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Abstract

Emerging microprocessors offer unprecedented parallel

computing capabilities and deeper memory hierarchies, in-

creasing the importance of loop transformations in optimiz-

ing compilers. Because compiler heuristics rely on simplis-

tic performance models, and because they are bound to a

limited set of transformations sequences, they only uncover

a fraction of the peak performance on typical benchmarks.

Iterative optimization is a maturing framework to address

these limitations, but so far, it was not successfully applied

complex loop transformation sequences because of the com-

binatorics of the optimization search space.

We focus on the class of loop transformation which can

be expressed as one-dimensional affine schedules. We de-

fine a systematic exploration method to enumerate the space

of all legal, distinct transformations in this class. This

method is based on an upstream characterization, as op-

posed to state-of-the-art downstream filtering approaches.

Our results demonstrate orders of magnitude improvements

in the size of the search space and in the convergence speed

of a dedicated iterative optimization heuristic.

1. Introduction

Feedback-directed and iterative optimizations have be-

come essential defenses in the fight of optimizing com-

pilers to stay competitive with hand-optimized code: they

freshen the static information flow with dynamic properties,

adapting to complex architecture behaviors, and compen-

sating for the inaccurate single-shot of model-based heuris-

tics. Whether a single application (for client-side iterative

optimization) or a reference benchmark suite (for in-house

compiler tuning) are considered, the two main trends are:

• tuning or specializing an individual heuristic, adapting

the profitability or decision model of a given transfor-

mation [35];

• tuning or specializing the selection and parameteriza-

tion of existing (black-box) compiler phases [36, 1].

This paper takes a more offensive position in this fight.

To avoid diminishing returns in tuning individual phases or

combinations of those, we collapse multiple optimization

phases into a single, unconventional, iterative search algo-

rithm. By construction, the search space we explore en-

compasses all legal program transformations in a particular

class. Technically, we consider the whole class of loop nest

transformations that can be modeled as one-dimensional

schedules [14], a significant leap in model and search space

complexity compared to state-of-the-art applications of it-

erative optimization. We make the following contributions:

• we statically construct the (infinite in general) opti-

mization space of all, arbitrarily complex, arbitrarily

long sequences of loop transformations that can be ex-

pressed as one-dimensional affine schedules (using a

polyhedral abstraction);

• this search space is built free of illegal and redundant

transformation sequences, avoiding them altogether at

the very source of the exploration;

• we demonstrate multiple orders of magnitude reduc-

tion in the size of the search space, compared to filter-

ing approaches on loop transformation sequences, or

state-of-the-art affine scheduling;

• such smaller spaces are amenable to fast-converging,

operation research algorithms, allowing to compute the

exact size of the space, and sometimes to traverse it

exhaustively;

• our approach is compatible with acceleration tech-

niques for feedback-directed optimization, including

machine-learning techniques to focus the search to a

narrow set of promising transformations;

• our source-to-source transformation tool yields signif-

icant performance gains on top of a heavily tuned, ag-

gressive optimizing compiler;

• we provide evidence of the intricacy of the optimal

code, a confirmation that building a predictive model

for loop transformation sequences seems out of reach.

2. Related Work

Iterative compilation aims at selecting the best param-

eterization of the optimization chain, for a given program



or for a given application domain. It typically affects opti-

mization flags (switches), parameters (e.g., loop unrolling,

tiling), phase ordering, the heuristic itself, or the hybrida-

tion of multiple heuristics [10, 8, 3, 25, 1, 30, 35, 9, 24]

This paper studies a different search space: instead of

relying on existing compiler options to transform the pro-

gram, we statically construct a set of candidate program ver-

sions, considering the distinct result of all legal transforma-

tions in a particular class. Building an actual optimization

phase out of this search space is much easier than from the

composition of multiple search spaces arising from short-

sighted, local transformations. Our method is also comple-

mentary to other forms of iterative optimization which ad-

dress the orchestration of existing heuristics. Furthermore,

it is completely independent from the compiler back-end.

Because iterative compilation relies on multiple, costly

“runs” (including compilation and execution), the current

emphasis is on improving the profiling cost of each pro-

gram version [25, 17], or the total number of runs, using,

e.g., genetic algorithms [23] or machine learning [1, 9]. Our

heuristic is tuned to the rich mathematical properties of the

underlying polyhedral model of the search space, and ex-

ploits the regularity of this model to reduce the number of

runs. Combining it with machine learning techniques seems

promising and is the subject of our ongoing work.

The polyhedral model is a well studied, powerful math-

ematical framework to represent loop nests and their trans-

formations, overcoming the limitations of classical, syntax-

driven models. Many studies have tried to assess a pre-

dictive model characterizing the best transformation within

this model, mostly to express parallelism [26, 15] or to im-

prove locality [41, 12, 29]. We show that such models do

not scratch the complexity of the target architecture and the

interference of the back-end compiler phases, yielding sub-

optimal results even on simple kernels.

Iterative compilation associated to the polyhedral model

is not a very common combination. To the best of our

knowledge, only Long et al. tried to define a search space

based on this model [28, 27], using the Unified Trans-

formation Framework [20] and targeting Java applications.

Long’s search space includes a potentially large number of

redundant and/or illegal transformations, that need to be dis-

carded after a legality check, and the fraction of distinct and

legal transformations decreases exponentially to zero with

the size of program to optimize. On the contrary, we show

how to build and to take advantage of a search space which,

by construction, contains no redundant and no illegal trans-

formation.

3. Generating a Variety of Program Versions

Program restructuring is usually broken into sequences

of primitive transformations. In the case of loops, typical

primitives are the loop fusion, loop tiling, or loop inter-

change [2]. This approach has severe drawbacks. First, it is

difficult to decide the completeness of a set of directives and

to understand their interactions. Many different sequences

lead to the same target code and it is typically impossible to

build an exhaustive set of candidate transformed programs

in this way. Next, each basic transformation comes with its

own application criteria such as legality check or pattern-

matching rules. For instance it is unlikely that loop fusion

would be applied by a compiler if the bounds of the original

loops do not match (while this may be the result of a former

transformation in the sequence). Finally, long sequences

of transformations contribute to code size explosion, pol-

luting instruction cache and potentially forbidding further

compiler optimizations.

