The Polyhedral Compilation Framework

Louis-Noël Pouchet

Dept. of Computer Science and Engineering
Ohio State University
pouchet@cse.ohio-state.edu

October 20, 2011
Overview of Today’s Lecture

Topic: automatic optimization of applications

What this lecture is about:

▶ The main ideas behind polyhedral high-level loop transformations
▶ A (partial) review of the state-of-the-art in polyhedral compilation
 ▶ Optimization algorithms
 ▶ Available software

And what is is NOT about:

▶ In-depth compilation algorithms
▶ Low-level optimizations (e.g., machine-specific code)
Compilers translate a human-readable program into machine code

- Numerous input languages and paradigm (from ASM to Java)
 - Abstraction: a single high-level intermediate representation for programs
 - The compiler front-end translates any language to this IR
 - Adding a new language requires only extending the front-end

- Make the "most" of the available hardware
 - The compiler back-end translates into machine code
 - Specific optimizations for each supported architecture
 - Adding a new target requires only extending the back-end

- Be reusable: avoid redesign a new compiler for each new chip
 - Many optimizations are useful for numerous targets (parallelization, vectorization, data cache, ...)
 - The compiler middle-end maps a program to an (abstract) model of computation
Compiler Middle-end

- Responsible for transforming the program in a form suitable for a better execution
 - Typical: remove dead code (DCE), mutualize common expressions computation (CSE)
 - More advanced: create SIMD-friendly loops, extract task parallelism
 - Experimental: algorithm recognition, equivalent program substitution, ...

- Composed of numerous passes, each responsible of a specific optimization
The Optimization Problem

- Architectural characteristics: ALU, SIMD, Caches, ...
- Compiler optimization interaction: GCC has 205 passes...
- Domain knowledge: Linear algebra, FFT, ...

Optimizing compilation process

- Code for architecture 1
- Code for architecture 2
- Code for architecture N

Ohio State
The Optimization Problem

- Architectural characteristics
 - ALU, SIMD, Caches, ...

- Compiler optimization interaction
 - GCC has 205 passes...

- Domain knowledge
 - Linear algebra, FFT, ...

Optimizing compilation process

- Code for architecture 1
- Code for architecture 2
- Code for architecture N

Locality improvement, = vectorization, parallelization, etc...
The Optimization Problem

Architectural characteristics
ALU, SIMD, Caches, ...

Compiler optimization interaction
GCC has 205 passes...

Domain knowledge
Linear algebra, FFT, ...

Optimizing compilation process
= parameter tuning,
= phase ordering, etc...

Code for architecture 1
Code for architecture 2
Code for architecture N
The Optimization Problem

Architectural characteristics
ALU, SIMD, Caches, ...

Compiler optimization interaction
GCC has 205 passes...

Domain knowledge
Linear algebra, FFT, ...

Optimizing compilation process

Code for architecture 1
Code for architecture 2
......
Code for architecture N

pattern recognition,
= hand-tuned kernel codes, etc...
The Optimization Problem

- Architectural characteristics
 - ALU, SIMD, Caches, ...

- Compiler optimization interaction
 - GCC has 205 passes...

- Domain knowledge
 - Linear algebra, FFT, ...

Optimizing compilation process

Code for architecture 1
Code for architecture 2

Code for architecture N

= Auto-tuning libraries
Outline

1. High-Level Transformations
2. The Polyhedral Model
3. Program Transformations
4. Tiling
5. Fusion-driven Optimization
6. Polyhedral Toolbox
7. State-of-the-art and Ongoing Research
High-Level Transformations
Running Example: matmult

Example (dgemm)

```c
/* C := alpha*A*B + beta*C */
for (i = 0; i < ni; i++)
  for (j = 0; j < nj; j++)
    S1: C[i][j] *= beta;
for (i = 0; i < ni; i++)
  for (j = 0; j < nj; j++)
    for (k = 0; k < nk; ++k)
      S2: C[i][j] += alpha * A[i][k] * B[k][j];
```

- Loop transformation: `permute(i,k,S2)`

<table>
<thead>
<tr>
<th>Execution time (in s) on this laptop, GCC 4.2, ni=nj=nk=512</th>
</tr>
</thead>
<tbody>
<tr>
<td>version</td>
</tr>
<tr>
<td>original</td>
</tr>
<tr>
<td>permute</td>
</tr>
</tbody>
</table>

High-Level Transformations:

Running Example: fdtd-2d

Example (fdtd-2d)

```c
for(t = 0; t < tmax; t++) {
    for (j = 0; j < ny; j++)
        ey[0][j] = _edge_[t];
    for (i = 1; i < nx; i++)
        for (j = 0; j < ny; j++)
            ey[i][j] = ey[i][j] - 0.5*(hz[i][j]-hz[i-1][j]);
    for (i = 0; i < nx; i++)
        for (j = 1; j < ny; j++)
            ex[i][j] = ex[i][j] - 0.5*(hz[i][j]-hz[i][j-1]);
    for (i = 0; i < nx - 1; i++)
        for (j = 0; j < ny - 1; j++)
            hz[i][j] = hz[i][j] - 0.7* (ex[i][j+1] - ex[i][j] +
                 ey[i+1][j]-ey[i][j]);
}
```

- Loop transformation: `polyhedralOpt(fdtd-2d)`

<table>
<thead>
<tr>
<th>Execution time (in s) on this laptop, GCC 4.2, 64x1024x1024</th>
</tr>
</thead>
<tbody>
<tr>
<td>version</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>original</td>
</tr>
<tr>
<td>polyhedralOpt</td>
</tr>
</tbody>
</table>
Loop Transformations in Production Compilers

Limitations of standard syntactic frameworks:
- Composition of transformations may be tedious
 - composability rules / applicability

- Parametric loop bounds, implicitly nested loops are challenging
 - Look at the examples!

