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Abstract
Knowledge graph (KG) embedding embeds compo-
nents of a KG into low-dimensional continuous vec-
tor spaces, while preserving the inherent structure of
the KG. Existing embedding methods (e.g. TransE,
DistMult) have two main drawbacks: (1) They
fail to leverage the underlying domain knowledge,
which can be captured by the symbolic rule-based
approach with first-order logic; and (2) they are
mostly designed for deterministic KGs and thereby
fail to model the inherent uncertainty present in
real-world KGs. In this paper, we propose the un-
certain probabilistic logic neural network (PKGE)
which captures domain knowledge and uncertainty
information, preserves entity-relation semantic in-
formation, preserves graph structure, and can be
trained effectively. To achieve this, PKGE employs
the Markov Logic Network (MLN) to learn first-
order logic and encodes uncertainty by leaning con-
fidence scores using the novel Uncertain KG Embed-
ding (UKGE) model. We conduct optimization us-
ing the variational EM algorithm.

1 Introduction
Knowledge Graph (KG) is a multi-relational graph,
where entities (nodes) are interconnected with each
other through various types of relationships. Such
relational data can be characterized as a triple of
the form (h:head entity, r:relation, t:tail entity), also
called a fact, indicating that two entities are con-
nected by a specific relation. A large number of
KGs [1, 2] have been successfully applied to many

real-world applications [3], from semantic pars-
ing [4],named entity disambiguation [5, 6], to infor-
mation extraction [7]. As KG’s coverage is limited,
one fundamental problem is how to reason missing
links based on existing triplets [8].

Existing KG reasoning models such as TransE [9],
DistMult [10], and ComplEx [11] represent entities
and relations in a continuous vector space, and de-
fines a scoring function for each fact to measure its
plausibility, based on these embeddings. However,
these approaches have two main drawbacks.

Firstly, the underlying symbolic nature of KGs
can serve as domain knowledge to enhance infer-
ence quality, which is not considered in the above
models. For example, given a logic rule that
∀x, y, Teacher(x, y) =⇒ Student(y, x), and a fact
that A is the teacher of B, we can derive that B is a
student of A. A principled way to utilize such logic
rules is Markov Logic Network (MLN) [12], which
combines first-order logic and probabilistic graphi-
cal models. However, inference solely using logic
rules is insufficient, as many missing triples do not
belong to any rules. A better approach is to combine
MLN with the above KG embedding models.

Secondly, in many real-world scenarios, KGs con-
tain knowledge uncertainty [13, 14]. Each fact is as-
sociated with a confidence score that represents the
likelihood of the fact to be true. While how to embed
deterministic KGs has been widely studied, embed-
ding uncertain KGs is challenging.

Therefore, we propose PKGE, a novel KG em-
bedding model which utilizes logical rules learned
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from uncertain KGs and can be used to reason confi-
dent scores. We test PKGE on downstream inference
tasks, against competitive existing baselines.

2 Related Work
Rule-based Methods. Prior methods have consid-
ered using MLN based approaches for KG reason-
ing [8]. MLNs can effectively learn weights of logical
rules through a probabilistic graphical model and
thereby handle knowledge uncertainty while lever-
aging domain knowledge. MLN models the joint
distribution of all triples in UKGs as:

pw(vO,vH) =
1

Z
exp(

∑
l∈L

wl
∑
g∈Gl

p(g is true)) (1)

where L = li
L
i=1 is a set of logic rules, wl is the

weight of logic rule l, p(g is true) is the probability
a grounding g is true in UKG. vO and vH are the
confidence scores for observed triples and hidden
triples respectively. Eqn (1) can be trained by maxi-
mizing ground truth confidence scores for observed
triplets, i.e. logpw(vO). Since the optimization re-
quires integration over vH , recent studies usually
solve it using the variation EM algorithm. However
the inference procedure of MLNs is inefficient and
there exists missing triplets which logical rules can-
not model.

Knowledge Graph Embedding. KGE models [9]
learn important entity and relational embeddings
that preserve node and edge semantic information
in KGs. They measure the plausibility of a fact as
the distance or semantic meaning between two en-
tities in the vector space, by translating the relation
as: hr + r ≈ tr, where hr, tr are the entity embed-
dings projected in a relation-specific space. These
models can be scalably trained using gradient de-
scent methods, however, they are not able to lever-
age the domain knowledge inherently present in the
logical rules.

