
CS264A Automated Reasoning Review Note
2020 Fall By Patricia Xiao

variable x, α, β, . . . (a.k.a. propositional
variable / Boolean variable)

literal x, ¬x
conjunction conjunction of α and β: α ∧ β
disjunction disjunction of α and β: α ∨ β
negation negation of α: ¬α
sentence variables are sentences; nega-

tion, conjunction, and disjunc-
tion of sentences are sentences

term conjunction (∧) of literals

clause disjunction (∨) of literals

normal forms universal format of all lo-
gic sentences (everyone can be
transformed into CNF/DNF)

CNF conjunctive normal form, con-
junction (∧) of clauses (∨)

DNF disjunctive normal form, dis-
junction (∨) of terms (∧)

world ω: truth assignment of all varia-
bles (e.g. ω |= α means sentence
α holds at world ω)

models Mods(α) = {ω : ω |= α}

Notation

• Foundations: logic, quantified Boolean logic,
SAT solver, Max-SAT etc., compiling kno-
wledge into tractable circuit (the book chapters)

• Application: three modern roles of logic in AI

1. logic for computation

2. logic for leaning from knowledge / data

3. logic for meta-learning

Main Content of CS264A

Logic syntax, “how to express”, include the literal,
etc. all the way to normal forms (CNF/DNF).
Logic semantic, “what does it mean”, could be dis-
cussed from two perspectives:

• properties: consistency, validity etc. (of a sen-
tence)

• relationships: equivalence, entailment, mutual
exclusiveness etc. (of sentences)

Syntax and Semantics of Logic

α⇒ β = ¬α ∨ β
α⇒ β = ¬β ⇒ ¬α

¬(α ∨ β) = ¬α ∧ ¬β
¬(α ∧ β) = ¬α ∨ ¬β

γ ∧ (α ∨ β) = (γ ∧ α) ∨ (γ ∧ β)

γ ∨ (α ∧ β) = (γ ∨ α) ∧ (γ ∨ β)

Existential Quantification Useful Equations

Listing the 2n worlds wi involving n variables, we have
a truth table.
If sentence α is true at world ω, ω |= α, we say:

• sentence α holds at world ω

• ω satisfies α

• ω entails α

otherwise ω 6|= α.
Mods(α) is called models/meaning of α:

Mods(α) = {ω : ω |= α}

Mods(α ∧ β) = Mods(α) ∩Mods(β)

Mods(α ∨ β) = Mods(α) ∪Mods(β)

Mods(¬α) = Mods(α)

ω |= α: world ω entails/satisfies sentence α.
α ` β: sentence α derives sentence β.

Models

Defining ∅ as empty set and W as the set of all worlds.
Consistency: α is consistent when

Mods(α) 6= ∅

Validity: α is valid when

Mods(α) = W

α is valid iff ¬α is inconsistent.
α is consistent iff ¬α is invalid.

Semantic Properties

Equivalence: α and β are equivalent iff

Mods(α) = Mods(β)

Mutually Exclusive: α and β are equivalent iff

Mods(α ∧ β) = Mods(α) ∩Mods(β) = ∅

Exhaustive: α and β are exhaustive iff

Mods(α ∨ β) = Mods(α) ∪Mods(β) = W

that is, when α ∨ β is valid.
Entailment: α entails β (α |= β) iff

Mods(α) ⊆ Mods(β)

That is, satisfying α is stricter than satisfying β.
Monotonicity: the property of relations, that

• if α implies β, then α ∧ γ implies β;

• if α entails β, then α ∧ γ entails β;

it infers that adding more knowledge to the existing
KB (knowledge base) never recalls anything. This is
considered a limitation of traditional logic. Proof:

Mods(α ∧ γ) ⊆ Mods(α) ⊆ Mods(β)

Semantic Relationships

Our discussion on quantified Boolean logic centers
around conditioning and restriction. (|, ∃, ∀) With a
propositional sentence ∆ and a variable P :

• condition ∆ on P : ∆|P
i.e. replacing all occurrences of P by true.

• condition ∆ on ¬P : ∆|¬P
i.e. replacing all occurrences of P by false.

Boolean’s/Shanoon’s Expansion:

∆ =
(
P ∧ (∆|P)

)
∨
(
¬P ∧ (∆|¬P)

)
it enables recursively solving logic, e.g. DPLL.

Quantified Boolean Logic: Notations

1

Existential Qualification:

∃P∆ = ∆|P ∨ ∆|¬P

Universal Qualification:

∀P∆ = ∆|P ∧ ∆|¬P

Duality:
∃P∆ = ¬

(
∀P¬∆

)
∀P∆ = ¬

(
∃P¬∆

)
The quantified Boolean logic is different from first-
order logic, for it does not express everything as ob-
jects and relations among objects.

Existential & Universal Qualification

The right-hand-side of the above-mentioned equation:

∃P∆ = ∆|P ∨ ∆|¬P

doesn’t include P .
Here we have an example: ∆ = {A ⇒ B,B ⇒ C},
then:

∆ = (¬A ∨B) ∧ (¬B ∨ C)

∆|B = C

∆|¬B = ¬A
∴ ∃E∆ = ∆|B ∨∆|¬E = ¬A ∨ C

• ∆ |= ∃P∆

• If α is a sentence that does not mention P then
∆ |= α ⇐⇒ ∃P∆ |= P

We can safely remove P from ∆ when considering
existential qualification. It is called:

• forgetting P from ∆

• projecting P on all units / variables but P

Forgetting

Modus Ponens (MP):

α, α⇒ β

β

Resolution:
α ∨ β,¬β ∨ γ

α ∨ γ
equivalent to:

¬α⇒ β, β ⇒ γ

¬α⇒ γ

Above the line are the known conditions, below the
line is what could be inferred from them.
In the resolution example, α ∨ γ is called a
“resolvent”. We can say it either way:

• resolve α ∨ β with ¬β ∨ γ

• resolve over β

• do β-resolution

MP is a special case of resolution where α = true.
It is always written as:

∆ = {α ∨ β,¬β ∨ γ} `R α ∨ γ

Applications of resolution rules:

1. existential quantification

2. simplifying KB (∆)

3. deduction (strategies of resolution, directed re-
solution)

Resolution / Inference Rule

We say rule R is complete, iff ∀α, if ∆ |= α then
∆ `R α.
In other words, R is complete when it could “discover
everything from ∆”.
Resolution / inference rule is NOT complete. A
counter example is: ∆ = {A,B}, α = A ∨B.
However, when applied to CNF, resolution is refuta-
tion complete. Which means that it is sufficient to
discover any inconsistency.

Completeness of Resolution / Inference Rule

CNF, the Conjunctive Normal Form, is a conjunction
of clauses.

∆ = C1 ∧ C2 ∧ . . .

written in clausal form as:

∆ = {C1, C2 . . . }

where each clause Ci is a disjuntion of literals:

Ci = li1 ∨ li2 ∨ li3 ∨ . . .

written in clausal form as:

Ci = {li1, li2, li3}

Resolution in the clausal form is formalized as:

• Given clauses Ci and Cj where literal P ∈ Ci

and literal ¬P ∈ Cj

• The resolvent is (Ci\{P}) ∪ (Cj\{¬P}) (Nota-
tion: removing set {P} from set Ci is written as
Ci\{P})

If the clausal form of a CNF contains an empty
clause (∃i, Ci = ∅ = {}), then it makes the CNF
inconsistent / unsatisfiable.

Clausal Form of CNF

1. Turning KB ∆ into CNF.

2. To existentially Quantify B, do all B-resolutions

3. Drop all clauses containing B

Existential Quantification via Resolution

Unit resolution is a special case of resolution, where
min(|Ci|, |Cj |) = 1 where |Ci| denotes the size of set
Ci. Unit resolution corresponds to modus ponens
(MP). It is NOT refutation complete. But it has
benefits in efficiency: could be applied in linear time.

Unit Resolution

∆ |= α iff ∆ ∧ ¬α is inconsistent. (useful in proof)

• resolution finds contradiction on ∆∧¬α: ∆ |= α

• resolution does not find any contradiction on
∆ ∧ ¬α: ∆ 0 α

Refutation Theorem

2

All the clauses that are originally included in CNF ∆
are root clauses.
Linear resolution resolved Ci and Cj only if one of
them is root or an ancestor of the other clause.
An example: ∆ = {¬A,C}, {¬C,D}, {A}, {¬C,¬D}.

{¬A,C} {¬C,D} {¬C,¬D}{A}

{C}

{D}

{¬C}

{}

Resolution Strategies: Linear Resolution

Directed resolution is based on bucket elimination,
and requires pre-defining an order to process the va-
riables. The steps are as follows:

1. With n variables, we have n buckets, each cor-
responds to a variable, listed from the top to the
bottom in order.

2. Fill the clauses into the buckets. Scanning top-
side-down, putting each clause into the first buc-
ket whose corresponding variable is included in
the clause.

3. Process the buckets top-side-down, whenever we
have a P -resolvent Cij , put it into the first fol-
lowing bucket whose corresponding variable is
included in Cij .

An example: ∆ = {¬A,C}, {¬C,D}, {A}, {¬C,¬D},
with variable order A,D,C, initialized as:

A: {¬A,C}, {A}
D: {¬C,D}, {¬C,¬D}
C:

After processing finds {} ({C} is the A-resolvent,
{¬C} is the B-resolvent, {} is a C-resolvent):

A: {¬A,C}, {A}
D: {¬C,D}, {¬C,¬D}
C: {C}, {¬C}, {}

Resolution Strategies: Directed Resolution

Directed resolution can be applied to forgetting / pro-
jecting.
When we do existential quantification on variables
P1, P2, . . . Pm, we:

1. put them in the first m places of the variable
order

2. after processing the first m (P1, P2, . . . Pm) buc-
kets, remove the first m buckets

3. keep the clauses (original clause or resolvent) in
the remaining buckets

then it is done.

Directed Resolution: Forgetting

Primal Graph: Each node represents a variable P .
Given CNF ∆, if there’s at least a clause ∃C ∈ ∆ such
that li, lj ∈ C, then the corresponding nodes Pi and
Pj are connected by an edge.
The tree width (w) (a property of graph) can be used
to estimate time & space complexity. e.g. comple-
xity of directed resolution. e.g. Space complexity of
n variables is O(n exp (w)).
For more, see textbook — min-fill heuristic.
Decision Tree: Can be used for model-counting. e.g.
∆ = A ∧ (B ∨ C), where n = 3, then:

A

false

true

B

true

C

false

high child
low child

(true)
(false)

for counting purpose we assign value 2n = 23 = 8 to
the root (A in this case), and 2n−1 = 4 to the next
level (its direct children), etc. and finally we sum up
the values assigned to all true values. Here we have:
2 + 1 = 3. |Mods(∆)| = 3. Constructing via:

• If inconsistent then put false here.

• Directed resolution could be used to build a de-
cision tree. P -bucket: P nodes.

Utility of Using Graphs

The SAT-solvers we learn in this course are:

• requiring modest space

• foundations of many other things

Along the line there are: SAT I, SAT II, DPLL, and
other modern SAT solvers.
They can be viewed as optimized searcher on all the
worlds ωi looking for a world satisfying ∆.

