Type-Directed Flow Analysis
for Typed Intermediate Languages

Suresh Jagannathan, Stephen Weeks, and Andrew Wright

NEC Research Institute, 4 Independence Way, Princeton, NJ 08540

Abstract. Flow analysis is especially valuable for optimizing functional
languages because control-flow information is not syntactically apparent
in higher-order programs. Flow analyses typically operate on untyped
languages. However, recent compilers for typed functional languages such
as ML and Haskell use a typed higher-order intermediate language to ex-
pose data representations for optimization. This paper presents a poly-
variant flow analysis framework for a typed intermediate language. Anal-
yses in this framework can take advantage of types to analyze programs
more precisely. We study a specific analysis called Sz7 that uses types
to control polyvariance. We prove that Sg7 respects types: whenever it
assigns abstract value ¢ to a variable and the type system assigns type o
to the same variable, then [¢] C [o], where [-] denotes a set of values.

1 Introduction

Recent compilers for functional languages such as ML [24] and Haskell [18] ex-
press most optimizations in a typed higher-order intermediate language. Typed
intermediate languages serve two useful roles. First, they expose representation
information valuable for code generation. For example, typed intermediate lan-
guages enable intensional polymorphism [9], a technology that eliminates the
need to use a universal representation for polymorphic objects. Second, typed
intermediate languages aid in verifying compiler optimizations, and help to iden-
tify compiler bugs by detecting code transformations that are not type-safe.
Flow analysis is especially valuable for optimizing functional languages be-
cause control-flow information is not syntactically apparent in higher-order pro-
grams. Flow analyses, however, typically operate on untyped intermediate lan-
guages. In this paper, we consider the design of flow analyses for typed interme-
diate languages. Incorporating flow analyses into a typed intermediate language
framework improves optimizations in two respects. First, a flow analysis can ex-
ploit types to obtain more precise control-flow and data-flow information without
undue computational cost. This added precision can improve the quality of op-
timizations that rely on global control-flow information. Second, flow analyses
can discover information about types to facilitate type-dependent optimizations.
Through intensional polymorphism, a program can build and operate on types
at runtime. By using flow analysis to identify the paths along which types flow,
a compiler can specialize or eliminate many of these type operations.
Monovariant analyses such as 0CFA [23] and set-based analysis [10] compute
a map that associates an abstract value with each subexpression of the program.

An abstract value conservatively approximates the set of possible values the
subexpression may take on during execution. Polyvariant analyses yield more
precise results by associating several abstract values with each subexpression,
each of which describes the expression’s value during some subset of execution
states. Existing flow analysis frameworks for untyped languages use syntactic
notions such as call-strings [22] or other ad hoc heuristics [4, 10, 15] to distinguish
different execution states. Surprisingly, even analyses used in compilers for typed
languages ignore type information [3, 10].

Using types to control polyvariance® offers the pragmatic benefit that a flow
analysis will not discard type information supplied by the programmer (whether
explicit or inferred). Without using type information, the precision of the infor-
mation obtained by flow analysis will not scale with program size. As a software
system grows, polymorphic procedures such as map or fold will be called from
many unrelated parts of the system with arguments of different type. A flow
analysis that does not use type information to guide polyvariance will merge
information across these unrelated calls, reducing the effectiveness of optimiza-
tions which depend upon its results. An analysis that uses type information is
less likely to suffer degradation in the precision of flow information it computes
as new, independent components are added to the program.

To illustrate how a flow analysis can exploit types to obtain more precise flow
information, consider the following polymorphic procedure which uses a typecase
construct [9] to perform a dispatch on its type argument:

letrec print = Aa.\x“
typecase a of
int = Integer.print x
real = Real.print x
B list = map (print 8) x
in print int list [1,2,3];
print int list [4,5];
print real list [7.0,8.0,9.0]
end

Excluding the recursive call, print is applied at three different call-sites with two
different types. A monovariant analysis computes a single abstract value describ-
ing all possible bindings to x, and hence merges values of types int list, real list,
int, and real. Because the polyvariance in analyses such as 1CFA [23] and poly-
morphic splitting [15] depends on a program’s syntactic structure, procedures
which are supplied values of different type through deep or recursive call chains
cause these analyses to introduce unnecessary merging. Hence, these analyses
would merge values of different type at x. By using the types at which print is
called to create distinct contexts in which to analyze its body, a polyvariant flow
analysis can keep arguments and results of different types distinct.

! Our notion differs from systems [2, 6, 13, 25] which use let-polymorphism to formalize
polyvariance. For a detailed discussion, see Section 4.3.

Using types to control polyvariance can also lead to more efficient analyses.
Sufficiently complex polyvariant analyses based on call-strings (e.g., 2CFA [23]),
let-polymorphism [2], or other syntactic heuristics might handle the above ex-
ample without merging values of different types. But, such analyses would create
separate contexts in which to analyze the first two calls to print. For many opti-
mizations (e.g., unboxing), analyzing these two calls in one shared context leads
to equally useful flow information at lesser computational cost. An analysis that
uses types to control polyvariance will recognize that the argument types are
the same at each call and establish a single context to analyze both calls.

