
Dynamic Accommodation of
Performance, Power, and Reliability

Tradeoffs

Rob Knauerhase
Intel Labs

Fifth Annual Concurrent Collections Workshop

September 24, 2013

Special ACK to:

 Vivek Sarkar (co-PI)

 & team, Rice

 Kath Knobe, Intel

 U.S. Dept. of Defense

2
Rob Knauerhase

CnC’13 workshop

Overview

• Bit of Motivation

• Bit of History

• The Big Idea

• Challenges (practical and practical)

• Integration with coordinaton language, programming

language, compiler

Notes / Disclaimers:
1) I am not really a CnC programmer, but I play one on TV.

2) Much of this is work in progress or just starting

3) We overlap with and like, but are distinct from other efforts

3
Rob Knauerhase

CnC’13 workshop

Motivation

• State of the world

– moving to extreme scales (exa-*)

– high-core-count machines

– (HPC, server, and even mobile!)

– use of increased concurrency with

lower clock frequency

– “dark Si” – performance and

functional heterogeneity; NTV

and AxC

– computation becomes relatively cheap (“free”)

– data movement is a major contributor to energy usage

– therefore, locality important for both performance and energy efficiency

Source: http://researcher.watson.ibm.com/researcher/view_project_subpage.php?id=3669

Top500® List, November 2012

4
Rob Knauerhase

CnC’13 workshop

Motivation

• New challenges

– power becomes major limiting factor

– extrapolating current trends to 2020’s, power

required for exa-scale performance
  530 Megawatts(!)

– reliability also more challenging

– current HPC systems spend 28% of time checkpointing

– (can) introduce a giant system-wide barrier

– often affect design/implementation of entire algorithm

• And don’t forget about performance 

5
Rob Knauerhase

CnC’13 workshop

Motivation

• Now, add in changing system-wide policies

– minimize peak power (e.g. for infrastructure or cost reasons)

– minimize energy consumed (e.g. $$$)

– precise or “good enough” results

– changes in nature of mission

• And dynamically-changing environments

– diesel generator in the field & mission

– datacenter operating $ vs. urgency

– image processing (diagnosis vs. pre-surgery) (thanks, Alina, for the example!)

Hmmmmmmmmm.

Could a new programming model help with this?

6
Rob Knauerhase

CnC’13 workshop

Motivation

• Results: unheard-of complexity

– imagine a million threads

– then try to optimize them

– then consider different platforms

• “Hero” programmers can accommodate this sort of thing

– but heroes are rare and therefore expensive

– and worse, they don’t scale

– across algorithms

– across platforms

– across policies

7
Rob Knauerhase

CnC’13 workshop

Motivation

There must be a better way, amirite?!?

• A new paradigm?

– one that will relieve some of the programmer burden

– (esp. since HPC folk are interested)

– one that will lessen the need for heroic skill/expertise

– one that lends itself to adaptation to dynamic changes

• ...how about a fine-grained, event-driven, adaptive model

– like maybe OCR? 

• ...and how to feed such a beast?

– maybe CnC? 

8
Rob Knauerhase

CnC’13 workshop

Background

• OS-level techniques for performance/power improvement

– monitor usage and contention (e.g. of caches)

– alter scheduling policy (which queue & position within)

• Bingo! ~6% performance savings on SPEC-style workloads

See IEEE Micro, Vol 8 Iss 23, 5/08, inter alios

9
Rob Knauerhase

CnC’13 workshop

Background

• Dynamic runtime prior work
– SW research from DARPA/UHPC

Runnemede

program, later evolved into OCR

– like magic 8-ball says,

“signs point to yes”

• Fine-grained
– allows many points to “intercept”

• Event driven
– allows easy accommodation

of dynamic dependence

• Runtime optimizes based on

tuning hints & inferences

from events See SC12 BoF, upcoming SC13 BoF, inter alios O
n

g
o

in
g

/
fu

tu
re

10
Rob Knauerhase

CnC’13 workshop

The Big Idea

• Add features to runtime environment that allow
specification of importance of power,

performance, and reliability

– imagine a 3-space

– “good, fast, cheap – pick any 2”

– not always antagonistic, but even

if so, not always linearly

• “Things above” specify importance,

 per component (task/data)

– either explicitly by developer

– or by tuning expert

– or by intelligent compiler

– or ?