As such, we propose PKGE that combines bother
methods to infer missing triplets utilizing both se-
mantic and domain knowledge incorporated in the
learned embeddings and logical rules, and also can
be trained efficiently. To the best of our knowledge,
we are the first to propose this approach. While
several approaches that have sought to marry MLN
and KG embedding based models to infer missing

triplet information, such approaches do not utilize
the uncertainty of the observed triplets to enhance
learned embeddings and logical rule weights [8].
Additionally, other approaches have proposed to
improve probabilistic logic reasoning by utilizing
MLNs and Graph Neural Networks (GNNs) as op-
posed to KG embedding (KGE) models to construct
the inference network. However, the reported find-
ings of such methods are irreproducible, and appear
to have lower performance compared to pLogicNet
when examining reproduced results. As such, we
omit using such approaches in our model and as a
baseline for comparison.

3 PKGE Model
In this section, we will describe our model, PKGE,
which is used for reasoning in uncertain knowledge
graphs. PKGE utilizes the state-of-the-art logical
rule based method MLN and embedding method of
UKGE for effective learning and inference of KGs.
Variational EM algorithm is applied to optimize pa-
rameter learning of the MLN and KGE model. As
such, PKGE exploits domain knowledge, KG un-
certainty, and effective training for the inference of
missing triplets.

3.1 Problem Formulation

Consider a KG denoted as (E,R,O), where E
is the set of entities, R is the set of relations,
and O is the set of observed triplets (h, r, t).
Each triplet (h, r, t) has an associated continu-
ous indicator variable v(h,r,t), also referred to as
confidence score, which denotes how certain we
are of a triple existing. We aim to leverage
vO = {v(h,r,t) = ConfidenceScore}(h,r,t)∈O, to pre-
dict vH = {v(h,r,t) =?}(h,r,t)∈H .

3.2 PKGE: Variational EM

Our approach uses a uncertain Markov Logic Net-
work to model the joint distribution of both hidden
and observed triplets as in Eqn (1). We use PSL to
compute p(g is true) in Eqn (1) to take into account
uncertainty in KGs: For a rule γ : γbody → γhead, we
can rewrite it as ¬γbody ∨ γhead. And its value can be
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computed as:
pγbody→γhead = min{1, 1− y(γbody) + y(γhead)}

y(γ) =



max{0, v(h1,r1,t1) + v(h2,r2,t2) − 1}
if γ = (h1, r1, t1) ∧ (h2, r2, t2)

min{1, v(h1,r1,t1) + v(h2,r2,t2)}
if γ = (h1, r1, t1) ∨ (h2, r2, t2)

1− v(h,r,t)
if γ = ¬(h, r, t)

(2)

Directly maximizing logp(VO) is computational-
expensive, since it requires integration over vH .
Therefore we instead optimize the evidence lower
bound (ELBO) of the log-likelihood function, which
is given in Eqn (3).

log pw(VO) ≥ LELBO(qθ, pw) :=

Eqθ(VH )[log pw(VO, VH)− log qθ(VH)]
(3)

Such a lower bound can be efficiently trained
with variational EM algorithm, which consist of E-
step and M-step. In E-step, we fix pw and update
qθ to minimize the KL divergence between qθ(VH)
and pw(VH |VO), during which the knowledge pre-
served by the logic rules can be effectively distilled
into the learned embeddings. In M-step, we fix
the learned embedding model qθ and update pw
to maximize the log likelihood of all triples, i.e.
Eqθ(VH)[log pw(VO, VH)].In this way, the knowledge
graph embedding model provides extra supervision
for learning weights. We illustrate the details of each
step in the following sections.

3.3 E-step Inference

In E-step, we aim to infer the posterior distribution
of hidden variables, e.g. pw(VH |VO). We adopt the
mean-field method to approximate the true poste-
rior distribution pw(VH |VO) with a variational distri-
bution qθ(VH). The key idea of mean-field method
is to assume independence over all hidden vari-
ables, so the joint probability can be factorized as
product of each variable distribution, i.e. qθ(VH) =∏

(h,r,t)∈H qθ(v(h,r,t)). We assume the Beta distri-
bution for each hidden variable and parametrize it
with a knowledge graph embedding model. To sum
up, the variational distribution qθ(VH) is given by
Eqn (4), where f(xh, xr, xt) is a scoring function of

KGE models defined on triplets.
qθ(VH) =

∏
(h,r,t)∈H

qθ(v(h,r,t))

=
∏

(h,r,t)∈H
Beta(v(h,r,t)|f(xh, xr, xt))

(4)

The reason we choose the Beta distribution is
that, its domain is within range [0, 1], which is the
same as confidence scores. Specifically, the proba-
bility density function is given by Beta(x|α, β) =
Γ(α+β)

Γ(α)Γ(β)x
α−1(1 − x)β−1. Given a fixed Beta dis-

tribution, the inferred confidence score should be
the mode, which maximizes the probability density
function. As the confidence score for each triple is
unique, we need to guarantee the Beta distribution
to have a unique mode. Therefore, both α and β
should be greater or equal to 1. Meanwhile they
should not all equal to 1, otherwise the distribution
would degenerate to uniform distribution. To satisfy
all the requirements, we set α = f(xh, xr, xt)+1 and
α+β = 3, where f(xh, xr, xt) is the score function of
KGE models.