Instead of reasoning on transformation sequences, we

look for a representation where composition laws have a

simple structure, with at least the same expressiveness as

classical transformations, but without conversions to or

from transformation descriptions based on sequences of

primitives. To achieve this goal, we used an algebraic rep-

resentation of both programs and transformations. This is

the so-called polyhedral representation; it is introduced in

Section 3.1. We will focus on a sub-class of transforma-

tions that can be modeled through one-dimensional sched-

ules; this class is described in Section 3.2.

3.1. An Algebraic Program Representation

Only parts of the program, called Static Control Parts

(SCoP), can be represented algebraically in the polyhedral

model. Roughly, a SCoP is a maximal set of consecutive

instructions such that: the only allowed surrounding control

structures are for loops and if conditionals, loop bounds

and conditionals are affine functions of the surrounding

loop iterators and the global parameters.

The significance of SCoPs has been widely discussed by

Girbal et al. [18], showing that they capture a large portion

of the computation time of scientific and signal processing

applications.

In such a program class, semantic information can be

represented as polyhedra of integer points. For instance, let

us consider the matvect kernel in Figure 1.

for (i = 0; i <= n; i++) {
R s[i] = 0;

for (j = 0; j <= n; j++)

S s[i] = s[i] + a[i][j] * x[j];

}

Figure 1. matvect kernel

Instruction R is enclosed by a single loop iterating on i.

Its iteration vector ~xR is the vector (i). Iterator i takes val-

ues between 0 and n, hence the polyhedron containing all



the values successively taken by i is DR : {i | 0 ≤ i ≤ n}.

Intuitively, to each point of the polyhedron corresponds

an execution of instruction R, called an instance, where

the value of the loop iterator i is the corresponding point

coordinates in the polyhedron. With a similar reason-

ing we can express the iteration domain of instruction

S: ~xS =
(

i
j

)

. The polyhedron representing its iteration do-

main is DS : {i, j | 0 ≤ i ≤ n ∧ 0 ≤ j ≤ n}.

In the remainder, we use a matrix representation with

so-called homogeneous coordinates to express systems of

affine (in)equalities (the extra column expresses the affine

part of every (in)equality). For instance, for the iteration

domain of R, we get:

DR :

[

1 0 0

−1 1 0

]

.





i

n

1



 ≥~0

Each statement in a SCoP will be represented using its

iteration domain and a set of data references. For our

purpose, we consider only array accesses with affine sub-

script functions of outer loop iterators and global parame-

ters (scalars may be seen as degenerate cases of arrays). In

this way, array references can be expressed using matrices,

for instance the reference to array a in Figure 1 is a[i][ j] or

a[ f (~xS)] with

f (~xS) =

[

1 0 0 0

0 1 0 0

]

.
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n
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Other kinds of array references have to be modeled con-

servatively. Pointers arithmetic is forbidden (except when

translated by a former restructuring pass to array-based ref-

erences [16]) and function calls have to be inlined.

3.2. One-Dimensional Schedules

A schedule is a function which associates a logical exe-

cution date (a timestamp) to each execution of a given state-

ment. In the target program, statement instances will be

executed according to the increasing order of these execu-

tion dates. Two instances (possibly associated with distinct

statements) with the same timestamp can be run in paral-

lel. This date can be either a scalar (we will talk about

one-dimensional schedules), or a vector (multidimensional

schedules). We only consider affine schedules for decidabil-

ity reasons.

A one-dimensional schedule, if it exists, expresses the

program as a single sequential loop, possibly enclosing

one or more parallel loops. A multidimensional sched-

ule expresses the program as one or more nested sequen-

tial loops, possibly enclosing one or more parallel loops.

Affine schedules have been extensively used to design

systolic arrays [33] and in automatic parallelization pro-

grams [14, 11, 19], then have seen many other applications.

In this study, we focus on affine one-dimensional sched-

ules: given a statement S, it is an affine form on the outer

loop iterators~xS and the global parameters~n. It is written

θS(~xS) = T





~xS

~n

1





where T is a constant row matrix. Such a representation

is much more expressive than sequences of primitive trans-

formations, since a single one-dimensional schedule may

represent a potentially intricate and long sequence of any of

the transformations shown in Figure 2. All these transfor-

mations can be represented as a partial order in the space of

all instances for all statements, and such orderings may be

expressed with one-dimensional scheduling functions [40].

There exist robust and scalable algorithms and tools to

reconstruct a loop nest from a polyhedral representation

(i.e., from a set of affine schedules) [21, 32, 5]. We will thus

generate transformed versions of each SCoP by exploring

its legal, distinct affine schedules, regenerating a loop nest

program every time to profile its effective performance.

4. Building The Search Space

In general, restructuring a program will change its se-

mantics. When a transformation preserves the original pro-

gram semantics, we will say that it is legal. Previous works

on iterative optimization using a polyhedral representation

ensure this property by checking, after computing a trans-

formation, whether it is legal or not [28, 27] (non-iterative

optimization algorithms use either a similar approach [22],

either consider programs simple enough that nearly every

transformation is possible [42]). This results in considering

huge search spaces, since every illegal or redundant solu-

tions have to be checked, and to a significant computation

overhead corresponding to each legality check (typically

most of them stating that the transformation must not be

applied). Such an approach cannot scale since the number

of redundant and/or illegal transformations grows exponen-

tially faster than the number of different and legal transfor-

mations with the size of the input program.

To overcome those issues, we build a search space

which, by construction, encompasses all legal program

transformations in the class of one-dimensional schedule.

