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Background Introduction





References 4

Shape Analysis Course Chapter 9

▶ The textbook Chapter 9, and the course slides (mostly
8-10) (Could be found from Geometric Data Processing
Group)

▶ Shape Analysis (Lectures 12-13): The Laplacian operator
on intervals, regions, graphs, and manifolds — On YouTube

▶ Shape Analysis (Lectures 13, extra content): Divergence of
tangent vector fields — On YouTube

▶ Shape Analysis (Lectures 14): Laplacian operators via
first-order Galerkin finite elements (FEM) — On YouTube

▶ Shape Analysis (Lectures 14, extra content): A simple
Laplacian on point clouds — On YouTube

▶ Shape Analysis (Lecture 15): Applications of the Laplacian
in graphics, vision, and learning — On YouTube

http://groups.csail.mit.edu/gdpgroup/assets/6838_spring_2021/chapter9.pdf
http://groups.csail.mit.edu/gdpgroup/assets/6838_spring_2021/
http://groups.csail.mit.edu/gdpgroup/assets/6838_spring_2021/
http://groups.csail.mit.edu/gdpgroup/courses.html
http://groups.csail.mit.edu/gdpgroup/courses.html
https://www.youtube.com/watch?v=VZMZUeIVUuA&list=PLQ3UicqQtfNtUcdTMLgKSTTOiEsCw2VBW&index=16
https://www.youtube.com/watch?v=VZMZUeIVUuA&list=PLQ3UicqQtfNtUcdTMLgKSTTOiEsCw2VBW&index=16
https://www.youtube.com/watch?v=7hTd6aVfAvQ&list=PLQ3UicqQtfNtUcdTMLgKSTTOiEsCw2VBW&index=18
https://www.youtube.com/watch?v=7hTd6aVfAvQ&list=PLQ3UicqQtfNtUcdTMLgKSTTOiEsCw2VBW&index=18
https://www.youtube.com/watch?v=ZtNr184BFlc&list=PLQ3UicqQtfNtUcdTMLgKSTTOiEsCw2VBW&index=19
https://www.youtube.com/watch?v=ZtNr184BFlc&list=PLQ3UicqQtfNtUcdTMLgKSTTOiEsCw2VBW&index=19
https://www.youtube.com/watch?v=HAPTxiRIZMg&list=PLQ3UicqQtfNtUcdTMLgKSTTOiEsCw2VBW&index=20
https://www.youtube.com/watch?v=HAPTxiRIZMg&list=PLQ3UicqQtfNtUcdTMLgKSTTOiEsCw2VBW&index=20
https://www.youtube.com/watch?v=agshrU5fE_0&list=PLQ3UicqQtfNtUcdTMLgKSTTOiEsCw2VBW&index=21
https://www.youtube.com/watch?v=agshrU5fE_0&list=PLQ3UicqQtfNtUcdTMLgKSTTOiEsCw2VBW&index=21


The Idea 5

Basic Approach of Shape Analysis: Operator Base.

▶ Understanding the structure of operators on functions.

The main operator we focus on: Laplacian

▶ Input: function on a manifold

▶ Output: the function which is the second derivative of the
input at every point

▶ Eigenvalues and Eigenvectors of Laplacian infer a lot of
information about the shape / manifold

▶ Discrete Laplacian Operators enables a lot of applications,
following the outline: find some matrix approximating
Laplacian, do linear algebra calculation, find something...

▶ Same calculation from low to high dimensional space, a
“sledgehammer”



Warning 6

No clear convention on the sign of Laplacian among
mathematicians, physics, computer scientists.

Here we try to stick to the convention:

▶ Non-negative Eigenvalues

▶ It is minus the sum of the second derivatives

▶ Discretize it to be a positive semidefinite matrix

Not gonna have time to build up the theory of Laplacian
Operator from the ground up (i.e. function, spaces,
differentiable manifolds, etc.).
Instead: feel of how it behaves, how it is constructed, etc.



A Famous Example 7

Can One Hear the Shape of a Drum?

Around 1960s, not the first one on the topic, but the most
memorable one.

https://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/MarkKac.pdf


A Famous Example 8

What is it asking?

▶ From the sound you hear from a drum, can you reconstruct
the shape of that drum?

▶ Can I reconstruct a piece of geometry from an audio signal?

▶ From the 1-D frequency signal, can we reconstruct the high
dimensional shape?