Type-directed flow analyses can also facilitate type-dependent optimizations.
Without optimization, both the typecase operation within print and the type ap-
plications that bind int list to « in the calls to print would be performed at
runtime. These runtime operations can severely impact the performance of pro-
grams that make significant use of polymorphism. Flow analysis can determine
the contexts in which type arguments are constant, and guide specialization and
inlining decisions to eliminate type operations. In this example, an implementa-
tion could specialize print for arguments of type int list, eliminate the typecase
expression in the specialized function body, and elide the type arguments. While
local transformations might address this simple example, optimizing more so-
phisticated higher-order uses of routines like print requires the power of flow
analysis.

1.1 Outline

In the following section, we describe a parameterized flow analysis framework for
a typed intermediate language A;. Section 3 defines a specific analysis called Sk
that uses types to control polyvariance. Essentially, Sz constructs a distinct
polyvariance context for each type at which a polymorphic function is used. We
prove that ST respects types: whenever it assigns abstract value ¢ to a variable
and the type system assigns type o to the same variable, then [0] C [o], where
[-] denotes a set of values. In Section 4, we define several variants of Sg7 that are
better suited to practical use. We conclude with comparisons to related work.

2 Flow Analysis for Typed Languages

We study a simple core language called A; suitable for compiling languages such
as ML. A; extends the predicative subset of system F [7, 20] with recursive pro-
cedures. In A;, as in the predicative subset of F, polymorphic functions cannot
be applied to quantified types.

2.1 Language

The expressions and types of A; are defined as follows:

ex=f|xz|ee|er | uz’f (expressions)
fu=Xz% | Aa.e (functions)
kKu=b| k—=k (constructors)
Tu=b|To7 | (types)
ou=b|lo—o|alVao (type schemes)

where x and «a range over variables and type variables, respectively, and b ranges
over base types. Constructors (closed monotypes) are a subset of types, which
are in turn a subset of type schemes. The expression Az’.e binds z of type o in
e and provides lexically-scoped, call-by-value procedures. The expression Aa.e
binds a in e and provides type abstraction. The expression pz?f binds z in
f and provides recursive procedures. The type scheme Va.o binds « in ¢ and
provides polymorphic types. These constructs induce the usual notions of free
variables (F'V) and free type variables (FTV') of expressions and type schemes.
We use EzpOce, TypeOcc, FunExpOcc, and AppExpOcc to refer to occurrences
of expressions, types, functions, and applications in a given program P. All
occurrences are distinct, except that we conflate the bound occurrences of a
variable with its binding occurrence. Programs are closed, well-typed expressions.
Section 3 presents the usual typing rules for A; and a call-by-value semantics.

2.2 Flow Analysis Framework
The parameters that specify a particular analysis within our framework are:

1. a set of instances I,
2. an initial instance iy € I, and
3. a call map M : FunEzpOcc x I x AppExpOcc x I — I.

We refer to a specific analysis as a strategy S = (I, 14, M). An instance corre-
sponds to a set of evaluation contexts. A call map describes which instance is
selected for the analysis of a procedure body, depending on the function being
applied, the instance in effect when the function was constructed, the text of the
call expression, and the instance in effect at the call. For the remainder of this
section, we assume S is fixed.

For a given strategy, the results of an analysis are expressed as a flow function
F' that maps expression-instance pairs to abstract values.

F € Flow = (BxpOcc x I — Avalue) + (TypeOcc x I — Atype)
0 € Avalue = P(Aclosure)

(f, i) € Aclosure = FunFEzpOcc x I
7 € Atype = P(Aconstructor)

(1,1} € Aconstructor = TypeOcc x I

An abstract value © is a set of abstract closures. An abstract closure (f, 4) consists
of a function occurrence paired with an instance. The instance is used to find
abstract values and abstract types for free variables and free type variables of
the function body. For example, if abstract closure (f, i) has z free in f, the
abstract value for z is F'(x,). Abstract types are sets of abstract constructors,
which consist of a type occurrence paired with an instance. As with closures,
the instance is used to find abstract types for free type variables of the type
expression. Section 3 formally defines the meaning of abstract values and types.

To compute a flow function F for a program, we define an algorithmic notion
of safety that imposes constraints on F. First, we say that F' is initialized for
occurrence o in instance 1 if:

1. o = f then (f,1) € F(f,1);

2. 0 =7 then (1,1) € F(1,1);

3. 0 = px’f then (f,i) € F(uz’f,i) and {f, i) € F(x,1);
4. 0 = x;

5. 0 = (01 02) then F is initialized for oy in 4.

Initialization ensures that the flow function includes an appropriate abstract
closure or abstract constructor for a function or type expression that could be
reached in instance 7. Safety then specifies certain set containment constraints
that “pass” and “return” these initial abstract values and abstract types to any
closures that arise at the function position of an application.

