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1 Introduction

A typical compiler for Java translates source code into machine-independent
byte code. The byte code may be either interpreted by a Java Virtual Ma-
chine, or further compiled to native code by a just-in-time compiler. The byte
code architecture provides platform independence at the cost of execution speed.
When Java is used as a tool for writing applets—small ultra-portable programs
that migrate across the web on demand—this tradeoff is justified. However, as
Java gains acceptance as a mainstream programming language, performance
rather than platform independence becomes a prominent issue. To obtain high-
performance code for less mobile applications, we are developing an optimizing
compiler for Java that bypasses byte code, and, just like optimizing compilers
for C or Fortran, translates Java directly to native code.

Our approach to building an optimizing compiler for Java has two novel
aspects: we use an intermediate language based on lambda-calculus, and this
intermediate language is typed. Intermediate representations based on lambda-
calculi have been instrumental in developing high-quality implementations of
functional languages such Scheme [13,19] and Standard ML [3]. By using an
intermediate language based on lambda-calculus to compile Java, we hope to
gain the same organizational benefits in our compiler.

The past few years have also seen the development in the functional pro-
gramming community of a new approach to designing compilers for languages
like ML and Haskell based on typed intermediate languages [15,20]. By empha-
sizing formal definition of a compiler’s intermediate languages with associated
type systems, this approach yields several benefits. First, properties such as type
safety of the intermediate languages can be studied mathematically outside the
sometimes messy environment of compiler source code. Second, type checkers
can be implemented for the intermediate languages, and by running these type
checkers on the intermediate programs after various transformations, we can de-
tect a large class of errors in transformations. Indeed, by running a type checker



after each transformation, we may be able to localize a bug causing incorrect
code to a specific transformation, without even running the generated code. Fi-
nally, a formal definition of a typed intermediate language serves as complete and
precise documentation of the interface between two compiler passes. In short,
using typed intermediate languages leads to higher levels of confidence in the
correctness of compilers.

Our compiler first performs ordinary Java type checking on the source pro-
gram, and then translates the Java program into an intermediate language (IL)
of records and first-order procedures. The translation (1) converts an object into
a record containing mutable fields for instance variables and immutable proce-
dures for methods; (2) replaces a method call with a combination of record field
selections and a first-order procedure call; (3) makes the implicit self param-
eter of a method explicit by adding an additional parameter to the procedure
representing that method and passing the record representing the object as an
additional argument at calls; and (4) replaces Java’s complex name resolution
mechanisms with ordinary static scoping. The resulting IL program typechecks
since the source program did, but its typing derivation uses record subtyping
where the derivation for the Java program used inheritance subtyping.

In contrast to our approach, traditional compilers for object-oriented lan-
guages typically perform analyses and optimizations on a graphical representa-
tion of a program. Nodes represent arithmetic operations, assignments, condi-
tional branches, control merges, and message sends [8]. In later stages of op-
timization, message send nodes may be replaced with combinations of more
primitive operations to permit method dispatch optimization. In earlier stages
of optimization, program graphs satisfy an informal type system which is essen-
tially that of the source language. In later stages, program graphs are best viewed
as untyped, like the representations manipulated by conventional compilers for
procedural languages.

By compiling Java using a typed lambda-calculus, we hope to gain increased
confidence in the correctness of the generated code. Indeed, for languages like
Java that are used to write web-based applications, whether mobile or not, cor-
rectness is vital. Incorrect code generated by the compiler could lead to a security
breach with serious consequences. Additionally, by translating Java into an in-
termediate language of records and procedures, we hope to leverage not only
optimizations developed for object-oriented languages [8], but also optimiza-
tions developed for functional languages [3,15,20] such as Standard ML and
Haskell, as well as classical optimizations for static-single-assignment represen-
tations of imperative languages [7]. In particular, representing objects as records
exposes their representations to optimization. The representations of objects can
be changed by transformations on IL programs, and the type system ensures that
the resulting representations are consistent. Even for optimizations like inlining
and copy propagation that do not explicitly change object representations, the
type system provides valuable assurance that representations remain consistent.