Sounds impossible at first but...

A 1-D version of the question:

▶ Can we reconstruct the length of string (of a guitar) from
the sound it makes?

There is a relationship between the length of the string (the
shape) and the frequency of vibration you hear.
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A Famous Example 9

The answer in the 1-D space is YES, but for the drum is NO.

Reason: There are drums that are either spectral (but very
rare). There are two drums in the universe that makes exactly
the same vibrations but have different shape.



Rough Intuition 10

Decompose the vibration modes into a list of frequencies and
eigenfunctions. Revealing quite a bit of the shape.



Spectral Geometry 11

What can you learn about a shape based on its: (1) vibration
frequencies and (2) oscillation patterns?

▶ We can compute it via Laplacian.

▶ Ends up in (1) eigenvalues and (2) eigenvectors.

∆f = λf



Quick Recap: Vector Space and Linear Operator 12

Linear Operator L is something that satisfies:

L[x+ y] = L[x] + L[y]

L[cx] = cL[x]

The finite dimensional case (but it will be dangerous to infer it
this way when infinite dimensional space would be involved):

L[x] = Ax ,

where A is a matrix and x is a vector.



Quick Recap: Spectral Theorem 13

Theorem.
Suppose a complex square matrix A ∈ Cn×n is Hermi-
tian.1 Then, A has an orthogonal basis of n eigen-
vectors. If A is positive definite, the corresponding
eigenvalues are nonnegative.

Orthogonal basis: any two eigenvector correspond to different
eigenvalues are necessarily orthogonal.

1Equal to its own conjugate transpose.



Spectral Theorem in R 14

In the real-value case Hermitian means symmetric.

And these eigenvectors span Rn.

Row Theorem of A ∈ Rn×n:

Span(columns of A) = Rn ⇐⇒ There is a pivot in every row

Ax = b is consistent for every b

How to examine “there is a pivot in every row”: apply row
addition / subtraction and guarantee that in the end no row
becomes 0.



Spectral Theorem: Proof of Orthogonal Basis 15

Suppose a real square matrix A ∈ Rn×n is Hermitian i.e.
Symmetric.

Ax = λx Ay = µy x ̸= 0,y ̸= 0, λ ̸= µ

If x and y are orthogonal, then xTy = 0.

Proof:
λxTy = (Ax)Ty = xTATy = xT (Ay)

= xTµy = µxTy

∴ 0 = (λ− µ)xTy

Given λ ̸= µ, we have xTy = 0.
Will be able to extended to Hermitian operators that satisfies
⟨x,Ay⟩ = ⟨Ax,y⟩.



Spectral Theorem Proof of Nonnegative Eigenvectors 16

Suppose a real square matrix A ∈ Rn×n is Hermitian i.e.
Symmetric. and positive definite.

λ = λxTx = xT (λx) = xTAx > 0 ,

because of that A is positive definite. (If positive-semidefinite
then ≥ 0)



Quick Recap: Integration by Parts 17

This is something we’ll use frequently in computation.∫ b

a
u(x)v′(x)dx = [u(x)v(x)]ba −

∫ b

a
u′(x)v(x)dx

Or, let u = u(x) and du = u′(x)dx, while v = v(x) and
dv = v′(x)dx ∫

udv = uv −
∫
vdu



Wave Equation





1-D Wave Equation: Problem Definition 19

“Can You Hear the Shape of a Line Segment?” /
“Can You Hear the Length of an Interval?”

A many-particle physical system with n+ 1 particles, each with
mass m, along the interval of length ℓ, attached by strings with
constant k, and rest length 0.

The particles are spaced distance h = ℓ/n apart, and particles 0
and n are fixed in place.

Suppose at time t = 0, each particle i is displaced horizontally
(i.e. 1-D vibration) by signed distance ui from its rest position
ℓi/n.

Our goal is to track their motion over time.



1-D Wave Equation: Illustration 20

particle 0

mass m

particle 1 particle n

……

l

rest position

h u displacement

Positive ui: displaced to the right; Negative ui: displaced to the
left. Fix the end particles (0 and n). ℓ = 0 when we are not
stretching it (rest length).