The optimal variational distribution qθ(VH) for
approximation should be as close to the the true pos-
terior distribution pw(VH |VO) as possible. By min-
imizing the KL divergence between them, we get
the fixed-point condition for optimal qθ(VH) as in
Eqn (5). Here MB(h, r, t) is the Markov Blanket of
(h, r, t). It contains all the triplets that appear in any
groundings together with (h, r, t).

logqθ(v(h,r,t)) ' Eqθ(vMB(h,r,t))log(pw(v(h,r,t)|vMB(h,r,t)))

' Eqθ(vMB(h,r,t))log(pw(v(h,r,t), vMB(h,r,t)))

(5)

To get the optimal qθ(v(h,r,t)) that follows Eqn (5),
calculation of expectation is required. However,
this requires integration over all possible values
within [0, 1] which is computationally-expensive. To
simplify the condition, we follow stochastic varia-
tional inference and estimate the expectation with
a sample v̂MB(h,r,t) as in Eqn (6). Specifically, we
check each triplet in the Markov Blanket (h′, r′, t′) ∈
MB(h, r, t): if it is observed, we set the value
as ground-truth confidence score, i.e. v̂(h′,r′,t′) =
s; if it is hidden, we sample the value following
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qθ(v(h′,r′,t′)), i.e. v̂(h′,r′,t′) ∼ qθ(v(h′,r′,t′)).
v̂MB(h,r,t) = {v̂(h′,r′,t′)}(h′,r′,t′)∈MB(h,r,t)

v̂(h′,r′,t′)

{
= s(h′,r′,t′) if (h′, r′, t′) is observed
∼ qθ(v(h′,r′,t′)) if (h′, r′, t′) is hidden

(6)

By doing such, Eqn (5) can be approximated as
log(qθ(v(h,r,t))) ' log(pw(v(h,r,t)|v̂MB(h,r,t))), which
can be further simplified as:

qθ(v(h,r,t)) ' pw(v(h,r,t)|v̂MB(h,r,t))

= pw(v(h,r,t), v̂MB(h,r,t))
(7)

The intuition behind behind Eqn (7) is that the op-
timal knowledge graph embedding model should
reach a consensus with the logic rules on the dis-
tribution of each hidden triplets. As such, the do-
main knowledge preserved by logic rules can be ef-
fectively distilled into the learned knowledge graph
embedding.

To find the optimal qθ(v(h,r,t)) as in Eqn (7),
we start by using the current θ to compute
pw(v(h,r,t), v̂MB(h,r,t)), which is similar to the
method in [8]. Then the value is fixed as target, and
we update θ by minimizing the reverse KL diver-
gence between pw(v(h,r,t), v̂MB(h,r,t)) and qθ(v(h,r,t)).
This is equivalent to maximize the following objec-
tive function.
Oθ,U = −

∑
(h,r,t)∈H

Epw(v(h,r,t)|v̂MB(h,r,t))

[log
pw(v(h,r,t)|v̂MB(h,r,t))

qθ(v(h,r,t))
]

∼
∑

(h,r,t)∈H
Epw(v(h,r,t)|v̂MB(h,r,t))

log(qθ(v(h,r,t)))

∼
∑

(h,r,t)∈H
log(qθ(v̂(h,r,t)))

(8)

The third line is that, we further estimate
the expectation in line 2 by drawing a sample
v̂(h,r,t) from pw(v(h,r,t)|v̂MB(h,r,t)), similar as in
Eqn (6). More specifically, we sample v̂(h,r,t) ∼
pw(v(h,r,t)|v̂MB(h,r,t)).