Unfortunately, the problem of designing a sound type system that incorpo-
rates object-oriented features into a record-based language appears to have no



simple solution. With a straightforward translation of objects into records and
a natural type system, contravariance in the subtyping rule for function types
foils the necessary subtyping relation between the types of records that repre-
sent Java objects. The problem is that making the implicit recursion through
an object’s self parameter explicit as an additional argument to each method
leads to function types that are recursive in both covariant and contravariant
positions, and hence permit no subtyping. More sophisticated type systems that
can express the necessary subtyping exist [2,5,16], but these type systems re-
quire more complex encodings of objects and classes. Object calculi that keep
self-recursion implicit [1,5] are more complex than record calculi and do not
expose representations in a manner suitable for an intermediate language.

Rather than devise an unwieldy IL and translation, we take a more pragmatic
approach. We assume that a Java program is first type-checked by the Java
type-checker before it is translated into the IL. Now, optimizations and trans-
formations performed on the IL must ensure that (1) IL typing is preserved,
and (2) safety invariants provided by the Java type-checker are not violated.
To satisfy the first requirement, self parameters in the IL are assigned type T
(top), the type that is the supertype of any record type. To satisfy the second
requirement, typecase operations are inserted within method bodies to recover
the appropriate type of self parameters as dictated by the Java type system.
The resulting IL program is typable and performs runtime checks at typecase
expressions to ensure it is safe with respect to Java typing. However, since the
source program has passed the Java type-checker, these checks should never fail.
Failure indicates a compiler bug. During compiler development, these checks
remain in the generated object code. For production code, the code generator
simply omits the checks. In either case, we lose the ability to statically detect
errors in transformations that misuse self parameters. On the other hand, we
can still detect a large class of type errors involving misuse of other parameters
and variables, and we gain the benefit of a simple, typed intermediate language
that is easy to work with.

The remainder of the paper is organized as follows. The next section presents
a core IL of records and procedures. Following that, Section 3 illustrates the
translation from Java to our IL with several examples. Section 4 concludes with
a summary of related work.

2 Language
The following grammar defines the types of our explicitly-typed intermediate
language for Java:

tu=pt | rt | t* >t | tag

rt == [pa].{[tag: tag] [z: ft]"} | [pa] {tag: tag [z:ft]"} | «

ft == pt array | Tt array | vt

vt =t var | t

pt ::= boolean | byte | short | it | long | char | float | double | void



where x € Var is a set of variables and o € TyVar is a set of type variables used
for recursive type definitions. There are four kinds of types t: primitive types
pt, function types ty ---t, — t, ordered record types {x1:ft; --- xn: ft,}, and
unordered record types fx1:ft; --- xn: ft, . Two additional kinds, mutable
variable types t var and mutable array types pt array and rt array, are not full-
fledged types in their own right, but may be used as types of fields in records and
as types of variables. Several restrictions, which are motivated below, apply to the
formation of types. The field names z; ... z, of a record type must be distinct.
The first field of an unordered record type must be named tag and of type tag.
Tags encode the static type of an object, and are used to inspect the type of a
record at runtime. An ordered record type need not include a field named tag
of type tag, but if it does, this field must appear first. Unordered record types
are considered equal under different orderings of their second through last fields;
that is,

{tag: tag, z2:fty - xn:ft,} = {tag:tag, permute(xs: fty, ... ,xn:ft,)}

where permute yields an arbitrary permutation of its arguments. The fields of
ordered record types may not be rearranged. Both kinds of record types may be
recursive if prefixed by the binding operator u, hence

t=pafry:fty - xzp:ft,}={z1:ft1la—t] - zy:ft,la— ]}

and

t=pafxi:fty -z ft,}={xi:fylat] -z ft ot}

where t'[a — t] denotes the substitution of ¢ for free occurrences of « in #'.

Figure 1 defines the subtyping relation on types. The relation allows a longer
ordered record type to be a subtype of a shorter record type, provided the
sequence of field names of the shorter type is a prefix of the sequence of field
names of the longer type, and provided that the types of like-named fields are
subtypes. Since the fields of unordered record types can be reordered arbitrarily
(except for the first), a longer unordered record type is a subtype of any shorter
unordered record type with a subset of the longer type’s fields. An ordered
record type is also a subtype of an unordered record type with the same fields.
The subtyping relation includes the usual contravariant rule for function types,
as well as a covariant rule for array types.