1-D Wave Equation: Wave Equation 21

From Newton’s second law: ma = F and we consider only the
neighbors,

m
d2ui
dt2

= k(ui+1 − ui) + k(ui−1 − ui) = k(ui+1 + ui−1 − 2ui) ,

suppose i ∈ {1, 2, . . . n} and n→ ∞.
The right hand side approximates a second derivative.

u(x, t): the displacement of particle at position x when t. Then
as n→ ∞, it resembles the solution of the partial differential
equation known as wave equation:

∂2u(x, t)

∂t2
= c2

∂2u(x, t)

∂x2
,

where c2 absorbs all physical constants.



1-D Wave Equation: Proof 22

Since:

F = m
d2ui
dt2

= k(ui+1 + ui−1 − 2ui) ,

Therefore, if we stack the unknown u values into a
vector-valued function u(t) ∈ Rn−1, then the second derivative
u′′(t) = −c2Lu(t), where

L =


2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2





1-D Wave Equation: Proof 23

u′′(t) = −c2Lu(t) ,

If we assume that x is the direction of the string, then:

d2ui
dx2

≈
ui+1−ui

h − ui−ui−1

h

h
=
ui+1 + ui−1 − 2ui

h

L =


2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2

 ≈ d2

dx2

If we take n→ ∞:
∂2u

∂t2
= c2

∂2u

∂x2



The Wave Equation: Basic Form 24

∂2u

∂t2
− ∂2u

∂x2
= 0

We will think of our operators as acting on functions spatially.

The “string” abstraction:

{f(·) ∈ C∞([0, ℓ]) : f(0) = f(ℓ) = 0}

f(0) = f(ℓ) = 0: “Dirichlet boundary conditions”.

L[·] : u 7→ −∂
2u

∂x2

Can be interpreted as positive (semi-)definite matrix.



The Wave Equation: Show that L is PSD 25

uTLu =

n−1∑
i=1

ui(Lu)i //u0 = un = 0

=

n−1∑
i=1

ui(2ui − ui−1 − ui+1)

= 2

n−1∑
i=1

u2i −
n−1∑
i=1

uiui−1 −
n−1∑
i=1

uiui+1

=

n∑
i=0

u2i +

n∑
i=0

u2i−1 − 2

n∑
i=0

uiui−1

=

n∑
i=0

(ui − ui−1)
2 ≥ 0



The Wave Equation: Show that L is PSD 26

The discrete version is simple. The continuous version:

L[·] : u 7→ −∂
2u

∂x2

⟨u,L[u]⟩ =
∫ b

a
u(x) · −∂

2u(x)

∂x2
dx

=
[
− ∂2u(x)

∂x2
u(x)

]b
a
+

∫ b

a

∂u(x)

∂x
· ∂u(x)
∂x

dx

=

∫ b

a

(∂u(x)
∂x

)2
dx // boundary term is equal to zero

≥ 0 // where a = 0, b = ℓ∫ b
a

(
∂u(x)
∂x

)2
dx : “Dirichlet Energy of function u”



The Wave Equation: Eigenfunctions 27

Again we consider:

L[·] : u 7→ −∂
2u

∂x2

Then we have eigenfunctions as:

ϕk(x) =

√
2

ℓ
sin

(πkx
ℓ

)
, λk =

(πk
ℓ

)2

Applying the L operator:

L[ϕk(x)] = −
√

2

ℓ

(πk
ℓ

)2
sin

(πkx
ℓ

)
= λkϕk(x)

⟨ϕk, ϕm⟩ = δkm δkm is 1 iff k = m otherwise δkm = 0



The Wave Equation: Solution 28

Fourier series with the help of eigenvalue & eigenvector
(discrete) / eigenfunction (smooth), solve the wave equation in
some sort of closed form.

u′′(t) = −c2Lu(t)
∂2u

∂t2
= −c2L[u]



The Wave Equation: Discrete 29

u′′(t) = −c2Lu(t) ,

with L already proved to be positive semi-definite. According
to the spectrum theory: ∃ eigenvectors ϕk, eigenvalues λk,
where the ϕk are orthonormal and span Rn.

u(t) =
∑
k

uk(t)ϕk

Then we have:∑
k

(uk)′′(t)ϕk = u′′(t) = −c2Lu(t)

= −c2L
∑
k

uk(t)ϕk = −c2
∑
k

uk(t)λkϕk

(uk)′′(t) = −c2uk(t)λk



The Wave Equation: Discrete 30

We now have the ordinary differential equation in just one
variable:

(uk)′′(t) = −c2uk(t)λk
A standard solution of this ODE shows as a consequence that

uk(t) = ak sin
(
c
√
λkt

)
+ bk cos

(
c
√
λkt

)
After knowing λk and parameter c, we can compute the actual
value of ak and bk from some known data points e.g. when
t = 0 and then we can construct the closed form solution of the
wave equation.



