Convex Optimization ScAi Lab Study Group

Zhiping (Patricia) Xiao
University of California, Los Angeles
Winter 2020

Introduction: Convex Optimization

Convexity
Convex Functions' Properties
Definition of Convex Optimization

Convex Optimization
General Strategy
Learning Algorithms
Convergence Analysis

Examples

Textbook:

- Convex Optimization and Intro to Linear Algebra by Prof. Boyd and Prof. Vandenberghe
Course Materials:
- ECE236B, ECE236C offered by Prof. Vandenberghe
- CS260 Lecture 12 offered by Prof. Quanquan Gu

Notes:

- My previous ECE236B notes and ECE236C final report.
- My previous CS260 Cheat Sheet.

Related Papers:

- Accelerated methods for nonconvex optimization
- Lipschitz regularity of deep neural networks: analysis and efficient estimation

Introduction: Convex Optimization

目

- iff: if and only if
- $\mathbb{R}_{+}=\{x \in \mathbb{R} \mid x \geq 0\}$
- $\mathbb{R}_{++}=\{x \in \mathbb{R} \mid x>0\}$
- int K : interior of set K, not its boundary.
- Generalized inequalities (textbook 2.4), based on a proper cone K (convex, closed, solid, pointed - if $x \in K$ and $-x \in K$ then $x=0)$:
- $x \preceq_{K} y \Longleftrightarrow y-x \in K$
- $x \prec_{K} y \Longleftrightarrow y-x \in \operatorname{int} K$
- Positive semidefinite matrix $X \in \mathbb{S}_{+}^{n}, \forall y \in \mathbb{R}^{n}, y^{T} X y \geq 0$ $\Longleftrightarrow X \succeq 0$.

Set C is convex iff the line segment between any two points in C lies in C, i.e. $\forall x_{1}, x_{2} \in C$ and $\forall \theta \in[0,1]$, we have:

$$
\theta x_{1}+(1-\theta) x_{2} \in C
$$

Both convex and nonconvex sets have convex hull, which is defined as:

$$
\operatorname{conv} C=\left\{\sum_{i=1}^{k} \theta_{i} x_{i} \mid x_{i} \in C, \theta_{i} \geq 0, i=1,2, \ldots, k, \sum_{i=1}^{k} \theta_{i}=1\right\}
$$

Figure: Left: convex, middle \& right: nonconvex.

Figure: Left: convex hull of the points, right: convex hull of the kidney-shaped set above.

The most common operations that preserve convexity of convex sets include:

- Intersection
- Image / inverse image under affine function
- Cartesian Product, Minkowski sum, Projection
- Perspective function
- Linear-fractional functions

Convexity is preserved under intersection:

- S_{1}, S_{2} are convex sets then $S_{1} \cap S_{2}$ is also convex set.
- If S_{α} is convex for $\forall \alpha \in \mathcal{A}$, then $\cap_{\alpha \in \mathcal{A}} S_{\alpha}$ is convex.

Proof: Intersection of a collection of convex sets is convex set. If the intersection is empty, or consists of only a single point, then proved by definition. Otherwise, for any two points A, B in the intersection, line $A B$ must lie wholly within each set in the collection, hence must lie wholly within their intersection.

An affine function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a sum of a linear function and a constant, i.e., if it has the form $f(x)=A x+b$, where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, thus f represents a hyperplane.

Suppose that $S \subseteq \mathbb{R}^{n}$ is convex and then the image of S under f is convex:

$$
f(S)=\{f(x) \mid x \in S\}
$$

Also, if $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is an affine function, the inverse image of S under f is convex:

$$
f^{-1}(S)=\{x \mid f(x) \in S\}
$$

Examples include scaling $\alpha S=\{f(x) \mid \alpha x, x \in S\}(\alpha \in \mathbb{R})$ and translation $S+a=\{f(x) \mid x+a, x \in S\}\left(a \in \mathbb{R}^{n}\right)$; they are both convex sets when S is convex.

Proof: the image of convex set S under affine function $f(x)=A x+b$ is also convex.

If S is empty or contains only one point, then $f(S)$ is obviously convex. Otherwise, take $x_{S}, y_{S} \in f(S)$. $x_{S}=f(x)=A x+b$, $x_{S}=f(y)=A y+b$. Then $\forall \theta \in[0,1]$, we have:

$$
\begin{aligned}
\theta x_{S}+(1-\theta) y_{S} & =A(\theta x+(1-\theta) y)+b \\
& =f(\theta x+(1-\theta) y)
\end{aligned}
$$

Since $x, y \in S$, and S is convex set, then $\theta x+(1-\theta) y \in S$, and thus $f(\theta x+(1-\theta) y) \in f(S)$.

The Cartesian Product of convex sets $S_{1} \subseteq \mathbb{R}^{n}, S_{2} \subseteq \mathbb{R}^{m}$ is obviously convex:

$$
S_{1} \times S_{2}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \in S_{1}, x_{2} \in S_{2}\right\}
$$

The Minkowski sum of the two sets is defined as:

$$
S_{1}+S_{2}=\left\{x_{1}+x_{2} \mid x_{1} \in S_{1}, x_{2} \in S_{2}\right\}
$$

and it is also obviously convex.
The projection of a convex set onto some of its coordinates is also obviously convex. (consider the definition of convexity reflected on each coordinate)

$$
T=\left\{x_{1} \in \mathbb{R}^{m} \mid\left(x_{1}, x_{2}\right) \in S \text { for some } x_{2} \in \mathbb{R}^{n}\right\}
$$

We define the perspective function $P: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$, with domain $\operatorname{dom} P=\mathbb{R}^{n} \times \mathbb{R}_{++}$, as $P(z, t)=z / t$. The perspective function scales or normalizes vectors so the last component is one, and then drops the last component.

We can interpret the perspective function as the action of a pin-hole camera. $\left(x_{1}, x_{2}, x_{3}\right)$ through a hold at $(0,0,0)$ on plane $x_{3}=0$ forms an image at $-\left(x_{1} / x_{3}, x_{2} / x_{3}, 1\right)$ at $x_{3}=-1$. The last component could be dropped, since the image point is fixed.

Proof: That this operation preserves convexity is already proved by affine function + projection preserve convexity.

A linear-fractional function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is formed by composing the perspective function with an affine function.
Consider the following affine function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m+1}$:

$$
g(x)=\left[\begin{array}{c}
A \\
c^{T}
\end{array}\right] x+\left[\begin{array}{l}
b \\
d
\end{array}\right]
$$

where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}, d \in \mathbb{R}$.
Followed by a perspective function $P: \mathbb{R}^{m+1} \rightarrow \mathbb{R}^{m}$ we have:

$$
f(x)=(A x+b) /\left(c^{T} x+d\right), \quad \operatorname{dom} f=\left\{x \mid c^{T} x+d>0\right\}
$$

And it naturally preserves convexity because both affine function and perspective function preserve convexity.

Convex Functions

Strict Convex Functions

Strong Convex Functions

Figure: The three commonly-seen types of convex functions and their relations. In brief, strong convex functions \Rightarrow strict convex functions \Rightarrow convex functions.
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex iff it satisfies:

- $\operatorname{dom} f$ is a convex set.
- $\forall x, y \in \operatorname{dom} f, \theta \in[0,1]$, we have the Jensen's inequality:

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

f is strictly convex iff when $x \neq y$ and $\theta \in(0,1)$, strict inequality of the above inequation holds.
f is concave when $-f$ is convex, strictly concave when $-f$ strictly convex, and vice versa.
f is strong convex iff $\exists \alpha>0$ such that $f(x)-\alpha\|x\|^{2}$ is convex.
$\|\cdot\|$ is any norm.

Proof: strong convex functions \Rightarrow strict convex functions \Rightarrow convex functions.