Our translation uses ordered record types to represent Java classes. In the
intermediate language, subtyping on ordered record types expresses Java’s single
inheritance class hierarchy. Because field offsets for ordered record types can
be computed statically, the translation can implement access to a member of
a Java object with efficient record-field selection operations. For example, our
translation could represent objects of the following Java classes:

class A { class B extends A {
int i; int get_i() { return i; }
Af(Ax){i=0;return x; }

}



t <:t2 ta <: t3

pt <: pt t var <:t var

t <:t3
! ! ! !
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Fig. 1. Subtyping relation.

with the following IL types:

ta = po. {tag: tag, tg = {tag: tag,
i :int var, i:int var,
f:{tag: tag} x a = « f: {tag: tagl} x ta — ta,
1 get_i: {tag: tag} — int

(In fact the translated types are not quite this simple; see Section 3.) The type
{tag : tag} plays the role of T discussed in the introduction since any record type
containing a tag field is a subtype of this type. The Java typing rules permit an
object of class B to be passed to methods like f that expect an A. Since tg <: t4,
values of type tg can be passed to both IL functions f. A reference to any field of
a record of type t4 or tp is implemented as a fixed-offset access into the record.

Since Java interfaces permit multiple inheritance, ordered record types can-
not support the necessary subtyping for interface types. Hence our translation
uses unordered record types to represent interfaces. Accessing a particular field
of a record of unordered type is more expensive as record values with different
field orders can belong to the same unordered record type. The field access op-
eration for unordered record types determines the actual order of a value’s fields
from the initial tag field required of the unordered type. For example, consider
the following Java interface and its corresponding IL type:

Interface J { t; = {tag: tay,
int get.i(); get.i: {tag: tag} — int,
Af(Ax); f: {tag: tag} x ta — ta

} }



ifetheneelsee

typecase e of [[g aszx = e] ] " [else €]

conditional

type conditional

= v syntactic value
| letd* ine binding
| {[x ft=f ] *} record construction
| T variable reference
| ri=e variable update
| e.x ordered record field selection
| exr:=e ordered record field update
| eQx unordered record field selection
| eQr:=e unordered record field update
| e; e sequencing
| e(e”) procedure invocation
| r(e*) primitive invocation
|
|
| tryee exception handler
| raise e exception raise
| ele] array element selection
| ele]:=e array update for primitive types
| ele] =Ue array update for record types
n= simple constant
| 9 tag
| A [m : t] e first-order procedure
| {[z (ft= v]*} record of values
= e initial value
| [e] array construction
= xivt=e value declaration
| rec [ [:c t=w ] 1 set of recursive value declarations
| g=t [-<: g*] tag declaration

Fig. 2. Expression syntax.

If we amend class B to implement interface J, type ¢t does not change, and
we have tp <: t;. (Again, the translated types are not quite this simple; see
Section 3.)

Figure 2 specifies the expressions e, values v, and declarations d of our inter-
mediate language, where g € Tag are tags, ¢ € Const are basic constants, and
r € Prim are primitive operations. Constants, tags, and procedures are values,
as well as records where all initializers are values. Primitive operations can only



appear in call position. Procedures are called by value, bind their arguments
as usual, and must be first-order: the only free variables a procedure is al-
lowed are global variables bound by top-level let-expressions. A declaration d; =
(z : vt = e) appearing in an expression let d; - - - dy, in €’ binds z of type vt in d; 1
through d,, and e'. A recursive declaration d; = rec [Z4:t, = Vg - %, 1 t, = v, ]
binds z, ...z, of types t,... t, in all of v,...v, and €. A tag declaration
d; = g~ t=<:g;---9g, introduces tag g and associates it with type ¢ and tags
g1 9gn- Tags g1 ---gn, are called supertags of g. Conversely, g is a subtag of
g1+ - gn- The translation places a tag in a record field named tag when the type
a record was constructed with may need to be recovered by a language operation
like typecase. In a record construction, a field type ¢ var indicates that the field
is mutable, but its initializer must be a value of type ¢. Similarly, declarations of
type t var introduce mutable variables must have initializers of type ¢. Mutable
fields and variables are automatically “dereferenced” when accessed. (There are
no values of type t var.) The expressions e.x and eQz access fields of records of
ordered and unordered type, respectively. The expressions e.x := e and eQx := ¢
update such fields. The unordered record operations eQz and eQx := e use the
initial tag field of a record to determine the appropriate offset into the record.
Ordinary if-expressions provide boolean conditionals, and typecase tests the tag
of a record-valued expression. A typecase expression evaluates the first clause
[g as z = €] for which g is a supertag of the record’s tag. In the clause body e,
z is bound to the record, but with a more precise type. The expression try e; es
evaluates e; with ey as an exception handler. If e; raises no exception, its value
is returned as the value of the try-expression. If e; raises exception v, the ex-
pression es(v) is evaluated and its value becomes the value of the try-expression.
The expression raise e evaluates e to a record v and raises an exception.