The following sections present this search space, recalling

how we represent data dependences in our algebraic repre-

sentation in Section 4.1, then constructing the space itself

in Section 4.2, thanks to a deep result in linear algebra.

4.1. Data Dependence Representation

Two statements instances are in dependence relation if

they access the same memory cell and at least one of these



Transformation Description

reversal Changes the direction in which a loop traverses its iteration range

skewing Makes the bounds of a given loop depend on an outer loop counter

interchange Exchanges two loops in a perfectly nested loop, a.k.a. permutation

peeling Extracts one iteration of a given loop

index-set splitting Partitions the iteration space between different loops

shifting Allows to reorder loops

fusion Fuses two loops, a.k.a. jamming

distribution Splits a single loop nest into many, a.k.a. fission or splitting

Figure 2. Possible Transformations Embedded in a One-Dimensional Schedule

accesses is a write operation. For a program transformation

to be correct, it is necessary to preserve the original exe-

cution order of such statement instances and thus to know

precisely the instance pairs in dependence relation. In the

algebraic program representation depicted in section 3.1, it

is possible to characterize exactly the set of instances in de-

pendence relation in a very synthetic way.

Three conditions have to be satisfied to state that a state-

ment instance R(~xR) depends on a statement instance S(~xS).
(1) They must refer the same memory cell, which can be

expressed by equating the subscript functions of a pair of

references to the same array. (2) They must be actually ex-

ecuted, i.e. ~xS and~xR have to belong to their corresponding

iteration domains. (3) S(~xS) is executed before R(~xR) in the

original program. Each of these three conditions may be

expressed using affine inequalities (see section 3.1, or [2]

for more details). It leads that exact sets of instances in de-

pendence relation can be represented using affine inequality

systems.

For instance, if we consider the matvect kernel in Fig-

ure 1, dependence analysis gives two dependence relations:

instances of statement S depending on instances of state-

ment R (e.g., R produces values used by S), δR,S, and simi-

larly, δS,S.

Dependence relation δR,S does not mean that all in-

stances of R and S are in dependence (for all values of ~xR

and~xS); in fact, there is only a dependence if iR = iS. We can

then define a dependence polyhedron, being a subset of the

Cartesian product of the iteration domains, containing all

the values of iR, iS and jS for which the dependence exists.

We can write this polyhedron in matrix representation (the

first line represents the equality iR = iS, the two next ones

the constraint that (iR) have to belong to the iteration do-

main of R and similarly, the four last lines states that (iS, jS)

belongs to the iteration domain of S):

DR,S :





















1 −1 0 0 0

1 0 0 0 0

−1 0 0 1 0

0 1 0 0 0

0 −1 0 1 0

0 0 1 0 0

0 0 −1 1 0
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= 0

≥~0

4.2. Legal Transformation Space

The data dependence analysis gives the exact informa-

tion on which statement instance pairs have to respect their

relative original execution order. Let R and S be two state-

ments. Each (integral) point of the dependence polyhedron

DR,S represents a value of the iteration vectors ~xR and ~xS

where the dependence needs to be satisfied. It is possible to

express the set of affine, non-negative functions over DR,S

thanks to the affine form of the Farkas lemma [14]:

Lemma 1 (Affine form of Farkas Lemma [34]) Let D

be a nonempty polyhedron defined by the inequalities

A~x +~b ≥ ~0. Then any affine function f (~x) is non-negative

everywhere in D iff it is a positive affine combination:

f (~x) = λ0 +~λT (A~x+~b), with λ0 ≥ 0 and~λT ≥~0.

λ0 and~λT are called Farkas multipliers.

In order to satisfy the dependence, the schedules have to

satisfy the precedence condition θR(~xR) < θS(~xS), for each

point of DR,S. So one can state that

∆R,S = θS(~xS)−θR(~xR)−1

must be non-negative everywhere in DR,S. Since we can

express the set of affine non-negative functions over DR,S,

the set of legal schedules satisfying the dependence δR,S is

given by the relation

∆R,S = λ0 +~λT

(

DR,S

(

~xR

~xS

)

+ ~dR,S

)

≥ 0



where DR,S is the constraint matrix representing the polyhe-

dron DR,S over~xR and~xS, and ~dR,S is the scalar part of these

constraints.

Let us go back to the matvect example in Figure 1. The

two prototype affine schedules for R and S are:

θR(~xR) = t1R
.iR + t2R

.n+ t3R
.1

θS(~xS) = t1S
.iS + t2S

. jS + t3S
.n+ t4S

.1

Using the previously defined dependence representation,

we can split the system into as many inequalities as there are

independent variables, and equate the coefficients in both

sides of the equation. For dependence δR,S we have























iR : −t1R
= λ1 +λ2 −λ3

iS : t1S
= −λ1 +λ4 −λ5

jS : t2S
= λ6 −λ7

n : t3S
− t2R

= λ3 +λ5 +λ7

1 : t4S
− t3R

−1 = λ0

where λx is the Farkas multiplier attached to the xth line of

DR,S.

This system expresses all the constraints a schedule have

to respect according to the dependence δR,S. In order to get

a tractable set of constraints on the schedule coefficients,

we need to solve the system, with for example the Fourier-

Motzkin projection algorithm [14]. If there is no solution,

then no affine one-dimensional schedule is possible for this

dependence.