SAT Solvers

1. SAT-I (∆, n, d):
2. If d = n:
3. If ∆ = {}, return {}
4. If ∆ = {{}}, return FAIL
5. If L = SAT-I(∆|Pd+1, n, d+ 1) 6= FAIL:
6. return L ∪ {Pd+1}
7. If L = SAT-I(∆|¬Pd+1, n, d+ 1) 6= FAIL:
8. return L ∪ {¬Pd+1}
9. return FAIL

∆: a CNF, unsat when {} ∈ ∆, satisfied when ∆ = {}
n: number of variables, P1, P2 . . . Pn

d: the depth of the current node

• root node has depth 0, corresponds to P1

• nodes at depth n− 1 try Pn

• leave nodes are at depth n, each represents a
world ωi

Typical DFS (depth-first search) algorithm.

• DFS, thus O(n) space requirement (moderate)

• No pruning, thus O(2n) time complexity

SAT I

1. SAT-II (∆, n, d):
2. If ∆ = {}, return {}
3. If ∆ = {{}}, return FAIL
4. If L = SAT-II(∆|Pd+1, n, d+ 1) 6= FAIL:
5. return L ∪ {Pd+1}
6. If L = SAT-II(∆|¬Pd+1, n, d+ 1) 6= FAIL:
7. return L ∪ {¬Pd+1}
8. return FAIL

Mostly SAT I, plus early-stop.

SAT II

3

Termination tree is a sub-tree of the complete search
space (which is a depth-n complete binary tree), in-
cluding only the nodes visited while running the algo-
rithm.
When drawing the termination tree of SAT I and SAT
II, we put a cross (X) on the failed nodes, with {{}}
label next to it. Keep going until we find an answer
— where ∆ = {}.

Termination Tree

1. Unit-Resolution (∆):
2. I = unit clauses in ∆
3. If I = {}: return (I,∆)
4. Γ = ∆|I
5. If Γ = ∆: return (I,Γ)
6. return Unit-Resolution(Γ)

Used in DPLL, at each node.

Unit-Resolution

01. DPLL (∆):
02. (I,Γ) = Unit-Resolution(∆)
03. If Γ = {}, return I
04. If {} ∈ Γ, return FAIL
05. choose a literal l in Γ
06. If L = DPLL(Γ ∪ {{l}}) 6= FAIL:
07. return L ∪ I
08. If L = DPLL(Γ ∪ {{¬l}}) 6= FAIL:
09. return L ∪ I
10. return FAIL

Mostly SAT II, plus unit-resolution.
Unit-Resolution is used at each node looking for
entailed value, to save searching steps.
If there’s any implication made by Unit-
Resolution, we write down the values next to
the node where the implication is made. (e.g.
A = t, B = f, . . .)
This is NOT a standard DFS. Unit-Resolution
component makes the searching flexible.

DPLL

Chronological backtracking is when we find a con-
tradiction/FAIL in searching, backtrack to parent.
Non-chronological backtracking is an optimiza-
tion that we jump to earlier nodes. a.k.a. conflict-
directed backtracking.

Non-chronological Backtracking

Implication Graph is used to find more clauses to
add to the KB, so as to empower the algorithm.
An example of an implication graph upon the first
conflict found when running DPLL+ for ∆:

A

X

t
B

C

Y=t
Z=t

0/A=t

1/B=t

2/C=t

3/X=t

depth

0

t

t

t

1

2

3

decision

3/Y=t

3/Z=t

3/{}

1.{A,B}
2.{B,C}
3.{¬A,¬X,Y}
4.{¬A,X,Y}
5.{¬A,¬Y,Z}
6.{¬A,X,¬Z}
7.{¬A,¬Y,¬Z}

implication

3

3

5

5

∆

7

7

7

There, the decisions and implications assignments of
variables are labeled by the depth at which the value
is determined.
The edges are labeled by the ID of the correspon-
ding rule in ∆, which is used to generate a unit clause
(make an implication).

Implication Graphs

Cuts in an Implication Graph can be used to identify
the conflict sets. Still following the previous example:

0/A=t

1/B=t

2/C=t

3/X=t

3/Y=t

3/Z=t

3/{}

1.{A,B}
2.{B,C}
3.{¬A,¬X,Y}
4.{¬A,X,Y}
5.{¬A,¬Y,Z}
6.{¬A,X,¬Z}
7.{¬A,¬Y,¬Z}

3

3

5

5

∆=

7

7

7

Cut#1

Cut#2

Cut#3
A=t,X=t

A=t,Y=t

A=t,Y=t,Z=t

Here Cut#1 results in learned clause {¬A,¬X},
Cut#2 learned clause {¬A,¬Y }, Cut#3 learned
clause {¬A,¬Y,¬Z}.

Implication Graphs: Cuts

Asserting Clause: Including only one variable
at the last (highest) decision level. (The last
decision-level means the level where the last deci-
sion/implication is made.)
Assertion Level (AL): The second-highest level
in the clause. (Note: 3 is higher than 0.)
An example (following the previous example, on the
learned clauses):

Clause Decision-Levels Asserting? AL
{¬A,¬X} {0, 3} Yes 0
{¬A,¬Y } {0, 3} Yes 0
{¬A,¬Y,¬Z} {0, 3, 3} No 0

Asserting Clause & Assertion Level

01. DPLL+ (∆):
02. D ← ()
03. Γ← {}
04. While true Do:
05. (I,L) = Unit-Resolution(∆ ∧ Γ ∧D)
06. If {} ∈ L:
07. If D = (): return false
08. Else (backtrack to assertion level):
09. α← asserting clause
10. m← AL(α)
11. D ← first m+ 1 decisions in D
12. Γ← Γ ∪ {α}
13. Else:
14. find ` where {`} /∈ I and {¬`} /∈ I
15. If an ` is found: D ← D; `
15. Else: return true

true if the CNF ∆ is satisfiable, otherwise false.
Γ is the learned clauses, D is the decision sequence.
Idea: Backtrack to the assertion level, add the
conflict-driven clause to the knowledge base, apply
unit resolution.
Selecting α: find the first UIP.

