
UCLA CS130 Software Engineering Fall21 Review Note: Midterm
By Patricia Xiao

Static / Structure Modeling: fixed, code-level

• Class Diagrams

• etc. (e.g. Component Diagrams)

Dynamic / Behavioral Modeling: capturing execution
of the system

• Use Case Diagrams

• Sequence Diagrams

• State Chart Diagrams

• etc. (e.g. Activity Diagrams)

UML Diagrams

Models: high-level class relations
Components:

• Class (rectangle)

– Upper section: name of the class

– Middle section: attributes (type, visibility)

– Bottom section: methods (type, visibility)

• Relations (links between classes): Dependency,
Association, Aggregation, Composition, Gene-
ralization, Realization

Class Diagrams

Public (+) Private (−) Protected (#)
Package (∼) Derived (/) Static (underlined)

Class Diagram: Visibility Symbols

Multiplicity (Cardinality)
Of a class: A number in the upper right corner of the
component; the number of objects at runtime; usually
omitted and by default > 1.
Of a relation: Placed near the ends of an edge, indi-
cating the number of instances of one class linked to
an instance of the other class on the other side of the
edge.

Class Diagram: Multiplicity Definition

n exactly n m..n at least m, at most n

∗ many 1..∗ at least one, could be more

0..1 zero or one 0..0 must be empty

Class Diagram: Multiplicity Symbols

From weak to strong, from general to specific:

• Dependency (uses) — A uses B (dashed line
pointing from A to B)

• Association (has-a) — A has a field of B object
(solid line pointing from A to B)

• Aggregation (owns) — satisfies iff

– A has a field that is a list of B objects

(solid line pointing to B with an unfilled dia-
mond at the A end / association end)

• Composition (part-of) — satisfies iff

– A has a field that is a list of B objects

– B object can’t live outside A

(solid line pointing to B with an filled diamond
at the A end / association end)

• Generalization (is-a) — B extends A / sub-
classing (close-headed solid line pointing to A)

• Realization — B implements A / sub-typing
(close-headed dashed line pointing to A)

Class Diagram: Relations

Specify: Actors, System (scenario), Goals
Models: high-level interactions
Components:

• Actors (stick figures) – role (one user can have
multiple roles)

• Use Cases (ovals) – scenario

• Relations (edges): association, inclusion, exten-
sion, generalization

Actors are not directly interacting with each other.

Use Case Diagram

Association

• actor – case (undirected solid line)

• case – case (dashed line with arrow)

– inclusion (e.g. ride ≪ include ≫ push but-
ton, arrow pointing to push button)

– extension – exceptional variation (e.g. de-
rail is an ≪ exception ≫ of ride, arrow
pointing to ride)

Generalization/Specialization (close-headed arrow
pointing to more general one); e.g. Synchronize Data
generalize Synchronize Data Wirelessly

Use Case Diagram: Relations

Models: communication between elements
Belongs to Interaction Diagrams (include: Se-
quence diagrams, Communication diagrams, Interac-
tion overview diagrams, Timing diagrams)
Components:

• Class Roles / Participants (top-row) / Actors

– instance name : Class Type

– not necessarily an object in the system, e.g.
can be human actors.

• Activation or Execution Occurrence (dispatch:
solid black dot, destroy ≪ destroy ≫)

• Messages (horizontal arrows)

– Method Invocation (solid line with arrow)

– e.g. a:A point to b:B with text exe-
cute(0), then it means a (of class A) calls
b.execute(0), b is of class B.

– Return value via dashed line pointing back

• Lifelines (dashed vertical lines)

– Invocation Lifetime: vertical rectangles

– can be nested across actors, and threads
within a single actor

• Loop (while / for, [condition]) / Alt (if-then-
else, [if-condition] – horizontal dashed line –
[else]) / Opt (if-then, [if-condition]) / Par / Re-
gion; All shown as wrapped in a rectangle.