Additionally, we can also use observed triplets in
O as positive samples to help the training of knowl-
edge graph embedding model qθ(v(h,r,t)). Therefore,
we also try to maximize the following supervised
objective function:

Oθ,L =
∑

(h,r,t)∈O
log(qθ(v(h,r,t) = s(h,r,t))) (9)

By adding Eqn (8) and Eqn (9) together, we get our

final objective function for optimizing θ:
Oθ = Oθ,U +Oθ,L (10)

3.4 M-step Learning
In M-step, we aim to learn the parameter w in pw.
Specifically, we will fix qθ and further update logic
weights w by maximizing ELBO as in Eqn (3). How-
ever, directly maximizing the log-likelihood func-
tion is difficult, as we need to compute the partition
function Z in Eqn (1). Therefore, we instead follow
existing studies and maximize the pseudolikelihood
function: where the second equation is derived from
the independence property of the MLN in Eqn (1).
LPL(w) = Eqθ(VH )[

∑
h,r,t

log pw(v(h,r,t)|vO∪H\(h,r,t))]

= Eqθ(VH )[
∑
h,r,t

log pw(v(h,r,t)|vMB(h,r,t))]
(11)

We again estimate the expectation in Eqn (11) by
drawing a sample from qθ(VH): if (h, r, t) is an ob-
served triplet, we set v̂(h,r,t) = s(h,r,t); if it is hid-
den, we set v̂(h,r,t) ∼ qθ(v(h,r,t). Afterwards, we can
optimize parameter w by maximizing the following
objective function:
Ow =

∑
(h,r,t)∈O∪H

log pw(v(h,r,t) = v̂(h,r,t)|v̂MB(h,r,t)) (12)

The intuition behind Eqn (12) is that: for each
observed triplet (h, r, t) ∈ O, we seek to maxi-
mize pw(v(h,r,t = s(h,r,t)|v̂MB(h,r,t)); for each hidden
triplet (h, r, t) ∈ H , we sample a value v̂(h,r,t) from
qθ(v(h,r,t) and use the value as target for updating
the probability pw(vh,t,t = v̂h,t,t|v̂MB(h,r,t)). In this
way, the knowledge graph embedding model qθ ac-
tually adds supervision to facilitate the learning pro-
cess of logic rule weights.
3.5 Optimization and Inference
To optimize our approach, we iteratively perform
E-step and M-step until convergence. As the mu-
tual influence of Markov Logic Network and knowl-
edge graph embedding model is through two pos-
terior disrtibution over each triplet, during training
we only use hidden triplets that can be predicted
by both of them1. Afterwards, both pw and qθ can
be employed to infer the confident score of hid-
den triples. In practice we find that qθ consistently
outperforms pw and qθ can predict hidden triplets

1see appendix for details about hidden triplet generation
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that cannot be inferred from logic rules. Therefore,
we use qθ to predict confidence scores for hidden
triplets. In the Experiment section, we show such
phenomena with the results of incorporating rule-
based pw in prediction as pLogiNet [8], by introduc-
ing λ as hyper-parameter to control the contribution
of MLN rules.

4 Experiments
4.1 Set Up
Dataset. CN15k is a subgraph of the common-
sense KG ConceptNet, containing 15,000 entities and
241,158 uncertain relation facts in English. This
dataset was adapted from the UKGE paper, which
was normalized such that the confidence scores are
between 0.1 and 1.0. We will evaluate using the
same evaluation method as that was used in the
UKGE paper.

Evaluation Tasks. We evaluate on the confidence
score prediction task. The problem definition is
as follows. Each relation fact l has a true confi-
dence score sl associated with it, denoted (l, sl).
We would predict the confidence score of l by an-
swering queries (l, ?sl) in the test set and report the
mean squared error (MSE) and mean absolute error
(MAE).

Baselines. Since our model aims to improve the
uncertainty KG embedding model by combining
MLN rule-based approach [15], we would compare
to two types of baselines, (i) an uncertain graph em-
bedding model URGE [16], and (ii) UKGE [14] and its
simplified variations UKGEn- and UKGEp-.

• Uncertain Graph Embedding Model. URGE
was proposed to embed uncertain graphs.
However, it fails to deal with different types of
relations that are so common and essential in
KG domain. URGE also only produces node
embeddings. We included this result (from
UKGE paper) for completion purpose.

• UKGE and its variations. UKGE is the first un-
certain KG embedding model that is able to cap-
ture both entities and relations information in
KE embedding space. We first compare our
model to two of its simplified versions UKGEn-

and UKGEp-. UKGEn- does not employ negative

sampling and it was trained with observed facts
only. UKGEp- uses MSE loss for unseen facts
without utilizing PSL. UKGErect and UKGElogi

both uses PSL to minimize the distance to satis-
faction of unseen relation facts, but with differ-
ent mapping functions, namely bounded recti-
fier and logistic function, from plausibility score
to confidence score for a give triplet.