DPLL+

The variable that set on every path from the last de-
cision level to the contradiction.
The first UIP is the closest to the contradiction.
For example, in the previous example, the last UIP
is 3/X = t, while the first UIP is 3/Y = t.

UIP (Unique Implication Path)

4

Exhaustive DPLL: DPLL that doesn’t stop when
finding a solution. Keeps going until explored the
whole search space.
It is useful for model-counting.
However, recall that, DPLL is based on that ∆ is sa-
tisfiable iff ∆|P is satisfiable or ∆|¬P is satisfiable,
which infers that we do not have to test both bran-
ches to determine satisfiability.
Therefore, we have smarter algorithm for model-
counting using DPLL: CDPLL.

Exhaustive DPLL

1. CDPLL (Γ, n):
2. If Γ = {}: return 2n

4. If {} ∈ Γ: return 0
5. choose a literal l in Γ
6. (I+,Γ+) = Unit-Resolution(Γ ∪ {{l}})
7. (I−,Γ−) = Unit-Resolution(Γ ∪ {{¬l}})
8. return CDPLL(Γ+, n− |I+|)+
9. CDPLL(Γ−, n− |I−|)

n is the number of variables, it is very essential when
counting the models.
An example of the termination tree:

1.{¬A,B}
2.{¬B,C}∆=

A

B

C=t

1

1 2

B=t,C=t

t f

t f

CDPLL

When a query is satisfiable, we have an answer to
certify.
However, when it is unsatisfiable, we also want to va-
lidate this conclusion.
One method is via verifying UNSAT directly (example
∆ from implication graphs), example:

level assignment reason
-1
0 A
1 B
2 C
3 X

Y ¬A ∨ ¬X ∨ Y
Z ¬A ∨ ¬Y ∨ Z

And then learned clause ¬A∨¬Y is applied. Learned
clause is asserting, AL = 0 so we add ¬Y to level 0,
right after A, then keep going from ¬Y .

Certifying UNSAT: Method #1

Verifying the Γ generated from the SAT solver after
running on ∆ is a correct one.

• Will ∆ ∪ Γ produce any inconsistency?

– Can use Unit-Resolution to check.

• CNF Γ = {α1, α2, . . . , αn} comes from ∆?

– ∆ ∧ ¬αi is inconsistent for all clauses αi.

– Can use Unit-Resolution to check.

Why Unit-Resolution is enough: {αi}ni=1 are gene-
rated from cuts in an implication graph. The im-
plication graph is built upon conflicts found by Unit-
Resolution. Therefore, the conflicts can be detected
by Unit-Resolution.

Certifying UNSAT: Method #2

For CNF ∆ = {α1, α2, . . . , αn}, an UNSAT core is any
subsets consisting of some αi ∈ ∆ that is inconsistent
together. There exists at least one UNSAT core iff ∆
is UNSAT.
A minimal UNSAT core is an UNSAT core of ∆
that, if we remove a clause from this UNSAT core,
the remaining clauses become consistent together.

UNSAT Cores

• Can SAT solver be faster than linear time?

– 2-literal watching (in textbook)

• The “phase-selection” / variable ordering pro-
blem (including the decision on trying P or ¬P
first)?

– An efficient and simple way: “try to try the
phase you’ve tried before”. — This is be-
cause of the way modern SAT solvers work
(cache, etc.).

More on SAT

The general idea is to start from a random guess of
the world ω, if UNSAT, move to another world by
flipping one variable in ω (P to ¬P , or ¬P to P).

• Random CNF: n variables, m clauses. When
m/n gets extremely small or large, it is ea-
sier to randomly generate a world (thinking of(
n
m

)
: when m/n → 0 it is almost always SAT,

m/n→∞ will make it almost always UNSAT).
In practice, the split point is m/n ≈ 4.24.

Two ideas to generate random clauses:

– 1st idea: variable-length clauses

– 2nd idea: fixed-length clauses (k-SAT, e.g.
3-SAT)

• Strategy of Taking a Move:

– Use a cost function to determine the qua-
lity of a world.

∗ Simplest cost function: the number of
unsatisfied clauses.

∗ A lot of variations.

∗ Intend to go to lower-cost direction.
(“hill-climbing”)

– Termination Criteria: No neighbor is bet-
ter (smaller cost) than the current world.
(Local, not global optima yet.)

– Avoid local optima: Randomly restart
multiple times.

• Algorithms:

– GSAT: hill-climbing + side-move (moving
to neighbors whose cost is equal to ω)

– WALKSAT: iterative repair

∗ randomly pick an unsatisfied clause

∗ pick a variable within that clause to
flip, such that it will result in the
fewest previously satisfied clauses be-
coming unsatisfied, then flip it

– Combination of logic and randomness:

∗ randomly select a neighbor, if bet-
ter than current node then move,
otherwise move at a probability (de-
termined by how much worse it is)

SAT using Local Search

5

Max-SAT is an optimization version of SAT. In other
words, Max-SAT is an optimizer SAT solver.
Goal: finding the assignment of variables that maxi-
mizes the number of satisfied clauses in a CNF
∆. (We can easily come up with other variations, such
as Min-SAT etc.)

• We assign a weight to each clause as the score
of satisfying it / cost of violating it.