Definition 1. Flow F is safe for program P if:

1. F is initialized for P in 1.
2. For all applications (e 0) in P and instances 1,
(a) if F(e,i) # 0 then F is initialized for o in i;
(b) if {f,4'y € F(e,i), f = X2%' or f = Az.e', and i" = M(f,i',(e 0),1)
then
i. F is initialized for e’ in 7";
ii. F(o,4) C F(z,i");
iii. F(e',i") C F((eo),i);
iv. F(w,i") C F(w,i") for every w € FV(f)UFTV ().

These constraints ensure that any flow function which is safe for program P
provides a conservative approximation to the behavior of P (see Appendix A for
details).

For a specific program, there are many safe flow functions. The pointwise
ordering on flow functions allows us to compare different flows for the same
program. The following lemma establishes that there exists a minimum safe
flow under such an ordering.

Lemma 2. For any program P, there exists a minimum flow Fiinsate that is
safe for P.

let id = Aa. Ax®. x
g=ABN . id By
in g int—int f1; g bool—bool fo;

Fig. 1. Example program.

Io = {e}
o=
Mo(\z%.e, i, (e1e2),i) = o
Mo(Aa.e,i',(eT),i) = o

FO(O[, .) = FO(ﬂ, L4
FO(X: .) = FO(Ya .)
Fo(g int—int fi,e)
Fo(g bool—bool fa,e)

(int—int,), (bool—bool, e)}

{
{<f1:.)a <f2a.>}
{
{

= (flv.)v (fz’.)}
(fli.)7 <f27.)}

Fig. 2. Strategy Socra and fragment of minimum safe flow for Figure 1.

Proof Sketch. We first show that there is a trivial safe flow which maps every
element of its domain to a maximal abstract value. This maximal abstract value
includes every possible abstract closure for P. We then show that safety is pre-
served by (possibly infinite) intersection of flows.

We can compute the minimum safe flow using a variant of standard constraint
solving algorithms. The algorithms terminate provided that the minimum safe
flow is finite.

2.3 An Example: 0CFA

To illustrate our framework, consider the program in Figure 1.> Here, id is a
polymorphic identity function, f; is a function of type int—int, and f5 is a
function of type bool— bool. Figure 2 presents a strategy Socra = (lo, 4, Mo) and
a fragment of the minimum safe flow under Socpa for the program in Figure 1.
Socra is monovariant because there is only one instance of any expression. Since
it merges values of different types at several program points, we say Socra does
not respect types. For example, f1 which is of type int—int arrives at expression
“g bool—bool f2” which is of type bool—bool. In the next section, we develop a
strategy that is better suited to analyzing A;.

2 We use let & = e1 inea to abbreviate ((Az.e2) e1), and (e1; e2) to abbreviate
((Az.e2) e1) where z ¢ FV (e2).

3 Polyvariance Using Types

We say that a flow analysis respects types if [0] C [o] whenever the analysis
associates abstract value ¥ with a variable and the type system assigns type
scheme o to the same variable. To formalize this intuition, we must define the
set of values [0] associated with abstract value ¢ and the set of values [o]
associated with type scheme o. Although we could introduce denotational models
for both abstract values and types and compare denotations, we prefer a simpler
operational approach. We define a natural semantics for A; in which values are
closures (f?, E, CE, i), where E is an environment mapping free variables of f
to values, CF is a constructor environment mapping free type variables of f to
constructors, and i is the strategy’s approximation of these environments.
We define [0] as follows:

[0] ={v|vEd}
where C is inductively defined as follows:

(f,E,CE,i) C 9 if (f,i) € 0 and E C i and CE C ¢;

(ux’f,E,CE,i) C o if (f,i) € F(x,i) and (f,4) € 0 and E C 7 and CE C ;
k E 7 if there exists (7, i) € 7 such that CE C i and CE(7) = k;

ECi if E(z) C F(z,i) for all z € dom(E);

5. CEC i if CE(a) C F(a,1) for all o € dom(CE).

When F is not clear from context, we write Cg. For {f, E, CE, i) to belong to
the set corresponding to 0, the first clause of this definition requires ¢ to include
abstract closure (f, i) and C to hold for the free variables and free type variables
of the closure. The next two clauses impose similar constraints for recursive
procedures and type expressions. The last two clauses extend C pointwise to
value environments and constructor environments.

We now turn our attention to describing the set of values [o] associated
with type scheme o. Figure 3 defines the usual typing rules for A;. A judgment
TE > e : o indicates that expression e possesses type scheme ¢ in type envi-
ronment TFE. Type environments map variables to type schemes. The notation
ola/T] denotes the substitution of 7 for free occurrences of o in 0. When e is a
subexpression of a program P, we write e’ to indicate that there exists a type
judgment TE > e : o in the type derivation for P.

