From the declaration of RefCon on page 280, we know that both
boolmapfn’ and notfn’ have the SML type tp list -> (tp list * refconname).
Because the ML type constructor named Arrow has one negative argument, thelist of tp’s
passed to boolmapfn’ and notfn’ will aways have exactly one element. Because Arrow
has one positive argument, the list of tp’s returned from boolmapfn’ and notfn’ will
also aways have exactly one element. Since Arrow isrefined by only one refinement type
constructor, the refconname returned from both boolmapfn and notfn will aways be
that refinement type constructor. Thus we can represent all theinformationinboolmapfn’
and notfn’ using functions with the SML type tp -> tp; we will call these functions
boolmapfn and notfn.

The interior structure of the type of cons (true (), nil ()) is not relevant for this
example, so we will write that type as a mathematical refinement type: ¢ od.

We take the behavior of notfn as given, and our goal in this exampleisto describe the
behavior of boolmapfn whenit is passed the argumentsnotfn and ¢t od.

If we had no concerns about termination of type inference, we could smply make
the abstract interpretation of boolmap recur at the same point in the code where boolmap
itself recurs. We would start with £ having the type notfn and 1 having the type ¢t od.
(Throughout this scenario, £ will have the type notfn, SO we will not mention it again.)
We can summarize this situation with the notation

boolmapfn notfn (¢ od) =7?

We can construct an odd length list starting with either an empty list or an nonempty,
even length list, so the abstract interpretation would make two recursive cals to the body
of boolmap: one where 1 has the type ¢t em (this returns immediately with the result

def .
L4010 em) and one where 1 has the type ¢t (ev A nem). We can summarize the current
Situation with the table

boolmapfn notfn (it od) =7
boolmapfn notfn (it em) =140 €M

def
boolmapfn notfn (it (ev A nem)) =7

. . def : : .

Continuing, the call with argument ¢t (ev A nem) givesriseto arecursive call wherel has
the type tt od. Thisis the argument we started with, so if we continue in the fashion we
have up to this point, we will have an infinite loop.

The solution to this problem is the essence of pending analysis. Instead of
continuing with the recursion, we behave as though the inner recursive cal to
boolmapfn notfn (¢t od) Smply returns the least type we have observed so far for
the expression boolmapfn notfn (¢ od). Since our table lists “?’ as the entry corre-
spondingtoboolmapfn notfn (¢t od), wehavenot yet observed any typesreturned from
thisexpression, so wereturntheleast availabletypefor the expression, whichis L ;,,; L.

def
Under this assumption, the value returned when 1 is ¢t (ev A nem) isff L. Thistypeis
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) def . . . .
lessthan thetruetypewhen 1 istt (ev A nem); wewill reviseit later. Thistable describes
the current situation:

boolmapfn notfn (it od) =7
boolmapfn notfn (it em) =140 €M

def
boolmapfn notfn (it (ev A nem)) = ff Ly

Now we can finish this part of the abstract interpretation; we take the join of L ;,,; em and
ff Lus and apply cons, yielding ff od and the following table:

boolmapfn notfn (it od) = ff od
boolmapfn notfn (it em) =140 €M

def
boolmapfn notfn (it (ev A nem)) = ff Ly

Cdll thistable “ Generation 1”. Although we have the correct answer to the problemwe are
interested in, this table is peculiar because the solutions to the subproblems listed on the
second and third lines are too small. We were lucky thistime; in general, at this point in
the computation, the proposed solution to the top-level problem can be too small.

This happened because we knew too little when we computed some of the subproblems.
A natural approach is to repeat the computation, but whenever a subproblem that would
otherwise cause aloop arises, we use the value from Generation 1 instead of the least type
available. Doing thisresultsin the correct result for the top-level problem again, and aso
acorrect table:

boolmapfn notfn (it od) = ff od

boolmapfn notfn (it em) =ff em

def def
boolmapfn notfn (it (ev A nem)) = ff (ev A nem)

Call this* Generation 2”. We only know thisis a correct table because we have foreknowl-
edge of the correct result; the only way the implementation can determine that thistableis
correctisby using it to calculate a third generation, and seeing that Generations 2 and 3 are
identical.

It is plausible, but not at all obvious, that this procedure gives correct results. For
proofs, see [Dix88].

The implementation organi zes the tabl e representing these generations as an association
list. Searching the association list can be expensive, in general, because comparing types
can be expensive. Therefore each entry in the table is a reference that can be updated in
place; this avoids the usual accumulation of useless entries in an association list as new
entries are added to the beginning.

Unfortunately, this also means that some refinement types have functions embedded
in them that make non-trivial use of references. In generd, if a subexpression has a free
variable that is bound by a surrounding £ix operator, its type will contain a function that
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may change aswe search for the fixed point. Putting thistype in amemo table would cause
problems, because the behavior of the type may change with time. To ensure that these
types are never placed in a memo table, each refinement type other than Reftyvar has a
boolean field that is set to true if it definitely uses no references (that is, it is constant),
and falseif it may use nontrivia references of thiskind. Thisisthe second component of
the tuple argument to RefCon on page 280.

7.2.3 Optimizing Equality

The above technique requires us to ook up types in atable and to determine whether one
tableisidentical to another. Both of these problemsrely heavily on determining when types
are equal to each other. There are several steps that can be taken to make this efficient.

The straightforward implementation of type equality (based on a generalization of the
subtypep function from page 119 to operate on refinement type constructorswith negative
type arguments) isfairly fast for types without any negative arguments because in that case
allrefs is never used to enumerate the refinements of an ML type. However, whenever
we compare refinements of an ML type with non-trivial negative type arguments such as
(bool — bool) — bool, wewill have to enumerate all of the refinements of the negative type
arguments; in this example, we have exactly one negative type argument bool — bool.

To have asfew of these expensive enumerations as possible, we memoize type equality.
Whenever arefinement typeisnot Reftyvar, it contains atuple where the first component
has the type teqopt which isused for this purpose. The definition of teqopt is:

datatype teqopt = TeqOpt of {sameas: UF.set,
differentfrom: UF.set list ref}

This definition is a datatype with only one constructor rather than a type abbreviation
because SML does not allow type abbreviationsin signatures. Thetype UF . set represents
equivalence classes; UF isaname for a structure with this signature:

signature UNIONFIND =

sig
type set
val newset : unit -> set
val union : set -> set -> unit
val sameset : set -> set -> bool
end

Think of a set here as a name for something. The function newset creates a new name,
union declaresthat two namesreally stand for the samething, and sameset reportswhether
all of theunion’sdone so far imply that two given names stand for the same thing. Asthe
name of thesignatureimplies, thisisthe classic Union-Find problem, discussed in[AHU74,
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page 124]. The names set and union are part of the standard nomenclature used with that
problem. The implementations of these operations run in almost constant time.

With this understanding of UF . set, it should be clear how teqopt’s are used. Using
sameset 0N two sameas fields will return true if we have already observed that the two
refinement types are equal. Using sameset to search the differentfrom fields will tell
us if we have already determined that two refinement types are different. If we have to
compare two refinement types, and the teqopt fields do not make it clear that they are
either equal or unequal, then we do the comparison using whatever expensive enumerations
are necessary, and then we update the teqopt fields as necessary to record the result of the
comparison. As an exception, we do not try to memoize type equality for refinement types
that are not constant.

This strategy works well in practice. The most expensive aspect is searching the
differentfromfields. We can improvethiseven further by only memoizing type equality
when expensive iterationsareinvolved (that is, when the type constructor has negative type
arguments). Since programs often have many refinements of simple types such as tuples,
booleans, and lists, and few refinements of higher-order types, this usually helps. In the
boolmap example above, memoizing type equality would avoid all comparisons of notfn
with itself when we are searching the generation tables, but no use of the teqopt field
would be made when we compare the refinements of bool list.