Since arrays can only appear within records in our IL, the three expressions
for accessing and updating arrays actually operate on records. These operations
retrieve or modify array elements associated with a record field named array.
Another field named length stores an array’s size. The assignment operation
e1[ea] :=1} e3 for arrays whose elements are records sets the element of e;.array
at index e to the value of e3. Due to the covariant rule for array subtyping,
this operation must also perform a runtime check to ensure that the value of e3
is a subtype of the runtime array component type. Hence a third field named
elemtag holds a tag representing the component type of the array. Since Java
arrays are implicitly subtypes of the Java class Object, our translation places
additional fields such as clone and getClass in records that represent arrays. We
explain our rationale for this treatment of arrays below.

IL expressions must obey a collection of type checking rules. To simplify the
presentation, we describe these rules in two groups. Figure 3 defines the first
group of rules which concern simple expressions and procedures. The function
D strips var off a type:

t if ft = t var;
ft otherwise.

o) = {



TypeOf(c) = pt Alzy = t]- - [zn = ] Fe:t

Al c:pt AFXz1:t1--Tpnith.e @ t1--th =t
A(z) = vt A(z) = t var Ale:t
Atz :D(vt) Al z:=e:void

Ableg:ti--t, >t Alei:ty - Alepn:ty
Al epler---en):t

TypeOf(r) = pt, ---pt, = t AlFep:pty --- Aben:pt,
Abr(er---en):t

At e : boolean Abey:t Ables:t Ablei: tg Ables:ty
At ife; theneselsees : ¢t Aler;er:ts

Ardi=> A -+ A+A+---+A, 1 Hdy,=> A, A+ A1 +---+AFe:t
Abtletd,---d,ine:t

Al e:D(ut)
Al z:vt=e= [z vt

t<tT(gr) -~~~ t<:T(gn) T(g)=t G(g)={g1,---,9n}
AFgmt<igr - gn=>]]

Alzi =t zpn o t)lFvr it - Alti = b - >t op it
Abrec[zi:ti=v1 -+ Zpitp =vp] = [1 -t Zn > 1]

Ale:t t<:t
Abe:t

Fig. 3. Typing rules for simple expressions.

A is a type assignment that maps variables to types. The rules also refer to two
global maps T and G. Map T : Tag RN Type associates types with tags, and

map G : Tag RN P(Tag) associates sets of tags with tags. An IL expression e is
typable if there exist maps T" and G and a typing derivation concluding [] - e : ¢.

Most of the typing rules for simple expressions are standard; we discuss only
the exceptions. The last three rules produce environments for declarations. The
rule for a tag declaration g = t <: g1 - - - g,, requires the global map 7' to associate
g with type ¢, and the map G to associate g with the set {g1,...,gn}. T allows the
type associated with g to be recovered by language operations such as typecase. G
abstracts the Java type hierarchy and allows language operations such as typecase
to test relations in this hierarchy. For soundness, the typing rule requires that
the types associated with tags related in G be similarly related under subtyping;
that is, if g is declared to be a subtag of ¢', then T'(g) <: T'(g").

Figure 4 defines the typing rules for records and related expressions. We
explain only the non-standard rules here. A tag has type tag, provided that T



g € Dom(T) g € Dom(G)
At g:tag

AlFei:fty --- AFen: ft,
Ab{zi:fty=e1 -+ zn:ft,=en}: {z1: ft; -+ zn: ft,}
if £1 = tag and ft; = tag then

esr=gand T(g) ={z1:ft; -~ @n:ft,}
if z; = array and ft; =t array then

ei =[el - -en] and z; = length and e; = m and i < j
if £; = array and ft; = rt array then

zr = elemtag and e, = ¢’ and T(¢') = rtand k <i < j

At e:D(vt) AFer:t - Abe,:t
AlFe: vt Al ler---en]:tarray

Are:{ - z:ft} Are:{ - z:twvar} AFes:t
Al ex:D(ft) AbFei.x:=es: void

At e: {tag: tag, =: ft} At e: {tag: tag, z:tvar} Ales:t
Al eQz : D(ft) Al e1Qx:=es: void