We define [o] to be the set of values that expand to closed expressions of

closed type o:
[o] ={{f,E,CE,i) | o> (f, E,CE)) : o}
Expansion is defined as follows:
{\z°.e, E, CE) = \x°F9) (e, E, CE)

N

(Aa.e, E, CE)) = Aa.(e, E, CE))
(oS B, CE) = us P)(, F, CE)
((ex ¢2), B, CE)) = ({1, B, CE) (2, B, CE))
((c0), B, CE) = ({e, B, CE) CE(0)) S
(,5,CE) = { {7 CFD £ & dom(B) and Bls) = (7,7, OF'

TEv> z: TE(x) (vars)
TE[x — o1] > e : 02
TE > Azte : 01 — 02 (fun,)
TEve:o a¢ FTV(TE)
TE > Aa.e : Ya.o (tfun.)
TE > e : 01 — 02 TE > e : 01 (a)
TE > (e1 €2) : 02 PP»
TE > e:Va.o (tapp,)
TE v (eT): ola/T] PPy
TE[x—o]>f:0o
TEv> pz’f o (fixs)
Fig. 3. Typing rules for A;.

To establish a correspondence between instances and different stages of pro-
gram execution, Figure 4 defines a semantics that manipulates instances explic-
itly as a component of the judgment.> A judgment E, CE,i - e = v indicates
that expression e evaluates to v in environment F and constructor environ-
ment CFE, under instance i. The notation X |py(yz2¢) means the restriction of
environment X to the free variables of Az%e. We write CE(7) to denote the
substitution of constructors for free type variables in 7 according to CE. The
function ~ unrolls recursive closure values prior to their application, and is the
identity otherwise. Program P yields answer v if there exists a derivation Dp
concluding ¢, ¢, i F P = v.

With these definitions, we can directly relate the sets of values described by
abstract values to the sets of values described by types.

Definition 3 (Flow Respects Types). Flow function F' for program P re-
spects types if for every judgment E, CE,i F ¢ = v' in the derivation for P, we
have [F'(e,i)] C [CE(0)].

Definition 4 (Strategy Respects Types). Strategy S respects types if, for
all programs P, the minimum safe flow Fl,insate for P under S respects types.

Figure 5 defines a strategy Sg7 in which instances are partial functions that
map type variables to constructors. The initial instance is the empty environ-
ment, ¢. At a type application, the call map extends the instance i’ of the type
abstraction with a binding for the type variable a by treating 7 as a substitu-
tion applied to 7. Figure 5 also illustrates a fragment of the minimum safe flow

3 While at first glance this semantics may appear unusual, erasing instances and uses
of M from judgments and values yields an ordinary natural semantics. Instances play
no role in determining how expressions are evaluated.

E,CE,i+z = E(z) (var)

E,CE,i+ 7= CE(r) (type)

E,CE,it Xx%e = (Az%e, E|pv (rpoe)s OB|rrv (azoe)s) (fun;.)
E,CE,it Aa.e = (Aa.e, E|py (4a.c); CE|FTv (4a.c), 1) (tfuny)
E,CE,it pz’f = (uz’f, E|rvuze sy, CE|FTv (uzef)s 1) (fix-)

E,CE,il—e1=>’U1 E,CE,i}—62=>’U2
v1 ~ (\z%e', E', CE',i') E'lz = v, CE,i" F e = v
i""'=M(x% i, (e1 e2),1) (app;)
E,CE,il (e1 e2) => v

E,CE,ite= v E,CE,irTt=>k
vi ~ {Aa.e', E', CE', i') E' CEla—kl,i"Fe =v
i" = M(Aa.e', i, (eT),1) (tapp,.)
E,CE,iF(eT)=v

{f, B, CE, i)~ (f, B, CE, i)
(uz°.f, B, CE, i) ~ (f, B[z ~ (pa®f, E, CE, i)), CE, i)

Fig. 4. Semantics for 4;.

Fr 7 for Figure 1. Unlike Socpa, SrT avoids merging the abstract closures for f;
and f2 which have different type. This strategy respects types because instances
collect the actual types manipulated by the program at runtime: the values of
free type variables in type expressions are substituted at type applications, and
instances are extended with constructors when computing new instances. These
characteristics ensure that the flow function preserves all bindings in a call chain
of type applications.

Theorem 5. Si 1 respects types.

For a proof of this theorem, see Appendix B.
Unfortunately, there are programs for which the minimum safe flow con-
structed under Sg7 is not finite. Consider the following program.

let loop = pf"* >~ Aa. \x f int—a (Ay*™.x)
in loop int—int (A\z'™. z)

During execution, this program constructs an infinite number of types. Hence
its minimum safe flow under Sz 7 contains the following infinite set of instances
for the body of loop:

[a — int—ind]

[a — int— int—ind]

[a — int— int— int— ind]

In the next section, we define several variants of Sk to address this problem.

Irt = Tyvar— Constructor
IRT = ¢
Mrr(Aze, i, (e1e2),4) =i
Mrr(Aa.e, i, (e T),i) = i'[a > i(7)]

Frr(id B, [B — int—ini]
Frr(id 8,8 — bool—bool|
Frr(B,[B — int—int] int—int, @)}
Fr7(B,[B — bool—bool]) = {(bool—bool, $)}
Frr(x,[a > int—vinf) = {(f1,8)} Frr(x,[a — bool—sbool) = {(f2,6)}
Fry(y, [a = int—int]) = {(f1,¢)} Fr7(y,[a = bool—>bool]) = {(f2,¢)}
Frr(g int—int f1,6) = {{(f1,9)} Fr7(g bool—bool f2,¢) = {(f2,)}

= {{Ax%x, [a — int—ind])}
= {{(Mx*x, [a — bool—bool])}
={{

— — — —

Fig. 5. Strategy Sr7 = (IrT, irT, Mr7) and minimum safe flow for Figure 1.