That all strict convex functions are convex functions, and that convex functions are not necessarily strict convex. Strong convexity implies, $\forall x, y \in \operatorname{dom} f, \theta \in[0,1], x \neq y, \exists \alpha>0$:

$$
\begin{align*}
& f(\theta x+(1-\theta) y)-\alpha\|\theta x+(1-\theta) y\|^{2} \tag{1.1}\\
\leq & \theta f(x)+(1-\theta) f(y)-\theta \alpha\|x\|^{2}-(1-\theta) \alpha\|y\|^{2}
\end{align*}
$$

Something we didn't prove yet but is true: $\|\cdot\|^{2}$ is strictly convex. We need it for this proof.

$$
\|\theta x+(1-\theta) y\|^{2}<\theta\|x\|^{2}+(1-\theta)\|y\|^{2}
$$

(proof continues)

$$
\begin{gathered}
\alpha\|\theta x+(1-\theta) y\|^{2}<\theta \alpha\|x\|^{2}+(1-\theta) \alpha\|y\|^{2} \\
t=-\alpha\|\theta x+(1-\theta) y\|^{2}+\theta \alpha\|x\|^{2}+(1-\theta) \alpha\|y\|^{2}>0
\end{gathered}
$$

(1.1) is equivalent with:

$$
f(\theta x+(1-\theta) y)+t \leq \theta f(x)+(1-\theta) f(y)
$$

where $t>0$, thus:

$$
f(\theta x+(1-\theta) y)<\theta f(x)+(1-\theta) f(y)
$$

Figure: Convex function illustration from Prof. Gu's Slides. This figure shows a typical convex function f, and instead of our expression of x and y he used $u \& v$ instead.

Commonly-seen uni-variate convex functions include:

- Constant: C
- Exponential function: $e^{a x}$
- Power function: $x^{a}(a \in(-\infty, 0] \cup[1, \infty)$, otherwise it is concave)
- Powers of absolute value: $|x|^{p}(p \geq 1)$
- Logarithm: $-\log (x)\left(x \in \mathbb{R}_{++}\right)$
- $x \log (x)\left(x \in \mathbb{R}_{++}\right)$
- All norm functions $\|x\|$
- "The inequality follows from the triangle inequality, and the equality follows from homogeneity of a norm."

An affine function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, f(x)=A x+b$, where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, is convex \& concave (neither strict convex nor strict concave).

Conversely, all functions that are both convex and concave are affine functions.

Proof: $\forall \theta \in[0,1], x, y \in \operatorname{dom} f$, we have:

$$
\begin{aligned}
f(\theta x+(1-\theta) y) & =A(\theta x+(1-\theta) y)+b \\
& =\theta(A x+b)+(1-\theta)(A y+b) \\
& =\theta f(x)+(1-\theta) f(y)
\end{aligned}
$$

f is convex iff it is convex when restricted to any line that intersects its domain.
In other words, f is convex iff $\forall x \in \operatorname{dom} f$ and $\forall v \in \mathbb{R}^{n}$, the function:

$$
g(t)=f(x+t v)
$$

is convex. $\operatorname{dom} g=\{t \mid x+t v \in \operatorname{dom} f\}$
This property allows us to check convexity of a function by restricting it to a line.

Suppose f is differentiable (its gradient ∇f exists at each point in $\operatorname{dom} f$, which is open). Then f is convex iff:

- $\operatorname{dom} f$ is a convex set
- $\forall x, y \in \operatorname{dom} f$:

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)
$$

It states that, for a convex function, the first-order Taylor approximation $\left(f(x)+\nabla f(x)^{T}(y-x)\right.$ is the first-order Taylor approximation of f near x) is in fact a global underestimator of the function.

Could also be interpreted as "tangents lie below f ".
Proof is on next page.

This proof comes from CVX textbook page 70, 3.1.3.
Let $x, y \in \operatorname{dom} f, t \in(0,1]$, s.t. $x+t(y-x) \in \operatorname{dom} f$, then, by convexity we have:

$$
\begin{aligned}
f(x+t(y-x)) & =f((1-t) x+t y) \leq(1-t) f(x)+t f(y) \\
t f(y) & \geq(t-1) f(x)+f(x+t(y-x)) \\
f(y) & \geq f(x)+\frac{f(x+t(y-x))-f(x)}{t}
\end{aligned}
$$

take $\lim _{t \rightarrow 0}$ we have:

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)
$$

It is not specifically mentioned in the textbook, but also referred to as subgradient inequality elsewhere.

Figure: By using subgradient $g \in \partial f(x)$ instead of gradient $\nabla f(x)$, where $\forall u, w \in \operatorname{dom} f, f(u) \geq f(w)+g^{T}(u-w)$, we can handle the cases where the functions are not differentiable. $\partial f(x)$ is called sub-differential, the set of sub-gradients of f at x.
f is convex iff for every $x \in \operatorname{dom} f, \partial f(x) \neq \emptyset$.

First we assume that α is the maximum value of the parameter before the norm.

Also note that all norms are equivalent ${ }^{2}$, meaning that $\exists 0<C_{1} \leq C_{2}$ for $\forall a, b, x$:

$$
C_{1}\|x\|_{b} \leq\|x\|_{a} \leq C_{2}\|x\|_{b}
$$

and thus it is okay to treat $\|\cdot\|$ as ℓ_{2} norm.
Consider the Taylor formula:

$$
f(y) \approx f(x)+\nabla f(x)^{T}(y-x)+\frac{1}{2}(y-x)^{T} \nabla^{2} f(x)^{T}(y-x)
$$

We now assume that f is twice differentiable, that is, its Hessian or second derivative $\nabla^{2} f$ exists at each point in $\operatorname{dom} f$, which is open. Then f is convex iff:

- $\operatorname{dom} f$ is convex
- f^{\prime} 's Hessian is positive semidefinite, $\forall x \in \operatorname{dom} f$:

$$
\nabla^{2} f(x) \succeq 0
$$

When $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, it is simply:

$$
\nabla^{2} f(x) \geq 0
$$

(*) When f is strongly convex with constant m :

$$
\nabla^{2} f(x) \succeq m I \quad \forall x \in \operatorname{dom} f
$$

$$
\nabla^{2} f(x) \succeq 0
$$

Then for strong convex, where $\nabla^{2}\left(f(x)-\alpha\|x\|^{2}\right) \succeq 0$, we have:

$$
\nabla^{2} f(x) \succeq \nabla_{x}^{2} \alpha\|x\|^{2}
$$

and we often take the bound of $\nabla_{x}^{2} \alpha\|x\|^{2}$ as m. For instance, in the case of $\nabla_{x}^{2} \alpha\|x\|_{2}^{2}, m=2 \alpha$.

Note that α and m are usually different constants. But it doesn't matter such much in practice.

The α-sublevel set of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined as:

$$
C_{\alpha}=\{x \in \operatorname{dom} f \mid f(x) \leq \alpha\}
$$

Sublevel sets of a convex function are convex, for any value of α.
Proof: $\forall x, y \in C_{\alpha}, f(x) \leq \alpha, \forall \theta \in[0,1], f(\theta x+(1-\theta) y) \leq \alpha$, and hence $\theta x+(1-\theta) y \in C_{\alpha}$.

The converse is not true: a function can have all its sublevel sets convex (a.k.a. quasiconvex), but not convex itself. e.g. $f(x)=-e^{x}$ is concave in \mathbb{R} but all its sublevel sets are convex.

If f is concave, then its α-superlevel set is a convex set:

$$
\{x \in \operatorname{dom} f \mid f(x) \geq \alpha\}
$$

Graph and Epigraph

Figure: The illustration of graph and epigraph from textbook. Epigraph of f is the shaded part, graph of f is the dark line.

The graph of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a subset of \mathbb{R}^{n+1} :

$$
\{(x, f(x)) \mid x \in \operatorname{dom} f\}
$$

The epigraph of it is also subset of \mathbb{R}^{n+1}, defined as:

$$
\text { epi } f=\{(x, t) \mid x \in \operatorname{dom} f, f(x) \leq t\}
$$

The link between convex sets and convex functions is via the epigraph: A function is convex iff its epigraph is a convex set.