- Approximate dependence analysis
 - Miss parallelization opportunities (among many others)

- (Very) conservative performance models
Achievements of Polyhedral Compilation

The polyhedral model:

- Model/apply seamlessly arbitrary compositions of transformations
 - Automatic handling of imperfectly nested, parametric loop structures
 - Any loop transformation can be modeled

- Exact dependence analysis on a class of programs
 - Unleash the power of automatic parallelization
 - Aggressive multi-objective program restructuring (parallelism, SIMD, cache, etc.)

- Requires computationally expensive algorithms
 - Usually NP-complete / exponential complexity
 - Requires careful problem statement/representation
Compilation Flow

Affine transformation framework:
- Data dependence analysis
- Optimization
- Code generation
The Polyhedral Model
Polyhedral Program Optimization: a Three-Stage Process

1 Analysis: from code to model
 → Existing prototype tools
 ▶ PolyOpt+PoCC (Clan-Candl-LetSee-Pluto-Cloog-Polylib-PIPLib-ISL-FM)
 ▶ URUK, SUIF, Omega, Loopo, ChiLL . . .
 → GCC GRAPHITE (now in mainstream), LLVM Polly (prototype)
 → Reservoir Labs R-Stream, IBM XL/Poly
Polyhedral Program Optimization: a Three-Stage Process

1 Analysis: from code to model
 → Existing prototype tools
 ▶ PolyOpt+PoCC (Clan-Candl-LetSee-Pluto-Cloog-Polylib-PIPLib-ISL-FM)
 ▶ URUK, SUIF, Omega, Loopo, ChiLL . . .
 → GCC GRAPHITE (now in mainstream), LLVM Polly (prototype)
 → Reservoir Labs R-Stream, IBM XL/Poly

2 Transformation in the model
 → Build and select a program transformation
Polyhedral Program Optimization: a Three-Stage Process

1 Analysis: from code to model
 → Existing prototype tools
 ▶ PolyOpt+PoCC (Clan-Candl-LetSee-Pluto-Cloog-Polylib-PIPLib-ISL-FM)
 ▶ URUK, SUIF, Omega, Loopo, ChiLL . . .
 → GCC GRAPHITE (now in mainstream), LLVM Polly (prototype)
 → Reservoir Labs R-Stream, IBM XL/Poly

2 Transformation in the model
 → Build and select a program transformation

3 Code generation: from model to code
 → "Apply" the transformation in the model
 → Regenerate syntactic (AST-based) code
Motivating Example [1/2]

Example

```c
for (i = 0; i <= 2; ++i)
    for (j = 0; j <= 2; ++j)
        A[i][j] = i * j;
```

Program execution:

1. A[0][0] = 0 * 0;
2. A[0][1] = 0 * 1;
3. A[0][2] = 0 * 2;
4. A[1][0] = 1 * 0;
5. A[1][1] = 1 * 1;
7. A[2][0] = 2 * 0;
Motivating Example [2/2]

A few observations:

- Statement is executed 9 times
- There is a different values for \(i, j\) associated to these 9 instances
- There is an order on them (the execution order)

A rough analogy: polyhedral compilation is about (statically) scheduling tasks, where tasks are statement instances, or operations.
Polyhedral Program Representation

- Find a compact representation (critical)
- 1 point in the set ↔ 1 executed instance (to allow optimization operations, such as counting points)
- Can retrieve when the instance is executed (total order on the set)
- Easy manipulation: scanning code must be re-generated
- Deal with parametric and infinite domains
- Non-unit loop strides
- Generalized affine conditionals (union of polyhedra)
- Data-dependent conditionals
Returning to the Example

Example

```c
for (i = 0; i <= 2; ++i)
    for (j = 0; j <= 2; ++j)
        A[i][j] = i * j;
```

Modeling the iteration domain:

- Polytope dimension: set by the number of surrounding loops
- Constraints: set by the loop bounds
Returning to the Example

Example

```c
for (i = 0; i <= 2; ++i)
    for (j = 0; j <= 2; ++j)
        A[i][j] = i * j;
```

Modeling the iteration domain:

- Polytope dimension: set by the number of surrounding loops
- Constraints: set by the loop bounds
Returning to the Example

Example

```c
for (i = 0; i <= 2; ++i)
    for (j = 0; j <= 2; ++j)
        A[i][j] = i * j;
```

Modeling the iteration domain:

- Polytope dimension: set by the number of surrounding loops
- Constraints: set by the loop bounds

\[
\mathcal{D}_R : \begin{bmatrix}
 1 & 0 \\
 -1 & 0 \\
 0 & 1 \\
 0 & -1 \\
\end{bmatrix} \cdot \begin{pmatrix} i \\ j \end{pmatrix} + \begin{pmatrix} 0 \\ 2 \\ 0 \\ 2 \end{pmatrix} = \begin{bmatrix}
 1 & 0 & 0 \\
 -1 & 0 & 2 \\
 0 & 1 & 0 \\
 0 & -1 & 2 \\
\end{bmatrix} \cdot \begin{pmatrix} i \\ j \\ 1 \end{pmatrix} \geq \vec{0}
\]

\[
0 \leq i \leq 2, \quad 0 \leq j \leq 2
\]
Some Useful Algorithms

All extended to parametric polyhedra:

- Compute the facets of a polytope: **PolyLib** [Wilde et al]

- Compute the volume of a polytope (number of points): **Barvinok** [Clauss/Verdoolaege]

- Scan a polytope (code generation): **CLooG** [Quillere/Bastoul]

- Find the lexicographic minimum: **PIP** [Feautrier]
Polyhedral Representation of Programs

Static Control Parts

- Loops have affine control only (over-approximation otherwise)
Polyhedral Representation of Programs

Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra

\[
\begin{align*}
\text{for} & \quad (i=1; \ i<=n; \ ++i) \\
& \quad . \ \text{for} \quad (j=1; \ j<=n; \ ++j) \\
& \quad . \ \text{if} \quad (i<=n-j+2) \\
& \quad . \ \ . \ s[i] = \ldots
\end{align*}
\]
Polyhedral Representation of Programs

Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra
- Memory accesses: static references, represented as affine functions of \vec{x}_S and \vec{p}

```latex
\begin{align*}
  f_s(\vec{x}_{S2}) &= \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{pmatrix} x_{S2} \\ n \\ 1 \end{pmatrix} \\
  f_a(\vec{x}_{S2}) &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \cdot \begin{pmatrix} x_{S2} \\ n \\ 1 \end{pmatrix} \\
  f_x(\vec{x}_{S2}) &= \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix} \cdot \begin{pmatrix} x_{S2} \\ n \\ 1 \end{pmatrix}
\end{align*}
```

```csharp
for (i=0; i<n; ++i) {
  s[i] = 0;
  for (j=0; j<n; ++j)
    s[i] = s[i] + a[i][j] * x[j];
}
```
Polyhedral Representation of Programs

Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra
- Memory accesses: static references, represented as affine functions of \(\vec{x}_S \) and \(\vec{p} \)
- Data dependence between S1 and S2: a subset of the Cartesian product of \(D_{S1} \) and \(D_{S2} \) (exact analysis)

```c
for (i=1; i<=3; ++i) {
    s[i] = 0;
    for (j=1; j<=3; ++j)
        s[i] = s[i] + 1;
}
```

\[
\mathcal{P}_{S1 \delta S2} = \begin{bmatrix}
1 & -1 & 0 & 0 \\
1 & 0 & 0 & -1 \\
-1 & 0 & 0 & 3 \\
0 & 1 & 0 & -1 \\
0 & -1 & 0 & 3 \\
0 & 0 & 1 & -1 \\
0 & 0 & -1 & 3 \\
\end{bmatrix}
\]

\[
\begin{pmatrix}
i_{S1} \\
i_{S2} \\
i_{S2} \\
1
\end{pmatrix} \geq 0
\]
Program Transformations
Scheduling Statement Instances

Interchange Transformation

The transformation matrix is the identity with a permutation of two rows.

\[
\begin{bmatrix}
1 & 0 \\
-1 & 0 \\
0 & 1 \\
0 & -1 \\
\end{bmatrix}
\begin{pmatrix}
i \\
j \\
\end{pmatrix}
+ \begin{pmatrix}
-1 \\
2 \\
-1 \\
3 \\
\end{pmatrix} \geq 0
\]

\[
\begin{pmatrix}
i' \\
j' \\
\end{pmatrix} = \begin{bmatrix}
0 & 1 \\
1 & 0 \\
\end{bmatrix}
\begin{pmatrix}
i \\
j \\
\end{pmatrix}
\]

\[
\begin{bmatrix}
0 & 1 \\
0 & -1 \\
1 & 0 \\
-1 & 0 \\
\end{bmatrix}
\begin{pmatrix}
i' \\
j' \\
\end{pmatrix}
+ \begin{pmatrix}
-1 \\
2 \\
-1 \\
3 \\
\end{pmatrix} \geq 0
\]

(a) original polyhedron \(A\vec{x} + \vec{a} \geq 0 \)

(b) transformation function \(\vec{y} = T\vec{x} \)

(c) target polyhedron \((AT^{-1})\vec{y} + \vec{a} \geq 0 \)

\[
\begin{align*}
do & \ i = 1, 2 \\
do & \ j = 1, 3 \\
d & \ S(i,j)
\end{align*}
\]
Scheduling Statement Instances

Reversal Transformation

The transformation matrix is the identity with one diagonal element replaced by -1.

\[
\begin{bmatrix}
1 & 0 \\
-1 & 0 \\
0 & 1 \\
0 & -1
\end{bmatrix}
\begin{bmatrix}
i \\
j
\end{bmatrix}
+
\begin{bmatrix}
-1 \\
2 \\
-1 \\
3
\end{bmatrix}
\geq \vec{0}
\]

\[
\begin{bmatrix}
i' \\
j'
\end{bmatrix}
=
\begin{bmatrix}
-1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & -1
\end{bmatrix}
\begin{bmatrix}
i \\
j
\end{bmatrix}
+
\begin{bmatrix}
-1 \\
2 \\
-1 \\
3
\end{bmatrix}
\geq \vec{0}
\]