4 Variants of Sz

In this section, we present several variants of Sr7. First, we define a family of
strategies related to Sk that bound the sizes of types they consider. Second,
we identify a subset of A; sufficient to express the core of ML and show that
SwrT terminates on every program in this subset. Third, we define a strategy
that simulates let-polymorphism, and compare it to Sk 7. Finally, we show how
to combine a type-respecting analysis with any other analysis to produce an
analysis that respects types.

In order to compare various strategies, we define a preorder on strategies
which relates the instances of one strategy to the instances of another by a
homomorphism.

Definition 6. Let strategy S = (I,i9, M) and strategy S’ = (I', iy, M'). Strat-
egy S is more precise than strategy S’ under homomorphism H, written S >g S’,
if there exists a function H : I — I’ such that:

1. H(ip) = ig, and
2. H(M(f77'17 (6 0)77:2)) = Ml(faH(il)a (6 0)7H(22))

We write S > S’ to mean that there exists H such that S >g S’. Socra (the
strategy in Figure 2) is the least element (up to isomorphism) of this preorder.
If S > S’ the flow functions produced by S are more precise than the flow
functions produced by S’. See Appendix ?? for further details.

4.1 Bounded Types

To construct an analysis that terminates for all A; programs, we limit the sizes of
constructors that the analysis uses in instances. We view constructors as binary
trees and inductively define a family of sets indexed by integers. Constructor,, is

the set of constructors of depth less than or equal to n, where leaves are either
base types b or e, indicating that the type has been truncated:

Constructory = {e}
Constructory = Constructoro U {b}
Constructorpa = Constructorn1 U {k—k' | k,k" € Constructorp1}

Next, we define a family of functions Prune, such that Prune,(k) is the con-
structor formed by pruning branches of k¥ having depth greater than n:

Pruneg(e) = o Prune,i1(e) = o
Pruneg(b) = o Prune,1(b) =b
Pruneg(k—k') = o Pruneni1(k—k') = Prune,(k)— Prune,(x')
(

Finally, we define a family of strategies S = (In, in, My) that only uses con-
structors from Constructory,:

I, = Tyvar — Constructory,
In=¢
M,(M\x%e,i',(e1e2),1) =1
M, (Aa.e,i', (e 7),4) = i'[a — Pruney,(i(1))]

For any depth n, the set of instances used by S% is finite, hence its minimum
safe flow is finite. However, because S uses function spaces as instances, its
complexity is exponential, even though the size of constructors is limited to a
constant. S respects types for programs that use types of depth less than n.
Since programs rarely build types of great depth, S%+ will behave the same as
Swr7 for all but the smallest values of n.

We can show that strategy Sr7 is more precise than S% - (i.e., SrT > S{ s
as the required homomorphism simply applies Prune,, to the type constructors
of Sr7). Likewise, we can show that S% - is more precise than 5775-1

4.2 Restricting A; to ML

The following subset of A;, which we call ML;, is general enough to express the
core of ML:

ex=(z7) | Az"e | (e1e2) | (M\z%e Aae') | pzliizi’e

where (z 7) abbreviates (...(z71)... 7,) and Aa.e abbreviates Aa;.... Aay,.e.
Applications of the form (Az’.e Aa.e') serve as polymorphic let-expressions. The
grammar ensures that polymorphic functions only appear in let-expressions, and
are fully instantiated when used. For a translation of ML into ML;, see [8].

Because of the restrictions on polymorphic functions, programs in ML; can
construct only a finite number of types during evaluation. Hence we can show
that the minimum safe flow constructed under Si 7 is finite for programs in ML;.
As with S3 - however, the complexity of Sg7 on ML; is exponential because of
its use of a function space for instances.

in the 2nd last
rule, 7'
subsumes 7

Theorem 7. The minimum safe flow for P € ML; under SgrT is finite.

For a proof of this theorem, see Appendix B. This theorem ensures we can com-
pute a flow function that respects types for any program expressible in the ML
core.

4.3 Polyvariance and Polymorphism

A common way to incorporate polyvariance into analyses of functional languages
is to use let-polymorphism [2, 6, 13, 25]. Our approach differs in several respects.

Type systems that use let-polymorphism to express polyvariance encode a
fixed strategy that is equivalent to expanding all let-expressions in the program
and running a monovariant analysis. In contrast, our framework allows both
coarser-grained (less precise) and finer-grained (more precise) forms of polyvari-
ance. In particular, Sg7 yields a coarser-grained analysis than let-expansion,
and S7 ;- is coarser still. Finer-grained analyses may involve significantly greater
computational effort—effort that is wasted if the increased precision is unneces-
sary for the intended optimizations.