Statement: A function f is convex iff its epigraph epi f is a convex set.

First, we assume that f is convex and show epi is convex. $\forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbf{e p i} f, \theta \in[0,1]$, and:

$$
(\tilde{x}, \tilde{y})=\theta\left(x_{1}, y_{1}\right)+(1-\theta)\left(x_{2}, y_{2}\right)
$$

Point $(x, y) \in$ epi f then $y \geq f(x)$.
$f(x)$ is convex, thus:

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

Then we have:

$$
\begin{array}{rlr}
\tilde{y} & =\theta y_{1}+(1-\theta) y_{2} & \\
& \geq \theta f\left(x_{1}\right)+(1-\theta) f\left(x_{2}\right) & \quad(\because \text { epigraph }) \\
& \geq f\left(\theta x_{1}+(1-\theta) x_{2}\right) & (\because \text { convexity }) \\
& =f(\tilde{x}) &
\end{array}
$$

$\tilde{y} \geq f(\tilde{x})$, thus $(\tilde{x}, \tilde{y}) \in \mathbf{e p i} f$, and epi f is proved to be convex.

Next, we prove that when epi f is convex, the f must be convex:
$\forall x_{1}, x_{2} \in \operatorname{dom} f$, and $\theta \in[0,1]$, then the points $\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right)$ must be in epi f (on int f, to be specific).

$$
(\tilde{x}, \tilde{y})=\theta\left(x_{1}, f\left(x_{1}\right)\right)+(1-\theta)\left(x_{2}, f\left(x_{2}\right)\right)
$$

From the convexity of epi $f,(\tilde{x}, \tilde{y})$ must also be included in epi f, and thus:

$$
\tilde{y}=\theta f\left(x_{1}\right)+(1-\theta) f\left(x_{2}\right) \geq f(\tilde{x})=f\left(\theta x_{1}+(1-\theta) x_{2}\right)
$$

This is essentially satisfies the Jensen's inequality, and f has to be convex.

Figure: "... least-squares and linear programming problems have a fairly complete theory, arise in a variety of applications, and can be solved numerically very efficiently ... the same can be said for the larger class of convex optimization problems." - from textbook

Note that although I drew it this way for clearer visualization, convex optimization problems are much more than just two families. We'll see their names later.

Considering the following mathematical optimization problem (a.k.a optimization problem):

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq b_{i}, i=1,2, \ldots m
\end{aligned}
$$

- $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ is the optimization variable
- $f_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the objective function
- $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}(i=1,2, \ldots, m)$ are the constraint functions

A vector x^{*} is called optimal, or called a solution of the problem, iff: $\forall z$ satisfying every $f_{i}(z) \leq b_{i}(i=1,2, \ldots, m)$, we have $f_{0}(z) \geq f_{0}\left(x^{*}\right)$.

Least-Squares Problems (Linear ver.)

$$
\text { minimize } \quad f_{0}(x)=\|A x-b\|_{2}^{2}=\sum_{i=1}^{k}\left(a_{i}^{T} x-b_{i}\right)^{2}
$$

It has no constraints. $x \in \mathbb{R}^{n}, A \in \mathbb{R}^{k \times n}, k \geq n$. $a_{i} \in \mathbb{R}^{n}$ are the rows of the coefficient matrix A.
The solution can be reduced to solving a set of linear equations:

$$
A^{T} A x=A^{T} b
$$

We have analytical solution:

$$
x=\left(A^{T} A\right)^{-1} A^{T} b
$$

Can be solved in approximately $\mathcal{O}\left(n^{2} k\right)$ time if A is dense, otherwise much faster.

Figure: Illustration of how we get the solution of a least-square problem. $k=3, n=1$. With $\operatorname{Col}(A)$ be the set of all vectors of the form $A x$ (the column space, consistent), the closest vector of the form $A x$ to b is the orthogonal projection of b onto $\operatorname{Col}(A)$. Figure from https://textbooks.math.gatech.edu/ila/least-squares.html.

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(x)=c^{T} x \\
\text { subject to } & f_{i}(x)=a_{i}^{T} x \leq b_{i}, \quad i=1,2, \ldots m
\end{aligned}
$$

It is called linear programming, because the objective (parameterized by $c \in \mathbb{R}^{n}$) and all constraint functions (parameterized by $a_{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$) are linear.

- No simple analytical solution.
- Cannot give exact number of arithmetic operations required.
- A lot of effective methods, include:
- Dantzig's simplex method ${ }^{3}$
- Interior-point methods (most recent)
- Time complexity can be estimated to a given accuracy, usually around $\mathcal{O}\left(n^{2} m\right)$ in practice (assuming $m \geq n$).
- Could be extended to convex optimization problems.
${ }^{3}$ It's the thing you've be taught in junior high school.

Many optimization problems can be transformed to an equivalent linear program. For example, the Chebyshev approximation problem:

$$
\operatorname{minimize} \quad \max _{i=1,2, \ldots k}\left|a_{i}^{T} x-b_{i}\right|
$$

Many optimization problems can be transformed to an equivalent linear program. For example, the Chebyshev approximation problem:

$$
\operatorname{minimize} \quad \max _{i=1,2, \ldots k}\left|a_{i}^{T} x-b_{i}\right|
$$

It can be solved by solving:

$$
\begin{array}{rll}
\operatorname{minimize} & t \\
\text { subject to } & a_{i}^{T} x-t \leq b_{i}, & i=1,2, \ldots, k \\
& -a_{i}^{T} x-t \leq b_{i}, & i=1,2, \ldots, k
\end{array}
$$

Here, $a_{i}, x \in \mathbb{R}^{n}, b_{i}, t \in \mathbb{R}$.

A convex optimization problem is one of the form

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq b_{i}, i=1,2, \ldots m
\end{aligned}
$$

where the functions $f_{0}, f_{1}, \ldots, f_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are all convex functions. That is, they satisfy:

$$
f_{i}(\theta x+(1-\theta) y) \preceq \theta f_{i}(x)+(1-\theta) f_{i}(y)
$$

$\forall x, y \in \mathbb{R}^{n}, \theta \in[0,1]$.
The least-squares problem and linear programming problem are both special cases of the general convex optimization problem.

- No analytical formula for the solution.
- Interior-point methods work very well in practice, but no consensus has emerged yet as to what the best method or methods are, and it is still a very active research area.
- We cannot yet claim that solving general convex optimization problems is a mature technology.
- For some subclasses of convex optimization problems, e.g. second-order cone programming or geometric programming, interior-point methods are approaching mature technology.

Figure: Illustration of what are included in the nonlinear optimization problems (grey parts are wiped out). The problems where (1) $\exists f_{i}$ not linear, (2) the problem is not known to be convex.

No effective methods for solving the general nonlinear programming problem, and the different approaches each of involves some compromise.

- Local optimization: "more art than technology"
- Global optimization: "the compromise is efficiency"

Convex optimization also helps with non-convex problems from:

- Initialization for local optimization:

1. Find an approximate, but convex, formulation of the problem.
2. Use the approximate convex problem's exact solution to handle the original non-convex problem.

- Introduce convex heuristics for solving nonconvex optimization problems, e.g:
- Sparsity: when and why it is preferred.
- The use of randomized algorithms to find the best parameters.
- Estimating the bounds, e.g. estimating the lower bound on the optimal value (the best-possible value):
- Lagrangian relaxation:

1. Solve the Lagrangian dual problem, which is convex
2. It provides a lower bound on the optimal value

- Relaxation:
- Each nonconvex constraint is replaced with a looser, but convex, constraint.