Abey:{-- array:t array --- length: int} Al es:int
Aleifes]:t

Atei:{-- array:pt array --- length: int} Al ey :int AlFes:pt
Al eifez] :=es : void

Aley:{ - elemtag:tag --- array:t array --- length: int}
AlFery:int Abes:t t<:{tag:tag}
At eifes] =Y es : void

At eo: {tag: tag}
Alzi = T(g1)]Fe1:t --- Alzn = T(gn)]Fen:t AbFepny1:t
typecase eg of [g1 asx1 = e1] *++ [gn @asTn = en] [else ent1] : ¢

Ale:t Abey: {tag:tag} — ¢t At e: {tag: tag}
Abtryeies:t A F raise e : void

Fig. 4. Typing rules for records and related expressions.

and G associate it with appropriate types and supertags. Record expressions
receive ordered record types with several restrictions. First, if the first field is
named tag and has type tag, then its initializer must be a tag g whose type
in T is the type of the entire record. This ensures that a record’s type can be
recovered from its tag. Second, a field may have an array initializer of length m
if and only if the field’s name is array and there is a field named length whose



initializer is the constant m. This restriction ensures that the length field can be
used for bounds checking accesses to the array. Third, if an array field is present
of type rt array where rt is a record type, then the record must include a field
named elemtag whose initializer is a tag corresponding to rt. Array update uses
the elemtag field to perform its runtime type check. The third and fourth typing
rules handle initializers for fields. The rules for array access and update require
e1 to be a record containing array and length fields. The rule for update where the
component type is a record type additionally requires an elemtag field. The rule
for typecase requires that the expression being tested have a record type including
a tag field. For each clause [g; as z; = e;], variable z; is bound in e; to T(g;),
since the typing rule for record construction ensures that any record containing
tag g; will have type T'(g;). Finally, the typing rules for exception constructs
require the exception be a tagged record as the translation uses typecase within
handlers to distinguish different exceptions.

Provided that array access and update operations perform bounds checks,
this type system is sound. But to achieve high performance code, we need to lift
array bounds checks out of loops or eliminate them entirely. Our IL is designed
so that a safe array access operation can be replaced with a combination of
an explicit test and a corresponding unsafe operation. For instance, we replace
ey [62] with

leta =e1
i = €2

inifi>0&i< a.length then unsafe[a]i
else raise IndexOutOfBoundsException

The explicit tests so introduced can then be optimized as usual.

3 Translation

The translation from Java to our intermediate language of records and proce-
dures:

e replaces method dispatch with simple record accesses and a first-order pro-
cedure call;

e passes object state explicitly through this parameters that are treated no
differently from any other function parameter;

e supports efficient implementation of member access by representing objects
as ordered records;

o replaces Java’s complex mechanisms for name resolution (visibility keywords,
overloading, super, inner classes, and packages) with ordinary static scoping;

o flattens the class inheritance hierarchy by explicitly including record fields
defined by superclasses;

e expresses method sharing among objects of the same class by placing proce-
dures that implement the methods in a shared record;

e accommodates subtyping between Java classes by assigning type T to this
and using typecase to recover the appropriate type;



class Point {
int x;
inty = 3;
Point() { x = 2;};
public void mv( int dx, int dy ) { x +=dx; y +=dy; };
public boolean eq( Point other ) { return (x == other.x && y == other.y); }
Point like() { Point p = new Point(); p.x = x; p.y = y; return p; }

class ColorPoint extends Point {
int c;
public boolean eq( Point other ) {
if ( other instanceof ColorPoint )
return super.eq( other ) && ¢ == ((ColorPoint) other).c;
else
return false;
}

ColorPoint sc( int ¢ ) { this.c = ¢; return this; }
ColorPoint() { super(); }
ColorPoint( int ¢ ) { super(); this.c = ¢; }

Fig. 5. Example Java classes.

e uses type tags on records to support runtime type tests and casts;

e accommodates interface subtyping by using unordered record types;

e lifts static methods and constructor and initialization procedures out of
classes and represents them as top-level procedures;

e expresses class initialization as explicit tests and calls that can be optimized;

e replaces implicit conversions on primitive types with explicit operations,
eliminates widening conversions in favor of implicit subtyping, and expresses
narrowing conversions with typecase;

e expresses local control constructs (for, while, break, etc.) with uses of tail-
recursive procedures;

e places lock and unlock instructions where control enters or leaves synchro-
nized blocks.