Sequence Diagram

1



When a:A create an instance of b:B at run time,
we draw the rectangle with text content b:B at the
height where a:A invokes it.
Then it starts to live. When a:A create an instance
of B named b, we depict it by letting a:A pointing to
a newly-created b:B column via dashed line and text:
create(params); where params are the parameters ne-
eded for instantiate an object of class B.
Invocation Lifetime is not Lifetime.
Lifetime is represented by the dashed line, invocation
lifetime is represented by the thin vertical rectangle
along the dashed line.

Seq Diagram: Invocation Lifetime v.s. Lifetime

If name of an object of class A is unknown, it is okay
to leave it blank, e.g. : A.

Seq Diagram: Class Name and Type

Models: high-level state behaviors of objects
Components:

• Initial State (black filled circle) – start

• Transition (solid arrow)

– trigger [guard] / effect

– trigger if guard, make effect

– e.g. Somewhere is a Door’s State Machine:
use key [door locked] / [door → unlock]

• State (rounded rectangle) – of object

• Fork (rounded solid rectangular bar) – 1 inco-
ming arrow, n outgoing arrows; represent split-
ting into concurrent states.

• Join (rounded solid rectangular bar) – n inco-
ming arrows from the joining states, m outgoing
arrow towards the common goal states; multiple
states concurrently converge into one on the oc-
currence of an event or events.

• Self transition (solid line w. arrow pointing
back to itself) – the state of the object does
not change upon the occurrence of an event

• Composite State (rounded rectangle) – wrap-
ping around a lot of other states

• Final state (black filled circle within a circle) –
the final state in a state machine diagram

State Chart Diagram

format Class UC Seq State Code

Class N/A ✗ ✗ ✗ ✓

UC ✗ N/A ✗ ✗ ✗

Seq ✗ ✗ N/A ✗ ✓

State ✗ ● ✗ N/A ●

Code ✓ ● ✓ ✓ N/A

UC represents Use Case Diagram, Seq represents Se-
quence Diagram. Code refers to Java-style pseudo
code. The meaning of the marks are listed below:

✓ sufficient (for the row) to transform to (the
column)

● transformation (from row to column) is do-
able but needs some extra clarification

✗ very unlikely to directly transform (the
row) to (the column)

UML Diagram: Translations

• Information Hiding (IH)

• Low Coupling (LC): Reduce the dependencies
between modules (classes, packages, etc)

• High Cohesion (HC): A module contain functi-
ons that logically belong together.

• Separation of Concerns (SoC): a single concern
is easily separated from the rest of concerns.

• etc. (e.g. Law of Demeter (LoD), Abstraction,
Liskov Substitution Principle, ...)

There are many different principles. In this class we
focus on information hiding.

Software Design Principles

• Decomposition of a software system into multi-
ple independent modules.

• Easy to interpret & maintain & code-reuse, etc.

Modularization

• A principle for breaking program intomodules.

• API should (1) only contain design decisions un-
likely to change (2) do not reveal any volatile
information.

• Makes anticipated changes affect modules in an
isolated and independent way.

Parnas’ Information Hiding (IH) Principle

Information hiding principle is:

• an analysis of how changes will affect existing
code

• and assessment of changeability.

Information Hiding (IH) Principle: Conclusion

Identify the Modules’: name, role, input, output.
Changeability Assessment: for different scenarios,
which module / which module’s API(s) need to be
changed.
Code Critique:

1. What information is hidden (by XXX Module)?

2. Changes you anticipate? (any new features you
may want for the system)

3. Readability and comprehensibility? (e.g. con-
sistent arguments, self-explanatory coding, etc.)

4. Capability to support independent work assign-
ment? (low coupling)

Modularization: Practice

Functional decomposition (Flowchart approach)

• Each module corresponds to each step in a flow
chart.

Information Hiding (IH)

• Each module corresponds to a design decision
that are likely to change and that must be hid-
den from other modules.