• We maximize the score. (This is only one way
of solving the problem, we can also do it by mi-
nimizing the cost. — Note: score is different
from cost.)

Solving Max-SAT problems generally goes into three
directions:

• Local Search

• Systematic Search (branch and bound etc.)

• Max-SAT Resolution

Max-SAT

We have images I1, I2, I3, I4, with weights (impor-
tance) 5, 4, 3, 6 respectively, knowing: (1) I1, I4 can’t
be taken together (2) I2, I4 can’t be taken together (3)
I1, I2 if overlap then discount by 2 (4) I1, I3 if overlap
then discount by 1 (5) I2, I3 if overlap then discount
by 1.
Then we have the knowledge base ∆ as:

∆ :(I1, 5)

(I2, 4)

(I3, 3)

(I4, 6)

(¬I1 ∨ ¬I2, 2)

(¬I1 ∨ ¬I3, 1)

(¬I2 ∨ ¬I3, 1)

(¬I1 ∨ ¬I4,∞)

(¬I2 ∨ ¬I4,∞)

To simply the example we look at I1 and I2 only:

I1 I2 score cost
3 3 9 0
3 7 5 4
7 3 4 5
7 7 0 9

In practice we list the truth table of I1 through I4
(24 = 16 worlds).

Max-SAT Example

In Max-SAT, in order to keep the same
cost/score before and after resolution, we:

• Abandon the resolved clauses;

• Add compensation clauses.

Considering the following two clauses to resolve:

x ∨
c1︷ ︸︸ ︷

`1 ∨ `2 ∨ · · · ∨ `m
¬x ∨ o1 ∨ o2 ∨ · · · ∨ on︸ ︷︷ ︸

c2

The results are the resolvent c1∨ c2, and the compen-
sation clauses:

c1 ∨ c2
x ∨ c1 ∨ ¬o1

x ∨ c1 ∨ o1 ∨ ¬o2

...

x ∨ c1 ∨ o1 ∨ o2 ∨ · · · ∨ ¬on
¬x ∨ c2 ∨ ¬`1
¬x ∨ c2 ∨ `1 ∨ ¬`2
...

¬x ∨ c2 ∨ `1 ∨ `2 ∨ · · · ∨ ¬`m

Max-SAT Resolution

1. Pick an order of the variables, say, x1, x2, . . . , xn
2. For each xi, exhaust all possible Max-SAT
resolutions, the move on to xi+1.
When resolving xi, using only the clauses that does
not mention any xj , ∀j < i.

Resolve two clauses on xi only when there isn’t
a xj 6= xi that xj and ¬xj belongs to the two clauses
each. (Formally: do not contain complementary
literals on xj 6= xi.)
Ignore the resolvent and compensation clauses when
they’ve appeared before, as original clauses, resolvent
clauses, or compensation clauses.

In the end, there remains k false (conflicts), and Γ
(guaranteed to be satisfiable). k is the minimum
cost, each world satisfying Γ achieves this cost.

Directed Max-SAT Resolution

∆ = (¬a ∨ c) ∧ (a) ∧ (¬a ∨ b) ∧ (¬b ∨ ¬c)
Variable order: a, b, c.
First resolve on a:

(¬a∨c) (a) (¬a∨b) (¬b∨¬c)

(c)
(a∨¬c)

(b∨¬c)
(¬a∨b∨c)
(a∨¬c∨¬b)

Then resolve on b:

(¬a∨c) (a) (¬a∨b) (¬b∨¬c)

(c)
(a∨¬c)

(b∨¬c)
(¬a∨b∨c)
(a∨¬c∨¬b)

(¬c)

Finally:

(¬a∨c) (a) (¬a∨b) (¬b∨¬c)

(c)
(a∨¬c)

(b∨¬c)
(¬a∨b∨c)
(a∨¬c∨¬b)

(¬c)

false

The final output is:

false,
[
(¬a ∨ b ∨ c), (a ∨ ¬b ∨ ¬c)

]
Where Γ = (¬a ∨ b ∨ c) ∧ (a ∨ ¬b ∨ ¬c), and k = 1,
indicating that there must be at least one clause in ∆
that is not satisfiable.

Directed Max-SAT Resolution: Example

Some problems, even those harder than NP problems
can be reduced to logical reasoning.

Beyond NP

6

Shown in the figure are some example of the complete
problems.

PPPP

NPPP

PP

NP

SDP

MAP

MAR

MPE

abbr. meaning
SDP Same-Decision Probability
MAP Maximum A Posterior hypothesis
MAR MArginal Probabilities
MPE Most Probable Explanation

A complete problem means that it is one of the
hardest problems of its complexity class. e.g. NP-
complete: among all NP problem, there is not any
problem harder than it.
Our goal: Reduce complete problems to prototy-
pical problems (Boolean formula), then transform
them into tractable Boolean circuits.

Complexity Classes

PPPP

NPPP

PP

NP

MAJ-MAJ-SAT

E-MAJ-SAT

MAJ-SAT

SAT

abbr. meaning
SAT satisfiability

MAJ-SAT majority-instantiation satisfiability
E-MAJ-SAT with (X,Y)-split of the variables, exists

an X-instantiation that satisfies the ma-
jority of Y -instantiation.

MAJ-MAJ-SAT with (X,Y)-split of the variables, the
majority of X-instantiation satisfies the
majority of Y -instantiation.

Again, those are all complete problems.