This optimization ought to make a difference when evauating a fixed point requires
comparing function objects with large types. This optimization can be turned on and
off by setting the dont_teq_unionfind flag, and experiments with this flag show that
this optimization rarely makes a difference. Memoizing functional refinement types, as
discussed bel ow, makes the amount of work saved by thisoptimizationtrivial when function
types arefairly small.

7.2.4 Memoizing Refinement Types

When analyzing typical programs, the type inference algorithm described in previous
chapters often finds the interpretation of atype and then evaluates that interpretation many
times at the same point. Since we represent types by their interpretations, we can hope
to save time by memoizing these interpretations. This means that after the first time we
evaluate the function at a given point, if an occasion to evaluate it at the same point arises
again, we look up the old value in a table we maintain for this purpose instead of repeating
the work. The implementation does this.

The most straightforward implementation of memo tables would implement the tables
as association lists, and aways use type equality to search for a relevant entry in the
table. The present implementation does indeed implement the tables as association lists,
but searching thetablesis dightly more clever. Sincetype equality can be sow when types
have negative arguments, we comparetypeswith negativeargumentsusing the sameas field
of theteqopt; thisisessentially the same as using pointer equality, except that if two types
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have been found equa while searching pending analysis tables, we use that information
when searching the memo tables.

Memoization of refinement types can be turned off by setting the dont_memoize flag.
This optimization does help; we can run the CNF example from Chapter 1 in 22 seconds
with the flag clear, and 27 seconds with the flag set.

As a specia case, we use a smpler agorithm to memoize types with no negative
arguments. In this case the argument to the function in the argument to RefCon is always
the empty list, so we can omit the work of searching the memo table altogether.

This special case can be turned off by setting the Lazy _refcon flag. When thisisdone,
these types are memoized with the general-purpose memoizer only. In the CNF example
from Chapter 1, there are many simple typeswith no negative arguments, so setting theflag
causes an even larger dowdown than dont_memoize. This example runsin 22 seconds
with thisflag clear and 28.5 seconds with the flag set.

Non-constant types are not entered into memo tables or compared with typesin memo
tables.

7.3 Ingtantiating Refinement Types

I nstantiating refinement types is straightforward when they are represented explicitly. For
example, instantiating « to bool in the refinement type (a — o) — o — « yields

(tt — tt) — tt — tt A
=== A
(Tbool - Tbool) - Tbool - Tbool A
(J—bool - J—bool) - J—bool - J—bool .

Analgorithmfor thisisstraightforward: simply enumerateall refinement type substitutions
refining the ML type substitution, apply each of them to the original refinement type, and
take the intersection of al the results. Unfortunately, this procedureis slow; the number of
refinement type substitutions to consider grows exponentially as a function of the number
of type variables to be instantiated. In this section we give an instantiation algorithm that
instantiateslazily represented refinement types without enumerating all possible refinement
type substitutions. The correctness proof for this algorithm is future work.

The purpose of this section is to make the instantiation algorithm intuitively plausible
and to describe it well enough to permit interested people to attempt to prove or disprove
soundness. One obstacle to the soundness proof is devising specifications for the various
subroutinesin the algorithm that are both formal and correct. All specifications below will
beinformal.



CHAPTER 7. IMPLEMENTATION 289

7.3.1 Instantiation Example and Algorithm
The function
fn f:a—a => fn x:a => f[| (f]] x[])

has the refinement type scheme V(«).(a — o) — a — «. Call this function double. Our
example consistsof using alazy representation of refinement typesto determinethe principal
refinement type of double[bool] not[] (true ()), where the booleans have the usud
refinementsandnot isthe obviousfunction mapping bool eansto booleans. Astheargument
in Subsection 4.1.2 on page 226 shows, the correct result is T ;,,;.

To make the explanation simple, we use asimplified version of the lazy refinement type
representation introduced above:

datatype boolref = TT | FF | Bot | Top
datatype tp = Ground of boolref

| Later of (tp -> tp)

| Reftyvar

In this datatype, Ground constructs refinements of bool in the obvious way. Later is a
simplified version of theRefCon constructor that only appliesto functiontypes; Later fis
therefinement type with theinterpretation (asdefined in Chapter 2) f. Thevalue constructor
Reftyvar stands for arefinement of atype variable. It isaways clear from context which
type variable Reftyvar refines.

To conveniently describe types in terms of this datatype, we will need an inverse for
Later:

exception Bug of string
fun now (Later f) = f
| now _ = raise Bug '"now"

Using this, we can write something equivalent to the representation of the refinement type
of double that would arise from the natural type inference algorithm:

Later (fn f => Later (fn x => (now f) ((now f) x)))

With the exception of the insertions of the Later’s and now’s, this has the same structure
asthedefinition of doubleitself. Thisisnot surprising since refinement type inferenceisa
form of abstract interpretation and double containsno value constructors. Here we assume
that the refinement type given for £ will alwaysrefine « — « and the refinement type given
for x will aways refine «; this implies the type passed for x will always be Reftyvar.
(Later, wewill consider an alternative valid refinement type for double other than the one
that would arise from the natural type inference algorithm.) We can aso give the type for
not[] in thisformat:
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let fun notfb TT = FF
| notfb FF = TT
| notfb Top = Top
| notfb Bot = Bot
fun notfa (Ground x) = (Ground (notfb x))
| notfa _ = raise Bug '"notfa"
in Later notfa end

and the type of true () iSGround TT.

The heart of the instantiation algorithm we will describe below only works for types
with no negative type arguments. Thus the first step toward determining the type for
double[bool] not[] (true ())ispostponing therea work of instantiation until we are left
with the problem of instantiating atype with no negativetype arguments. This postponment
is necessary for the correctness of the algorithm we describe below. An example where the
algorithm isincorrect if this step is omitted appears on page 292.

The ML typetype of double[bool] is (bool — bool) — bool — bool, which has negative
type arguments. Thus we postpone work; the refinement type generated for double|bool]
issmply Later (fn £’ => ...), wherewewill fill inthe®...” in amoment.

While finding the type for double[bool] not[], we will strip the Later from the type
of double[bool] and pass Later notfa to the resulting function. The result of this must
be a refinement of bool — bool, sO we postpone work further by giving this the form
Later (fn x’ => ...). Thisimpliesthe refinement type of double[bool] must have the
formLater (fn f’ => Later (fn x’ => ...)).

Whilefindingthetypefor double[bool] not[] (true ()), wewill striptheLater from
the type of double[bool] not|[] and pass Ground TT to the resulting function. The result
will refine bool, which has no negative type arguments; thus we are finished with the stage
where we are postponing the real work of instantiation.

Oncewehavef’ andx’, wewill search for theleast substitution mapping typevariables
to refinement typesthat is consistent with thetypes£’ and x’. Inour example, £’ isbound
to thetype of not[| asdescribed above and x’ isbound to Ground TT. Given asubstitution
ro, We can convert £’ and x’ into refinement types we can pass for £ and x in the before-
instantiation type of double. We call this process “reshaping”.

We will talk about two different reshaping processes. Oneiscalled reshapeab because
it reshapes an after-instantiation refinement type like £’ into a before-instantiation refine-
ment type like £. Another is called reshapeba because it reshapes a before-instantiation
refinement type into an after-instantiation refinement type. These two procedures are mu-
tualy recursive. They refer to two global variables. ro is the present substitution of
refinement types for type variables, and mo is afixed substitution of ML types for type
variables.

As described above, we are looking for aleast ro that is consistent with the types £’
and x’. We perform this search by starting with the least »o and revising it as necessary
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until it is consistent with the types £’ and x’. The code below indicates that revisons are
necessary by raising an exception; specifically, the exception TooSmall (o, r) iSraised
to indicate that ro should be replaced by rofa 1= r].