If we build then solve the system for the dependence

δR,S, we obtain a polyhedron TR,S, by projecting the λ di-

mensions on the t ones (the corresponding schedule vari-

ables of R and S). This polyhedron represents the set of

legal values for the schedule coefficients, in order to satisfy

the dependence. To build the set of legal schedule coeffi-

cients for the whole program, we have to build the intersec-

tion of each polyhedron obtained for each dependence. The

result is a global polyhedron T , with as many dimensions

as there are schedule coefficients for the SCoP, the intersec-

tion of the constraints obtained for each dependence. With

this method, the transitivity of the dependence relation is

preserved in the global solution but all systems are built and

solved one dependence at a time. In fact, the computation

of the legal space can be done simultaneously with the de-

pendence analysis. The intersection operation implicitly ex-

tends the dimensionality of polyhedra to the dimensionality

of T , and sets the missing dimensions as unconstrained. So

we have for k dependences:

T =
\

k

Tk

Intuitively, to each (integral) point of T corresponds a

different schedule for the original program, i.e., a different

program version (or also a valid, distinct transformation se-

quence). Enumerating points in this polyhedron can be done

by polyhedral code generation algorithms, but even though

our problem lies into the (simpler) convex case, they may

not scale over thirty to forty dimensions [4, 37] because

of the intrinsic combinatorics of characterizing the poly-

hedron’s integral hull. Fortunately, our problem happens

to be much simpler than the “static” loop nest generation

one: we only need to “dynamically” enumerate every inte-

gral point which respects the set of constraints provided by

T . We may thus incrementally pick a dimension then pick

an integer in the polyhedron’s projection onto this dimen-

sion. This incremental method combines low-complexity

projections with the Fourier-Motzkin algorithm and simple

enumerations of dense polyhedra.

5. Practical Search Space

The legal one-dimensional schedule space for a given

SCoP as described in section 4.2 is possibly infinite. For

instance it is easy to see that if there is no data dependence

at all, every value of the schedule coefficients is possible. It

is necessary to bound this space in such a way that an ex-

haustive scan becomes possible. Bounding the space will

remove some possible program transformations. We have

to ensure we remove only the less interesting solutions for

performance.

We can distinguish two families of coefficients in the

schedule expressions, (1) iterator coefficients, (2) parameter

and constant coefficients. Each family will provide a spe-

cific contribution to the global program transformation [6].

The iterator coefficients will impact on loop structure and

bounds (skewing-like transformations for instance) while

parameters and constant will impact on loop ordering and

statement ordering within a loop (shifting-like transforma-

tions for instance). It follows, while the order of magnitude

of coefficients values for parameters and constant do not

have any influence on performance, using big iterator co-

efficients will result in a very high control overhead (like

generation of complex loop bounds and costly modulo op-

eration) that will waste the optimization they are potentially

enabling [5]. Hence we should bound the values of the iter-

ator coefficients with small values (we checked empirically

that the bounding interval [−1,1] is wide enough most of

the time).

The coefficients of the parameters and the constant have

also to be bounded to avoid an infinite search space. The

difference between the two bounds should be greater than

the number of statements to ensure that at least every or-

dering of the statements within or outside loops is possible.

Greater intervals will offer more possibilities, for instance

to achieve more peeling transformations but a large flexibil-

ity is rarely useful in practice.



Benchmark #Dependences ~ı-Bounds ~p-Bounds c-Bounds #Schedules #Legal Time

h264 15 −1,1 −1,1 0,4 7.5×105 360 0.011

fir 12 −1,1 −1,1 −1,1 4.7×106 432 0.004

fft 36 −2,2 −2,2 0,6 5.8×1025 804 0.079

lu 14 0,1 0,1 0,1 3.2×104 1280 0.005

gauss 18 −1,1 −1,1 −1,1 5.9×104 506 0.021

crout 26 −3,3 −3,3 −3,3 2.3×1014 798 0.027

matmult 7 −1,1 −1,1 −1,1 1.9×104 912 0.003

MVT 10 −1,1 −1,1 −1,1 4.7×106 16641 0.001

locality 2 −1,1 −1,1 −1,1 5.9×104 6561 0.001

Figure 3. Search space computation

We made several tests to compare our approach, taking

into account only the legal schedules, to considering every

schedules and filter legal ones thanks to a legality check,

as Long et al. suggests [28]. We used different compute-

intensive kernel benchmarks coming from various origins

and listed in Figure 3. h264 is a fractional sample in-

terpolation of the H.264 standard [39]. fir and fft are

DSP kernels extracted from UTDSP benchmark suite [39].

lu, gauss, crout and matmult are well known mathe-

matical kernels corresponding to LU factorization, Gaus-

sian elimination, Crout matrix decomposition and matrix-

matrix multiply. MVT is a kernel including two matrix-

vector multiplications, one matrix being the transposition

of the other. locality is an hand-written memory access

intensive kernel. Notice our motivation is not to evaluate

the performance of our schedules with respect to aggres-

sive optimizations performed manually (like the BLAS),

or by application-specific active libraries (like ATLAS or

SPIRAL): we are evaluating an automatic source-to-source

framework, exploring all but only one-dimensional sched-

ules, and not considering any domain-specific knowledge.

These kernels are typically small, from 2 to 17 state-

ments. They suit well the present study and allow fair

comparison with present production compiler: first, they

should not challenge present production compiler optimiza-

tion schemes, and second, they will make it possible to

achieve an exhaustive visit of our search space which is

necessary to evaluate the potential of the method and to

design heuristic techniques. Dealing with larger bench-

marks presents some technical difficulties: first of all, ev-

ery SCoP does not have a one-dimensional schedule, and

the likeliness decreases with the complexity of the depen-

dence graph; second, although we achieved a breakthrough

in allowing much larger optimization spaces to be char-

acterized and traversed, going beyond 20 to 30 array ac-

cesses breaks the scalability of our constraint simplification

method (based on Fourier-Motzkin elimination), due to the

hundreds of transformation coefficients to consider simulta-

neously. Further scalability may be achieved through algo-

rithmic improvements in the exploitation of regularity prop-

erties in the constraints systems, and through heuristics to

prioritize the most important dependences and / or to par-

tition the problem into smaller, modular scheduling spaces.

We are currently investigating these ideas.

Figure 3 summarizes the study of the search space.