In this section, we illustrate some aspects of this translation with examples. All
Java objects implicitly extend class Object and hence have members such as
clone and getClass, but we omit such members in these examples to simplify the
presentation.

Figure 5 presents Java code defining two classes Point and ColorPoint. In
the example, a Point object contains x and y coordinate fields, and methods to
move a point (mv), test whether two points are the same (eq), and clone a new
point from the current one (like). Class ColorPoint inherits from Point and adds
a color field c¢. ColorPoint overrides the eq method of Point and also provides a



tp = pa. { tag: tag,
methods: {
mv: {tag: tag} x int X int — void,
eq: {tag: tag} x a — boolean,
like: {tag:tag} —
x: int var,
y: int var
}
tc = pp. { tag: tag,
methods: {
mv: {tag: tag} x int X int — void,
eq: {tag: tag} x tp — boolean,
like: {tag: tag} — tp,
sc: {tag: tag} x int — B
3
x: int var,
y: int var,
c: int var

Fig. 6. Types for Point and ColorPoint objects in the IL.

new method sc to set its color. The ColorPoint class declares two constructors.
The first initializes a new ColorPoint object with a default color; the second sets
the color field explicitly to the color supplied as an argument.

Figure 6 presents the record types corresponding to Point and ColorPoint. In
general, records corresponding to objects include a tag field, a methods field, and
fields for the instance variables, both explicit and inherited. The methods field
contains a record of functions corresponding to the instance methods of the class,
both explicit and inherited. Initially, this record is shared by all objects of the
class, although optimizations may replace it with a record of specialized functions
in certain objects. The functions take an additional first argument which is the
object record itself. The IL types do not include fields for constructors or static
methods as these procedures are called directly without selecting them from an
object.

The types of mv and eq in t¢ and tp are the same. This is because Java re-
quires that an overriding method be of the same type as the overridden one. Since
tc has at least the same fields as ¢p, and since the members in the shared prefix
have the same type, we have t¢ <: tp. Hence a record denoting a ColorPoint can
be passed to a function that expects a record denoting a Point.

A program in our intermediate language consists of a set of mutually recur-
sive values corresponding to methods, constructors, and method tables. Other
than references to other top-level definitions, these procedures have no free vari-
ables. Notably, this is supplied as an explicit argument, unlike its treatment in



let tagP = tp
rec [newP: = tp =
. { tag:tag = tagP, methods:... = Pmethods,
x:int var = 0, yuint var =0 }
initP: tp = void =
Athis:tp . thisy := 3; this.x := 2
Pmethods: ...=
{mv:...=mvP, eq:...= eqP, like: ... = likeP }
mvP: {tag: tag} x int x int — void =
Athis:{tag : tag}. dx:int, dy:int .
typecase this of
[tagP as this = this.x := this.x + dx; this.y := this.y + dy]
[else raise CompilerError]
eqP: {tag: tag} x tp — boolean =
Athis:{tag : tag}, other:tp .
typecase this of
[tagP as this = if not(this.x == other.x) then false
else this.y == other.y]
[else raise CompilerError]
likeP: {tag: tag} — tp =
Athis:{tag: tag} .
typecase this of
[tagP as this = let it = newP() in initP(it); it ]
[else raise CompilerError]

Fig. 7. Translation of Point class.

Java and other object-based languages. This property facilitates code-movement
optimizations on our IL such as inlining.

Figure 7 shows the translation of the Point class. We elide some types that
are obvious from context. The translation generates a procedure newP for con-
structing new Point objects, a procedure initP for initializing them, a record of
functions corresponding to the methods of the class, and the functions them-
selves. Each method function dispatches on the type of its first argument. A
tag encodes the static type of an object; this type is examined at runtime using
typecase. Thus, if mv is invoked by an object that is not a Point, the argument
tag supplied in the call will not be a subtag of tagP, and a runtime exception
will be raised. Such an error will not be caught at compile-time because the type
expected by mv for this argument is T = {{tag: tag}. Indeed, T is the self type
expected by all translated methods.