Although we have no formal specification for reshapeab and reshapeba, we can
formally describe a few invariants used in it. Whenever reshapeab r tiscaled, r C
mo(t). Whenevaluatingreshapeab r ¢ raisesnoexception, theresult refinest. Whenever
reshapeba r tiscalled, r C ¢, and any result refines mo(t).

fun reshapeab (Later f) (t1—1t2) =
Later (fn r => reshapeab (f (reshapeba r 1)) t2)
| reshapeab r bool = r
| reshapeab r a =
if subtypep r ro(a) mo(a) then
Reftyvar
else
raise TooSmall («, joinf r ro(a) mo(a))
and reshapeba (Later f) (t1—12) =
Later (fn r => reshapeba (f (reshapeab r 1)) t2)
| reshapeba r bool = r
| reshapeba r a = ro(a)

To solve theinstantiation problem at hand, wewill use reshapeab to convert £’ and x’
tothe £ and x expected in the uninstantiated typefor double. Then wewill use reshapeba
to convert the value returned from the type for double into arefinement of bool.

Now we shall apply these algorithmsto £’ and x’. For the instantiation problem we
havein mind, mo is
[ := bool];

we will leave ro undetermined for the time being. Evaluating reshapeab £’ (o — «)
and simplifying yields

Later (fn r =>
if subtypep (notfa (ro(a))) ro(a) bool then
Reftyvar
else raise TooSmall («, joinf r ro(a) bool))

and evaluating reshapeab x’ « and simplifying yields

if subtypep (Ground TT) ro(a) bool then
Reftyvar
else
raise TooSmall («, joinf (Ground TT) ro(«) bool)
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We start by assuming that o isthe least possible substitution that refines mo, whichis
[@ := Ground Bot].
With this assumption, determining reshapeab x’ « immediately raises the exception
TooSmall (a, Ground TT),

sowerevisero to
[a := Ground TT|.

Starting with the new ro, wefind that reshapeab £’ « yields
Later (fn r =>
if subtypep (notfa (Ground TT)) (Ground TT) bool then

Reftyvar
else raise TooSmall («, joinf r (Ground TT) bool))

and reshapeab x’ « Yyieldsa. Now we pass these two values for £ and x respectively in
(now f) ((now £) x); thedefinition of £ then raises the exception

TooSmall («, Ground Top).
Thus we revise the substitution to
[@ := Ground Top]
and try again. Thistime no exceptions are raised, and the value returned by
(now f) ((now f) x)

iISReftyvar. Then wecall reshapeba Reftyvar «,whichyieldsGround Top, whichis
our solution.

If we do not postpone as much work as possible, this algorithm gives incorrect
results. For example, suppose we want to instantiate « to bool in refinement type
Later (fn x => z) interpreted as a refinement of o — «. If we do not postpone any
work, we start with the assumption ro = [« := Ground Bot] and end with the same sub-
gitution. The result from instantiation is reshapeba (Later (fn z => z)) (a— «),
which simplifiesto

Later (fn 2’ => reshapeba (reshapeab 2’ a) «)

which in turn ssimplifiesto

Later (fn 2’ => if subtypep ' (Ground Bot) bool then Ground Bot else
raise TooSmall («, z')).
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Thusinstantiation returnsarefinement typethat will raise TooSmall under some conditions;
thisis clearly malformed.

To finish the instantiation algorithm, we will describe the code wrapped around the
definitionsof reshapeab and reshapeba, and we will describe and fix one situation where
the above code isincorrect. The resulting procedure has no known bugs but no correctness
proof.

There are two partsto the remaining code: the procedure for postponing work until we
have no negative type arguments and the loop searching for an appropriate ro. Both of
these are straightforward; we will present postponing thework first, sinceit isoutermost. In
thefollowing definition, thecall inst r mo ¢ instantiates the refinement type » according
to the substitution mo mapping type variables to ML types, under the assumption that r
refines¢. In the code below, we assume that mapsubst f o constructs a substitution with
the same domain as o and for al « in that domain, (mapsubst f o)(«) = f(o(a)). The
botfn function was introduced on page 118 for computing the least refinement of any ML
type. We will fill in the definition of the function looper later.

fun inst r mo t =

let fun instargs args argtys r (t1—12) =

Later (fn arg => instargs (arg :: args) (t1 :: argtys) r tp)
| instargs args argtys r t =
let fun looper ro = ...
in
looper (mapsubst botfn mo)

end

in

instargs [1 [1 r ¢
end

The above code is straightforward; it ssimply accumulates refinement types and ML types
inthe args and argtys argumentsuntil the refinement type does not refine afunctional type,
and then it calls looper with asuitableinitia valuefor ro.

Now we can give a definition of the function looper that iterates to find the least
substitution consistent with the constraints. This definition has the free variables args,
argtys, r, and t. Inthe code below, rev isthe standard function for reversing lists.
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fun looper ro =
let exception TooSmall of string * ip
fun reshapeab ... = ...

and reshapeba ...
fun call (Later f) (argl :: argrest) (atl :: alrest) =
call (f (reshapeab argl atl)) argrest atrest

| call = [] [] = reshapeba z ¢

| call _ _ _ = raise Bug "call"
in

(call r (rev args) (rev argtys)

handle

TooSmall (var, tp) =>

looper (ro[var := tp])

end

This code is fairly straightforward; it uses the stored argument lists to repeatedly call the
uninstantiated refinement type, changing ro asindicated by the TooSmall exceptions until
ro isausable substitution.

The symmetry between reshapeab and reshapeba is pleasing, and the algorithm
specified above seems to work if al refinement types are generated by a natural algorithm
starting with expressions without any explicit refinement type declarations, and all argu-
ments are used. Unfortunately, making an algorithm that appearsto work in general breaks
the symmetry. For example, thislet statement

let foo = A(a).fn f:a—a => fn x:a => x|
in ... end

will add the refinement type scheme
V(o) (a—a)—ma—a«a

totheenvironment beforeit typechecksthe expression withinthe scope of thelet statement.
Thisis the same as the refinement type scheme resulting from the double example above,
except now the representation of the refinement type that results from the natural algorithm
is

Later (fn f => Later (fn x => x)).

Since f is never used, the above instantiation algorithm will not inspect the type of f.
Thisis clearly wrong; since the refinement type of foo is the same as the refinement type
of double, instantiating the type of foo should pull the same information out of £ that
instantiating the refinement type of double does.

Suppose we used the present algorithm to determine the type of

foo[bool] not[] (true ()).
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The instantiation algorithm would start with o equal to
[@ := Ground Bot].

Asintheearlier example, thiswould be observed to beinconsistent with thetypeof true (),
so wewould revise ro to
[ := Ground TT|.

Here the resemblance to the earlier example ends, because unlike that example the type of
not[] is never examined; the algorithm isfinished and theresult is Ground TT.

Intuitively, it seems plausible that the problem is that the final substitution is not
consistent with the type of not[]; in other words, if we use reshapeab to de-instantiate the
type of not[| with the final ro, the resulting type raises an exception for all inputs. Since
the interpretation of arefinement is always a monotone function, it will fail for al inputsif
and only if it failsfor the least input. Thus we can detect this problem by passing the least
refinement of theinput ML type to the function and discarding the result; any problemswill
be dealt with as a consequence of the resulting TooSmall exception. Thus we rewrite the
function case of reshapeab asfollows:

fun reshapeab (Later f) t1— 1ty =
(reshapeab (f (botfn (applysubst mo t1))) t2;
Later (fn arg => instargs (arg :: args) (t1 :: argtys) r t»))

With this rewritten case, the algorithm has no known bugs. Assembling the pieces of code
appearing in this chapter yields the completed algorithmin Figure 7.1.

7.3.2 Memoizing I nstantiation

Every variableisinstantiated beforeit isused, although theinstantiationisoftentrivial. This
makes memoizinginstantiation very important. 1f wedo not dothis, then eachtypeiscreated
anew every timeavariableisreferenced; these newly created typeshave empty memotables,
S0 unmemoized instantiation undoes many of the other memoization optimizations. The
implementation normally memoizesinstantiation; the flag dont _memoize_inst can be set
to turn this off.