Instead of using a type system to specify the analysis, we use an explicitly
defined predicate (Definition 1, Safety). The solution algorithm for this predi-
cate smoothly accommodates conditional constraints (e.g., 2a in Definition 1).
In contrast, conditional constraints complicate type systems and pose significant
difficulties for type inference algorithms [1].

Finally, for programs outside the ML; subset, analyses that express poly-
variance using let-polymorphism analyze functions that are not bound by let-
expressions in a monovariant manner. That is, polyvariance is introduced only
at let-expressions. In constrast, our framework allows polymorphic functions to
be passed as arguments, and permits any call to be treated polyvariantly.

We can express the let-polymorphism approach in our framework as the
following strategy, called Spgr.

Iigr = Tyvar — AppEzpOcc
iLET = @
MLET()\a:".e, ’i, (61 62), 1:,) =1
Mier(Az°.e, i, (Az°e Aae'),i') =i
Myipr(Aace, i, (zT),1") = ila — (z)]

Instances in Spgr are partial functions that map type variables to occurrences of
type applications. Thus different uses of a polymorphic function, even if applied
to the same type, will be evaluated in different instances.

Because Sk 7 analyzes uses of a polymorphic function at the same type in the
same instance, Sg7 can lead to a more efficient analysis than Spgr. To illustrate,
consider the following program.

let fg = Aa.Ax% x
fi = Aa.x fha(foax)

fn, = AaXx%f,_1a(f—10x)
in fint13

Sper will analyze the two calls to f; from f;; 1 in two different instances. Conse-
quently, Spgr will construct 2" instances of fy. On the other hand, Sx 7 evaluates
a type application in a new instance only when it is supplied a new argument
type. Thus, Sz will construct only one instance of each f;. This is because both
calls to f; from f;; are evaluated in an instance that maps «a to int.

5 Related Work

Recent work on establishing equivalences between control-flow analyses and type
systems [11, 17] is close in spirit to the idea of a type-respecting analysis. Pals-
berg and O’Keefe [17] show that safety analysis accepts the same programs as
a simple type system extended with recursive types and subtyping. Their safety
analysis can be regarded as a predicate on programs that uses a monovariant
control-flow analysis to detect possible type errors. Heintze [11] extends their
work to establish equivalences for a set of weaker type and control-flow systems.
Taking the type system as primary, these results are similar to ours in that they
prove that a flow analysis is type respecting. The results differ from ours in
that the analysis is monovariant rather than polyvariant and the type system is
monomorphic rather than polymorphic.

Many polyvariant flow analysis frameworks have been described by other
authors [14, 16, 21, 23]. Beyond technical differences due to different underly-
ing semantics, our framework differs in two important ways. First, it operates
on a typed language—oprior research has concentrated primarily on untyped or
simply-typed languages, and has not directly considered languages with a poly-
morphic type system. Second, because our framework permits strategies that
explicitly use type information to control polyvariance, we can specify analyses
whose behavior is less closely tied to the syntactic structure of the program.

The idea of using type information to control polyvariance has been addressed
informally in optimizing compilers for object-oriented languages such as Self [4]
and Concert [19]. These systems use approximations to the types of arguments
to select a context in which to analyze a method call. The approximations used
are quite coarse—typically, only the outermost constructor of an argument’s
type plays a role in selecting the analysis context. Consequently, these systems
do not respect types.

Dimock et. al. [5] present a framework that uses both type and flow informa-
tion to optimize closure representations. Their system inserts explicit operations
into programs in a typed intermediate language to convert between different
closure representations. Their framework places relatively few constraints on the
form of flow information used to select representations, and includes intersection

types with which to express polyvariance. We expect that Sg7+ would be an ideal
candidate for the analysis portion of their system.

Like our work, Heintze and McAllester [12] exploit types to control a flow

analysis algorithm. But their system uses types for an entirely different purpose—
to control termination of an algorithm for the monovariant core. We believe these
uses of types are complementary, and expect we can adapt their algorithm to
our framework.

References

10.

11.

12.

13.

14.

AIKEN, A., AND WIMMERS, E. L. Type inclusion constraints and type inference.
Proceedings of the International Conference on Functional Programming Languages
and Computer Architecture (1993), 31-41.

AIKEN, A., WIMMERS, E. L., AND LAKSHMAN, T. K. Soft typing with conditional
types. In Proc. ACM Symp. Principles of Programming Languages (Jan. 1993),
pp. 163-173.

BACON, D. F., AND SWEENEY, P. F. Fast static analyses of C++ virtual function
calls. In OOPSLA (1996).

CHAMBERS, C., AND UNGAR, D. Iterative type analysis and extended message
splitting: Optimizing dynamically-typed object-oriented programs. Lisp and Sym-
bolic Computation 4, 3 (1991).

DiMOCK, A., MULLER, R., TURBAK, F., AND WELLS, J. Strongly typed Flow-
directed Representation Transformations. In Proceedings of the International Con-
ference on Functional Programming Languages (1997), pp. 11-24.