The first column presents the various kernel benchmarks;

the second one labeled #Dependences precises the num-

ber of dependence relations for the corresponding kernel;

~ı-Bounds shows the iterator coefficient bounds used for

search space bounding; ~p-Bounds shows the parameter co-

efficient bounds; c-Bounds shows the constant coefficient

bounds; #Schedules shows the total number of schedules,

including illegal ones; #Legal shows the number of actual

schedules in our space, i.e. the number of legal schedules;

finally, Time shows the search space computation time on a

Pentium 4 Xeon, 3.2GHz.

Results shows the very high benefit to work directly on

a space including only legal transformations since it low-

ers the number of considered transformations by one to

many orders of magnitude for a quite acceptable computa-

tion time. On the contrary, these results shows that without

such a politic, achieving an exhaustive search is not possible

even for small kernels. While these results shows profitabil-

ity, it is not a demonstration of scalability, in the following

we will propose to actually visit the search space exhaus-

tively or using an heuristic way.

6. Scanning the Optimization Search Space

In previous sections, we formally recalled how to build

a singular search space where each point corresponds to a

distinct legal program version. We also adapted this space

in such a way that a scan becomes possible in any case. In

the following, we will actually visit the search space to eval-

uate its potential for program optimization. In section 6.1,

we present our experimental setup, section 6.2 shows results

on exhaustive search while section 6.7 presents a heuristic

to avoid performing a large number of runs while preserving

the core optimization benefits.



S1(i): a[i] = i

S2(i,j): b[j] = (b[j] - a[i]) / 2

Original code:

for (i = 0; i <= M; i++) {
S1(i);

for (j = 0; j <= N; j++) {
S2(i,j);

}
}

Chunked code:

for (t = 0; t <= M; t++) {
S1(t);

}
for (t = M; t <= M+N; t++) {
for (i = 0; i <= M; i++) {
S2(i,t-M);

}
}

best transformation:

S1(0);

for (t = -M+1; t <= 0; t++) {
for (i = max(0, t+M-N-1); i <= t+M-1; i++) {
S2(i,t-i+M-1);

}
S1(t+M);

}
for (t = 1; t <= N+1; t++) {
for (i = max(t+M-N-1, 0); i <= M; i++) {
S2(i,t-i+M-1);

}
}

Figure 4. Intricacy of transformed code

6.1. Experimental Setup

We implemented dependence analysis, legal transforma-

tion space construction and scanning. We used for that pur-

pose external publicly available tools such as PipLib, a lin-

ear algebra tool [13] and CLooG, a code generator in the

polyhedral model [5]. We designed our tools to be able to

use them as a plugin in the future GRAPHITE GCC’s poly-

hedral framework [31]. The experimental protocol is as fol-

lows. For each point of the search space, (1) generate the

kernel code with CLooG1 (2) add input initialization and

measure tools, to produce a C compilable unit (3) Compile

it provided a compiler and its optimization options (4) run

the program on the target architecture and gather the results.

In order to be consistent, the original code is included in this

procedure starting at the second step.

We ran our experiments on an Intel workstation based on

Xeon 3.2GHz, 16KB L1, 1024KB L2 caches. We used four

different compilers: GCC 3.4.2, GCC 4.1.1, Intel ICC 9.0.1

and PathScale EKOPath 2.5. We used hardware counters

to measure the number of cycles used by various programs.

In order to avoid interferences with other programs and the

system, we set the system scheduler policy to FIFO for ev-

ery test. The kernel benchmark set is the one presented in

section 5.

6.2. Exhaustive Space Scanning

Because our search space is only based on legal sched-

ules, the number of solutions for kernel benchmarks is small

enough to make it possible to achieve an exhaustive search

in a reasonable amount of time. Figure 5 summarizes our re-

sults. The Benchmark column states the input program; the

Compiler column shows the compiler used to build each pro-

gram version of the search space (GCC version was 4.1.1);

the Options column precises the full compiler options; the

1CLooG version 0.14.0, with default options

Parameters column shows the values of the global param-

eters (e.g., for array sizes, parameters are chosen to exceed

L2 cache size); the #Improved column shows the number of

version that achieves a better performance than the original

program (the total number of versions is shown in Figure 3);

the ID best gives the unique “identifier” of the best solution;

lastly, the Speedup column gives the speedup achieved by

the best solution with respect to the original program per-

formance. On average, one second is needed to explore a

point (code generation, compilation and run of the target

version).

The two main results shown by this figure are, first

of all, that the best program version highly depends on

both compiler and compiler options. Even considering

the several very best solutions, there are typically no in-

tersection between the set of best transformations for two

pairs compiler/compilation-options. Second, significant

speedups are achieved thanks to the traversal of the search

space, demonstrating the interest of the method for optimiz-

ing compilation. In few cases, a 0% speedup is achieved,

meaning that the original code was already optimal for our

experimental setup and model. In average, the method leads

to a 35.4% speedup, or to 14.9% excluding the extreme

results of matrix-multiply kernel which is known to be a

good candidate for such study. A global constatation is

the correlation between observed speedups and locality im-

provements and / or transformations enabled in the back-

end compiler by our program versions.