As implemented, the instantiation algorithm quickly deals with nonpolymorphic types
by using a specia case. Thus the CNF example above cannot be used to illustrate this
optimization. We canillustrate it by using asimple polymorphic type, such as polymorphic
lists, evenif wemakenointeresting use of the polymorphism. For example, if wedistinguish
even length lists from odd length lists and empty lists from nonempty lists, then asimple
function for appending lists:



CHAPTER 7. IMPLEMENTATION 296

fun inst r mo ¢ =
let fun instargs args argtys r (t1—1t2) =
Later (fn arg => instargs (arg :: args) (t1 :: argtys) r i)
| instargs args argtys r t =
let fun looper 7o =
let exception TooSmall of sitring * tp
fun reshapeab (Later jj t1—t =
(reshapeab (f (botfn (applysubst mo t1))) t2;
Later (fn arg =>
instargs (arg :: args) (t1 :: argtys) r t2))
| reshapeab r bool = r
| reshapeab r a =
if subtypep r ro(a) mo(a) then
Reftyvar
else
raise TooSmall («, joinf r ro(a) mo(a))
and reshapeba (Later f) (t1—12) =
Later (fn r => reshapeba (f (reshapeab r 1)) t2)
| reshapeba r bool = r
| reshapeba r a = ro(«a)
fun call (Later f) (argl :: argrest) (atl :: atrest) =
call (f (reshapeab argl atl)) argrest atrest
| call = [] [] = reshapeba z ¢
| call _ _ _ = raise Bug "call"
in
(call r (rev args) (rev argtys)

handle
TooSmall (var, tp) =>
looper (rofvar := tp])
end

in
looper (mapsubst botfn mo)
end
in
instargs [1 [1 r ¢
end

Figure7.1: Instantiation algorithm.
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fix ap:a list =« list -« list =>
fn x:a list => fn y:a list =>
case x of
cons => fn hdtl:a*«a list =>
cons (elt_1_2 hdtl, ap (elt_2_2 hdtl) y[])
| nil => fn x:tunit => yl]
end:«a list

has a refinement type that is an intersection of 49 components. Computing this type takes
7.3 secondswithdont_memoize_inst turned off, or 60 secondswithdont _memoize_inst
turned on.

7.4 Analyzing Rectype Declarations

Most of the code for analyzing rectype declarationsis either obvious or animplementation
of some agorithm in Chapter 3. A brief description of the known shortcomings of the
implementation follows.

No attempt has been made to enforce Assumption 5.29 (Predefined Intersection Dis-
tributivity) on page 259. Sometimes this assumption does not hold and the implementation
behaves strangely; for example, with the usual declaration for bool and this declaration:

datatype a d = C of bool — «
rectype @ z = C (tt—a) | C (ff — «a);

the implementation infersthat C ((fn x => x) < (¢ — tt)) has the principa type ¢t =
and

C((fn x => x) <4 (=)
has the principal type ff =z, but it dso infersthat

C((fn x =>x) 4 (f—-fF Att—tt))

has the principa type T;,,; z. This meansthat the behavior inferred for C is not monotone,
aseriousbug. Fixingthisby inferring adifferent behavior for C seems more satisfying than
fixing it by outlawing declarations similar to this one, but the best way to do this is not
immediately clear. In this example, the instantiation algorithm is misbehaving in circum-
stances where Predefined Intersection Distributivity is false; thus it is reasonable to guess
that any soundness proof for the instantiation algorithm will use Predefined Intersection
Distributivity.

When we infer the predefined splitting relation from the rectype declaration, we
assume without proof that it suffices to consider exactly one most informative principal
split of each constructor. The implementation uses a brute force search to find all of the
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“plausible” principal splits of each constructor; in this context a proposed split is plausible
if no two typesin it are comparable, and al of the fragments are less than the constructor
of which they are proposed fragments. Then another brute force search lists fixed points of
the inference system in Figure 3.8 on page 207 where we assume each new refinement type
constructor has at most one split in the fixed point. We assume without proof that the most
informative of these isan appropriate predefined splitting relation.

7.5 Differences Between | mplementation and Theory

There are afew differences between the implementation and the theory that do not fit neatly
into any of the topics listed above.

We treat case statements where the case object is a variable specially. For example,
suppose we have the declarations

datatype maybe = true of tunit | false of tunit | maybe of tunit
rectype tt = true ({unit)

and ff = false (tunit)

and if = true (tunit) | false (tunit)
datatype forget = C of maybe

Then the best type for x from
val x = case C (true ()) of C => fn y => y end:maybe

IS T mayee - REAAING the type system strictly, the statement

case x of
true => fn _ => false ()
| false => fn _ => x
| maybe => fn _ => false ()
end: maybe ;

has the best type T ...+ becauseinthe false case, thetypeof thevariablex isstill T .4,
since case statements do not affect variable bindings. This surprises many users because
the case statement obviously alwaysreturnsfalse (). Toeliminatethe surprise, whenthe
caseobject isavariable (x intheexample), theimplementation bindsthat variableto abetter
type while analyzing each branch of the case statement. The better type is computed by
applying the constructor for each case to the inferred type of its argument; in this example,
the constructor is false and the inferred type of the argument is the unique refinement
of tunit, SO x is bound to the type ff within the scope of the false branch of the case
statement.
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Another practical inaccuracy in the implementation is that types appearing at the top
level are not split. For example, assuming the usual definitions of the booleans, not, and
or, splitting causes the expression

(fn x => (or x (not x))) ((true ()) < Tiool)
to get the type t¢. However, if the declaration
val x = (true () < Tpou;
isfollowed by the expression
or x (not x),

then the latter expression only getsthe type T,,,;. We do this because the implementation
of splitting requires reanalyzing the entire scope of the binding for each fragment of the
split; if the scope is the entire future history of the type checker, then we cannot afford to
do this.



Chapter 8

Conclusion, Critical Evaluation, and
Future Work

Refinement type inference shows signs of being a useful type inference system. The
types have an intuitively appealing meaning, type inference can be described with read-
able inference rules, type inference provably has some useful properties, and a working
implementation exists.

As with any work of this size, this one has shortcomings. Some of the shortcomings
represent tradeoffs made to ensure that refinement type inference is efficiently decidable.
Other shortcomings could be remedied by experimenting, adding new language features,
proving more theorems, or by improving the implementation.

8.1 TradeoffsMadefor Tractable Type Inference

There are numerous situations where a program has a property that can be expressed as a
refinement type, but refinement type inference cannot infer as strong a type as one would
like.

Refinement type inference only makes the distinctions specified by the programmer in
rectype declarations. Even if atrue property of a program can be described in terms of
those digtinctions, if one must use other distinctions to infer this, refinement types cannot
infer that the property istrue. For example, consider the declarations from Chapter 1 that
distinguish lists of length zero, one, and two or more from each other:

datatype « list = nil | cons of a*a list

rectype a empty = nil
and «a singleton = cons (a, nil)
and a long = cons («, cons (a, a Tist))
and a Ly, = bottom (list)

300
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Then the function

fn x => case cons (x, cons (x, nil)) of
cons (_, cons (_, nil)) => cons (x, nil)
| _ => nil

will aways return a list of length one, but it will not have the refinement type
a— «a singleton because we can only determine that the function will always return a
list of length one by recognizing alist of length exactly two, and we have assumed that no
rectype declaration has been made that will distinguish lists of length exactly two. It is
easy to express thisdistinction as arectype Statement:

rectype « twolist = cons (a, cons (a, nil))

In general, rectype Statements are descriptions of regular tree automata [GS84], and
sets of values that are not recognizable by afinite tree automaton cannot be described with
arectype Statement. For example, we can make the usual distinction among the booleans

datatype bool = true of tunit | false of tunit
rectype it = true (runit)
and ff = false (runit)

and write a function to test whether two lists have the same length:

fun samelength (cons (x, tlx)) (cons (y, tly)) = samelength tlx tly
| samelength nil nil = true
| samelength _ _ = false

With this definition, for any list [ we know that samelength [ [ returns true, but we
cannot declare any finite set of distinctions within /ist to cause samelength to have the
refinement type T, — T — tt. The problem here is that the infinite set of possible
lengths cannot be encoded in the state of afinite tree automaton. Similarly, refinement type
inference cannot reason about closed expressions in arepresentation of the lambda cal culus
because the infinite number of possible sets of bound variables cannot be encoded in the
state of afinite tree automaton.