(a) original polyhedron

\[A\vec{x} + \vec{a} \geq \vec{0}\]

(b) transformation function

\[\vec{y} = T\vec{x}\]

c) target polyhedron

\[(AT^{-1})\vec{y} + \vec{a} \geq \vec{0}\]

\[\text{do } i = 1, 2\]
\[\text{do } j = 1, 3\]
\[S(i,j)\]

\[\text{do } i' = -1, -2, -1\]
\[\text{do } j' = 1, 3\]
\[S(i=3-i',j=j')\]
Program Transformations: Scheduling

Scheduling Statement Instances

The transformation matrix is the composition of an interchange and reversal

\[
\begin{bmatrix}
1 & 0 \\
-1 & 0 \\
0 & 1 \\
0 & -1
\end{bmatrix}
\begin{pmatrix}
i \\
j
\end{pmatrix}
+\begin{pmatrix}
-1 \\
2 \\
1 \\
3
\end{pmatrix} \geq 0
\]

\[
\begin{pmatrix}
i' \\
j'
\end{pmatrix} = \begin{bmatrix}
0 & -1 \\
0 & 1 \\
1 & 0 \\
-1 & 0
\end{bmatrix}
\begin{pmatrix}
i' \\
j'
\end{pmatrix}
+\begin{pmatrix}
-1 \\
2 \\
1 \\
3
\end{pmatrix} \geq 0
\]

(a) original polyhedron
\[Ax + \vec{a} \geq \vec{0}\]
(b) transformation function
\[\vec{y} = T\vec{x}\]
(c) target polyhedron
\[(AT^{-1})\vec{y} + \vec{a} \geq \vec{0}\]

\[
\begin{align*}
do i & = 1, 2 \\
do j & = 1, 3 \\
S(i, j)
\end{align*}
\]

\[
\begin{align*}
do j' & = -1, -3, -1 \\
do i' & = 1, 2 \\
S(i=4-j', j=i')
\end{align*}
\]
Scheduling Statement Instances

The transformation matrix is the composition of an interchange and reversal.

(a) original polyhedron
\[A\vec{x} + \vec{a} \geq \vec{0} \]
(b) transformation function
\[\vec{y} = T\vec{x} \]
(c) target polyhedron
\[(AT^{-1})\vec{y} + \vec{a} \geq \vec{0} \]

\[
\begin{bmatrix}
1 & 0 \\
-1 & 0 \\
0 & 1 \\
0 & -1
\end{bmatrix}
\begin{bmatrix}
i \\
j
\end{bmatrix}
+ \begin{bmatrix}
-1 \\
2 \\
-1 \\
3
\end{bmatrix} \geq \vec{0}
\]
\[
\begin{bmatrix}
i' \\
j'
\end{bmatrix} = \begin{bmatrix}
0 & -1 \\
1 & 0 \\
1 & 0 \\
-1 & 0
\end{bmatrix}
\begin{bmatrix}
i \\
j
\end{bmatrix} + \begin{bmatrix}
-1 \\
2 \\
-1 \\
3
\end{bmatrix} \geq \vec{0}
\]

\[
\begin{bmatrix}
0 & -1 \\
0 & 1 \\
-1 & 0 \\
0 & -1
\end{bmatrix}
\begin{bmatrix}
i' \\
j'
\end{bmatrix} + \begin{bmatrix}
-1 \\
2 \\
-1 \\
3
\end{bmatrix} \geq \vec{0}
\]

\[
\begin{bmatrix}
i \\
j
\end{bmatrix}
\begin{bmatrix}
i = 1, 2 \\
j = 1, 3
\end{bmatrix}
S(i,j)
\]

\[
\begin{bmatrix}
i' \\
j'
\end{bmatrix} = \begin{bmatrix}
i = 1, 2 \\
j' = -1, -3, -1
\end{bmatrix}
S(i=4-j', j=i')
\]
Affine Scheduling

Definition (Affine schedule)

Given a statement S, a p-dimensional affine schedule Θ^R is an affine form on the outer loop iterators \vec{x}_S and the global parameters \vec{n}. It is written:

$$\Theta^S(\vec{x}_S) = T_S \begin{pmatrix} \vec{x}_S \\ \vec{n} \\ 1 \end{pmatrix}, \quad T_S \in \mathbb{K}^{p \times \text{dim}(\vec{x}_S) + \text{dim}(\vec{n}) + 1}$$

- A schedule assigns a timestamp to each executed instance of a statement
- If T is a vector, then Θ is a one-dimensional schedule
- If T is a matrix, then Θ is a multidimensional schedule
Program Transformations

Original Schedule

\[
\begin{align*}
\Theta_{S1} \cdot \vec{x}_{S1} &= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix} \\
\Theta_{S2} \cdot \vec{x}_{S2} &= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} i \\ j \\ k \\ n \\ 1 \end{pmatrix}
\end{align*}
\]

for (i = 0; i < n; ++i)
 for (j = 0; j < n; ++j)
 for (k = 0; k < n; ++k)
 C[i][j] += A[i][k] * B[k][j];

▶ Represent Static Control Parts (control flow and dependences must be statically computable)