6.3. Intricacy of the Best Program Version

Another interesting result is the form of the best trans-

formed programs since they typically appear to be quite

complex. Most of the time, it was not possible to easily

understand which part of the transformation sequence was

responsible for the speedup since a significant part of the

answer was related to the compiler design. We also noticed



Benchmark Compiler Options Parameters #Improved ID best Speedup

h264 PathCC -Ofast none 11 352 36.1%

GCC -O2 19 234 13.3%

GCC -O3 26 250 25.0%

ICC -O2 27 290 12.9%

ICC -fast 0 N/A 0%

fir PathCC -Ofast N=50000 240 72 6.0%

GCC -O2 259 192 15.2%

GCC -O3 119 289 13.2%

ICC -O2 420 242 18.4%

ICC -fast 315 392 3.4%

fft PathCC -O2 N=256 M=256 O=8 21 267 7.2%

GCC -O2 10 285 0.9%

GCC -O3 11 289 1.8%

ICC -O2 17 260 6.9%

ICC -fast 20 112 6.4%

lu PathCC -Ofast N=1000 100 224 6.5%

GCC -O2 321 339 1.6%

GCC -O3 330 337 3.9%

ICC -O2 281 770 9.0%

ICC -fast 262 869 8.7%

gauss PathCC -Ofast N=150 212 4 3.1%

GCC -O2 204 2 1.7%

GCC -O3 52 2 0.01%

ICC -O2 63 288 0.05%

ICC -fast 15 39 0.03%

crout PathCC -Ofast N=150 0 N/A 0%

GCC -O2 132 638 3.6%

GCC -O3 56 628 1.7%

ICC -O2 37 625 0.5%

ICC -fast 63 628 2.9%

matmult PathCC -Ofast N=250 402 283 308.1%

GCC -O2 318 573 243.6%

GCC -O3 345 143 248.7%

ICC -O2 390 311 56.6%

ICC -fast 318 641 645.4%

MVT PathCC -Ofast N=2000 5652 4934 27.4%

GCC -O2 3526 13301 18.0%

GCC -O3 3601 13320 21.2%

ICC -O2 5826 14093 24.0%

ICC -fast 5966 4879 29.1%

locality PathCC -Ofast N=10000, M=2000 6069 5430 47.7%

GCC -O2 30 5494 19.0%

GCC -O3 589 4332 6.0%

ICC -O2 3269 2956 38.4%

ICC -fast 4614 3039 54.3%

Figure 5. Search space statistics for exhaustive scan

that optimization algorithms based on formal representa-

tions were sometimes far away from the optimal solution.

A very simple but striking example is shown in Figure 4.

The simple, supposed optimal locality transformation in

our class suggests a schedule of (i) for S1 and ( j + n) for

S2 [7], which results in maximizing the reuse of the array

a. The very best schedules were in fact (i − j) and (i +
j−n+1) (the code generated by our framework is given in

Figure 4). While the supposed optimal schedules generate

a speedup of 147% with n = 100 and m = 500k using GCC



3.4, the very best schedules generate a speedup of 398%

(with a similar number of L1 and L2 cache-misses but a

heavily reduced data TLB misses).

The relation with the compiler is described further in sec-

tion 6.4. Section 6.5 deals with the effect of compiler op-

tions and lastly, we discuss the performance distribution in

section 6.6.

6.4. The Compiler as an Element of the Tar-
get Platform

Our iterative optimization scheme is independent from

the compiler and may be seen as a higher level to classi-

cal iterative compilation. In the same way as a given pro-

gram transformation may better exploit a feature of a given

processor, it also may enable more aggressive options of

a given compiler. Because production compilers have to

generate a target code in any case in a reasonable amount

of time, their optimizations are very fragile, i.e. a slight

difference in the source code may enable or forbid a given

optimization phase.

To study this behavior and estimating how a higher level

iterative optimization scheme may lead to better perfor-

mances, we achieved a exhaustive scan of our search space

for various programs and compilers with aggressive opti-

mization options. We illustrate our results in Figure 5,

studying the matrix multiplication kernel in more details in

Figure 6 (this benchmark has been extensively studied, and

is a typical target of aggressive optimizations of production

compilers).

We tested the whole set of legal schedules within the

bounds [−1,1] for all coefficients (912 points), and checked

the speedup for various compilers with aggressive optimiza-

tions enabled. Matrices are 250 × 250 arrays of double-

precision floats. We compared, for a given compiler, the

number of cycles the original code took (Original) to the

number of cycles the best transformation took (Best) (re-

sults are in millions of cycles).

Figure 6 shows significant speedups achieved by the

best transformations for each back-end compiler. Such

speedups are not uncommon when dealing with the matrix-

multiplication kernel. The important point is that we do

not perform any tiling (it requires multi-dimensional sched-

ules), contrary to nearly all other works (see [42, 2] for use-

ful references).

In general, it was possible to check using PathScale

EKOPath that many optimization phases have been enabled

or disabled, depending on the version generated from our

exploration tool. The enabling transformation aspect of our

method is brought to light with for instance the h264 bench-

mark: the EKOPath compiler fuse 4 times in the original

version but only once with the best found one, but was able

to vectorize 3 times more with our transformation. Never-

theless it is technically hard to know precisely the contribu-

tion of the one-dimensional schedule (which has a high po-

tential, by itself, as an optimizing transformation) with re-

spect to the enabled compiler optimizations. In the matmult

case, Interchanging loops on k and i is the core of the trans-

formation embedded in all best schedules found. This dras-

tically improves locality: for instance, with ICC -fast, the

number of L1 and L2 cache-misses is comparable for the

original code and the best found version, but the number of

data TLB misses goes from 15M to 164k, diminishing with

a similar ratio the number of floating point operations ex-

ecuted (the results are consistent whether the matrices are

allocated with malloc or directly on the stack). This en-

courages the potential of a combination with tiling.

But more transformations are embedded in the sched-

ules, and another striking result is the high variation of the

best schedules depending on the compiler. For instance the

lack of the j iterator in θS1(~xS1) for GCC or the lack of the n

parameter θS2(~xS2) for ICC. These results, which are consis-

tent with the other tested programs, emphasize the need of a

compiler-dedicated transformation to achieve the best pos-

sible performance. One possible explanation is the differ-

ence between optimization phases in the different back-end

compilers. Compilers have reached such a level of com-

plexity that it is no longer possible to model the effects of

downstream phases on upstream ones. Yet it is mandatory

to rely on the downstream phases of a back-end compiler to

achieve a decent performance, especially those which can-

not be embedded naturally in the polyhedral model.