Figure 8 shows the translation of the ColorPoint class. An interesting aspect of
ColorPoint’s definition is its use of super. Calls to super in ColorPoint constructors
are translated to calls to initP. The call super.eq( other ) becomes a direct call
to eqP since Java’s semantics dictate that such uses of super bypass the usual



let ...code for Point ...
in let
tagC = tp
rec [newC: — t¢ =
A. { tag:tag = tagC, methods:... = Cmethods,
x:int var = 0, yuint var = 0, ciint var =0 }
initCi: tc — void =
Athis:tc. initP(this)
initCs: tc X int — void =
Athis:tc, ciint. initP(this); this.c := ¢
Cmethods: ... =
{mv:...=mvP, eq:...=eqC, like: ... = likeP, sc : ...=scC }
eqC: {tag: tag} x tp — boolean =
Athis:{tag : tag}. other: tp .
typecase this of
[tagC as this = if (typecase other of
[tagC as other = true]
[else false]) then
(if not(eqP(this, other)) then false
else this.c == (typecase other of
[tagC as other = other]
[else raise CastException]).c)
else false]
[else raise CompilerError]
scC: {tag: tag} x int = tc =
Athis:{tag : tag}, ciint .
typecase this of
[tagC as this = this.c := ¢; this]
[else raise CompilerError]

Fig. 8. Translation of ColorPoint class

dynamic method dispatch. Uses of typecase capture the runtime behavior of
instanceof and narrowing conversions. In particular, (typecase other ...) takes
the tagC branch if other.tag is tagC or any subtag of tagC. All records containing
such a tag are guaranteed to represent ColorPoints, or belong to subclasses of
ColorPoint.

Figure 9 illustrates a Java interface Widget and its corresponding type ty in
our IL. Since the classes that implement Widget may have methods in different
orders, the methods field of ¢y has an unordered record type. If we amend Point
to implement Widget, the translated types t» and ¢, for Point and ColorPoint,
also shown in Figure 9, include a tag field in their methods record to achieve the
subtyping t;, <:tp <:tw.



interface Widget {
boolean eq( Point other );
void mv( int dx, int dy );
}
tw = { tag: tag,
methods: { tag: tag,
eq: {tag: tag} x t’» — boolean,
mv: {tag: tag} x int x int — void
¥
}
ts> = pa. { tag: tag,
methods: {
tag: tag,
mv: {tag: tag} x int x int — void,
eq: {tag: tag} x a — boolean,
like: {tag: tag} — «
h
x: tnt var,
y: int var
}
te = pP. { tag: tag,
methods: {
tag: tag,
mv: {tag: tag} X int X int — void,
eq: {tag: tag} x t’» — boolean,
like: {tag: tag} — t’p,
sc: {tag: tag} x int — B
h
x: int var,
y: int var,
c: int var

Fig. 9. Interface Widget and types for Widget, Point, and ColorPoint.

4 Related Work

Optimizations for object-oriented languages, type systems for object-oriented
languages, and typed intermediate languages are three topics that have been
investigated independently by other researchers and relate to the work presented
here.

Optimizations for Objects

An important issue addressed by optimizing compilers for object-oriented lan-
guages is reducing the overhead introduced by encoding polymorphism. Statically-
typed object-oriented languages such as Java support polymorphism through



subclassing. Subclasses share implementations with their parents. Because meth-
ods can be overridden to provide alternative implementations, the exact method
invoked at a call site may not be easily determined at compile time. Indeed, with-
out aggressive analyses, compilers are unlikely to determine the control flow of a
program that makes any significant use of inheritance. On the other hand, rely-
ing only on intraprocedural optimization may not be effective because methods
are usually short and make frequent calls to other methods.

There are two main ways of eliminating the dispatch at a call z.f(...). Either
(i) the value of the receiver  can be of only one type T', in which case we can
call T’s method f directly, or (ii) z can be of any of the types in a set S, but
all types in S share the same implementation of f, in which case we can call f
directly. Concrete type inference and class hierarchy analysis are two well-known
analyses that have been devised to address the issue of dispatch elimination.

Concrete Type Inference [14,17,9,10] is a form of flow analysis that identifies,
for each expression, the set of possible types its values may belong to. When a
receiver is found to have only one possible type, the method dispatch can be
replaced by a direct function call to that type’s method.