Prototypical Problems

A Maj-SAT problem consists of:

• #SAT Problem (model counting)

• WMC Problem (weighted model counting)

Consider WMC (weighted model counting) problem,
e.g. three variables A,B,C, weight of world A =
t, B = t, C = f should be:

w(A,B,¬C) = w(A)w(B)w(¬C)

Typically, in a Bayesian network, where both B and
C depend on A:

A

B

C

And we therefore have:

Prob(A = t, B = t, C = t) = θAθB|AθC|A

where Θ = {θA, θ¬A} ∪ {θB|A, θ¬B|A, θB|¬A, θ¬B|¬A}
∪ {θC|A, θ¬C|A, θC|¬A, θ¬C|¬A} are the parameters
within the Bayesian network at nodes A,B,C respec-
tively, indicating the probabilities.
Though slightly more complex than treating each va-
riable equally, by working on Θ we can safely reduce
any Bayesian network to a Maj-SAT problem.

Bayesian Network to MAJ-SAT Problem

NNF is the form of Tractable Boolean Circuit we
are specifically interested in.
In an NNF, leave nodes are true, false, P or ¬P;
internal nodes are either and or or, indicating an ope-
ration on all its children.

NNF (Negation Normal Form)

We draw an NNF as if it is made up of logic. From a
circuit perspective, it is made up of gates.

and or not

Tractable Boolean Circuits

Property On Whom Satisfied NNF

Decomposability and DNNF
Determinism or d-NNF
Smoothness or s-NNF

Flatness whole NNF f-NNF
Decision or BDD (FBDD)
Ordering each node OBDD

Decomposability: for any and node, any pair of its
children must be on disjoint variable sets. (e.g. one
child A ∨B, the other C ∨D)
Determinism: for any or node, any pair of its chil-
dren must be mutually exclusive. (e.g. one child
A ∧B, the other ¬A ∧B)
Smoothness: for any or node, any pair of its chil-
dren must be on the same variable set. (e.g. one
child A ∧B, the other ¬A ∧ ¬B)
Flatness: the height of each sentence (sentence: from
root — select one child when seeing or ; all children
when seeing and — all the way to the leaves / literals)
is at most 2 (depth 0, 1, 2 only). (e.g. CNF, DNF)
Decision: a decision node N can be true, false,
or being an or-node (X ∧α)∨ (¬X ∧β) (X: variable,
α, β: decision nodes, decided on dVar(N) = X).
Ordering: make no sense if not decision (FBDD);
variables are decided following a fixed order.

NNF Properties

Abbr. Spelled Name description

CO consistency check SAT (∆)
VA validity check ¬SAT (¬∆)
SE sentence entailment check ∆1 |= ∆2

CE clausal entailment check ∆ |= clause α
IM implicant testing ∆ |= term `
EQ equivalence testing ∆1 = ∆2

CT model counting |Mods(∆)|
ME model enumeration ω ∈ Mods(∆)

Our goal is to get the above-listed queries done on
our circuit within polytime.
Besides, we also seek for polytime transformations:
Projection (existential quantification), Conditioning,
Conjoin, Disjoin, Negate, etc.

NNF Queries

7

NNF

d-NNF s-NNF f-NNF

sd-DNNF

DNNF
CO, CE, ME

d-DNNF

VA, IM, CT

EQ?

CNFDNF

IP PI
CO , CE, EQ, SE, MEVA, IM, EQ, SE

BDD

FBDD EQ?

OBDD<

SE

MODS
EQ, SE

VA, IM

OBDD
EQ

CO VA CE IM EQ SE CT ME
NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

d-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
s-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
f-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
DNNF 3 ◦ 3 ◦ ◦ ◦ ◦ 3

d-DNNF 3 3 3 3 ? ◦ 3 3
FBDD 3 3 3 3 ? ◦ 3 3
OBDD 3 3 3 3 3 ◦ 3 3

OBDD< 3 3 3 3 3 3 3 3
BDD ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

sd-DNNF 3 3 3 3 ? ◦ 3 3
DNF 3 ◦ 3 ◦ ◦ ◦ ◦ 3
CNF ◦ 3 ◦ 3 ◦ ◦ ◦ ◦
PI 3 3 3 3 3 3 ◦ 3
IP 3 3 3 3 3 3 ◦ 3

MODS 3 3 3 3 3 3 3 3

3: can be done in polytime
◦: cannot be done in polytime unless P = NP .
7: cannot be done in polytime even if P = NP
?: remain unclear (no proof yet)

The Capability of NNFs on Queries

notation transformation description

CD conditioning ∆|P
FO forgetting ∃P,Q, . . .∆

SFO singleton forgetting ∃P.∆
∧C conjunction ∆1 ∧ ∆2

∧BC bounded conjunction ∆1 ∧ ∆2

∨C disjunction ∆1 ∨ ∆2

∨BC bounded disjunction ∆1 ∨ ∆2

¬C negation ¬∆

Our goal is to transform in polytime while still keep
the properties (e.g. DNNF still be DNNF).
Bounded conjunction / disjunction: KB ∆ is boun-
ded on conjunction / disjunction operation. That is,
taking any two formula from ∆, their conjunction /
disjunction also belong to ∆.