6.5. On the Influence of Compiler Options

Experiments have shown a relation between the best

transformations and the compiler options. For instance, in

the matmult kernel benchmark case with the ICC compiler

used with the aggressive -fast option, the best transforma-

tion yields a 4.5% slowdown when it is compiled with -O2

and compared to the best one found for this compiler op-

tion. This behavior was observed on all the tested programs.

Finding the best compiler options is the subject of many re-

search works in iterative compilation (see section 2). Study-

ing this aspect is out of the scope of the present paper but

those results are a sign that combining our method with ex-

isting iterative compilation techniques is a promising way.

6.6. Performance Distribution

Exhaustive scanning of all program versions is feasi-

ble on (small) kernels, and we can observe the complete

performance distribution. Figure 7 shows this distribution

for the matmult, locality and crout examples: matmult

and locality are compiled with GCC 4.1.1 -O2, the first

crout with ICC -fast, and the second with GCC 4.1.1

-O3. Each graph represents the computation time of ev-

ery point in the search space as a function of its number in

the scanning order. Horizontal line shows the performance



Compiler Option Original Best Schedule Speedup

GCC 3.4.2 -O3 519 163
θS1(~xS1) = −1

θS2(~xS2) = k +1
318.4%

GCC 4.1.1 -O3 515 207
θS1(~xS1) = −i− j +n−1

θS2(~xS2) = k +n
248.7%

ICC 9.0.1 -fast 465 72
θS1(~xS1) = −i+n

θS2(~xS2) = k +1
645.4%

PathCC 2.5 -Ofast 228 79
θS1(~xS1) = j−n−1

θS2(~xS2) = k
308.1%

Figure 6. Results for the matmult example

of the original program: every point below this line corre-

sponds to a more efficient program version.

Although the scanning order may be a weird choice for

such representation, it shows that the performance distribu-

tion is not totally random.2

From these observations, we conclude that:

• in most cases, contiguous regions of similar perfor-

mance can be identified;

• several transformations may be close to the best per-

formance, but the probability to find them at random

can be very low (e.g., on locality);

• for some benchmarks (e.g., on matmult), strong cor-

relations do exist but are not easily observable without

reordering the index space of the transformations (the

X axis on the performance distribution figures).

The impact of the compiler on the distribution is em-

phasized on the crout example, in the third and fourth

graphs of Figure 7. Here we compare, for an identical

original program (hence an identical optimization search

space), the distribution on ICC -fast and GCC 4.1.1 -03

on the crout kernel benchmark. Hence, understanding per-

formance regularities may help to find hot regions in the

search space, thus avoiding useless runs in low-interest re-

gions and diminishing-return searches among nearly opti-

mal solutions. Machine learning techniques are used to

solve similar problems for classical iterative optimization

problems, and seem particularly promising to achieve this

goal [35, 1]. We defer the application of these approaches

to a further study, dedicating this paper to the study of the

mathematical properties of our model, in an attempt to prun-

ing the search space without loosing the most interesting

solutions.

2It is not an absurd ordering though: the scanning procedure could be

seen as a very deep loop nest were the outer loop iterates on values of the

first iterator coefficient of the first statement and the inner loop iterates on

values of the constant coefficient of the last statement.

6.7. Heuristic Search

Since it is unpractical to explore the whole search space

on real-world benchmarks, we propose a heuristic to enu-

merate only a high-potential sub-space, using the properties

of the polyhedral model to characterize the highest potential

and narrowest one.

6.7.1. Decoupling Heuristic

We represent the schedule coefficients of a statement as a

three component vector:

θS(~xS) = (~ı ~p c)





~xS

~n

1





Where ~ı represents the iterators coefficients, ~p the pa-

rameters coefficients and c the constant coefficient.

In this search space representation, two neighbor points

may represent a very different generated code, since a mi-

nor change in the ~ı part can drastically modify the com-

pound transformation (a program where interchange and

fusion are applied can be the neighbor of a program with

none of these transformations). The most significant im-

pact on the generated code is caused by iterator coefficients,

and we intuitively assume their impact on performance will

be equally important. Conversely, modifying parameters or

constant coefficients is less critical (especially when one-

dimensional schedules are considered). Hence it is relevant

to propose an exploration heuristic centered on the enumer-

ation of the possible combinations for the~ı coefficients.

The proposed heuristic is window-search based. It de-

couples iterator coefficients from the others, enabling a sys-

tematic exploration of all the possible combinations for the

~ı part. At first, we do not care about the values for the ~p and

c part (they can be chosen arbitrarily in the search space,

as soon as they are compatible with the~ı sequence). The

resulting subset of program versions is then filtered with re-

spect to effective performance, keeping the top points only.

Then, we repeat the systematic exploration of the possible
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Figure 7. Performance distributions

combination of values for the ~p and c coefficients to refine

the program transformation sequence.

The heuristic can be sketched in 5 steps.

1. Build the set of all different possible combinations of

coefficients for the~ı part of the schedule, inside the set

of all legal schedules. Choose ~p and c at random in the

space, according to the~ı part.

2. For each schedule in this set, generate and instrument

the corresponding program version and run it.

3. Filter the set of schedules by removing those associ-

ated with a run time more than x% slower than the best

one (combined with a bound on the limit of selected

schedules).

4. For each schedule in the remaining set, explore the set

of possible values for the ~p and c part (inside the set of

all legal schedules) while the~ı part is left unmodified.

5. Select the best schedule in this set.

6.7.2. Discussion

Figure 8 details a run of our decoupling heuristic (with a fil-

tering level of 5% and a static limit of 10 points per coeffi-

cient type, see below), and compares it with a plain random

search for three of our benchmarks. It shows the relative

percentage of the best speedup achieved as a function of the

number of iterative runs. The decoupling heuristic (the DH

plot) yields much faster convergence, bringing to light the

correlation between the speedup and the~i-coefficients. On

these tested examples, one may achieve over 98% of the

maximum speedup within less than 20 iterations.