Convex Optimization

鹵

The problem is often expressed as:

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1,2, \ldots, m \\
& h_{i}(x)=0, \quad i=1,2, \ldots, p
\end{aligned}
$$

The domain \mathcal{D} is defined as:

$$
\mathcal{D}=\bigcap_{i=0}^{m} \operatorname{dom} f_{i} \cap \bigcap_{i=1}^{p} \operatorname{dom} h_{i}
$$

A point $x \in \mathcal{D}$ is feasible if it satisfies the constraints (f_{i} for $i=1, \ldots, m$, and h_{i} for $i=1, \ldots, p$).
The optimal value p^{*} is $\inf f_{0}(x)$ when x is feasible. An optimal point x^{*} satisfies $f_{0}\left(x^{*}\right)=p^{*}$.

The standard form optimization problem is convex optimization problem when satisfying three additional conditions:

1. The objective function f_{0} must be convex;
2. The inequality constraint functions $f_{i}(i=1,2, \ldots, m)$ must be convex;
3. The equality constraint functions $h_{i}(x)=a_{i}^{T} x-b_{i}$ $(i=1,2, \ldots, p)$ must be affine.
An important property coming after: The feasible set \mathcal{D} must be convex, as it is the intersection of the above-listed convex functions.

The epigraph form is in the form $\left(x \in \mathbb{R}^{n}, t \in \mathbb{R}\right)$, obviously equivalent with standard form:

$$
\begin{aligned}
\operatorname{minimize} & t \\
\text { subject to } & f_{0}(x)-t \leq 0 \\
& f_{i}(x) \leq 0, \quad i=1,2, \ldots, m \\
& h_{i}(x)=0, \quad i=1,2, \ldots, p
\end{aligned}
$$

Note that the objective function of the epigraph form problem is a linear function of the variables x, t.
It can be interpreted geometrically as minimizing t over the epigraph of f_{0}, subject to the constraints on x.

Local and Global Optima

A fundamental property of convex optimization problems is that any locally optimal point is also (globally) optimal.

Proof: Assume x is local optima, then $x \in \mathcal{D}$, and for some $R>0$,

$$
f_{0}(x)=\inf \left\{f_{0}(z) \mid z \in \mathcal{D},\|z-x\|_{2} \leq R\right\}
$$

Now assume it is not global optima, then $\exists y \in \mathcal{D}, f_{0}(y)<f_{0}(x)$. There must be $\|y-x\|_{2}>R$. Consider point z given by:

$$
z=(1-\theta) x+\theta y \quad \theta=\frac{R}{2\|y-x\|_{2}}<\frac{1}{2}
$$

Therefore, $\|z-x\|_{2}=\frac{R}{2}<R$. By convexity of feasible set \mathcal{D}, $z \in \mathcal{D}$, and f_{0} is convex. Then it contradicts the assumption:

$$
f_{0}(z) \leq(1-\theta) f_{0}(x)+\theta f_{0}(y)<f_{0}(x)
$$

When solving an optimization problem, we follow the following steps:

1. Reformulate the problem into the standard format / epigraph format / other known equivalent format (e.g. LP (Linear Program), QP (Quadratic Program), SOCP (Second-Order Cone Program), GP (Geometric Program), CP (Cone Program), SDP (Semidefinite Program)); ${ }^{4}$
2. We could form highly nontrivial bounds on convex optimization problems by duality. (Weak) duality works even for hard problems that are not necessarily convex (but the functions involved must be convex).
3. The problem could be solved by solving the KKT (Karush-Kuhn-Tucker) conditions.

When f_{0} is a constant, the problem becomes a feasibility problem.

When there's no f_{1}, \ldots, f_{m} and no $h_{1}, \ldots h_{p}$, the problem is an unconstrained minimization problem.

- Feasibility \rightarrow unconstrained minimization: make a new f_{0}^{\prime} with value 0 (or other constants) when $x \in \mathcal{D}$, otherwise $f_{0}^{\prime}(x)=+\infty$.
- Unconstrained minimization \rightarrow feasibility: introduce $f_{0}(x) \leq p^{*}+\epsilon$ as the constraint and remove the objective.
Infeasible problem: $p^{*}=+\infty$; unbounded problem: $p^{*}=-\infty$.

LPs are normally in the form:

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x+d \\
\text { subject to } & G x \preceq h \\
& A x=b
\end{aligned}
$$

With slack variable $s \in \mathbb{R}^{m} \succeq 0$ introduced and $x=x^{+}-x^{-}$, $x^{+}, x^{-} \succeq 0$:

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x^{+}-c^{T} x^{-}+d \\
\text { subject to } & G x^{+}-G x^{-}+s=h \\
& A x^{+}-A x^{-}=b \\
& s, x^{+}, x^{-} \succeq 0
\end{aligned}
$$

Consider the Chebyshev center of a polyhedron \mathcal{P}, defined as:

$$
\mathcal{P}=\left\{x \in \mathbb{R}^{n} \mid a_{i}^{T} x \leq b_{i}, i=1,2, \ldots m\right\}
$$

We want to find the largest Euclidean ball that lies in \mathcal{P}, whose center is known as the Chebyshev center of the polyhedron. The ball is represented as:

$$
\mathcal{B}=\left\{x_{c}+u \mid\|u\|_{2} \leq r\right\}
$$

The variables: $x_{c} \in \mathbb{R}^{n}, r \in \mathbb{R}$, problem: maximize r subject to the constraint $\mathcal{B} \subseteq \mathcal{P}$.

We start from observing that $x=x_{c}+u$ from \mathcal{B}, and that $x \in \mathcal{P}$, thus:

$$
a_{i}^{T}\left(x_{c}+u\right)=a_{i}^{T} x_{c}+a_{i}^{T} u \leq b_{i}
$$

$\|u\|_{2} \leq r$ infers that:

$$
\sup \left\{a_{i}^{T} u \mid\|u\|_{2} \leq r\right\}=r\left\|a_{i}\right\|_{2}
$$

and that the condition we have is:

$$
a_{i}^{T} x_{c}+r\left\|a_{i}\right\|_{2} \leq b_{i}
$$

a linear inequality in $\left(x_{c}, r\right)$.

$$
\begin{aligned}
\operatorname{minimize} & -r \\
\text { subject to } & a_{i}^{T} x_{c}+r\left\|a_{i}\right\|_{2} \leq b_{i}, \quad i=1,2, \ldots m
\end{aligned}
$$

Consider the standard form written as:

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1,2, \ldots, m \\
& h_{i}(x)=0, \quad i=1,2, \ldots, p
\end{aligned}
$$

Denote the optimal value as p^{*}. Its Lagrangian, $L: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$, with $\operatorname{dom} L=\mathcal{D} \times \mathbb{R}^{m} \times \mathbb{R}^{p}$:

$$
L(x, \lambda, \nu)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)
$$

It is basically a weighted sum of the objective and the constraints. The Lagrange dual function $g: \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$:

$$
g(\lambda, \nu)=\inf _{x \in \mathcal{D}} L(x, \lambda, \nu)
$$

Denote g 's optimal point, or dual optimal point, as $\left(\lambda^{*}, \nu^{*}\right)$.
g is always concave, and could reach $-\infty$ at some λ, ν values.
There's an important lower-bound property: If $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^{*}$.

Proof: Since $x^{*} \in \mathcal{D}, f_{i}\left(x^{*}\right) \leq 0, h_{i}\left(x^{*}\right)=0$, thus:

$$
p^{*}=f_{0}\left(x^{*}\right) \geq L\left(x^{*}, \lambda^{*}, \nu^{*}\right) \geq \inf _{x \in \mathcal{D}} L\left(x, \lambda^{*}, \nu^{*}\right)=g\left(\lambda^{*}, \nu^{*}\right)
$$

Assume strong duality holds, then:

$$
\begin{aligned}
f_{0}\left(x^{*}\right) & =g\left(\lambda^{*}, \nu^{*}\right) \\
& =\inf _{x \in \mathcal{D}}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x)+\sum_{i=1}^{p} \nu_{i}^{*} h_{i}(x)\right) \\
& \leq f_{0}\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} f_{i}\left(x^{*}\right)+\sum_{i=1}^{p} \nu_{i}^{*} h_{i}\left(x^{*}\right) \\
& \leq f_{0}\left(x^{*}\right)
\end{aligned}
$$

because of $\lambda_{i} \geq 0, f_{i}\left(x^{*}\right) \leq 0, h_{i}\left(x^{*}\right)=0$. Therefore,

$$
\sum_{i=1}^{m} \lambda_{i}^{*} f_{i}\left(x^{*}\right)
$$

Since each term is non-positive, $\lambda_{i}^{*} f_{i}\left(x^{*}\right)=0$.