Another shortcoming is that refinement type inference does not know when a function
isdeterministic and unaffected by side effects. Thus, if / issome list, wewill not be ableto
infer that the expression

if samelength [ [ then true else not (samelength [ /)

has the refinement type ¢¢. If refinement types were able to use the information that
samelength IS deterministic and does not use side effects, it could infer that the if
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statement has the type ¢¢ even if it could not infer that samelength [ [ can be given the
type .

A different shortcoming stems from the fact that refinement type inference isdefined in
terms of expressions with explicit ML types, but the programmer writes expressions with
implicit ML types. In general, aterm with implicit ML types may correspond to multiple
termswith explicit ML types. To predict the behavior of refinement types, the programmer
needs to know which one of these the compiler will select. Fortunately, the prototype
implementation (and every Standard ML implementationsthat uses the smplest agorithm)
always selects the explicitly typed term containing the most genera types.

The need to insert a rectype declaration before refinement type inference provides
more information than ordinary ML type inference can also be regarded as a shortcoming.
However, it is hard to imagine doing without rectype declarations. In the normal case,
refinement type inference will be used to find errors in a recently modified program.
Analyzing the program to automatically find the important distinctions to make is likely
to be hopeless when the program is incorrect. The often-suggested option of omitting
rectype Statements and instead automatically creating one refinement containing each
value constructor is unworkable; refinement type inference will give some information in
this case, but the information will rarely be useful. For example, it would not have been
useful for any of the examples in the introduction.

8.2 Experience Yet to Be Gained

Sometimesit is not clear which distinctions need to be made in a rectype declaration to
get the desired conclusion. In the function

fun lastcons (last as cons (hd, nil)) = last
| lastcons (cons (hd, tl)) = lastcons tl

we need to use arectype declaration to distinguish lists of length two to be able to infer
that lastcons hasthetypea T — « singleton. If wegivethetype of lists of length two
the name « long, the following argument shows why we need to distinguish « long to get
the best type for Lastcons: All values of type o T j;5; arein one of a empty, « singleton,
or o long. Each of these cases falls squarely into one of the branches of the definition of
lastcons: if the argument is of type « long, then we will always get to the recursive call
lastcons; if the argument is of type a singleton, then we return the argument; and if the
argument isin « empty, then we raise an exception because of amissing case.

If we omit the declaration of long, then we can no longer say that all values of type
a Ty areinone of several smaller types. If the argument to lastcons hastype o T .,
then the first case of lastcons isreachable, and we return Last, which is the argument to
lastcons and therefore has the type o T j,;. Thus, from the viewpoint of type inference,
lastcons appears to be able to return a value of o T ;. This could be fixed by a more
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careful understanding of how patternsbindto variablesthat giveslast thetype « singleton
in this case, or, as we mentioned in the previous paragraph, it could be fixed by adding the
refinement type long.

As larger programs are checked with refinement type inference, the programmer will
become moreexperienced, but therewill also be greater opportunity for surprising scenarios
likethe one described in the previous paragraphto happen. It isunclear whether thisprocess
will lead to sufficiently rare surprises in the long run; more experience is necessary.

More experienceisal so necessary to determine how fast and how useful refinement type
inference will be for large programs. The largest program run through the type checker so
far is the conjunction normal form example in Section 1.2, which is only 50 lines of SML
code.

8.3 FutureWork in Language Design

The correct interaction between refinement types and signatures is not clear. For example,
suppose we have a structure List that implements lists and operations on them such as
append, and suppose another structureusesList and usesa statement to make adistinction
between empty and nonempty lists. Getting the best possible refinement type for append
in the second structure requires re-analyzing the code in the context of the added rectype
statement; assuming that type inference respectsthe privacy of List, re-analyzing the code
will require repeating the code in the second structure, which is poor software engineering.

Another option would beto allow List to declare the implementation of append inits
signature to give type inference permission to re-analyze append as necessary when new
rectype declarations are added. Putting expressionsin signaturesisabig change to SML;
more work is necessary to determine whether thisisworthwhile.

Some data types such as string and int are predefined rather than declared with a
datatype Statement. It makes sense to have refinements of these; for example, we could
imagine distinguishing positive integers, negativeintegers, and zero from each other. How-
ever, thiswill require a declaration other than a rectype statement, since rectype State-
ments rely upon having a finite number of constructors for each data type. It may be
worthwhileto find some other way to declare refinements of predefined data types.

If we omit the declaration of long in the list example, 1astcons does not get the right
type. Adding long brings about the right result because we can then infer that all values
in tt list arein one of the types tt empty, tt singleton, or tt long; without long, there are
values such as cons (true (), cons (true (), nil)) that arein « list but are not in
any smaller type. The example with cnf is not analogous; we can infer an accurate type for
toCnf without having arefinement type that represents all bool ean expressions that are not
in CNF. In general, small variationsin the rectype declaration have a subtle effect on the
outcome of refinement type inference. Perhaps some useful rules of thumb will arise from
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experiments with larger programs.

Every visible rectype declaration increases the number of cases that refinement type
inference must examine and therefore dows down type inference. Thusit isvery important
to have good mechanisms for restricting the scope of a rectype declaration to a small
extent of code. The problem with thisis that it is not immediately obvious what should
happen when we |eave the scope of arectype declaration. For example, suppose we have
the declarations of bool, tt, and ff on page 301 and consider the statement

let datatype a list = nil | cons of (a*a« list)
val x = cons (true, nil)

in
let rectype o ev = nil | cons (a*a od)

and a od = cons of (a*a ev)
in
(x 4 tt od;
cons (true, nil))
end
end

In Standard ML, the type constructor list becomes anonymous once we |leave the scope of
the outer 1et statement; this means that the type still exists, but it cannot be named in type
declarations. Should the same happen to the recursive type constructors ev and od when
we |leave the scope of the outer 1et statement? The practical and theoretical consequences
of this have not been explored.

It would be better if the specification of the meaning of rectype declarationsin Chap-
ter 3 were more declarative. Also, because many properties of regular tree sets are ef-
fectively decidable, it is possible in principle to do perfect reasoning about rectype dec-
larations that do not mention function types. An example of this weakness of rectype
declarations as currently specified is on page 193. It would be more satisfying to have a
specification of the meaning of rectype statements that was as accurate as possible in that
case.

8.4 FutureTheoretical Work

The soundness theorem in Chapter 2 states that if we evaluate a closed expression to get
a value, then the value has any refinement type the closed expression did. It does not
immediately follow that every time we evaluate a subexpression of theforme < r, dl
values computed for e actually had the type . A more ambitious soundness proof would
show this.

A version of refinement type inference that deals with imperative features such as
references exists and has a soundness proof, but has not yet been written up.



CHAPTER 8. CONCLUSION, CRITICAL EVALUATION, AND FUTURE WORK 305

Thetypeinferencesystem in Figure 3.8 for deriving the splitting relation from rectype
statements is not directly implementable. The prototype implementation does something
that seems to work well in practice, but it needs to be verified.

Likewise, the instantiation algorithm used by the implementation seems to work well
in practice but it needsto be verified.

8.5 Futurelmplementations

The present implementation uses memo tables in many places to improve performance.
These memo tables are all implemented as lists; profiling shows that the implementation
spends 80% of its time searching these lists. This could be sped up dramatically by using
arrays and an appropriate hashing scheme.

The implementation does not usetrue SML syntax. For instance, the syntax for defining
functionsis separate from the syntax for destructuring datatypes. Also, constant value con-
structorslike true are not permitted; instead, every value constructor takes one argument,
S0 the best wecan doistrue ().