NNF Transformations

CD FO SFO ∧C ∧BC ∨C ∨BC ¬C

NNF 3 ◦ 3 3 3 3 3 3
d-NNF 3 ◦ 3 3 3 3 3 3
s-NNF 3 ◦ 3 3 3 3 3 3
f-NNF 3 ◦ 3 7 7 7 7 3
DNNF 3 3 3 ◦ ◦ 3 3 ◦

d-DNNF 3 ◦ ◦ ◦ ◦ ◦ ◦ ?
FBDD 3 7 ◦ 7 ◦ 7 ◦ 3
OBDD 3 7 3 7 ◦ 7 ◦ 3

OBDD< 3 7 3 7 3 7 3 3
BDD 3 ◦ 3 3 3 3 3 3

sd-DNNF 3 3 3 3 ? ◦ 3 3
DNF 3 3 3 7 3 3 3 7
CNF 3 ◦ 3 3 3 7 3 7
PI 3 3 3 7 7 7 3 7
IP 3 7 7 7 3 7 7 7

MODS 3 3 3 7 3 7 7 7

3: can be done in polytime
◦: cannot be done in polytime unless P = NP .
7: cannot be done in polytime even if P = NP
?: remain unclear (no proof yet)

The Capability of NNFs on Transformations

Acronym Description
NNF Negation Normal Form

d-NNF Deterministic Negation Normal Form
s-NNF Smooth Negation Normal Form
f-NNF Flat Negation Normal Form
DNNF Decomposable Negation Normal Form

d-DNNF Deterministic Decomposable Negation Normal
Form

sd-DNNF Smooth Deterministic Decomposable Negation
Normal Form

BDD Binary Decision Diagram
FBDD Free Binary Decision Diagram
OBDD Ordered Binary Decision Diagram

OBDD< Ordered Binary Decision Diagram (using order
<)

DNF Disjunctive Normal Form
CNF Conjunctive Normal Form
PI Prime Implicates
IP Prime Implicants

MODS Models

FBDD: the intersection of DNNF and BDD.
OBDD<: if N and M are or-nodes, and if N is an
ancestor of M , then dVar(N) < dV ar(M).
OBDD: the union of all OBDD< languages. In this
course we always use OBDD to refer to OBDD<.
MODS is the subset of DNF where every sentence
satisfies determinism and smoothness.
PI: subset of CNF, each clause entailed by ∆ is sub-
sumed by an existing clause; and no clause in the
sentence ∆ is subsumed by another.
IP: dual of PI, subset of DNF, each term entailing
∆ subsumes some existing term; and no term in the
sentence ∆ is subsumed by another.

Variations of NNF

CO: check consistency in polytime, because:

SAT(A ∨B) = SAT(A) ∨ SAT(B)

SAT(A ∧B) = SAT(A) ∧ SAT(B) // DNNF only

SAT(X) = true

SAT(¬X) = true

SAT(true) = true

SAT(false) = false

CE: clausal entailment, check ∆ |= α (α = `1 ∨
`2 . . . `n) by checking the consistency of:

∆ ∧ ¬`1 ∧ ¬`2 ∧ · · · ∧ ¬`n

constructing a new NNF of it by making NNF of ∆
and the NNF of ¬α direct child of root-node and.
When a variable P appear in both α and ∆, the new
NNF is not DNNF. We fix this by conditioning ∆’s
NNF on P or ¬P , depending on either P or ¬P ap-
pears in α. (∆→ (¬P ∧∆|¬P) ∨ (P ∧∆|P)) If P in
α, then ¬P in ¬α, we do ∆|¬P .
Interestingly, this transformation might turn a non-
DNNF NNF (troubled by A) into DNNF.
CD: conditioning, ∆|A is to replace all A in NNF
with true and ¬A with false. For ∆|¬A, vice versa.
ME: model enumeration, CO + CD → ME, we keep
checking ∆|X, ∆|¬X, etc.

DNNF

Recall: ∆ = A⇒ B,B ⇒ C,C ⇒ D, existential qua-
lifying B,C, is the same with forgetting B,C, is in
other words projecting on A,D.
In DNNF, we existential qualifying {Xi}i∈S (S is a
selected set) by:

• replacing all occurrence of Xi (both positive and
negative, both Xi and ¬Xi) in the DNNF with
true (Note: result is still DNNF);

• check if the resulting circuit is consistent.

This can be done to DNNF, because:{
∃X.(α ∨ β) = (∃x.α) ∨ (∃x.α)

∃X.(α ∧ β) = (∃x.α) ∧ (∃x.α) // DNNF only

In DNNF, ∃X.(α ∧ β) is α ∧ (∃X.β) or (∃X.α) ∧ β.

DNNF: Projection / Existential Qualification

8

Cardinality: in our case, by default, defined as the
number of false in an assignment (in a world, how
many variables’ truth value are false). We seek for
its minimum. a

minCard(X) = 0

minCard(¬X) = 1

minCard(true) = 0

minCard(false) =∞
minCard(α ∨ β) = min

(
minCard(α),minCard(β)

)
minCard(α ∧ β) = minCard(α) + minCard(β)

Again, the last rule holds only in DNNF.
Filling the values into DNNF circuit, we can easily
compute the minimum cardinality.

• minimizing cardinality requires smoothness;

• it can help us optimizing the circuit by “killing”
the child of or-nodes with higher cardinality,
and further remove dangling nodes.

aCould easily be other definitions, such as defined as the
number of true values, and seek for its maximum.

Minimum Cardinality

CT: model counting. MC(α) = |Mods(α)|
(decomposable) MC(α ∧ β) = MC(α)×MC(β)
(deterministic) MC(α ∨ β) = MC(α) + MC(β)
counting graph: replacing ∨ with + and ∧ with ∗
in a d-DNNF. Leaves: MC(X) = 1, MC(¬X) = 1,
MC(true) = 1, MC(false) = 0.
weighted model counting (WMC): can be com-
puted similarly, replacing 0/1 with weights.
Note: smoothness is important, otherwise there can
be wrong answers. Guarantee smoothness by adding
trivial units to a sub-circuit (e.g. α ∧ (A ∨ ¬A)).
Marginal Count: counting models on some conditi-
ons (e.g. counting ∆|{A,¬B}) CD+CT.
It is not hard to compute, but the marginal counting
is bridging CT to some structure that we can compute
partial-derivative upon (input: the conditions / as-
signment of variables), similar to Neural Networks.
FO: forgetting / projection / existential qualification.
Note: a problem occur — the resulting graph might
no longer be deterministic, thus d-DNNF is not con-
sidered successful on polytime FO.

d-DNNF

The counting graph we used to do CT on d-DNNF
is a typical example of Arithmetic Circuits (ACs).
Other operations could be in ACs, such as by repla-
cing “+” by “max” in the counting graph, running it
results in the most-likely instantiation. (MPE)
If a Bayesian Net is decomposable, deterministic and
smooth, then it could be turned into an Arithmetic
Circuits.

