Abstract—This is the first project of UCLA CS 269: Optimization Methods for Deep Learning, 2019 Spring quarter. The requirements are listed on course website. Done individually by Zhiping Xiao (Patricia). The project involves: (1) setting up PyTorch environment; (2) build a simple CNN model; (3) run it. It is experiment-oriented, and thus in the following parts I'm going to discuss the details of the experiments.

Index Terms—PyTorch, Stochastic Gradient Descent, CNN

I. INTRODUCTION

As the very first project of CS269, this project is done individually, served as a warm-up project getting us familiar with the use of PyTorch1, a rising star among all open-sourced deep learning platforms.

In this report I’m going to discuss:

- installation process of PyTorch;
- discussion on PyTorch usage and difficulties;
- results in terms of the running time and accuracy.

My code is not released to the public. In case that the code is needed, please contact me at patriciaxiao@g.ucla.edu.

II. INSTALLATION

PyTorch installation is slightly more troublesome than TensorFlow or Keras (who are maturer at the current stage), but it is tolerable in general. Guidelines on installation are available at https://pytorch.org/get-started/locally/

My operating system Mac OS 10.13.3. It is said that in order to install PyTorch with Python 3.6 or higher, we can’t use the default installation. Anaconda or Homebrew should help.

Since Python2 which I am currently using will be deprecated within a few years, I installed Anaconda2, who perfectly helped me handle Python version, and by default I am using Python 3.7.1 right now.

There’s no specific difficulty in installation.

III. PYTORCH

Generally speaking, PyTorch is pretty understandable. I found the following links useful:

- official documentation on torch.nn at https://pytorch.org/docs/stable/torch.html with the detailed definitions of activation functions, convolution layers, and pooling layers, etc;
- an example of CNN provided by official documentation at https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html;
- the optimization options documentation is available at https://pytorch.org/docs/stable/optim.html

1https://pytorch.org/
2https://www.anaconda.com/distribution/#macos

IV. RESULTS AND SUMMARY

First of all, I specify some hyper-parameters as indicated in Table I3 I didn’t tune them, and for all other hyper-parameters, I used the default settings, as required.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>learning rate</th>
<th># epochs</th>
<th>batch size</th>
<th>momentum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>0.01</td>
<td>6</td>
<td>64</td>
<td>0 (default)</td>
</tr>
</tbody>
</table>

TABLE I
MY PARAMETERS

As for the datasets, I used MNIST and CIFAR10, according to the requirements.

Although it is clearly stated in the project assignment that we don’t need to tryout different settings, I am kind of curious about what impact would normalization bring to the performance, so personally I tried with and without normalization on both datasets.

The accuracy of prediction on test dataset, after 6 epochs, is as shown in Table I4. It shows that the naive CNN approach performs much better on MNIST than on CIFAR10, and that with normalization, the accuracy is significantly increased.

However, as is shown in Figure I5 normalization of the data points slows down the training process a little bit. But generally speaking, considering the benefit, this delay could be ignored.

3 Here I should specifically thank Haoran, for giving me this hint.

4Also, as is shown in Figure I5 normalization of the data points slows down the training process a little bit. But generally speaking, considering the benefit, this delay could be ignored.

5https://pytorch.org/docs/stable/_modules/torch/optim/sgd.html

6https://pytorch.org/docs/stable/_modules/torch/nn.html

7https://pytorch.org/docs/stable/_modules/torch/optim/padding.html

8https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html

9https://pytorch.org/docs/stable/nn.html, with the detailed definitions of activation functions, convolution layers, and pooling layers, etc.

10https://pytorch.org/docs/stable/_modules/torch/nn.html

11https://pytorch.org/docs/stable/optim.html

12https://pytorch.org/docs/stable/_modules/torch/nn/nn.html

13https://pytorch.org/docs/stable/_modules/torch/optim/padding.html
Comparing the model’s performance on the two datasets, Figure 3 shows how well it converges, and Figure 2 shows its performance measured by accuracy of prediction on test set. It shows that the dataset’s features have great impact on the outcome of the model.

Other results of loss and accuracy are shown in the figures listed.
ACKNOWLEDGMENT

Lots of thanks to Haoran Wang, who also enrolled in this course, for giving me hints on using PyTorch and convinced me that PyTorch is elegant.