For a problem with differentiable f_{i} and h_{i}, we have four conditions that togetherly named KKT conditions:

- Primal Constraints:

$$
\begin{cases}f_{i}(x) \leq 0 & i=1,2, \ldots, m \\ h_{i}(x)=0 & i=1,2, \ldots, p\end{cases}
$$

- Dual Constraints: $\lambda \succeq 0$
- Complementary Slackness: $\lambda_{i} f_{i}(x)=0(i=1,2, \ldots, m)$
- gradient of Lagrangian vanishes (with respect to x):

$$
\nabla_{x} L(x, \lambda, \nu)=\nabla_{x} f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} \nabla_{x} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} \nabla_{x} h_{i}(x)=0
$$

- If strong duality holds and (x, λ, ν) are optimal, then KKT condition must be satisfied.
- If the KKT condition is satisfied by (x, λ, ν), strong duality must hold and the variables are optimal.
- If Slater's Conditions (see textbook section 3.5.6, these conditions imply strong duality) is satisfied, and x is optimal $\Longleftrightarrow \exists(\lambda, \nu)$ that satisfy KKT conditions.

The original form of least-square problem:

$$
\operatorname{minimize} \quad\|A x-b\|_{2}^{2}
$$

With regularization $(\mu>0)$:

$$
\text { minimize } \quad\|A x-b\|_{2}^{2}+\mu\|x\|_{2}^{2}
$$

the solution becomes: $x_{\mu}=\left(A^{T} A+\mu I\right)^{-1} A^{T} b$
A corresponding least-norm problem's solution is $x_{l n}$:

$$
\begin{aligned}
\operatorname{minimize} & \|x\|_{2}^{2} \\
\text { subject to } & A x=b
\end{aligned}
$$

A fact: $x_{l n}=\lim _{\mu \rightarrow 0} x_{\mu}$ (ref: Prof. Boyd's slides ${ }^{5}$)

Previously we have the least-norm problem in the form:

$$
\begin{aligned}
\operatorname{minimize} & \|x\|_{2}^{2} \\
\text { subject to } & A x=b
\end{aligned}
$$

But it is equivalent to the form:

$$
\begin{aligned}
\operatorname{minimize} & x^{T} x \\
\text { subject to } & A x=b
\end{aligned}
$$

Easily proved by showing that when $A x=b, A\left(x-x^{*}\right)=0$, $x^{*}=A^{T}\left(A A^{T}\right)^{-1} b$ makes $\left(x-x^{*}\right)^{T} x^{*}=0$, and apply Pythagorean theorem, we have $\|x\|^{2}>\left\|x^{*}\right\|^{2}$.

With independent rows, we have that $A A^{T}$ is nonsingular, and thus:

$$
A^{\dagger}=A^{T}\left(A A^{T}\right)^{-1}
$$

With independent columns, we have that $A^{T} A$ is nonsingular, and thus:

$$
A^{\dagger}=\left(A^{T} A\right)^{-1} A^{T}
$$

Recall that previously, we said that for a least-square problem, $\|A x-b\|_{2}^{2}$, sometimes it doesn't exist an A^{-1}, thus we use $A^{T} A x=A^{T} b$ instead, the pseudo inverse is a formal definition of this operation.

Example: Solving Least-norm I

Consider the following problem with $x \in \mathbb{R}^{n}, A \in \mathbb{R}^{p \times n}, b \in \mathbb{R}^{p}$:

$$
\begin{aligned}
\operatorname{minimize} & x^{T} x \\
\text { subject to } & A x=b
\end{aligned}
$$

Consider the following problem with $x \in \mathbb{R}^{n}, A \in \mathbb{R}^{p \times n}, b \in \mathbb{R}^{p}$:

$$
\begin{aligned}
\operatorname{minimize} & x^{T} x \\
\text { subject to } & A x=b
\end{aligned}
$$

Solution: The Lagrangian of this problem is (no need λ):

$$
L(x, \nu)=x^{T} x+\nu^{T}(A x-b)
$$

The KKT conditions are:

- Primal Constraints: $A x=b$
- Dual Constraints: None
- Complementary Slackness: None
- gradient of Lagrangian vanishes (with respect to x):

$$
\nabla_{x} L(x, \nu)=2 x+A^{T} \nu=0
$$

From gradient of Lagrangian vanishes, $x^{*}=-(1 / 2) A^{T} \nu^{*}$; from Primal Constraints, $A x^{*}=b$. Therefore:

$$
\begin{aligned}
A A^{T} \nu^{*} & =-2 b \\
\nu^{*} & =-2\left(A A^{T}\right)^{-1} b \\
x^{*} & =A^{T}\left(A A^{T}\right)^{-1} b=A^{\dagger} b
\end{aligned}
$$

It is equivalent with the least-square solution we previously have in terms of pseudo-inverse:

$$
x^{*}=\left(A^{T} A\right)^{-1} A^{T} b=A^{\dagger} b
$$

Categories of Learning Algorithms

- Descent Methods
- To find the best step size we do line search, but the particular choice of line search does not matter such much, instead, the particular choice of search direction matters a lot.
- SGD, AdaGrad, Adam, etc. Almost all popular optimizers today.
- Newton's Method
- In theory faster convergence, in practice much larger space.
- (*) Prof. Lin's course projects (Newton + CNN)
- Interior-point Methods
- Applying Newton's method to a sequence of modified versions of the KKT conditions.

$$
x^{(k+1)}=x^{(k)}+\eta \Delta x^{(k)} \quad f\left(x^{(k+1)}\right)<f\left(x^{(k)}\right)
$$

where $\Delta x^{(k)}$ is called a step, and $|\eta|=-\eta$ the step size. From convexity, it implies:

$$
\nabla f(x)^{T} \Delta x<0
$$

Step size could be determined by line-search, optimized along the direction of $\nabla f(x) \Delta x$.

$$
f(x+\eta \Delta x) \approx f(x)+\eta \nabla f(x)^{T} \Delta x
$$

Exact line search:

$$
\eta^{*}=\underset{\eta>0}{\operatorname{argmin}} f(x+\eta \Delta x)
$$

Backtracking line search:

- Parameters: $\alpha \in(0,0.5), \beta \in(0,1)$
- Start with $\eta=1$, repeat:

1. Stop when:

$$
f(x+\eta \Delta x)<f(x)+\alpha \eta \nabla f(x)^{T} \Delta x
$$

2. If not stop, update $\eta:=\beta \eta$.

Both strategies are used for selecting a proper step size. Not very important in practice.

Figure: Illustration of two types of line search.