11
Rob Knauerhase

CnC’13 workshop

The Big Idea: research hypothesis

Code and data
expressed in FGED

model

Code/data
scheduled/mapped to

specific resources

Runtime executes
components per hints

and observations

(Process repeats)

ACR
Runtime

Environment

Analytical solutions probably
computationally intractible

http://www.javatuning.com/wp-content/uploads/2010/04/many-core.jpg
http://www.google.com/url?sa=i&rct=j&q=placecards&source=images&cd=&cad=rja&docid=x9vRCRtHA_sPbM&tbnid=hlyf4SOJ75zUqM:&ved=0CAUQjRw&url=http%3A%2F%2Fboards.weddingbee.com%2Ftopic%2Fplace-cards-and-how-to-include-guests-entree-choice&ei=MPxAUbz9CsLXrQG05YHQBQ&bvm=bv.43287494,d.aWM&psig=AFQjCNEIgqbab2oNugtS7zgJK71pWCbVzg&ust=1363299727178503

12
Rob Knauerhase

CnC’13 workshop

The Big Idea: questions

• How to arrange tasks/data within system to minimize

latencies or energy costs?

– start: programmer hints (if she’s smart)

– refinement: move data to code

– refinement: move code to data

– refinement: re-map based on observed frequency of access

– refinement: choose among equivalent versions of an EDT

• How to accommodate interference in shared resources

– including memory busses, caches, scratchpad memories, …

Relies heavily on current PMUs (performance monitoring units),
plus roadmap plans and input into the roadmap

13
Rob Knauerhase

CnC’13 workshop

The Big Idea: input parameters

• Build upon existing fine-

grained, event-driven

system

• System Policy

– allows expression of

attributes described before

• Tuning hints

– Ongoing focus on placement

and affinities

– Add description for relative

importance of power,

performance, and reliability

Tuning
hints

14
Rob Knauerhase

CnC’13 workshop

The Big Idea: empirical hypothesis

• Runtime system

– looks first at importance (from position)

– ex. “job tracker needs to be reliable,

leaf computations should be fast”

– then builds clusters for grouping

– reduces overhead for later scheduling

– initially maps components onto

particular hardware

– based on hw availability and

nature of sw-component clusters

– monitors system state, hw usage,

& environment

– move components as needed

to heuristically meet spec

15
Rob Knauerhase

CnC’13 workshop

Practical Challenges

• Power optimization factors
– code/data placement for energy (differences from performance?)

– including what can be “turned off” with different scheduling

– whether/when to copy data for locality (energy tradeoffs)?

– possible upcoming hardware features (e.g. per-core or per-FUB gating)

• Reliability factors
– how does NTV affect reliability?

– what hardware will help with fine-grained fault detection?

– what about sw hints for checkpointing per execution frontier

• Combined factors
– overhead of monitoring, determining adaptation, & doing adaptations

– approximate computing (hw or sw)?

16
Rob Knauerhase

CnC’13 workshop

Other Challenges

• application support

– still a lack of nontrivial app implementations for OCR

• compiler support

– are there things we can be told from compile time

– e.g. hints about tiling, loop unrolling, loop perforation, ...

• tuning support

– contemporaneous development of tuning language (both expressibility

and syntax)

• implementation overhead

– do we save more than we consume to determine closer-to-optimal

solution?

17
Rob Knauerhase

CnC’13 workshop

Discussion (hopefully there’s time ?)

• Do we understand what information CnC can provide?

– are there changes/extensions that would make this easier

• How do we interface our tuning with potential guidance to

low-level compiler guidance? Can compiler convey things to

us?

• Are there “CnC-compatible” autotuners that would assist or

defeat our system?

• Other topics as they arise.