The Wave Equation: Continuous 31

The continuous case ∂2u
∂t2

= −c2L[u] have similar form of
solution.

uk(t) = ak sin
(
c
√
λkt

)
+ bk cos

(
c
√
λkt

)
,

with continuous ϕ,

ϕk(x) =

√
2

ℓ
sin

(πkx
ℓ

)
, λk =

(πk
ℓ

)2

So the answer to the question:
“Can You Hear the Length of an Interval?”
is: YES. We hear it from λk.



Regions in Rn
32

The n-dimensional version is not much more complicated than
the 1-dimensional version.

∂2u

∂t2
= −∆u

∆ := −
∑
i

∂2

∂(xi)2
= −∇ · ∇ ,

where ∇ is the gradient operator.



Wave Equation: Regions in Rn
33

We first consider wave equation on a compact domain Ω ⊆ Rn,
the flat region on an n-dimensional space. Its boundary
∂Ω ⊂ Rn is a a smooth (n− 1)-dimensional submanifold.

When n = 2, it encapsulates the case of a vibrating drum head.

We consider the wave modeled by u(x, t), t ≥ 0. This time
x ∈ Ω is location/particle in an N-D domain, instead of on a
1-D string.

∂2u(x, t)

∂t2
=

∑
i

∂2u(x, t)

∂(xi)2

u|∂Ω ≡ 0 (the Dirichlet boundary conditions)



Wave Equation: Regions in Rn
34

Following similar steps we’ve had in 1-D space, we are
motivated to find the eigenvalues of the operator:

∆[·] : u(x, t) 7→ −
∑
i

∂2u(x, t)

∂(xi)2

which takes the place of L, and is also called a Laplacian (in the
Rn space), often denoted as

∆ := − ∇ ·︸ ︷︷ ︸
divergence

∇︸︷︷︸
gradient

∆ := −
∑
i

∂2

∂(xi)2
= −

(
∂

∂x1 . . . ∂
∂xn

)︸ ︷︷ ︸
∇T


∂

∂x1

...
∂

∂xn


︸ ︷︷ ︸

∇



Wave Equation: Invariant Vibration Mode 35

It is not yet clear from the following expression:

∂2u(x, t)

∂t2
=

∑
i

∂2u(x, t)

∂(xi)2

u|∂Ω ≡ 0

that ∆ = −∇ · ∇ is invariant to rigid motion (because of i).

This property can be verified by this Proposition:

Suppose g(x) := f(Rx+t), where RTR = RRT = In×n.
Then, ∆g(x) = [∆f ](Rx+ t).



Laplacian Rigid-Motion Invariance Proof 36

Checking invariance to translation by verifying that y and x
have the same Laplacian, starting with chain rule:

y := Rx+ t

∂

∂xi
=

∑
j

∂yj

∂xi
∂

∂yj
=

∑
j

Rj
i

∂

∂yj

∆x = −
∑
i

∂2

∂(xi)2
= −

(∑
j

Rj
i

∂

∂yj

)
·
(∑

j

Rj
i

∂

∂yj

)
= −

∑
j

∂2

∂(yj)2
= ∆y



Laplacian Rigid-Motion Invariance Proof 37

Or from an abstract level what we did:

∇x = RT∇y

∆x = −∇T
x∇x = −∇yRR

T∇y = −∇y∇y = ∆y

Conclusion: our Laplacian operator is coordinate i independent.
It is okay to rotate it / move it and it still have the same
Laplacian.



Laplacian: Measure Smoothness 38

Now we move out of the scope of the drum scenario. There are
a lot more that Laplacian can handle.

On most obvious thing is that Laplacian could be used to
measure how smooth a function is.

Here we have the example of Dirichlet Energy and Harmonic
Functions. This example has little to do with Physics.



Dirichlet Energy and Harmonic Functions 39

Suppose u : ∂Ω 7→ R, we wish to interpolate u o the interior of
Ω. We have the Dirichlet energy of function u, which measures
the total norm of its gradient.

E[u] :=
1

2

∫
Ω
∥∇u(x)∥22dx

Here we would like to seek a smooth function (small norm
gradient) that satisfies our boundary constraints.

min
u(x):Ω7→R

E[u]

subject to u|∂Ω prescribed

The solution would be ∆u(x) ≡ 0, which is called a “Harmonic
function” or “Laplace equation”.