▶ Use code generator (e.g. CLooG) to generate C code from polyhedral representation (provided iteration domains + schedules)
Represent Static Control Parts (control flow and dependences must be statically computable)

Use code generator (e.g. CLooG) to generate C code from polyhedral representation (provided iteration domains + schedules)
Program Transformations

Original Schedule

for (i = 0; i < n; ++i)
 for (j = 0; j < n; ++j){
 for (k = 0; k < n; ++k)
 C[i][j] += A[i][k] * B[k][j];
 }

Θ^{S_1} \vec{x}_{S_1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix}

for (i = 0; i < n; ++i)
 for (j = 0; j < n; ++j){
 C[i][j] = 0;
 for (k = 0; k < n; ++k)
 C[i][j] += A[i][k] * B[k][j];
 }

Θ^{S_2} \vec{x}_{S_2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} i \\ j \\ k \\ n \\ 1 \end{pmatrix}

- Represent Static Control Parts (control flow and dependences must be statically computable)
- Use code generator (e.g. CLooG) to generate C code from polyhedral representation (provided iteration domains + schedules)
Program Transformations

Distribute loops

\[\Theta^S_1 \vec{x}_S = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix} \]

\[\Theta^S_2 \vec{x}_S = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} i \\ j \\ k \\ n \\ 1 \end{pmatrix} \]

for (i = 0; i < n; ++i)
 for (j = 0; j < n; ++j)
 \[C[i][j] = 0; \]
 for (k = 0; k < n; ++k)
 \[C[i][j] += A[i][k] \times B[k][j]; \]

for (i = 0; i < n; ++i)
 for (j = 0; j < n; ++j)
 \[C[i][j] = 0; \]
 for (k = 0; k < n; ++k)
 \[C[i-n][j] += A[i-n][k] \times B[k][j]; \]

\[\triangleright \text{ All instances of S1 are executed before the first S2 instance} \]
Program Transformations

Distribute loops + Interchange loops for S2

for (i = 0; i < n; ++i)
 for (j = 0; j < n; ++j)
 S1: C[i][j] = 0;
 for (k = 0; k < n; ++k)
 S2: C[i][j] += A[i][k] * B[k][j];

\[\Theta^{S1} \cdot \vec{x}_{S1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix} \]

\[\Theta^{S2} \cdot \vec{x}_{S2} = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} i \\ j \\ k \\ n \\ 1 \end{pmatrix} \]

for (i = 0; i < n; ++i)
 for (j = 0; j < n; ++j)
 C[i][j] = 0;
 for (k = n; k < 2*n; ++k)
 for (j = 0; j < n; ++j)
 for (i = 0; i < n; ++i)
 C[i][j] += A[i][k-n] * B[k-n][j];

▶ The outer-most loop for S2 becomes \(k \)
Program Transformations

Illegal schedule

for (i = 0; i < n; ++i)
 for (j = 0; j < n; ++j)
 S1: C[i][j] = 0;
 for (k = 0; k < n; ++k)
 S2: C[i][j] += A[i][k]*B[k][j];
}

\[\Theta^{S_1} \vec{x}_{S_1} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix} \]

for (k = 0; k < n; ++k)
 for (j = 0; j < n; ++j)
 for (i = 0; i < n; ++i)
 C[i][j] += A[i][k]*B[k][j];

for (i = n; i < 2*n; ++i)
 for (j = 0; j < n; ++j)
 C[i-n][j] = 0;

\[\Theta^{S_2} \vec{x}_{S_2} = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} i \\ j \\ k \\ n \\ 1 \end{pmatrix} \]

All instances of S1 are executed after the last S2 instance
Program Transformations

A legal schedule

```plaintext
for (i = 0; i < n; ++i)
    for (j = 0; j < n; ++j)
        S1: C[i][j] = 0;
        for (k = 0; k < n; ++k)
            S2: C[i][j] += A[i][k] * B[k][j];
```  

\[\Theta^{S_1} \bar{x}_{S_1} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix} \]

\[\Theta^{S_2} \bar{x}_{S_2} = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} i \\ j \\ k \\ n \\ 1 \end{pmatrix} \]

for (i = n; i < 2*n; ++i)
 for (j = 0; j < n; ++j)
 C[i][j] = 0;
 for (k = n+1; k <= 2*n; ++k)
 for (j = 0; j < n; ++j)
 C[i][j] += A[i][k-n-1] * B[k-n-1][j];

- Delay the S2 instances
- Constraints must be expressed between \(\Theta^{S_1} \) and \(\Theta^{S_2} \)
Program Transformations

Implicit fine-grain parallelism

for (i = 0; i < n; ++i)
 for (j = 0; j < n; ++j)
 S1: C[i][j] = 0;
 for (k = 0; k < n; ++k)
 S2: C[i][j] += A[i][k] * B[k][j];

\[\Theta^{S1} \cdot \bar{x}_{S1} = \begin{pmatrix} 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix} \]

\[\Theta^{S2} \cdot \bar{x}_{S2} = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} i \\ j \\ k \\ n \\ 1 \end{pmatrix} \]

for (i = 0; i < n; ++i)
 pfor (j = 0; j < n; ++j)
 C[i][j] = 0;
for (k = n; k < 2*n; ++k)
 pfor (j = 0; j < n; ++j)
 pfor (i = 0; i < n; ++i)
 C[i][j] += A[i][k-n] * B[k-n][j];