• Interfaces definitions were chosen to reveal as
little as possible.

Modularization: Different Ways to Achieve

2



Creational Design Pattern

• Factory Method: defines an interface for cre-
ating an object but lets subclasses decide which
class to instantiate; lets a class defer instantia-
tion to subclasses.

• Abstract Factory: provides an interface for
creating families of related or dependent objects
without specifying their concrete classes.

• Singleton: ensures a single object creation, and
it must be globally accessible.

• etc. (e.g. Prototype)

Structural Design Pattern

• Adaptor: adapts legacy code to a target inter-
face.

• Façade: simplifies complex interfaces of multi-
ple subsystems.

• Flyweight: share common resources by sepa-
rating usage contexts from used objects.

• etc. (e.g. Composite)

Behavioral Design Pattern

• Strategy: defines a family of algorithms, en-
capsulates each one, and makes them interchan-
geable at runtime; lets the algorithm vary inde-
pendently from clients that use it.

• Observer: defines one-to-many dependency
between objects, when the subject changes
state, all of its observers are notified and up-
dated.

• Mediator: defines an object that encapsula-
tes how a set of objects interact, encapsulates
many to many dependencies between objects,
centralizing control logic, reduces the variety of
messages.

• Command: decouples a receiver object’s acti-
ons from invokers.

• Template Method: set a common workflow
where sub steps may vary at subclass.

• State: encode complex state transitions.

• etc. (e.g. Interpreter)

Design Patterns: Categories

• Book: Head First Design Patterns

• SourceMaking:
https://sourcemaking.com/design patterns/

• ReactiveProgramming:
https://reactiveprogramming.io/blog/en/design-
patterns/factory-method

• Refactoring.Guru:
https://refactoring.guru/design-patterns

Design Patterns: References

• Factory / Creator: include a factory method

• Concrete Factories / Concrete Creators: imple-
ment factory method

• Product

• Concrete Products

Factory Method Pattern

Factory Method: Class Diagram Draft

• Not an accurate Sequence Diagram.

Factory Method: Sequence Diagram Draft

• Abstract Factory / Abstract Creator: include
makeProductOne, makeProductTwo, etc.

• Concrete Factories / Concrete Creators: imple-
ment factory method

• ProductOne, ProductTwo, etc.

• Concrete ProductOneA, Concrete ProductO-
neB; Concrete ProductTwoA, etc.

When adding new products to the abstract factory,
the interface has to be changed.

Abstract Factory Pattern

3

https://sourcemaking.com/design_patterns/
https://reactiveprogramming.io/blog/en/design-patterns/factory-method
https://reactiveprogramming.io/blog/en/design-patterns/factory-method
https://refactoring.guru/design-patterns


Abstract Factory: Class Diagram Draft

• Not an accurate Sequence Diagram.

Abstract Factory: Sequence Diagram Draft

• The class of the single instance is responsible
for access and “initialization on first use”. The
single instance is a private static attribute, ac-
cessed via a public static method.

Singleton Pattern

Singleton: Class Diagram Draft

• Not an accurate Sequence Diagram.

Singleton: Sequence Diagram Draft

• Adapter: represents the implementation of the
Target, hide details of Adaptee; e.g. Rectangle

• Adaptee: represents the class with the incom-
patible interface; e.g. LegacyRectangle

• Target: e.g. Shape

Adapter Pattern

Adapter: Class Diagram Draft

• Not an accurate Sequence Diagram.

Adapter: Sequence Diagram Draft

Adapter: a.k.a. Wrapper

4



• The Façade defines a unified, higher level inter-
face to a subsystem that makes it easier to use.

• IFacade: high-level interface, hiding the comple-
xity of interacting with multiple systems.

• DefaultFacadeImpl: implementation of IFacade,
in charge of communicating with all the subsys-
tems.

• Subsystems: represents all the modules or
subsystems with interfaces for communication.

• As an example, the customer-service system
could be incredibly complex without Façade.