Dirichlet Energy and Harmonic Functions: Proof 40

The way we solve it (
∮
for contour integral): 2

min
u(x):Ω7→R

E[u]

subject to u|∂Ω prescribed

E[u] =
1

2

∫
Ω
∥∇u(x)∥22dx

=
1

2

∫
Ω
∇u(x) · ∇u(x)dx

=
1

2

∮
∂Ω
u(x)∇u(x) · n(x)dx+

1

2

∫
Ω
u(x)∆u(x)dx

The fancy way of write
∫
Ω u(x)∆u(x)dx could be ⟨u(x),∆u(x)⟩,

the inner product form.

2see: multi-variable integration by parts.

https://en.wikipedia.org/wiki/Contour_integration
https://en.wikipedia.org/wiki/Integration_by_parts


Dirichlet Energy and Harmonic Functions: Proof 41

1
2

∮
∂Ω u(x)∇u(x) · n(x)dx is the prescribed boundary term. We

will use variational derivative to prove that ∆u(x) ≡ 0.

First, assume we have a perturbation w : Ω 7→ R, w|∂Ω ≡ 0; and
we assume that u is optimal.

Then we know: u+ hw will satisfy the boundary constraints.

d

dh
E[u+ hw]|h=0 = 0



Dirichlet Energy and Harmonic Functions: Proof 42

Why does:
d

dh
E[u+ hw]|h=0 = 0

the equation holds?

Because: u is optimal, minimizing E[·] to the local minimum.
When h = 0 we are at the local minimum point. Otherwise
E[u+ hw] goes higher in both direction.



Dirichlet Energy and Harmonic Functions: Proof 42

Why does:
d

dh
E[u+ hw]|h=0 = 0

the equation holds?

Because: u is optimal, minimizing E[·] to the local minimum.
When h = 0 we are at the local minimum point. Otherwise
E[u+ hw] goes higher in both direction.



Dirichlet Energy and Harmonic Functions: Proof 43

We can ignore the boundary term because that part has
nothing to do with h.

d

dh
E[u+ hw]|h=0 = 0

d

dh

[1
2

∫
Ω
(u+ hw)(x)∆((u+ hw)(x))d(x)

]
h=0

= 0

Applying the product rule (to pass the d
dh inside the integral):

1

2

∫
Ω
w(x)∆u(x) + u(x)∆w(x)dx

=

∫
Ω
w(x)∆u(x)dx = 0



Dirichlet Energy and Harmonic Functions: Proof 44

It is true for ∀w : Ω 7→ R, w|∂Ω ≡ 0 that,∫
Ω
w(x)∆u(x)dx = 0

Therefore, ∆u(x) ≡ 0 in the interior of Ω.

That is the Harmonic functions, whose:

▶ Boundaries are prescribed;

▶ Interior is smooth.



Harmonic Functions: Property 45

Harmonic functions satisfies a lot of nice properties, such as the
mean value property: If you pick an area in the domain, the
center value is equal to the average of the area.



Harmonic Functions: Application 46

Cage-Based Deformation: compute the inner points as a linear
combination of the boundary points. 3

Also based on the fact that in 3-D case we have closed-form
solution for harmonic functions etc. (*)

3The Pixar Paper

https://graphics.pixar.com/library/HarmonicCoordinates/paper.pdf


Laplacian Properties on Rn
47

Given {f(·) ∈ C∞ : f |∂Ω ≡ 0}. Define the Laplacian as:

L := ∆f

and the inner product as:

⟨f, g⟩ :=
∫
Ω
f(x)g(x)dx

The Laplacian is:

▶ Positive: ⟨f,L[f ]⟩ ≥ 0 (“positive semi-definite”)

▶ Self-adjoint: ⟨f,L[g]⟩ = ⟨L[f ], g⟩ (“symmetric”)



Laplacian Properties on Rn: Proof 48

Note that f(x) ≡ 0 on the boundary ∂Ω. The integral on the
boundary results in zero (using the trick of integration by
parts).