- Number of rows of \(\Theta \) \leftrightarrow \text{number of outer-most sequential loops}
Program Transformations

Representing a schedule

for (i = 0; i < n; ++i)
 for (j = 0; j < n; ++j)
 S1: C[i][j] = 0;
 for (k = 0; k < n; ++k)
 S2: C[i][j] += A[i][k] * B[k][j];
 }
for (i = n; i < 2*n; ++i)
 for (j = 0; j < n; ++j)
 C[i][j] = 0;
 for (k = n+1; k <= 2*n; ++k)
 for (j = 0; j < n; ++j)
 for (i = 0; i < n; ++i)
 C[i][j] += A[i][k-n-1] * B[k-n-1][j];

\[\Theta^S_1 \vec{x}_{S1} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix} \]

\[\Theta^S_2 \vec{x}_{S2} = \begin{pmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} i \\ j \\ k \\ n \\ 1 \end{pmatrix} \]

\[\Theta \vec{x} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} i & j & j & k & n & n & 1 & 1 \end{pmatrix}^T \]
Program Transformations

Representing a schedule

\[\Theta^{S1} \vec{x}_{S1} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix} \]

\[\Theta^{S2} \vec{x}_{S2} = \begin{pmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} i \\ j \\ k \\ n \\ 1 \end{pmatrix} \]

for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;
for (k = n+1; k <= 2*n; ++k)
for (j = 0; j < n; ++j)
C[i][j] += A[i][k-n-1] * B[k-n-1][j];
for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j)
S1: C[i][j] = 0;
for (k = 0; k < n; ++k)
S2: C[i][j] += A[i][k] * B[k][j];
Program Transformations

Representing a schedule

\[\Theta^{S1} \cdot \vec{x}_{S1} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix} \]

\[\Theta^{S2} \cdot \vec{x}_{S2} = \begin{pmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} i \\ j \\ k \\ n \\ 1 \end{pmatrix} \]

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\vec{i})</td>
<td>reversal</td>
</tr>
<tr>
<td>(\vec{p})</td>
<td>skewing</td>
</tr>
<tr>
<td>(\vec{c})</td>
<td>interchange</td>
</tr>
<tr>
<td>(\vec{f})</td>
<td>fusion</td>
</tr>
<tr>
<td>(\vec{d})</td>
<td>distribution</td>
</tr>
<tr>
<td>(\vec{s})</td>
<td>peeling</td>
</tr>
<tr>
<td>(\vec{r})</td>
<td>shifting</td>
</tr>
</tbody>
</table>

Ohio State
Pictured Example

Example of 2 extended dependence graphs
Legal Program Transformation

A few properties:

- A transformation is illegal if a dependence crosses the hyperplane backwards
- A dependence going forward between 2 hyperplanes indicates sequentiality
- No dependence between any point of the hyperplane indicates parallelism

Definition (Precedence condition)

Given Θ^R a schedule for the instances of R, Θ^S a schedule for the instances of S. Θ^R and Θ^S are legal schedules if $\forall \langle \tilde{x}_R, \tilde{x}_S \rangle \in D_{R,S}$:

$$\Theta_R(\tilde{x}_R) \prec \Theta_S(\tilde{x}_S)$$
A (Naive) Scheduling Approach

- Pick a schedule for the program statements
- Check if it respects all dependences
 This is called filtering

Limitations:

- How to use this in combination of an objective function?
- For example, the density of legal 1-d affine schedules is low:

<table>
<thead>
<tr>
<th></th>
<th>matmult</th>
<th>locality</th>
<th>fir</th>
<th>h264</th>
<th>crout</th>
</tr>
</thead>
<tbody>
<tr>
<td>i-Bounds</td>
<td>$-1,1$</td>
<td>$-1,1$</td>
<td>$0,1$</td>
<td>$-1,1$</td>
<td>$-3,3$</td>
</tr>
<tr>
<td>c-Bounds</td>
<td>$-1,1$</td>
<td>$-1,1$</td>
<td>$0,3$</td>
<td>$0,4$</td>
<td>$-3,3$</td>
</tr>
<tr>
<td>#Sched.</td>
<td>1.9×10^4</td>
<td>5.9×10^4</td>
<td>1.2×10^7</td>
<td>1.8×10^8</td>
<td>2.6×10^{15}</td>
</tr>
</tbody>
</table>

\Downarrow

| #Legal | 6561 | 912 | 792 | 360 | 798 |
Objectives for a Good Scheduling Algorithm

- Build a legal schedule, aka a legal transformation
- Embed some properties in this legal schedule
 - latency: minimize the time between the first and last iteration
 - parallelism (for placement)
 - permutability (for tiling)
 - ...

A 2-step approach:
- Find the solution set of all legal affine schedules
- Find an ILP formulation for the objective function
Selecting a Good Schedule

Build a cost function to select a (good) schedule:

- Minimize latency: bound the execution time

 Bound the program execution / find bounded delay [Feautrier]
 Given $L = w_0 + \vec{u}.\vec{v}$, compute $\min(\Theta(\vec{x}) - L)$ s.t. Θ is legal

- Exhibit coarse-grain parallelism

 Placement constraints [Lim/Lam]
 $\Theta^R(\vec{x}_R) = \Theta^S(\vec{x}_S)$ for all instances s.t. Θ is legal

- Improve data locality (spatial/temporal reuse)

- Many more possible...
Tiling
An Overview of Tiling

Tiling: partition the computation into atomic blocks

- Early work in the late 80’s
- Motivation: data locality improvement + parallelization
Tiling: Overview

An Overview of Tiling

- Tiling the iteration space
 - It must be valid (dependence analysis required)
 - It may require pre-transformation
 - Unimodular transformation framework limitations

- Supported in current compilers, but limited applicability

- Challenges: imperfectly nested loops, parametric loops, pre-transformations, tile shape, ...