The theory allows for four ways a type variable can appear as an argument to a poly-
morphic data type constructor: positive, negative, ignored, or mixed. We only implement
positive and negative. |gnored arguments are treated as though they are positive, and mixed
ones generate an error. Type variables appearing in references behave as though they are
mixed, so the prototype does not implement references either.

Typicaly the refinement type of a function is very large, and we are only interested
inasmall part of it. For example, we can verify that toCnf has the type T 4,00, — cnf
fairly quickly, but there are severa refinements of boolexp, so it takes a while to print
the entire type of toCnf. The implementation needs to be more careful not to print these
expensive-to-compute types.

For asimilar reason, when arefinement type error occurs, it isdifficult to discover why.
A good approach to this might be to provide an interactive dialogue so the user can ask the
type inference engine questions about how the error occurred. This has been explored for
ML [Wan86].

Refinement type inference can in principle be used to make code more efficient. For
example, in the expression

case lastcons y of
cons (x, nil) => print x

refinement type inference could guarantee to the compiler that the value returned by
lastcons Will be acons céll, so the case statement does not have to verify this.
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Equivalencertort, 212
EQUIV-SPLIT-L, 48, 50, 54-56, 58, 82, 91,
140, 218
EQUIV-SPLIT-R, 48, 50-51, 54, 56-57, 91
erase, 274
error detection, 9
error, {
ev, 240-241
eval, 6-7
evaluating boolean expressions, 6
evaluation (e = v), 22, 24, 231
expansion, 171
explaining refinement type errors, 305
explicit ML type declarations, 227
explicit ML types, 20, 302
explicit refinement type declarations, 273,
280
expression scheme, 229
expressions, grammar for, 19, 229, 242
expressions, substitution for, 92
expressions, substitution, 23
expressiveness of refinement types, 12
extended recursive type, 166

F (monotone function representing an in-
ference system), 181

False, 6

false, 7, 223

If, 223-224

Finite Predefined Refinements, 31, 115,
122, 216

Finite Refinements, 63, 115-116, 164,
238, 252, 274

finite set of refinements of each ML type,
3,63, 105
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Fix Case of Infer is Well-Behaved, 144,
151, 163

fixed point, greatest, 170, 181, 193

fixed point, least, 193

fixed point of monotone function, 168

fixed points, 63, 168, 280-282, 286-287,
298

FIX-SEM, 24, 92, 103, 231

FIX-TYPE, 60, 73, 80, 83, 89, 98, 103, 151,
159, 234

FIX-VALID, 27, 29, 74, 80, 94, 145, 232

flattening, 172

Afn,117-118, 121

fntoref, 120, 125

Fragmentsof Principal Split have Useless
Splits, 58, 127, 254

fragments, 47

Free Type Variables in Constructors, 232,
239, 243

freetype variables, 229

Free Variables Refine, 63-64

function, deterministic, 301

function graphs, minimal, 282

function, monotone, 168, 170

genera types, sdlecting the most, 302

generalized pairs, 247

generalized refinement types, 106, 247

ofp, 182

grammar for expressions, 19, 229, 242

grammar for ML types, 18, 242

grammar for rectype Sstatements, 166,
168

grammar for refinement types, 30, 242

grammar for values, 22, 231

grammars, term, 169

graphs, minimal function, 282

greatest fixed point, 170, 181, 193

greatest lower bound, 36

ground boolean expression, 6, 8

ground substitution, 8

ground, 7

higher-order abstract syntax, 230
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2 (interpretation), 106, 108, 131, 246, 248,
263, 280

I (interpretation), 106, 114, 246, 252

¢ Gives an Upper Bound, 111, 113, 149,
194, 251

i(k)( ') Monotone in 7, 249, 252

i(k)( ') Respects Equivalence in 7",
249, 252

¢+ Monotone in First Argument, 109, 111,
113, 124, 132-133, 154, 250

¢ Monotone in Second Argument, 108,
114, 132, 154, 249

I Preserves Equivalence, 114-115, 252

¢ Preserves Information, 113, 115, 122,
251

iconstr, 263

id, 223

identifiers, ML type (mlconid), 277

identifiers, refinement type (refconid),
277

identifiers, type, 277

ifn, 117, 120, 124, 131, 264

ignored type arguments, 241, 270

ignored type variables, 13, 258, 279, 305

implementation, prototype, 6, 14, 275,
302, 305

implicit ML types, 19, 302

implicitly declared refinements, 7

indices, de Bruijn, 230

Infer Returns Principal Type, 141, 144,
151, 160, 164, 265, 268

Infer Returns Some Type, 144-145, 163-
164, 264

Infer Terminates, 145, 151, 265

infer, 135, 144, 238, 263-264, 274, 282

Inferred Types Refing, 19, 27, 59, 68-69,
74,94, 97, 116, 144, 160, 235

infinitelazy lists, 180

infinite proofs, 181

informative splits, 52

inst, 293

instantiation algorithm, 305

instantiation, 7, 14, 63, 224, 242, 281,

T, T
7,7
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288, 295

int, 303

interpretation, abstract, 3, 282-285

interpretation (z), 106, 108, 131, 246, 248,
263, 280

interpretation (1), 106, 114, 246, 252

intersection for recursive types (&), 165-
166, 168, 170, 211

intersection for refinement types (A), 3,
16, 18, 30, 211

intersection for vectors (A), 242

I ntersection Membership, 179

intersection, monotonicity of, 36

Intersection Refines, 179, 192, 197

I ntersection Value Membership, 183, 209

Join is Decidable, 129
Join, 127
joinf, 129

lastcons, 1-2

Later, 289

lazy lists, 180

lazy representations, 281

lazy value constructors, 183
lazy, 181

lazy_refcon, 288

least fixed point, 193

least refinement of an ML type, 16
length of a vector, 228

let statements, 228, 231, 238-239, 294
LET-SEM’, 231

LET-SEM, 231, 238

LET-TYPE, 234, 237-238
LET-VALID, 232

Liist, 2

List, 303

Tlisty 3

list, 1,7

lists, association, 285

lists, lazy, 180

lists representing substitutions, 7
literal, 8

long, 2
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looking up avalue in a substitution, 7
lookup, 7-8

looper, 293

lower bound, greatest, 36

malformed refinement type, 30, 62

mapsubst, 293

maybe, 46

membership of avaluein arecursivetype
(D F v e nr), 170, 180

memo tables, 305

memoization, 14, 281, 287, 295, 305

Milner-Mycroft type inference, 64

minimal function graphs, 282

Mini-ML, 19

missing case, 6-7

miz, 247, 249, 270

mixed type arguments, 240, 270

mixed type variables, 13, 279, 305

ML Compatibility, 77, 235

ML Free Variables Bound, 29, 64, 232,
243

ML type constructors (mlconstructor),
277-278

ML type declarations, explicit, 227

ML typeidentifiers (mlconid), 277

ML typeinference, compatibility with re-
finement type inference, 68

ML type names (mlconname), 277

ML type schemes, 223, 228, 279

ML Type Soundness, 27, 29, 99, 232, 243

ML type variables, 7

ML types, explicit, 20, 302

ML types, grammar for, 18, 242

ML types, implicit, 19, 302

ML types, quadruples of (¢), 242

ML types, 25, 279

ML typing relation (VM F ¢ :: t), 26

ML Value Substitution, 29, 93, 97, 232,
243

mlconid (ML typeidentifiers), 277

mlconname (ML type names), 277

mlconstructor (ML type constructors),
277-278
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mlscheme, 279