In steepest descent methods, instead of optimizing towards the direction of $\nabla f(x)^{T} \Delta x$, it searches for the unit-vector v with the most negative $\nabla f(x)^{T} v$ - the directional derivative of f at x in the direction v. In other words:

$$
x^{(k+1)}=x^{(k)}+\eta \Delta x_{n s d}^{(t)}
$$

where $x_{n s d}$ is defined as:

$$
\Delta x_{n s d}=\underset{v}{\operatorname{argmin}}\left\{\nabla f(x)^{T} v \mid\|v\|=1\right\}
$$

Use subgradient $g \in \partial f(x)$ instead of gradient $\nabla f(x)$, which means that,

$$
f(y) \geq f(x)+g^{T}(y-x), \forall y
$$

There could be multiple g for the same x. The advantage of using g is that it enables the function to handle non-derivative functions.
g for $x^{(t)}$ is denoted as $g^{(t)}$.

$$
x^{(k+1)}=x^{(k)}+\eta g^{(t)}
$$

Giving starting point $x \in \operatorname{dom} f$ and tolerance $\epsilon>0$, repeat the following steps:

1. Compute Newton step: $\Delta x_{n t}=-\frac{\nabla f(x)}{\nabla^{2} f(x)}$
2. Compute Newton decrement:

$$
\lambda(x)^{2}=\left(\nabla f(x)^{T} \nabla^{2} f(x)^{-1} \nabla f(x)\right)
$$

3. Quit if $\frac{\lambda(x)^{2}}{2} \leq \epsilon$
4. Select step size η by backtracking line-search
5. $x=x+\eta \Delta x_{n t}$

- $x+\Delta x_{n t}$ minimized second-order approximation:

$$
\hat{f}(x+v)=f(x)+\nabla f(x)^{T} v+\frac{1}{2} v^{T} \nabla^{2} f(x)
$$

- $x+\Delta x_{n t}$ solves linearized optimality condition:

$$
\nabla f(x+v) \approx \nabla \hat{f}(x+v)=\nabla f(x)+\nabla^{2} f(x) v=0
$$

- $\Delta x_{n t}$ is steepest descent direction at x in local Hessian norm:

$$
\|u\|_{\nabla^{2} f(x)}=\left(u^{T} \nabla^{2} f(x) u\right)^{1 / 2}
$$

- $\lambda(x)$ is an approximation of $f(x)-p^{*}$, with p^{*} estimated by $\inf _{y} \hat{f}(y)$:

$$
f(x)-\inf _{y} \hat{f}(y)=\frac{1}{2} \lambda(x)^{2}
$$

Define the logarithm barrier function:
$\phi(x)=-\sum_{i=1}^{m} \log \left(-f_{i}(x)\right), \operatorname{dom} \phi=\left\{x \mid f_{i}(x)<0, i=1, \ldots m\right\}$
it preserves the convexity and the twice continuously differentiable (if any) of f_{i}, and could turn the inequality constraints from explicit to implicit:

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(x)+\phi(x) \\
\text { subject to } & h_{i}(x)=0, i=1,2, \ldots, p
\end{aligned}
$$

$$
\phi(x)=-\sum_{i=1}^{m} \log \left(-f_{i}(x)\right), \operatorname{dom} \phi=\cap_{i=1}^{m} \operatorname{dom} f_{i}
$$

The function $\phi(x)$ is convex when all $f_{i}(x)$ are convex, and twice continuous differentiable when f_{i} are all twice continuous differentiable.

$$
\begin{aligned}
\nabla \phi(x) & =\sum_{i=1}^{m} \frac{1}{-f_{i}(x)} \nabla f_{i}(x) \\
\nabla^{2} \phi(x) & =\sum_{i=1}^{m} \frac{1}{f_{i}(x)^{2}} \nabla f_{i}(x) \nabla f_{i}(x)^{T}+\sum_{i=1}^{m} \frac{1}{-f_{i}(x)} \nabla^{2} f_{i}(x)
\end{aligned}
$$

The interior point method's conditions' only difference with KKT conditions is, replacing complementary slackness with approximate complementary slackness:

$$
-\lambda_{i} f_{i}(x)=\frac{1}{t} \quad i=1,2, \ldots, m
$$

Interior point methods does not work well if some of the constraints are not strictly feasible:

- f_{i} is convex and twice continuously differentiable
- $A \in \mathbb{R}^{p \times n}$ and A 's rank is p
- p^{*} is finite and attained
- The problem is strictly feasible (exists interior point), hence, strong duality holds and dual optimum is attained.

It is the algorithm coming directly from primal-dual methods. In brief, at iteration step t, we set $x^{*}(t)$ as the solution of:

$$
\begin{aligned}
\operatorname{minimize} & t f_{0}(x)+\phi(x) \\
\text { subject to } & A x=b
\end{aligned}
$$

t exists here as a balance of $\phi(x)$'s increasing value, forcing the algorithm to focus on f_{0} more in the end, approximation improves as $t \rightarrow \infty$.

We have central path defined as $\left\{x^{*}(t) \mid t>0\right\}$, the path alone which we minimizes the Lagrangian, and:

$$
\lim _{t \rightarrow \infty} f_{0}\left(x^{*}(t)\right)=p^{*}
$$

Central path is formed by the solutions of:

$$
\begin{aligned}
\operatorname{minimize} & t f_{0}(x)+\phi(x) \\
\text { subject to } & A x=b
\end{aligned}
$$

The necessary and sufficient conditions of points on the central path (a.k.a central points): strictly feasible.

$$
A x^{*}(t)=b, \quad f_{i}\left(x^{*}(t)\right)<0(i=1,2, \ldots, m)
$$

Applying the Lagrangian-gradient vanishing-condition (No. 4), we have that, for $A \in \mathbb{R}^{p \times n}, \exists \hat{\nu} \in \mathbb{R}^{p}$, s.t.:

$$
t \nabla f_{0}\left(x^{*}(t)\right)+\nabla \phi\left(x^{*}(t)\right)+A^{T} \hat{\nu}=0
$$

Expanding $\nabla \phi$, we have:

$$
t \nabla f_{0}\left(x^{*}(t)\right)+\sum_{i=1}^{m} \frac{1}{-f_{i}\left(x^{*}(t)\right)} \nabla f_{i}\left(x^{*}(t)\right)+A^{T} \hat{\nu}=0
$$

According to the previous properties of $x^{*}(t)$, we derive an important property: Every central point yields a dual feasible point, and hence a lower bound on the optimal value p^{*}.

$$
\lambda_{i}^{*}(t)=-\frac{1}{t f_{i}\left(x^{*}(t)\right)}, i=1,2, \ldots, m \quad \nu^{*}(t)=\frac{\hat{\nu}}{t}
$$

are considered the dual feasible pair for the original problem with $f_{0}(x)$, inequality constraints, and no barrier function.

In particular, we have the estimated value p^{*} which is the optimal value of the dual function g :

$$
\begin{aligned}
p^{*} & =g\left(\lambda^{*}(t), \nu^{*}(t)\right) \\
& =f_{0}\left(x^{*}(t)\right)+\sum_{i=1}^{m} \lambda_{i}^{*}(t) f_{i}\left(x^{*}(t)\right)+\nu^{*}(t)\left(A x^{*}(t)-b\right) \\
& =f_{0}\left(x^{*}(t)\right)-\sum_{i=1}^{m} \frac{1}{t}+\frac{\hat{\nu}}{t} * 0 \\
& =f_{0}\left(x^{*}(t)\right)-\frac{m}{t}
\end{aligned}
$$

Therefore, central point $x^{*}(t)$ is no more than $\frac{m}{t}$ sub-optimal:

$$
f_{0}\left(x^{*}(t)\right)-p^{*} \leq \frac{m}{t}
$$

Considering the inequality form linear programming:

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \preceq b
\end{aligned}
$$

Then we have the barrier function:

$$
\phi(x)=-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right), \quad \operatorname{dom} \phi=\{x \mid A x \prec b\}
$$

where a_{i}^{T} are the rows of A.

$$
\begin{aligned}
\nabla \phi(x) & =\sum_{i=1}^{m} \frac{1}{-f_{i}(x)} \nabla f_{i}(x) \\
& =\sum_{i=1}^{m} \frac{a_{i}}{b_{i}-a_{i}^{T} x} \\
\nabla^{2} \phi(x) & =\sum_{i=1}^{m} \frac{1}{f_{i}(x)^{2}} \nabla f_{i}(x) \nabla f_{i}(x)^{T}+\sum_{i=1}^{m} \frac{1}{-f_{i}(x)} \nabla^{2} f_{i}(x) \\
& =\sum_{i=1}^{m} \frac{a_{i} a_{i}^{T}}{\left(b_{i}-a_{i}^{T} x\right)^{2}}
\end{aligned}
$$

If we define $d \in \mathbb{R}^{m}$ s.t. $d_{i}=\frac{1}{b_{i}-a_{i}^{T} x}$, we have: $\nabla \phi(x)=A^{T} d$ and $\nabla^{2} \phi(x)=A^{T} \operatorname{diag}(d)^{2} A$.