FLANAGAN, C., AND FELLEISEN, M. Componential set-based analysis. In Proc.
ACM Conf. Programming Language Design and Implementation (June 1997).
GIRARD, J.-Y. Une extension de l'interprétation de Godel a l'analyse, et son
application & ’élimination des coupures dans I’analyse et la théorie des types. In
Proceedings of the 2nd Scandinavian Logic Symposium (1971), J. E. Fenstad, Ed.,
North-Holland, pp. 63-92.

HARPER, R., AND MITCHELL, J. C. On the type structure of Standard ML. ACM
Transactions on Programming Languages and Systems 15, 2 (Apr. 1993), 211-252.
HARPER, R., AND MORRISETT, J. G. Compiling polymorphism using intensional
type analysis. In Proc. ACM Symp. Principles of Programming Languages (Jan.
1995), ACM, pp. 130-141.

HEINTZE, N. Set-based analysis of ML programs. In Proc. ACM Symp. Lisp and
Functional Programming (1994), pp. 306-317.

HEINTZE, N. Control-flow analysis and type systems. In Proc. Intl. Static Analysis
Symposium (Sept. 1995), pp. 189-206. Also appears as CMU-CS-94-227.
HEINTZE, N., AND MCALLESTER, D. Linear-time subtransitive control flow anal-
ysis. In Proc. ACM Conf. Programming Language Design and Implementation
(June 1997).

HENGLEIN, F., AND MossIN, C. Polymorphic binding-time analysis. In Proc.
European Symp. Programming (Apr. 1994), D. Sannella, Ed., vol. 788 of Lecture
Notes in Computer Science, pp. 287-301.

JAGANNATHAN, S., AND WEEKS, S. T. A unified treatment of flow analysis in
higher-order languages. In Proc. ACM Symp. Principles of Programming Lan-
guages (Jan. 1995), pp. 393-407.

15. JAGANNATHAN, S., AND WRIGHT, A. K. Effective flow analysis for avoiding run-
time checks. In Proc. Intl. Static Analysis Symposium (Sept. 1995), mycroft, Ed.,
no. 983 in Lecture Notes in Computer Science, Springer—Verlag, pp. 207-224.

16. NIELSON, F., AND NIELSON, H. R. Infinitary control flow analysis: a collecting
semantics for closure analysis. In Proc. ACM Symp. Principles of Programming
Languages (Jan. 1997), ACM, pp. 332-345.

17. PALSBERG, J., AND O’KEEFE, P. A type system equivalent to flow analysis.
In Proc. ACM Symp. Principles of Programming Languages (Jan. 1995), ACM,
pp. 367-378.

18. PEYTON JONES, S. L. Compiling Haskell by program transformation: a report
from the trenches. In Proc. European Symp. Programming (Apr. 1996).

19. PLEVYAK, J., AND CHIEN, A. A. Precise concrete type inference of object-oriented
programs. In OOPSLA (1994).

20. REYNOLDS, J. C. Towards a theory of type structure. In Paris Colloquium on Pro-
gramming (1974), no. 19 in Lecture Notes in Computer Science, Springer—Verlag,
pp. 408-425.

21. ScHMIDT, D. Natural-semantics-based abstract interpretation (preliminary ver-
sion). In Proc. Intl. Static Analysis Symposium (Sept. 1995), A. Mycroft, Ed.,
no. 983 in Lecture Notes in Computer Science, Springer—Verlag, pp. 1-18.

22. SHARIR, M., AND PNUELI, A. Two approaches to interprocedural dataflow analy-
sis. In Program Flow Analysis: Theory and Applications, S. S. Muchnick and N. D.
Jones, Eds. Prentice-Hall, 1981, pp. 189-235.

23. SHIVERS, O. Control-Flow Analysis of Higher-Order Languages or Taming
Lambda. PhD thesis, Carnegie Mellon University, Computer Science Department,
1991.

24. TArDITI, D., MORRISETT, J. G., CHENG, P., STONE, C., HARPER, R., AND LEE,
P. TIL: A type-directed optimizing compiler for ML. In Proc. ACM Conf. Pro-
gramming Language Design and Implementation (May 1996).

25. TURNER, D. N., WADLER, P., AND MosSIN, C. Once upon a type. In Proc. Conf.
Functional Programming and Computer Architecture (June 1995).

Appendix
A Soundness and Safety

A flow analysis is sound if it provides a conservative approximation to program
behavior. That is, the abstract value of a subexpression instance must include
every possible exact value that the subexpression may yield. We use relation
Cr (defined in Section 3) to define soundness for the flow functions yielded by
a polyvariant analysis.

Definition 8 (Flow Soundness). Flow F is sound for program P if for every
judgment E,CE,i+ e = vin Dp,wehave E Cp i, CE Cp i, and v Cp F(e,).

Safety is a sufficient condition for soundness.

Theorem 9 (Safety = Soundness). Let ¢,¢,i - P = v, and let F' be a safe
flow for P. Then F is sound for ¢,¢,ip - P = v.