- Tile size selection
 - Critical for locality concerns: determines the footprint
 - Empirical search of the best size (problem + machine specific)
 - Parametric tiling makes the generated code valid for any tile size
Motivating Example

Example (fdtd-2d)

```c
for(t = 0; t < tmax; t++) {
    for (j = 0; j < ny; j++)
        ey[0][j] = _edge_[t];
    for (i = 1; i < nx; i++)
        for (j = 0; j < ny; j++)
            ey[i][j] = ey[i][j] - 0.5*(hz[i][j]-hz[i-1][j]);
    for (i = 0; i < nx; i++)
        for (j = 1; j < ny; j++)
            ex[i][j] = ex[i][j] - 0.5*(hz[i][j]-hz[i][j-1]);
    for (i = 0; i < nx - 1; i++)
        for (j = 0; j < ny - 1; j++)
            hz[i][j] = hz[i][j] - 0.7* (ex[i][j+1] - ex[i][j] +
                                        ey[i+1][j]-ey[i][j]);
}
```
Motivating Example

Example (FDTD-2D tiled)

```c
for (c0 = 0; c0 <= (((ny + 2 * tmax - 3) * 32 < 0?(-((ny + 2 * tmax - 3) + 32 + 1) / 32) : -((-(ny + 2 *
tmax - 3) + 32 - 1) / 32)) ; ++c0) {
    #pragma omp parallel for private(c3, c4, c2, c5)
    for (c1 = (((c0 * 2 < 0?-(-c0 / 2) : ((2 < 0?(-c0 + -2 - 1) / -2 : (c0 + 2 - 1) / 2)))) > (((32 * c0 + -tmax + 1) *32 < 0?-(-(32 * c0 + -tmax + 1) / 32) : ((32 < 0?(-(32 * c0 + -tmax + 1) + -32 - 1) / -32 : (32 * c0 + -tmax + 1 + 32
- 1) / 32))))?((c0 * 2 < 0?-(-c0 / 2) : ((2 < 0?(-c0 + -2 - 1) / -2 : (c0 + 2 - 1) / 2)))) : (((32 * c0 + -tmax + 1) *32 < 0?-(-(32 * c0 + -tmax + 1) / 32) : ((32 < 0?(-(32 * c0 + -tmax + 1) + -32 - 1) / -32 : (32 * c0 + -tmax + 1 + 32
- 1) / 32)))); ++c1) {
        for (c2 = c0 + -c1; c2 <= (((tmax + nx + -2) * 32 < 0?(-((tmax + nx + -2) + 32 + 1) / 32) : -((-(tmax +
        nx + -2) + 32 - 1) / 32)) ; ++c2) {
            if (c0 == 2 * c1 && c0 == 2 * c2) {
                for (c3 = 16 * c0; c3 <= ((tmax + nx + -2) * 32 < 0?(-((tmax + nx + -2) + 32 + 1) / 32) : -((-(tmax +
        nx + -2) + 32 - 1) / 32)) ; ++c3) {
                    if (c0 % 2 == 0)
                        (ey[0][0] = _edge_[c3]);
                    .......... (200 more lines!)
            }
        }
    }
}
```

Performance gain: 2-6× on modern multicore platforms
Tiling in the Polyhedral Model

- Tiling partition the computation into blocks
- Note we consider only rectangular tiling here
- For tiling to be legal, such a partitioning must be legal
Key Ideas of the Tiling Hyperplane Algorithm

Affine transformations for communication minimal parallelization and locality optimization of arbitrarily nested loop sequences
[Bondhugula et al, CC’08 & PLDI’08]

▶ Compute a set of transformations to make loops tilable
 ▶ Try to minimize synchronizations
 ▶ Try to maximize locality (maximal fusion)

▶ Result is a set of *permutable* loops, if possible
 ▶ Strip-mining / tiling can be applied
 ▶ Tiles may be sync-free parallel or pipeline parallel

▶ Algorithm always terminates (possibly by splitting loops/statements)
Example: 1D-Jacobi

1-D Jacobi (imperfectly nested)

\[
\begin{align*}
&\text{S:} \quad b[i] = 0.333 \times (a[i-1]+a[i]+a[i+1]); \\
&\text{T:} \quad a[j] = b[j];
\end{align*}
\]

\[
\begin{bmatrix}
\phi_1^S \\
\phi_2^S \\
\phi_1^T \\
\phi_2^T
\end{bmatrix}
\begin{pmatrix}
t \\
i \\
i \\
j \\
1 \\
1 \\
1 \\
1
\end{pmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
1 & 0 & 0 \\
2 & 1 & 1
\end{bmatrix}
\]
Example: 1D-Jacobi