There's no equality constraints in this case so there's no ν. Recall that previously we have (A corresponds to equality constraint here):

$$
t \nabla f_{0}\left(x^{*}(t)\right)+\sum_{i=1}^{m} \frac{1}{-f_{i}\left(x^{*}(t)\right)} \nabla f_{i}\left(x^{*}(t)\right)+A^{T} \hat{\nu}=0
$$

In this situation:

$$
t c+\sum_{i=1}^{m} \frac{1}{b_{i}-a_{i}^{T} x^{*}(t)} a_{i}=t c+A^{T} d=0
$$

Points on central path, $x^{*}(t)$, must be parallel to $-c, \nabla \phi\left(x^{*}(t)\right)$ is normal to the level set of ϕ through $x^{*}(t)$.

Figure: $n=2, m=6$. The dashed curves show three contour lines of the logarithmic barrier function, at different level of $\phi\left(x^{*}(t)\right)$ value.

Lipschitz constraint is a very common type of constraint applied to the functions, being L-Lipschitz meaning:

$$
|f(x)-f(y)| \leq L\|x-y\|, \quad \forall x, y \in \operatorname{dom} f
$$

L is called the coefficient.
Lipschitzness is very important in analyzing convergence of optimization problems, in both convex cases and non-convex cases.

We need it to analyze from one step to the next, although sometimes it is omitted in the end.

The coefficient L of f can be interpreted as:

- A bound on the next-level derivative of f
- Can taken to be zero if f is constant.
- More generally, L measures how well f can be approximated by a constant.
- If $f=\nabla g$ then L measures how well g can be approximated by a linear model.
- If $f=\nabla^{2} h$ then L measures how well h can be approximated by a quadratic model.

Consider the convergence analysis of Newton, in unbounded optimization, where the objective f is:

- Twice continuously differentiable: $\nabla f(x)$ and $\nabla^{2} f(x)$ exist;
- Strongly convex with constant $m: \nabla^{2} f(x) \succeq m I(x \in \mathcal{D})$
- It implies that $\exists M>0, \forall x \in \mathcal{D}, \nabla^{2} f(x) \preceq M I$. (Proof on next page)
- The Hessian of f is L-Lipschitz continuous on $\mathcal{D}, \forall x, y \in \mathcal{D}$:

$$
\left\|\nabla^{2} f(x)-\nabla^{2} f(y)\right\|_{2} \leq L\|x-y\|_{2}
$$

This part's proof comes from textbook 9.1.2.
First, by using the $1^{\text {st }}$-order characterization of convex function f, we have that, $\forall x, y \in \operatorname{dom} f$:

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)
$$

with the previously-mentioned quadratic Taylor approximation:

$$
f(y) \approx f(x)+\nabla f(x)^{T}(y-x)+\frac{1}{2}(y-x)^{T} \nabla^{2} f(x)(y-x)
$$

In the case of strong convex with constant $m>0$, we have $\nabla^{2} f(x) \succeq m I$, thus

$$
(y-x)^{T} \nabla^{2} f(z)(y-x) \geq m\|y-x\|_{2}^{2}
$$

Therefore we have:

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)+\frac{m}{2}\|y-x\|_{2}^{2}
$$

This inequality implies that the sublevel sets contained in $\operatorname{dom} f$ are bounded, so $\operatorname{dom} f$ is bounded. It essentially means that the maximum eigenvalue of $\nabla^{2} f(x)$, which is a continuous function of x on $\operatorname{dom} f$, is bounded above on $\operatorname{dom} f$, i.e., there exists a constant $M>0$ such that:

$$
\nabla^{2} f(x) \preceq M I
$$

Note that m are M are often unknown in practice.

$$
f(y) \leq f(x)+\nabla f(x)^{T}(y-x)+\frac{M}{2}\|y-x\|_{2}^{2}
$$

Still from textbook 9.1.2.
Previously we have had:

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)+\frac{m}{2}\|y-x\|_{2}^{2}
$$

Now, considering a fixed x, it is obvious that the right-hand-side is a convex quadratic function of y. Where we find the \tilde{y} that minimizes it is the one that achieves zero derivative:

$$
\begin{gathered}
\nabla_{\tilde{y}}\left(f(x)+\nabla f(x)^{T}(\tilde{y}-x)+\frac{m}{2}\|\tilde{y}-x\|_{2}^{2}\right)=\nabla f(x)+m(\tilde{y}-x)=0 \\
\tilde{y}=x-\frac{1}{m} \nabla f(x)
\end{gathered}
$$

And therefore,

$$
\begin{aligned}
f(y) & \geq f(x)+\nabla f(x)^{T}(y-x)+\frac{m}{2}\|y-x\|_{2}^{2} \\
& \geq f(x)+\nabla f(x)^{T}(\tilde{y}-x)+\frac{m}{2}\|\tilde{y}-x\|_{2}^{2} \\
& =f(x)-\frac{1}{m} \nabla f(x)^{T} \nabla f(x)+\frac{1}{2 m}\|\nabla f(x)\|_{2}^{2} \\
& =f(x)-\frac{1}{2 m}\|\nabla f(x)\|_{2}^{2}
\end{aligned}
$$

Since it holds for $\forall y \in \mathcal{D}$, we can say that:

$$
p^{*} \geq f(x)-\frac{1}{2 m}\|\nabla f(x)\|_{2}^{2}
$$

It is often used as the upper-bound estimation of error:

$$
\epsilon=f(x)-p^{*} \leq \frac{1}{2 m}\|\nabla f(x)\|_{2}^{2}
$$

Similarly, applying the same strategy to:

$$
f(y) \leq f(x)+\nabla f(x)^{T}(y-x)+\frac{M}{2}\|y-x\|_{2}^{2}
$$

we have an lower bound of the error ϵ :

$$
\begin{gathered}
p^{*} \leq f(x)-\frac{1}{2 M}\|\nabla f(x)\|_{2}^{2} \\
\epsilon=f(x)-p^{*} \geq \frac{1}{2 M}\|\nabla f(x)\|_{2}^{2}
\end{gathered}
$$

The general idea: The process of learning by (Damped) Newton method could be divided into two phases; once we enter the second phase, we never leave there.
(*) If you've taken Prof. Gu's CS260 you'll see how commonly-used this approach of division is... in terms of convergence analysis.