4.2 Results
As Table 1 shows, PKGEkge outperforms UKGE in
confidence score prediction for MSE. On CN15k for
MAE, PKGE was slightly worse than UKGE. A plau-
sible explanation is that PKGE tends to produce
higher confidence scores for triples instead of un-
derestimating them, which results in an increase in
the MAE. PKGE’s overestimation of the confidence
scores due to the noise in the CN15k data may have
lead to worsened performance in MAE especially for
CN15k.

PKGEkge uses qθ from the KGE model without us-
ing pw of MLN. PKGEλ corresponds to how much
weight we give it to rules in our prediction of score.
λ = 1 means only logical rules are used. Because
there are triples in the test set that cannot be pre-
dicted using MLN (as we constructed MLN in such
a way that all triples in the premise of a rule must
be observed triples), the result of λ = 1 was based
on the ones that are hypothesized according to our
constraint. It is interesting to see that the model’s
performance is increased by the help of logical rules
in the training; however, during testing the model is
better off without using the logical rules. Such re-
sults reveal that PKGE is capable of distilling infor-
mation from both KG confidence scores and logical
rules into the KG embedding space.

5 Conclusions
In this paper, we introduced PKGE, which success-
fully utilizes logical rules to improve the perfor-
mance of the UKGE model. PKGE is trained using
the variational EM algorithm, and is evaluated on
relation fact confidence score prediction. Our exper-
iment results demonstrate effective performance of
PKGE compared to the baseline models of URGE,
and UKGE and its variant models.
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CN15k
Model MSE MAE
URGE 10.32 22.72
UKGEn- 23.96 30.38
UKGEp- 9.02 20.05
UKGErect 8.61 19.90
UKGElogi 9.86 20.74

PKGEλ = 1 36.33 53.39

PKGEλ = 0.05 6.93 21.18
PKGEkge 6.84 20.93

Table 1: Mean Square Error (MSE) and Mean Absolute Error (MAE) for the CN15k dataset (×10−2).
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Appendix
5.1 Experiment Setup
We split each dataset into three parts: 85% for train-
ing, 7% for validation, and 8% for testing. We use
Adam optimizer for training, for which we set the
exponential decay rates β1 = 0.9 and β2 = 0.99.
Results of baselines and other models were taken
directly from the UKGE paper. The result of our
model was based on the best hyper-parameter of
{lr = 0.001, k = 300} and 5 iterations of variational
EM. The logic rule generation process was the same
according to Chen et el. [14], in which only the logic
rules with hit ratio greater than a threshold is used.

5.2 Future Work
For future work, we plan to investigate three areas
of interest. First, we plan to investigate different
methods for logical rule generation. In our model,
as well as UKGE and pLogicNet, only the unseen re-
lation facts inferred from observed facts are included
in the analysis. Examining on hidden relation facts
inferred from partially but not all observed facts
could be interesting. Second, we plan to evaluate
our model on more KG tasks, specifically on ranking
relation facts in the forms of (h, r, ?t), or relational
learning (h, ?r, t). Third, unlike previous KGE mod-
els, we also plan to investigate using node attributes
in addition to edge features for UKGE model en-
hancement. Also we are going to test our perfor-
mance on more datasets, such as NL27k and PPI5k
from the research work of [14].

5.3 Hidden Triplet Construction
Since KGE model can predict every triplet while
MLN can only predict triplets inferred by logic rules,
we construct hidden triplets that can be predicted by
MLN. Specifically, an unobserved triplet (h, r, t) is
added to H if we can find a grouding [premise] −→
[hypothesis], where the hypothesis is (h, r, t) and
premise only contains triplets in the observed set O.
We construct H with brute-force search as in [8] .
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5.4 Course Relevance
Our project is closely-related to this course, from
both data and modeling aspects:

• The dataset we use is a relational graph dataset
where the relations have confidence scores that
introduce uncertainty.

• From a modeling aspect, we will use a relational
modeling framework that is directly related to
this course:

1. We are going to use a Markov Logic Net-
work, which is related to the logic rules we
have been discussing in the course.

2. Our research project uses KG embedding
models which help to enhance reasoning
on KGs, a topic that we have also be intro-
duced to in this course.

3. In the future, this model could be adapted
to probabilistic programming languages,
such as DeepProbLog, that we’ve learned
in class.

5.5 Feedback
Our research project is closely related to this course
and required a lot of thought and discussion about
our model. We had to really understand all of the re-
lated work surrounding this topic to thoroughly de-
sign our model. Despite this challenge, our project
was well-worth the immense effort that we put in. It
is also exciting that our project was successful as in-
dicated by the experiment results. We hope to work
on the ideas we listed as part of future work, and
aim towards submitting this research as a workshop
or conference paper.

Thank you to the instructor and TAs for a great
quarter!
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