Arithmetic Circuits (ACs)

Succinctness: not expensive; Tractability: easy to use.
Along the line: OBDD → FBDD → d-DNNF →
DNNF, succinctness goes up (higher and higher space
efficiency), but tractable operations shrunk.

Succinctness v.s. Tractability

Top-down approaches:

• Based on exhaustive search;

Bottom-up approaches:

• Based on transformations.

Knowledge-Base Compilation

Top-down compilation of a circuit can be done by ke-
eping the trace of an exhaustive DPLL.
The trace is automatically a circuit equivalent to the
original CNF ∆.
It is a decision tree, where:

• each node has its high and low children;

• leaves are SAT or UNSAT results.

We need to deal with the redundancy of that circuit.

1. Do not record redundant portion of trace (e.g.
too many SAT and UNSAT — keep only one
SAT and one UNSAT would be enough);

2. Avoid equivalent subproblems (merge the nodes
of the same variable with exactly the same out-
degrees, from bottom to top, iteratively).

In practice, formula-caching is essential to reduce the
amount of work; trade-off: it requires a lot of space.
A limitation of exhaustive DPLL: some conflicts
can’t be found in advance.

Top-Down Compilation via Exhaustive DPLL

In an OBDD there are two special nodes: 0 and 1,
always written in a square. Other nodes correspond
to a variable (say, xi) each, having two out-edges:
high-edge (solid, decide xi = 1, link to high-child),
low-edge (dashed, decide xi = 0 link to low-child).

 ∆=(x1∧x2)∨¬x3
f=x1x2+(1-x3)

x1

x2

x3

0 1

An example of a DNF

We express KB ∆ as function f by turning all ∧ into
multiply and ∨ into plus, ¬ becomes flipping between
0 and 1. None-zero values are all 1. Another exam-
ple says we want to express the knowledge base where
there are odd-number positive values:

f=(x1+x2+x3+x4)%2

x1

x2

x3

0 1

Odd-parity
function

x2

x3

x4 x4

Reduction rules of OBDD:

x

y

z1 z2

y

z1 z2

deduction rule

x

A B

x

A B

x

A B A B

merge rule

An OBDD that can not apply these rules is a reduced
OBDD. Reduced OBDDs are canonical. i.e. Gi-
ven a fixed variable order, ∆ has only one reduced
OBDD.

OBDD (Ordered Binary Decision Diagrams)

9

Considering the function f of a KB ∆, we have a
fixed variable order of the n variables v1, v2, . . . , vn;
after determining the first m variables, we have up
to 2m different cases of the remaining function (given
the instantiation).
The number of distinct subfunction (range from
1 to 2m) involving vm+1 determines the number of
nodes we need for variable vm+1. Smaller is better.
An example: f = x1x2 + x3x4 + x5x6, examining
two different variable orders: x1, x2, x3, x4, x5, x6, or
x1, x3, x5, x2, x4, x6. Check the subfunction after the
first three variables are fixed.
The first order has 3 distinct subfunction, only 1 de-
pend on x4, thus next layer has 1 node only.

x1 x2 x3 subfunction
0 0 0 x5x6

0 0 1 x4 + x5x6

0 1 0 x5x6

0 1 1 x4 + x5x6

1 0 0 x5x6

1 0 1 x4 + x5x6

1 1 0 1
1 1 1 1

The second order has 8 distinct subfunction, 4 depend
on x2, thus next layer has 4 nodes.

x1 x3 x5 subfunction
0 0 0 0
0 0 1 x6

0 1 0 x4

0 1 1 x4 + x6

1 0 0 x2

1 0 1 x2 + x6

1 1 0 x2 + x4

1 1 1 x2 + x4 + x6

Subfunction is a reliable measurement of the OBDD
graph size, and is useful to determine which variable
order is better.

OBDD: Subfunction and Graph Size

¬C: negation. Negation on OBDD and on all BDD
is simple. Just swapping the nodes 0 and 1 — turning
0 into 1 and 1 into 0, done. O(1) time complexity.

CD: conditioning. O(1) time complexity. ∆|X
requires re-directing all parent edges of X be directed
to its high-child node, and then remove X; similarly
∆|¬X re-directs all parent edges of X-nodes to its
low-child node, and then remove itself.

 ∆

x1

x2

x3

0 1

x1

x2

0 1

x1

x2

0 1

 ∆|x3 ∆|¬x3

x1

1 1

reduced OBDD

∧C: conjunction.

• Conjoining BDD is super easy (O(1)): link the
root of ∆2 to where was node-1 in ∆1, and then
we are done.

• Conjoining OBDD, since we have to keep the or-
der, will be quadratic. Assuming OBDD f and
g have the same variable order, and their size
(i.e. #nodes) are n and m respectively, time
complexity of generating f ∧ g will be O(nm).
This theoretical optimal is achieved in practice,
by proper caching.

x

f

f1 f0

x

g

g1 g0

f∧g

x

f1∧g1 f0∧g0

case 1

x

f1 f0

y

g1 g0

x

f1∧g f0∧g

case 2

assuming x < y, thus x not in g

OBDD: Transformations

10