Proof Sketch. We prove the stronger statement that if £, CE,i F e = v, and
E Cp i, CE Cg i, and F is initialized for e in 4, then F is sound for E, CE, i F
e = v. The proof proceeds by induction on the derivation.

B Proofs of Theorems for Sz

Theorem 5. Srt respects types.

Proof. Fix a program P. We first exhibit an infinite flow Fiype that is both
safe and respects types. Since the “respects types” property is preserved by
containment and since Fiinsafe C Fiype, the result follows. To construct Fiype,
we map each program point to all abstract values of appropriate type:

Fiype(e?, i) = {{f7,4") | i'(¢') =i(o)} provided dom(i) D FTV (o)

Fiype(27,4) = {(f"', i') | i'(¢') = i(0)} provided dom(i) D FTV (o)
Fiype(r, 1) = {(7',i') | i'(r') = i(1)} provided dom(i) D FTV(r)
Fiype(a, i) = {(7',i") | i'(7") = i(a)} provided dom(i) D {a}

Showing that Fiype is safe requires checking the various safety constraints,
and is straightforward. To show that Fiype respects types, let E, CE,i F e” = o'
be a judgment appearing in Dp and let (f7,E', CE', ') Chype Fiype(e”,).
According to Definition 3, we must show that (f , E', CE',i') € [CE(0)], i.e.,
¢ (f°,E', CE") : CE(c). To do this, we need three lemmas.

Lemma10. ¢ > (f’,F,CE) : CE(0).

The proof of this lemma follows by induction on the structure of {-,-,-)), em-
ploying a substitution property of the type system.

Lemmall. If CE Cp,, i then CE C i.

The proof proceeds by induction on the definition of Cr,,,.. When CE = ¢, the
result trivially follows. For the inductive case, assume that CE Cr,,. 7 and let
an arbitrary a € dom(CE) be given. By the deﬁnltlon of Fiype, @ € dom(). By
the definition of Cp, ., CE(a) Cr,,. Fiype(a,i). Hence, there exists (7,4') €
Fiype(a,i) and CE' Cp,_ i’ such that CE'(r) = CE(a). By the induction
hypothesis, CE' C i'. By the definition of Fiype, i'(7) = i(a). Hence, CE(a) =
CE'(1) = i'(1) = i(a).

Lemmal2. Let E,CE,i - e’ = v be a judgment appearing in Dp that uses
strategy Sgr1. Then CE C i.

The proof of this lemma follows by induction over the structure of a derivation
constructed using strategy Sg7.

Given these lemmas, we establish ¢ > (f°', E', CE") : CE(0) by showing
that CE(c) = CE'(¢"). First, ¢ > {f° , E', CE") : CE'(¢") by Lemma 10. Since
(f*',E',CE',i") Cr,,. Fiype(e?, 1), we have CE' Cr,,. ' by the definition of

C. Then CE' C i' by Lemma 11, hence CE'(c') = i'(o'). By the definition
of Fiype, i'(0') = i(o). By Lemma 12, CE C i, hence CE(o) = i(o). Then
CE'(c') = i'(0') = i(0) = CE(0).

The theorem now follows from the following lemma which establishes that
type-respecting flow functions are closed under containment.

Lemma13. Let F and F' be flow functions for program P under strategy Srr
such that F C F'. If F' respects types then F' respects types.

Since Fiype respects types and Fiinsate € Fiype, Lemma 13 implies that
Frinsate respects types. This completes the proof of Theorem 5.

Theorem 7. The minimum safe flow for P € ML; under SrT is finite.

Proof. The idea is similar to the proof of Theorem 5. Let Fihinsate be the min-
imum safe flow for P € ML; under Sg7. We first exhibit a flow Fixpang that
is both safe and finite. Since Fminsate C Fexpand, Fminsafe 15 finite. To construct
Fexpand, we essentially “expand away” all polymorphism in the program. To for-
malize this, we use the auxiliary function X, which constructs the set on which
Fexpand Will be defined.

EzpInst = P(Occ x I + TypeOcc x 1)
X : Exp x I x (Var — Constructor™ — ExpInst) — Explnst

X((x7),1,p) ={{(x7), 1)} Up(x)(i(11),...,(Tn))
X(Az".e,i,p) = {(Az".e, i)} U X(e,i,p)
X((Az%.e Aa.€'),i,p) = {{(Az".e Aa.e'),i)} UX(e,i,p[z — f]), where

flr,...,m) = {{a,i),...{an, in)} U X(€,i', p)
i = i[al — Tl] [Oén — Tn]
X((e1e2),4,p) ={{(e1e2),9)} UX(e1,1,p) UX(ez,4,p)
X(uzt A xi2e, i, p) = {{prTt Azie, 1), (Ax32e, i)} U X (e, i,p)

Let T = X(P,¢,¢). By construction, T is finite. We define Fexpang as we did
Fiype in the proof of Theorem 5, except that we only use instances that appear in
T. Showing that Fexpang is safe requires checking the various safety constraints,
and is straightforward. Fexpand is finite since T is finite.

This article was processed using the I*TEX macro package with LLNCS style