⟨f,L[f ]⟩ = −
∫
Ω
f(x)∇ · ∇f(x)dx

= −
∮
∂Ω
f(x)∇f(x)dx+

∫
Ω
∇f(x)∇f(x)dx

=

∫
Ω
∥∇f(x)∥22dx ≥ 0



Laplacian Properties on Rn: Proof 49

Similarly we have (f and g are both ≡ 0 on the boundary):

⟨f,L[g]⟩ = −
∫
Ω
f(x)∇ · ∇g(x)dx

= −
∮
∂Ω
f(x)∇g(x)dx+

∫
Ω
∇f(x)∇g(x)dx

=

∫
Ω
∇f(x)∇g(x)dx

= ⟨g,L[f ]⟩



Coming Back to the Drum 50

min
u(x):Ω7→R

1

2

∫
Ω
∥∇u(x)∥22d(x)

subject to

∫
Ω
u(x)2dx = 1

Why we set u(x)2dx = 1 instead of = 0? Because:

▶ scaling a function by a constant does not affect its
qualitative structure;

▶ 0 is super smooth but a not interesting case;

▶ looking for small Dirichlet energy but doesn’t want zero
Dirichlet energy.

We seek to solve ∆u = λu, where the eigenvalue λ is the
Lagrange multiplier, and it actually is equal to the Dirichlet
energy of u.



Coming Back to the Drum 51

The eigenvalue λ is equal to the Dirichlet energy of u. The
larger λ is, the higher Dirichlet Energy, and the more “wiggly”
the corresponding eigenfunction would be.

∆uk = λkuk

we are going to see infinite sequence of it — finding a new
eigenfunction uk by changing λk.
Weyl’s Law: you can sense the dimensionality of domain Ω by
looking at the sequence of Laplacian eigenvalues.

https://en.wikipedia.org/wiki/Weyl_law


Can You Hear the Shape of a Drum? 52

The formal version of the “Can you hear the shape of a drum?”
problem:

Do there exist two domains Ω with the same sequence
of eigenvalues?



Discretization





Graph Definition 54

We define the graphs as G = {V,E} where there is a value
assigned to each vertex vi ∈ V .

Question: what is the Dirichlet Energy of a function on a
graph?

Answer: Dirichlet Energy measures smoothness. We can
estimate “smoothness” in this way:

DE[f ] =
∑

(i,j)∈E

(f(vi)− f(vj))
2
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Differencing Operator D 55

The differencing operator D ∈ {−1, 0, 1}|E|×|V | is defined as:

Dev :=


−1 if j ∈ V, (v, j) ∈ E

1 if i ∈ V, (i, v) ∈ E

0 otherwise

The computation is cumulative. e.g. If there are 2 “in-edge” at
a node then we do +2 on it, for 3 “out-edge” we do −3, etc.



Dirichlet Energy Defined on D 56

Given f ∈ Rn on G = (V,E) where there are |V | = n vertices.
The Dirichlet Energy can be formally re-defined as:

DE[f ] :=
∑

(i,j)∈E

(f i − f j)2 = ∥Df∥22 = fTDTDf := fTLf

where L is the unweighted Graph Laplacian.



Unweighted Graph Laplacian Operator L 57

The unweighted graph Laplacian L ∈ R|V |×|V | on an undirected
graph is defined as:

Lij := DTD = D −A =


−1 if (i, j) ∈ E or (j, i) ∈ E

degree(i) if i = j

0 otherwise

where A is the adjacency matrix, D is the diagonal Degree
matrix, D is the Differencing Operator.



Unweighted Graph Laplacian Operator L 58

It is easy to see that Lij is:

▶ Symmetric when the graph is undirected;

▶ Positive Semi-Definite because the Dirichlet Energy is
non-negative.

More interesting correlations would be found if we consider a
line-graph special case, and compare it to where we started to
dive in — the line segment with many particles. (*)



Graph Laplacian Operator L: Properties 59

The second smallest graph eigenvector: (*)

▶ The smallest graph eigenvalue: 0, not exciting;

▶ The second smallest graph eigenvalue: the corresponding
eigenvector becomes very interesting, called the Fiedler
vector, or the “algebraic connectivity” of the graph.

▶ Intuitive understanding: not being trapped in a local
optimal point, being the smoothiest possible, thus
providing suggestion for graph partitioning.



Graph Laplacian Operator L: Properties 60

Mean value property satisfied:

(Lx)v = 0 ⇐⇒ value at v is average of neighboring values

This property is useful for e.g. surface parameterization.