Façade Pattern Façade: Class Diagram Draft

• Not an accurate Sequence Diagram.

Façade: Sequence Diagram Draft

Flyweight Pattern

• FlyweightFactory: factory class for building the
Flyweight objects.

• Flyweight: the objects we want to reuse in order
to create lighter objects.

Flyweight Pattern

Flyweight: Class Diagram Draft

• Not an accurate Sequence Diagram.

Flyweight: Sequence Diagram Draft

5



• Strategy Interface: define the common interface
of all strategies that must implement.

• Concrete Strategy: inherit from Strategy Inter-
face, they implement concrete strategies.

Strategy Pattern

Strategy: Class Diagram Draft

• Not an accurate Sequence Diagram.

Strategy: Sequence Diagram Draft

• Subject: interface of all observable subject clas-
ses, in it, methods that (1) keep track of obser-
vers listening to itself (2) notify the observers
when change happens, are defined.

• Concrete Subject: the observable class; it imple-
ments all methods defined in Subject interface.

• Observer: interface observing the changes on
Subject.

• Concrete Observer: Concrete class watching the
changes on Subject, inherits from Observer, im-
plements its methods.

It defines a one-to-many dependency between objects
so that when one object (a concrete observable sub-
ject) changes state, all of its dependents (correspon-
ding concrete observers) are notified and updated au-
tomatically.

Observer Pattern

Observer: Class Diagram Draft

• Not an accurate Sequence Diagram.

Observer: Sequence Diagram Draft

• Mediator: defines the interface for communica-
tion between colleague objects.

• Concrete Mediator: implements the media-
tor interface and coordinates communication
between colleague objects.

• Colleague (Peer): defines the interface for com-
munication with other colleagues

• Concrete Colleague: implements the colleague
interface and communicates with other collea-
gues through its mediator only; e.g. Producer,
Consumer in the figure.

Centralize many-to-many complex communications
and control between related objects (colleagues).

Mediator Pattern

6



Mediator: Class Diagram Draft

• Not an accurate Sequence Diagram.

Mediator: Sequence Diagram Draft

• Command: interface describing the structure of
the commands, defining the generic execution
method for all of them (e.g. execute, undo).

• Concrete Command: inheriting from Com-
mand, each of these classes represents a com-
mand that can be executed independently.

• Receiver: informed by the Concrete Command
and take actions.

• Invoker: the action triggering one of the com-
mands, hold a command and at some point exe-
cute it.

• (optional) Command Manager: manage all the
commands available at runtime, from here we
create / request commands.

The Command pattern allows requests to be encap-
sulated as objects, thereby allowing clients to be pa-
rameterized with different requests.

Command Pattern

Command: Class Diagram Draft

• Not an accurate Sequence Diagram.

Command: Sequence Diagram Draft

• Abstract Template: an abstract class including
a series of operations which define the necessary
steps for carrying out the execution of the algo-
rithm; e.g. Framework Class in the figure.

• Implementation: the class inherits from Abs-
tract Template and implements its methods to
complete the algorithm; e.g. Application Class
One / Two in the figure.

The Template Method Pattern defines the skeleton
of an algorithm in a method, deferring some steps to
subclasses; subclasses may redefine certain steps of an
algorithm without changing its overall structure.

Template Method Pattern

7



Template Method: Class Diagram Draft

• Not an accurate Sequence Diagram.

Template Method: Sequence Diagram Draft

• Context: the component subject to changing
states, it has its current state as one of its pro-
perties; e.g. in a vending machine example, this
would represent the machine.

• State: abstract base class used for generating
different states, usually works better as an abs-
tract class, instead of as an interface, because it
allows us to set default behaviors.

• Concrete State: inherit from State, each one of
these represent a possible state the application
could go through during its execution.

State Pattern

State: Class Diagram Draft

• Not an accurate Sequence Diagram.

State: Sequence Diagram Draft

8