mlty, 279

monomorphic refinement type inference,
13

monomorphic refinement types, 15

monotone function, 168, 170

monotonicity of intersection, 36

mtor Refines, 76-77, 79-80, 235

mtor, 76

multiple refinements of type variables,
224

names, ML type (mlconname), 277

names, refinement type (refconname),
277

names, type, 277

naming convention, 26

negative type arguments, 240, 270

negativetypevariables, 13, 258, 279, 286,
305

New Recursive Type Constructors De-
fined, 178, 187, 216

New Value Constructors Closed, 179

New Value Constructors Defined, 178

New Value Constructors Only, 178

new, 166-167, 176, 178

NEW-INFER-EMPTY, 185-186, 189-193,
200-201, 220

NEW-INFER-RECSUB, 193-194, 196-197,
199-202, 205, 213

NEW-RC-RECVALUE, 180, 183, 191, 205,
208, 221

NEW-RECREFINES, 177, 216

NEW-RECSPLIT, 206-208, 216-218

nil, 2

nk, 176

nkc, 176

nkes, 176

nks, 176

none, 225

NONE, 225

Non-freeVariablesare Ignored, 63, 82, 95

not, 283

Not, 6
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notfa, 290

now, 289

np, 176

npe, 176

npes, 176

nps, 176

nr, 176

nre, 176

nres, 176

nrs, 176

ns, 16, 106-112, 118-123, 125, 129-134,
141, 144-152, 155, 157-160, 163,
247-248

old, 166-167, 178

OLD-EMPTY, 186, 189-191, 193

OLD-RC-RECVALUE, 180, 191, 205-206,
209, 222

OLD-RECREFINES, 177, 198

OLD-RECSPLIT, 207-209

OLD-RECSUB, 193-194, 198-199, 203, 205

omitting rectype statements, 302

Only n?‘ffor Refines, 76

option, 225

Or, 6

Ordering on ¢, 112-113, 124, 133, 251

pairs, generalized, 247

pending analysis, 14, 281-282, 284

Piecewise Intersection, 67, 74, 84, 89,
236, 260

polymorphic equality, 7

polymorphic refinement type construc-
tors, 240

polymorphic refinement type inference,
13

polymorphic type constructors, 13

polymorphism, 13

positive type arguments, 240, 270

positive type variables, 13, 258, 279, 305

postponing work during instantiation, 292

practical refinement type inference, 6, 13

pred, 246

predefined data types, 303
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Predefined Intersection Distributivity De-
cidable, 271

Predefined Intersection Distributivity
Technical, 270

Predefined Intersection Distributivity,
259, 262, 267, 269-270, 297

Predefined Split Intersection, 54, 217

Principal Refinement Types, 115, 238

principal refinement types, 105

Principal Split Existence, 127

Principal Split Implies Useless Splitting
Fragments, 58, 254

principal splits, computing, 126

principa splits, 52, 126

principal types, 3, 224, 241

profiling the implementation, 305

progress, syntactic, 80, 88

properly, varies, 258

properties of constructors, 64

prototype implementation, 6, 14, 275,
302, 305

qallrefs, 263

QUADRUPLE-REF, 244

quadruples of ML types (t), 242
quadruples of refinement types (7), 242
QUADRUPLE-SUB, 245

F r empty (emptyness for refinement
types), 184, 279

7 (quadruples of refinement types), 242

rarrow, 241, 246, 254

RCON-AND-ELIM-SUB, 34-35, 38, 41, 44,
67, 86, 111, 244-245, 259, 261

RCON-EMPTY, 184, 191

RCON-REF, 31, 38, 72, 122, 244

Rconsimp Sound, 42, 133, 246

rconsimp, 42, 133

RCON-SPLIT, 47-49, 54, 90, 253

RCON-sUB Inversion, 45-46, 124, 134

RCON-SUB, 34-35, 38, 42, 44-45, 49, 86,
111-112, 124, 134, 153, 157, 244-
245, 257, 261, 268

REC-TUPLE-EMPTY, 186, 190-193

318

rectype Statements, grammar for, 166,
168

rectype Statements, 2, 7, 13, 74, 165,
239, 269, 297, 300-301, 303, 305

recursion on the left hand side of —, 167,
169, 175, 182

recursion, 63

Recursive Intersection Greatest, 198, 202,
214, 216, 219

Recursive Intersection Lower Bound,
196, 202-203, 218-219

Recursive Split Intersection, 210, 217-218

Recursive Split Soundness, 208

Recursive Subtype Consistency |, 196

Recursive Subtype Consistency |1, 196

Recursive Subtype Soundness, 193, 204,
209, 213

Recursive Subtypes Refine, 196, 212,
216-217

recursive type constructors, 165

recursive type, extended, 166

recursive type, membership of avaluein
(D F v € nr), 170, 180

recursive types, 165

Recursive Unique ML Types, 178-179,
216

refconid (refinement type identifiers),
277

refconname (refinement type names),
277

references, 305

Refinement and Recursive Split Consis-
tency, 212, 218

Refinement and Recursive Subtyping
Equivalence, 212, 221

Refinement Consistency, 178-179

Refinement Constructor Intersection, 41-
42,54, 122, 133, 246

Refinement  Constructor  Splits  are
Nonempty, 51, 217

Refinement Constructor Subtyping, 45,
250

Refinement to ML (rtom), 32



INDEX

refinement type constructors, polymor-
phic, 240

refinement type constructors, 223

refinement type error, 305

refinement type identifiers (refconid),
277

refinement type inference, compatibility
with ML typeinference, 68

refinement type inference, monomorphic,
13

refinement type inference, polymorphic,
13

refinement type names (refconname),
277

refinement type schemes, 223, 228

Refinement Type Soundness, 99, 103-104,
222, 237, 262, 274

Refinement Type Substitution, 237, 262

refinement type variables, 7

refinement types, constant, 281, 286

refinement types, generalized, 106, 247

refinement types, grammar for, 30, 242

refinement types, monomorphic, 15

refinement types, principal, 105

refinement types, quadruples of (7), 242

refinement types, soundness of, 13, 80,
120, 260, 304

refinement typing relation (VR - ¢ : r),
58

refines (C), 65, 177

def
Refines <, 34, 38, 216

reflex-dgef, 33, 216
REF-TUPLE-EMPTY, 184

regular systems, 169

regular tree automaton, 169, 194, 301
repeat, 225

representations, lazy, 281
reshapeab, 291, 295

reshapeba, 291

reshaping, 290

rev, 293

rewrite rules, 225

rewriting rectype declarations, 168

319

rtom, 32

rtort, 211

rtuple,, 242

rules, rewrite, 225

runit, 30-31, 34, 167, 178

samelength, 174, 301

scheme, expression, 229

schemes, ML type, 223, 228, 279

schemes, refinement type, 223, 228

schemes, type, 64

scoping rectype Statements, 304

selecting the most genera types, 302

Self Recsub, 199, 204, 212, 214, 216

SELF-SPLIT, 48-51, 57, 66, 92, 218, 233

SELF-SUB, 35-36, 42-43, 45, 50, 83-84,
109-111, 125, 152, 199, 233, 245,
266

semantics, 243

Separating datatype and rectype decla-
rations, 167

setflag, 276

signatures, 303

simplification, 173

singleton, 2, 301

sjoinf, 134

some, 225

SOME, 225

Soundness of Empty, 191, 205

Soundness of Refinement Type Empty,
185, 191, 221

soundness of refinement types, 13, 80,
120, 260, 304

Split Constructor Consistent, 49, 66, 90,
214, 217

SplitIntersection, 48, 54, 58, 82, 208, 210,
254

Split Positive, 253

Split Substitution, 236, 246

Split Subtype Consistent, 49, 216

Split Types Refinel, 51, 56, 70, 254

Split Types Refinell, 51, 71, 254

split, useful, 57

split, useless, 57
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Splits are Nonempty, 51, 63, 70, 254