On the other hand, we observed the heuristic behavior

to be comparable to a full random driven approach (the R

plot), as Figure 8 shows for the matmult kernel. Not sur-

prisingly, as soon as the density of good transformations is

large, a random space scan may converge faster than our

enumeration-based method. For the MVT kernel, even if

there is a large set of improved versions in the search space,

the low density of good ones is emphasized by the poor con-

vergence of the random-driven approach.

A more important problem is the scalability to larger

SCoPs. To prevent the possibly large set of legal values

for the~ı coefficients, it is possible to:

1. impose a static or dynamic limit to the number of runs,

which should be coupled to an exploration strategy

starting with coefficients as close as possible to 0 (re-

member 0 may not correspond to any legal schedule);

2. replace an exhaustive enumeration of the~ı combina-

tions by a limited set of random draws in the~ı space.

The choice between the exhaustive, limited or random ex-

ploration of the~ı space can be heuristically determined with

regards to the size of the original SCoP (this size usually

gives a good intuition of the search space size order of mag-

nitude).

7. Future Work

Affine multidimensional schedules It is always possi-

ble to find a multidimensional affine schedule to a SCoP,

while a one-dimensional schedule may not exists. Unfor-

tunately, the generalization of our method to multidimen-

sional schedules leads to a well known combinatorial bar-

rier: if there is exactly one way to choose the set of depen-

dences to satisfy in the one-dimensional case (they must all

be satisfied in one dimension, i.e. in one set), there is a com-

binatorial way to choose the sets as soon as there is more

than one dimension. Feautrier proposed a greedy algorithm

to solve the maximal set of dependences at a given depth,

and increment the depth if unresolved dependences remain

[15]. This would give us the minimal sequential depth of

the schedule [38], but the combinatorics remains if we want

to explore all the legal schedules.

Parallelism The polyhedral model has been designed to

express in a natural way parallelism inside loop nests. Our

study was only applied to monoprocessor machines, but it

is a short term assignment to exploit this parallelism in a

state-of-the-art shared-memory system. We need to slightly

modify the code generation phase in order to generate an

OpenMP-equipped C code.
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Figure 8. Comparison between the random and the decoupling heuristics

8. Conclusion

Iterative and empirical search techniques are some of the

last hopes to let compilers harness the complexity of mod-

ern processors and hide it from the application program-

mers. We focus on loop transformations because they are

both critically important for performance and very hard to

drive in an optimizing compiler.

Iterative loop nest optimization is intrinsicly difficult be-

cause of the large number of distinct, legal transformations

for a given program, and it is complicated by the inability of

classical loop transformation frameworks to statically char-

acterize this set. So far, all attempts have relied on a sepa-

rate filtering step to remove redundant and/or illegal candi-

date transformation from the search space. Our experiments

show that such approaches are likely to be impractical, even

for tiny kernels of a few lines of code.

On the contrary, we propose an algorithm to build

and traverse the whole set of distinct, legal affine one-

dimensional schedules for a program, that is the expression

of every legal combination of transformations for this class

of schedules that result in distinct program versions. On

small kernels, our early experiments demonstrate the abil-

ity to discover the wall-clock optimal schedule, thanks to an

exhaustive exploration of that space, given a compiler, tar-

get architecture and data set. To our knowledge, this is the

first time such a space is explored.

It is expected that a systematic exploration will not scale

to large programs, or when multi-dimensional schedules are

considered. We propose a heuristic-driven method to ad-

dress the scalability problem, by doing a partial and focused

enumeration of the initial search space. Our study also con-

tributes key observations about the performance distribu-

tions in the transformation space, a first step towards com-

bining our search space construction and enumeration ap-

proach with more generic machine learning or empirical

search techniques.
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[32] F. Quilleré, S. Rajopadhye, and D. Wilde. Generation of

efficient nested loops from polyhedra. International Journal

of Parallel Programming, 28(5):469–498, october 2000.
[33] P. Quinton and V. V. Dongen. The mapping of linear re-

currence equations on regular arrays. The Journal of VLSI

Signal Processing, 1(2):95–113, october 1989.
[34] A. Schrijver. Theory of linear and integer programming.

John Wiley & Sons, 1986.
[35] M. Stephenson, S. Amarasinghe, M. Martin, and U.-M.

O’Reilly. Meta optimization: improving compiler heuristics

with machine learning. SIGPLAN Not., 38(5):77–90, 2003.
[36] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. I.

August. Compiler optimization-space exploration. In CGO

’03: Proceedings of the international symposium on Code

generation and optimization, pages 204–215, Washington,

DC, USA, 2003. IEEE Computer Society.
[37] N. Vasilache, C. Bastoul, and A. Cohen. Polyhedral code

generation in the real world. In Proceedings of the In-

ternational Conference on Compiler Construction (ETAPS

CC’06), LNCS, pages 185–201, Vienna, Austria, Mar. 2006.

Springer-Verlag.
[38] F. Vivien. On the optimality of Feautrier’s scheduling al-

gorithm. In Euro-Par ’02: Proceedings of the 8th Interna-

tional Euro-Par Conference on Parallel Processing, pages

299–308, London, UK, 2002. Springer-Verlag.
[39] T. Wiegand, G. Sullivan, and A. Luthra. Itu-t rec. h.264 –

iso/iec 14496-10 avc - final draft. Technical report, Joint

Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG,

May 2003.
[40] M. Wolf. Improving Locality and Parallelism in Nested

Loops. PhD thesis, Dept. of computer science, Stanford Uni-

versity, California, 1992.
[41] M. E. Wolf and M. S. Lam. A data locality optimizing al-

gorithm. In PLDI ’91: ACM SIGPLAN 1991 conference on

Programming language design and implementation, pages

30–44, New York, NY, USA, 1991. ACM Press.
[42] M. Wolfe. High performance compilers for parallel com-

puting. Addison-Wesley Publishing Company, 1995.