Class Hierarchy Analysis [9,4,10] is a program analysis that, based solely
on the program’s class structure, identifies a set of types S that share the same
implementation of method f. An example of such a set is the set containing class
C and all subclasses of C' that do not override f. Such sets can be computed
either from programmer’s annotations (“final” in Java) or from inspection of
the complete class hierarchy. The analysis can be adapted to work, although less
beneficially, in the presence of separate compilation, where implementations are
separated from interfaces. In such cases it is still possible to eliminate method
dispatch at link time [11].

Even if the above analyses are unable to identify a call site as calling a unique
function, it may still be possible to optimize the program by using a type-case
statement with execution branching on the exact type of the value to code specific
to each possible type [6]. Message splitting is a variation of this technique which
consists of duplicating not only the method call on each branch of the type case,
but subsequent statements as well, whenever this enables further optimizations.

Dynamically typed languages, and to a lesser extent statically typed lan-
guages, could benefit from type feedback—information about the set of concrete
types that a receiver is observed to have during program’s execution. Compar-
ison of type feedback with either class hierarchy analysis [9] or concrete type
inference [12] shows it to be a valuable technique.

In contrast to our typed intermediate language, the intermediate language on
which these optimizations have typically been performed is an untyped control-
flow graph. Low-level nodes in the graph are used to represent arithmetic op-
erations, assignments, conditional branches, etc. High-level nodes are used to
represent the semantics of method calls [6]. High-level nodes help the compiler
postpone code-generation decisions for method dispatch until after optimizations
aimed at replacing method calls with direct function calls are performed. Re-
maining method dispatches are then translated into more primitive operations,



and the code is then subject to further intra-procedural optimizations. This ap-
proach is well-suited for implementing dynamically typed languages, where a
method dispatch can be a rather heavy-weight construct. On the other hand,
in a statically typed language with single inheritance such as Java, method dis-
patch consists of fetching a function pointer from a record from a known offset,
and calling that function. We believe that in such a setting, an intermediate lan-
guage based on first order functions and records is a viable alternative. All the
complicated constructs of the source language, including method dispatch, are
translated into simpler operations. Flow analysis techniques used to drive inter-
procedural optimizations for functional languages can be directly applied to our
intermediate language and need not be modified to understand the nuances of
method dispatch. By having available the function tables constructed for each
type, analyses can still compute a reasonably precise conservative approximation
to the set of methods called at a call site, facilitating optimizations like inlining.

Type Systems for Objects

In designing our typed IL for Java, we considered and rejected several alterna-
tives. A naive attempt to translate Java into a record-based IL uses the same lan-
guage and type system as ours, but gives self parameters the object’s record type
rather than T. That is, mv, eq, and like in class Point all expect a value of type
tp for their first argument. This solution fails because, translating ColorPoint
the same way, we no longer have t¢ <: tp due to contravariant subtyping of
functions. Hence many Java-typable programs are not typable under such a
translation.

Several object calculi have most of the language features found in Java and
support the necessary subtyping [1,5]. However, in these calculi, self parameters
are implicitly bound, and method dispatch is not broken down into separate
function selection and procedure call mechanisms. Consequently it would be
difficult to adapt existing techniques for optimizing procedural languages to
such calculi. Moreover, the complexity of these calculi make them inappropriate
as the foundation for an IL.

Finally languages that employ a split-self semantics represent an object as a
pair of a record containing the object’s state and a record containing the object’s
code [16]. They use existential types to achieve subtyping, and include pack and
unpack operations to manipulate values of existential type. The encoding of
objects in this style is complex and unwieldy for use in a compiler.

Typed Intermediate Languages

Several advanced functional language implementations have embraced the use of
a typed intermediate language to express optimizations and transformations [18,
20]. The motivation for using a typed intermediate language holds equally well
in the context of a Java implementation. Like most functional languages, Java
has a rich type system and requires aggressive compiler optimization to achieve
acceptable performance. However, while the intermediate language type systems



developed for functional language implementations have been based on a poly-
morphic A-calculus, the type system in our IL more closely reflects features
found in Java. Thus, it provides record subtyping to express single inheritance,
unordered record types to express interfaces, and a tag type to express runtime
type inspection.

To summarize, our typed intermediate language for Java serves three major
roles: (1) it gives us increased confidence in the correctness of optimizations;
(2) it exposes salient properties of an object’s representation that may be then
optimized; and (3) it facilitates type-specific decisions throughout the compiler
and runtime system. We are confident that a typed intermediate language of this
kind will be instrumental in realizing a high-performance Java implementation.
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