Splits Are Subtypes|, 49, 51, 58, 254

Splits Are Subtypes 11, 51, 254

splits, computing principal, 126

splits, informative, 52

Splits of Arrows are Simple, 51, 94, 159,
163-164, 254

splits, principal, 52, 126

SPLIT-SUB, 61-62

splittingfor recursivetypes(D F nr < s),
206-207

splitting (<), 46, 65, 93, 253, 297, 299,
305

Splitting Vaue Types, 65, 89, 95, 209,
236, 262

SPLIT-TYPE, 46, 51, 59-63, 70, 80-82, 88-
89, 93-95, 99-100, 103-105, 126,
138-139, 141, 144, 146, 236

statements, case, 243, 257, 259, 263, 265,
298

statements, let, 228, 231, 238-239, 294

statements, rectype, 2, 7, 165, 239, 269,
297, 300-301, 303

strengthening, 63

strictif, 224

T strings [

string, 303

substitution for boolean expressions, 7

substitution for expressions, 23, 92

substitutions represented as lists, 7

substitutions, 228-230, 243, 290

Subtype Decidability, 120

Subtype Eliminable Assumptions, 195

Subtype Irrelevancy, 75, 84, 88, 90, 101-
103, 105, 221-222, 236, 262

Subtype Strengthening, 194

Subtype Transitivity, 201, 204, 214, 216,
220

subtypep, 117, 119, 122, 263, 286

subtypeU(D), 195

Subtypes Refine, 36, 44, 50-51, 56, 63,
70, 122, 158, 196, 212, 236, 246,
251

320

subtyping for recursivetypes, algorithmic
(D; S+ nr < nk), 195

subtyping for recursive types (D + nr <
nk), 169, 193-194

subtyping for refinement types (<), 65,
244

sugar, syntactic, 241-243, 249

Syntactic Progress Decidability Suffi-
cient, 138, 151

syntactic progress, 80, 88

syntactic sugar, 241-243, 249

syntax, concrete, 275, 305

syntax, higher-order abstract, 230

syntp, 280

systems, regular, 169

T hoot, 240-241

t (quadruples of ML types), 242

tables, memo, 305

tarrow, 241, 277

teqopt, 280, 286

term grammars, 169

Termination for subtypep and allrefs,
125

toCnf, 9, 305

TooSmall, 292-295

toplevel, 171-172

tp, 280, 289

trail, 185, 193

trans < , 34, 203, 216

Trangitivity of <, 108, 110, 114, 124, 248

TRANS-SPLIT, 47-48, 50, 53, 56, 58, 91,
127

TRANS-SUB, 35-37, 44-45, 50, 52, 85, 110,
112-113, 121, 123-124, 130-131,
134,139-140, 153, 155, 158, 164,
245, 267

TRANS-SUBTYPE, 203

tree automaton, regular, 169, 194, 301

True, 6

true, 7, 223

tt, 15, 223-224, 240-241

ttuple, , 242, 246, 277

tunit, 18, 21, 30-31, 178
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Tuple Intersection, 40-41, 55, 130, 246

Tuple Refines, 32, 44, 233

Tuple Subtyping, 33, 42, 45, 250

tupling (o * 3 * v), 242

TUPLE-AND-ELIM-SUB, 34-35, 39-40, 45,
87,111, 244

TUPLE-RECREFINES, 177-178, 198

TUPLE-RECSPLIT, 206-207, 209

TUPLE-RECSPLT, 206

TUPLE-RECSUB, 193-194, 198, 200, 203,
206, 222

TUPLE-RECVALUE, 180, 192, 206, 209-210

TUPLE-REF, 31-32, 39, 43, 49, 73, 244

TUPLE-SEM, 24, 102

Tuplesmp Sound, 41, 115, 124, 131, 246

tuplesimp, 41-42

TUPLE-SPLIT, 47-49, 55, 90, 253

TUPLE-SUB Inversion, 45-46, 123, 130,
158

TUPLE-SUB, 34-35, 39-40, 42, 44-45, 50,
87, 111, 115, 121, 123, 130-131,
244

TUPLE-TYPE, 47, 60, 73, 79, 87-91, 98,
102-103, 149, 157, 222

TUPLE-VALID, 27-28, 73, 79

type arguments, ignored, 241, 270

type arguments, mixed, 240, 270

type arguments, negative, 240, 270

type arguments, positive, 240, 270

type arguments, 240-241, 270

type constructors, ML (mlconstructor),
277-278

type constructors, polymorphic refine-
ment, 240

type constructors, 13, 223

type declarations, explicit refinement,
273, 280

typeidentifiers, ML (mlconid), 277

type identifiers, refinement (refconid),
277

typeidentifiers, 277

type inference, Damas-Milner, 63

typeinference, Milner-Mycroft, 64

321

type names, ML (mlconname), 277

type names, refinement (refconname),
277

type names, 277

type schemes, ML, 223, 228, 279

type schemes, refinement, 223, 228

type schemes, 64

Type Soundness, ML, 27

Type Substitution Preserves Subtyping,
236, 246, 262, 267

type variable capture, 229-230

type variables, free, 229

type variables, ignored, 13, 258, 279, 305

type variables, mixed, 13, 279, 305

type variables, multiple refinements of,
224

type variables, negative, 13, 258, 279,
286, 305

typevariables, positive, 13, 258, 279, 305

type variables, 7, 13, 223-224, 228-229,
2309, 258, 279, 286, 305

types, constant refinement, 281, 286

types, empty, 167-169, 183

types, generalized refinement, 106, 247

types, grammar for ML, 242

types, grammar for refinement, 242

types, ML, 279

types, principal, 3, 224, 241

types, quadruples of ML (), 242

types, quadruples of refinement (7), 242

types, soundness of refinement, 13, 80,
120, 260, 304

typing relation, ML (VM + ¢ :: 1), 26

typing relation, refinement (VR F ¢ : r),
58

U (universe), 181

Union-Find problem, 286

UNIONFIND, 286

Unique Inferred ML Types, 27, 70, 116,
145-146, 232, 243

Unique ML Types, 31, 36-37, 65, 72, 74,
160, 179, 233, 244
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Unique Predefined Refinements, 31-32,
38, 216

Unique Principal Splits, 52

Unique Refinement, 76, 79, 235

UNIT-REF, 32

universe (U), 181

useful split, 57

useless split, 57

vallrefs, 263

Vaue Arrow Type, 74, 85-86, 235

Vaue Constructor Type, 74, 86, 235

value constructors, 242

Va ue Containment, 220

value, membership in a recursive type
(D F v e nr), 170, 180

Vaue Substitution, 29, 51, 92-93, 101,
103-104, 236

Vaue Tuple Type, 74, 87, 90

values, grammar for, 22, 231

Var, 6-7

variable capture, type, 229-230

variables, bound, 230

variables, free type, 229

variables, ignored type, 13, 258, 279, 305

variables, mixed type, 13, 279, 305

variables, multiple refinements of type,
224

variables, negative type, 13, 258, 279,
286, 305

variables, positivetype, 13, 258, 279, 305

variables, type, 7, 13, 223-224, 228-229,
239, 258, 279, 286, 305

Variance, 258, 261, 266

Variant Weakening, 258, 261, 266-267

varies properly, 258

VAR-REF, 232, 244

VAR-TYPE, 60, 63, 71, 77, 80, 83, 89, 95,
140, 145, 152, 234-237

VAR-VALID, 27-28, 63, 71, 77, 232

VECTOR-EQUIV, 245

VECTOR-REF, 244

vectors (@), 228, 242

vectors, intersection for (A), 242

322

VECTOR-SUB, 245

VM F e :: t (ML typing relation), 26

VM, 26

VRHe: 1, 81

VR F e : r (refinement typing relation),
58

VR (variableto refinement type mapping),
58

vsubtypep, 263

weakened closure of D (D), 213

Weakened Intersection Simplification I,
213-214, 221

Weakened Intersection Simplification 11,
214, 218

Weakened I ntersection Soundness, 213

weakening, 63

WEAKEN-TYPE, 59-61, 64, 67, 70, 75, 79-
81, 83-85, 87-89, 91, 94, 99-100,
116, 138-139, 146-150, 206, 209,
221,236, 257, 259, 261-262, 266,
268

well-formed abstract declaration, 170,
177-178