Outline of the proof: $\exists \eta \in\left(0, \frac{m^{2}}{L}\right], \gamma>0$, such that

$$
\begin{cases}f\left(x^{(k+1)}\right)-f\left(x^{(k)}\right) \leq-\gamma & \|\nabla f(x)\|_{2} \geq \eta \\ \frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k+1)}\right)\right\|_{2} \leq\left(\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}\right)^{2} & \|\nabla f(x)\|_{2}<\eta\end{cases}
$$

There are two phases of the problem $\left(t^{(k)}\right.$ is the step size here):

1. Damped Newton phase $\left(\|\nabla f(x)\|_{2} \geq \eta\right)$:

- Most iterations require backtracking steps
- Function value decreases by at least γ
- If bounded ($p^{*}>-\infty$), this phase costs iterations no more than

$$
\frac{f\left(x^{(0)}\right)-p^{*}}{\gamma}
$$

2. Quadratically convergent phase $\left(\|\nabla f(x)\|_{2}<\eta\right)$:

- All iterations use step size $t^{(k)}=1$
- $\|\nabla f(x)\|_{2}$ converges to zero quadratically:

$$
\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k+1)}\right)\right\|_{2} \leq\left(\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}\right)^{2} \leq \frac{1}{2}
$$

We've set $\eta \leq \frac{L^{2}}{m}$, thus for $k+1$ and $\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}<\eta$, we have:

$$
\left\|\nabla f\left(x^{(k+1)}\right)\right\|_{2} \leq \frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}^{2}<\frac{\eta^{2} L}{2 m^{2}} \leq \frac{\eta}{2}<\eta
$$

and it holds for $\forall l>k$. More generally:

$$
\begin{gathered}
\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(l)}\right)\right\|_{2} \leq\left(\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}\right)^{2^{l-k}} \leq\left(\frac{1}{2}\right)^{2^{l-k}} \\
\left\|\nabla f\left(x^{(l)}\right)\right\|_{2}^{2} \leq \frac{4 m^{4}}{L^{2}}\left(\frac{1}{2}\right)^{2^{l-k+1}}
\end{gathered}
$$

From strong convexity we know:

$$
\begin{gathered}
f(x)-p^{*} \leq \frac{1}{2 m}\|\nabla f(x)\|_{2}^{2} \\
f\left(x^{(l)}\right)-p^{*} \leq \frac{1}{2 m}\left\|\nabla f\left(x^{(l)}\right)\right\|_{2}^{2} \leq \frac{2 m^{3}}{L^{2}}\left(\frac{1}{2}\right)^{2^{l-k+1}} \leq \epsilon
\end{gathered}
$$

It implies that it converges fast at this phase.
Define $\epsilon_{0}=\frac{2 m^{3}}{L^{2}}$, then we have that, We can bound the number of iterations in the quadratically convergent phase by:

$$
\log _{2} \log _{2}\left(\frac{\epsilon_{0}}{\epsilon}\right)
$$

Consider a function f which is ρ-Lipschitz, updated via sub-gradient descent.

Something we need to prove in advance to make the conclusion obvious:

$$
\begin{aligned}
& \because f\left(x^{(t+1)}\right)-f\left(x^{*}\right) \geq 0 \\
& \quad f\left(x^{(t+1)}\right)-f\left(x^{(t)}\right) \leq 0 \\
& \therefore\left\langle x^{(t+1)}-x^{(t)}, g^{(t+1)}\right\rangle \leq 0 \leq\left\langle x^{(t+1)}-x^{*}, g^{(t+1)}\right\rangle \\
& \Longleftrightarrow\left\langle x^{(t+1)}-x^{*}, x^{(t+1)}-x^{(t)}\right\rangle \leq 0 \\
& \therefore\left\|x^{(t)}-x^{(t+1)}\right\|^{2} \leq\left\|x^{(t)}-x^{*}\right\|^{2}-\left\|x^{(t+1)}-x^{*}\right\|^{2}
\end{aligned}
$$

I have a figure to illustrate this relation on the next page.

Figure: Illustration of why we conclude

$$
\begin{aligned}
& \left\|x^{(t)}-x^{(t+1)}\right\|^{2} \leq\left\|x^{(t)}-x^{*}\right\|^{2}-\left\|x^{(t+1)}-x^{*}\right\|^{2} \text { from } \\
& \left\langle x^{(t+1)}-x^{*}, x^{(t+1)}-x^{(t)}\right\rangle \leq 0
\end{aligned}
$$

Example of Lipschitz: Sub-gradient Analysis I

$$
\begin{aligned}
& \left(\because\left(x^{(t)}-x^{(k)}\right) g^{(t)} \leq f\left(x^{(t)}\right)-f\left(x^{(k)}\right)\right) \\
& f\left(x^{(t)}\right)-f\left(x^{*}\right) \leq \sum_{t=1}^{T}\left(f\left(x^{(t)}\right)-f\left(x^{(t+1)}\right)\right) \\
\leq & \sum_{t=1}^{T}\left(x^{(t)}-x^{(t+1)}\right)^{T} g^{(t)} \quad\left(\because a^{2}+b^{2} \geq 2 a b\right) \\
\leq & \sum_{t=1}^{T}\left(\frac{\left\|x^{(t)}-x^{(t+1)}\right\|^{2}}{2 \eta}+\frac{\eta}{2}\left\|g^{(t)}\right\|^{2}\right) \\
\leq & \sum_{t=1}^{T} \frac{\left\|x^{(t)}-x^{*}\right\|^{2}-\left\|x^{(t+1)}-x^{*}\right\|^{2}}{2 \eta}+\sum_{t=1}^{T} \frac{\eta}{2}\left\|g^{(t)}\right\|^{2} \\
= & \frac{\left\|x^{(0)}-x^{*}\right\|^{2}-\left\|x^{(T+1)}-x^{*}\right\|^{2}}{2 \eta}+\frac{\eta}{2} \sum_{t=1}^{T}\left\|g^{(t)}\right\|^{2}
\end{aligned}
$$

Assume that f is ρ-Lipschitz, then we have $\left\|g^{(t)}\right\| \leq \rho(\forall t)$. Also, $x^{(0)}=0, \lim _{t \rightarrow \infty} x^{(t)} \rightarrow x^{*}$.

$$
f\left(x^{(t)}\right)-f\left(x^{*}\right) \leq \frac{\left\|x^{(0)}-x^{*}\right\|^{2}-\left\|x^{(T+1)}-x^{*}\right\|^{2}}{2 \eta}+\frac{\eta}{2} \sum_{t=1}^{T}\left\|g^{(t)}\right\|^{2}
$$

$$
\frac{1}{T}\left(f\left(x^{(t)}\right)-f\left(x^{*}\right)\right) \leq \frac{\left\|x^{*}\right\|^{2}}{2 \eta T}+\frac{\eta \rho^{2}}{2}
$$

For every x^{*}, if $T \geq \frac{\left\|x^{*}\right\|^{2} \rho^{2}}{\epsilon^{2}}$ and $\eta=\sqrt{\frac{\left\|x^{*}\right\|^{2}}{\rho^{2} T}}$, then the right hand side of the last inequation is at most ϵ.

Examples
鹵

Accelerated Methods for Non-Convex Optimization

- Design accelerated methods that doesn't rely on convexity of the optimization problem.
- It relies on that the problem has L_{1}-Lipschitz continuous gradient and L_{2}-Lipschitz continuous Hessian.
- Calculate a score α according to L_{1}, ϵ, and the gradient $\nabla f(x)$ to decide whether or not negative curvature descent should be conducted at each step.
- Apply accelerated gradient descent for almost-convex function made for the almost-convex point at each step to update that point.

Gradient descent with One-Step Escaping (GOSE)

Saving gradient and negative curvature computations:
Finding local minima more efficiently

- Doesn't require the original problem to be convex.
- Develops an algorithm with fewer steps of computing the negative curvature descent ${ }^{7}$.
- Divide the entire domain of the objective function into two regions (by comparing $\|\nabla f(x)\|_{2}$ with ϵ): large gradient region, small gradient region; and then perform gradient descent-based methods in the large gradient region, and only perform negative curvature descent in the small gradient region.
Official code in PyTorch:
https://github.com/yaodongyu/gose-nonconvex.
${ }^{7}$ Useful for escaping the small-gradient regions.

Multi-Task Learning as Multi-Objective Optimization work on solving the problem of that multiple tasks might conflict.

- Use the multiple-gradient-descent algorithm (MGDA) optimizer;
- Define the Pareto optimality for MTL (in brief, no other solutions dominants the current solution);
- Use multi-objective KKT (Karush-Kuhn-Tucker) conditions and find a descent direction that decreases all objectives.
- Applicable to any problem that uses optimization based on gradient descent.
Implementation: https://github.com/hav4ik/Hydra