Graph Laplacian Operator L: Properties 61

Kirchoff’s Theorem
Number of spanning trees equals

t(G) =
1

|V |

|V |∏
k=2

λk

For more: Spectral Graph Theory

https://en.wikipedia.org/wiki/Spectral_graph_theory


Can You Hear the Shape of a Graph? 62

That is: can you re-construct the graph structure from the
eigenvalues?

Many reasons to say “NO” include but not limited to this case
of a pair of cospectral Enneahedron.



Surfaces & Manifolds





Quick Recap: Functions on Manifolds 64

Function f on a manifold maps the points to real numbers.

e.g. Color function as a scalar associated with every point.



Quick Recap: Differential of a Map 65

Linear map of tangent spaces:

dφp(γ
′(0)) := (φ ◦ γ)′(0)

Formally, φ : M → N is a map from a submanifold M ⊆ Rk

into a submanifold N ⊆ Rℓ, and the differential of φ at point
p ∈ M, dφp : TpM → Tφ(p)N is given by

dφp(v) := (φ ◦ γ)′(0) ,

γ : (−ϵ, ϵ) → M is any curve with γ(0) = p and
γ′(0) = v ∈ TpM.

TpM denotes the tangent space of M at p.



Quick Recap: Differential of a Map 66

The image is from Wikipedia Pushforward.

dφp(γ
′(0)) := (φ ◦ γ)′(0)

If φ is a map from one space to another, then the differential of
a map φ at a particular point on my source domain M is a
function that is linear on the tangent plane to my manifold.

https://en.wikipedia.org/wiki/Pushforward_(differential)


Quick Recap: Differential of a Map 67

What it does: For every tangent vector, it maps it to the
directional derivative of the map φ in that tangent vector
direction.

That is the definition of the differential of a map.

In our case, we are mapping the manifold to R so it is not
complicated at this part.

Beyond that, we will need to define the gradient so that we will
be able to define the Dirichlet Energy and the Laplacian.



Quick Recap: Differential of a Map 67

What it does: For every tangent vector, it maps it to the
directional derivative of the map φ in that tangent vector
direction.

That is the definition of the differential of a map.

In our case, we are mapping the manifold to R so it is not
complicated at this part.

Beyond that, we will need to define the gradient so that we will
be able to define the Dirichlet Energy and the Laplacian.



Gradient Vector Field 68

Given manifold M ⊆ Rm and f : M → R. For each p ∈ M,
there exists a unique vector ∇f(p) ∈ TpM so that ∀v ∈ TpM:

dfp(v) = v · ∇f(p)

In the flat case, this fancy feature is saying that there exists a
gradient vector. Now we are extending it to the curved surface.



Gradient Vector Field: Proof 69

Take basis bi, . . . ,bm ∈ TpM (where m is the dimension of our
manifold) for the tangent space at p of our manifold TpM.

Define ai := dfp(bi).

▶ We are taking the directional derivative of f at each of the
basis directions and getting the scalar ai.

Define the inner product matrix with elements:

gij = bi · bj ,

with inverse matrix g−1 being gij .



Gradient Vector Field: Proof 70

We are going to define a matrix and check that it is the
gradient we want. Claim,

∇f(p) = x :=
∑
ij

aig
ijbj

∀v ∈ TpM, decompose it into the linear combination of basis
v =

∑
i v

ibi. Then, by definition of v and x,

v · x =
∑
i

vibi ·
∑
kℓ

akg
kℓbℓ



Gradient Vector Field: Proof 71

Next, by definition of gij = bi · bj ,∑
i

vibi ·
∑
kℓ

akg
kℓbℓ =

∑
ikℓ

viakg
kℓbibℓ

=
∑
ikℓ

viakg
kℓgiℓ

The term gkℓgiℓ could be regarded as (g−1g)ki , which is
essentially δk=i. We are cancelling the matrix and its inverse.
Therefore, ∑

ikℓ

viakg
kℓgiℓ =

∑
i

viai

By definition of ak we have,∑
i

viai =
∑
i

vidfp(bi)



Gradient Vector Field: Proof 72

By linearity,∑
i

vidfp(bi) = dfp

(∑
i

vibi

)
= dfp(v)

All in all,
v · x = dfp(v)

for any v, thus x is the gradient vector.

x is unique. There is no other x satisfying this condition. (*)



Dirichlet Energy on Surface 73

The Dirichlet Energy of a function f : M → R:

E[f ] :=

∫
S
∥∇f∥22dA

where A = vol(p). 4

4https://en.wikipedia.org/wiki/Volume_form

https://en.wikipedia.org/wiki/Volume_form


Laplace-Beltrami Operator 74

“Motivated” by finite-domain linear algebra, inner product of
the gradients of f and g:

⟨f, g⟩∆ :=

∫
S
∇f(x)∇g(x)dA

= ⟨f,∆g⟩ = ⟨∆f, g⟩

The definition of inner product implies that ⟨f, f⟩ ≥ 0

Relating it back to the graph (G = (V,E)) case, where D is the
Differencing Operator:

(Df)T (Dg) = fTDTDg = fT (DTD)g = fTLg

= fT (DTDg) = fT∆g



Laplace-Beltrami Operator 75

Laplace-Beltrami Operator: Laplace Operator, associated to
smooth manifolds.

Suppose M M has no boundary. Then, for each smooth
function f : M → R, there is a smooth function ∆f so that for
all smooth g : M → R,

⟨f, g⟩∆ :=

∫
M

∇f(p)∇g(p)dvol(p)

=

∫
M
[∆f ](p)g(p)dvol(p)

Formal proof will need Riesz representation theorem. (*)
In the manifold case, ∆ = −∇ · ∇ still holds.

https://en.wikipedia.org/wiki/Riesz_representation_theorem


Laplace-Beltrami Operator: Divergence 76

Laplacian is the divergence of gradient.

∆ = −∇ · ∇

Now what we can do is to define the divergence (previously we
had the gradient defined).

The divergence of a tangent vector field v to a submanifold
M ⊆ Rn at point p ∈ M is given by

∇ · v(p) :=
m∑
k=1

ek · dv(ek)

where e1, . . . , em ∈ TpM form an orthonormal basis. 5

5Sometimes we write ∇ · v(p) as (∇ · v)p.



Laplace-Beltrami Operator: Divergence 77

Suppose that n = 3 and m = 2, we have:

∇ · v(p) :=
2∑

i=1

ei · dv(ei) =
2∑

i=1

⟨ei, dv(ei)⟩p

Regarded as an extension of the plane case, which says:

∇ · v(x) :=
∑
i

∂vi(x)

∂xi

(*) Some other way of obtaining divergence: Flux Density
backward definition. A more physical point of view — look at a
ball on the manifold and look at a flux of a vector field out of it,
relative to its volume. 6

6https://en.wikipedia.org/wiki/Flux

https://www.sciencedirect.com/topics/engineering/flux-density
https://en.wikipedia.org/wiki/Flux


Laplace-Beltrami Operator 78

Eigenfunctions are still available.

∆ψi = λiψi

But be careful: it represents the vibration mode of the surface,
instead of the volume.



Nodal Domain 79

Theorem (Courant).

The n-th eigenfunction of the Dirichlet boundary value
problem has at most n nodal domains.



Example 1: Chladni Plates 7
80

The surface is wiggling up & down in response to the vibration
frequencies (coming from the sound).

▶ In place where the eigenfunction is equal to 0, called “nodal
domains”, the surface isn’t vibrating. The nodal domains
happen to be the stationary points.

7https://www.youtube.com/watch?v=CGiiSlMFFlI

https://www.youtube.com/watch?v=CGiiSlMFFlI


Example 2: Violin Back Plate Tuning 8
81

A strategy used by violin makers for a long time.

▶ We need a sound post in the body of a violin. The body of
the violin in expected to vibrate according to the sound
made by the strings. The sound post brings vibration from
one piece of wood to another.

▶ To avoid adding extra stress to the instrument, we find the
nodal domains to place the sound post.

8https://www.youtube.com/watch?v=3uMZzVvnSiU

https://en.wikipedia.org/wiki/Sound_post
https://www.youtube.com/watch?v=3uMZzVvnSiU


Additional Connection to Physics (*) 82

The Heat Equation:
∂u

∂t
= −∆u

▶ Can be written in the form almost identical to the wave
equation, but instead of the second derivative it uses the
first derivative.

The Spherical Harmonics:

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= 0

The Mean Curvature Flow compute Laplacian of xyz function:

∆x = Hx

▶ Intuition: Laplacian measures difference with neighbors.

https://en.wikipedia.org/wiki/Heat_equation
https://en.wikipedia.org/wiki/Spherical_harmonics
https://en.wikipedia.org/wiki/Mean_curvature_flow
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