1-D Jacobi (imperfectly nested)

\[
\begin{bmatrix}
\phi^1_S \\
\phi^2_S \\
\phi^1_T \\
\phi^2_T \\
\end{bmatrix}
\begin{bmatrix}
t \\
i \\
t \\
j \\
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
1 & 0 & 0 \\
2 & 1 & 1 \\
\end{bmatrix}
\]

- The resulting transformation is equivalent to a constant shift of one for T relative to S, fusion (j and i are named the same as a result), and skewing the fused i loop with respect to the t loop by a factor of two.
- The (1,0) hyperplane has the least communication: no dependence crosses more than one hyperplane instance along it.
Example: 1D-Jacobi

Transforming S

\[
\begin{bmatrix}
\phi_1^S \\
\phi_2^S
\end{bmatrix}
\begin{bmatrix}
t \\
i
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
2 & 1 & 0
\end{bmatrix}
\]
Example: 1D-Jacobi

Transforming T

$$\begin{bmatrix} \phi_1^T \\ \phi_2^T \end{bmatrix} \begin{pmatrix} t \\ j \\ 1 \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 1 \end{bmatrix}$$
Example: 1D-Jacobi

Interleaving S and T

Ohio State

Louisiana State University

The Ohio State University
Example: 1D-Jacobi

Interleaving S and T

\[
\begin{pmatrix}
\phi^1_S \\
\phi^2_S \\
\phi^1_T \\
\phi^2_T \\
\end{pmatrix}
\begin{pmatrix}
t \\
i \\
j \\
1 \\
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
1 & 0 & 0 \\
2 & 1 & 1 \\
\end{pmatrix}
\]
Example: 1D-Jacobi

1-D Jacobi (imperfectly nested) – transformed code

```c
for (t0=0; t0<=M-1; t0++) {
    for (t1=2*t0+3; t1<=2*t0+N-2; t1++) {
        S: b[-2*t0+t1]=0.333*(a[-2*t0+t1-1]+a[-2*t0+t1]
            +a[-2*t0+t1+1]);
        T: a[-2*t0+t1-1]=b[-2*t0+t1-1];
    }
    T': a[N-2]=b[N-2];
}
```
Example: 1D-Jacobi

1-D Jacobi (imperfectly nested) – transformed code

```c
for (t0=0;t0<=M-1;t0++) {
    for (t1=2*t0+3;t1<=2*t0+N-2;t1++) {
        S: b[-2*t0+t1]=0.333*(a[-2*t0+t1-1]+a[-2*t0+t1]+a[-2*t0+t1+1]);
        T: a[-2*t0+t1-1]=b[-2*t0+t1-1]; } 
    T': a[N-2]=b[N-2]; } 
```
Fusion-driven Optimization
Overview

Problem: How to improve program execution time?

- Focus on shared-memory computation
 - OpenMP parallelization
 - SIMD Vectorization
 - Efficient usage of the intra-node memory hierarchy

- Challenges to address:
 - Different machines require different compilation strategies
 - One-size-fits-all scheme hinders optimization opportunities

Question: how to restructure the code for performance?
Objectives for a Successful Optimization

During the program execution, interplay between the hardware resources:

- Thread-centric parallelism
- SIMD-centric parallelism
- Memory layout, inc. caches, prefetch units, buses, interconnects...

→ Tuning the trade-off between these is required

A loop optimizer must be able to transform the program for:

- Thread-level parallelism extraction
- Loop tiling, for data locality
- Vectorization

Our approach: form a tractable search space of possible loop transformations
Running Example

Original code

```c
Example (tmp = A.B, D = tmp.C)

for (i1 = 0; i1 < N; ++i1)
    for (j1 = 0; j1 < N; ++j1) {
        R: tmp[i1][j1] = 0;
        for (k1 = 0; k1 < N; ++k1)
            S: tmp[i1][j1] += A[i1][k1] * B[k1][j1];
    }
for (i2 = 0; i2 < N; ++i2)
    for (j2 = 0; j2 < N; ++j2) {
        T: D[i2][j2] = 0;
        for (k2 = 0; k2 < N; ++k2)
            U: D[i2][j2] += tmp[i2][k2] * C[k2][j2];
    }
```

{R,S} fused, {T,U} fused

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>Max. fusion</th>
<th>Max. dist</th>
<th>Balanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>4× Xeon 7450 / ICC 11</td>
<td>1×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4× Opteron 8380 / ICC 11</td>
<td>1×</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Running Example

Cost model: maximal fusion, minimal synchronization
[Bondhugula et al., PLDI’08]

Example \((tmp = A.B, D = tmp.C)\)

```
parfor (c0 = 0; c0 < N; c0++) {
    for (c1 = 0; c1 < N; c1++) {
        R: tmp[c0][c1]=0;
        T: D[c0][c1]=0;
        for (c6 = 0; c6 < N; c6++)
            S: tmp[c0][c1] += A[c0][c6] * B[c6][c1];
        parfor (c6 = 0;c6 <= c1; c6++)
            U: D[c0][c6] += tmp[c0][c1-c6] * C[c1-c6][c6];
    }
}
for (c1 = N; c1 < 2*N - 1; c1++)
    parfor (c6 = c1-N+1; c6 < N; c6++)
        U: D[c0][c6] += tmp[c0][1-c6] * C[c1-c6][c6];
```

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Original</th>
<th>Max. fusion</th>
<th>Max. dist</th>
<th>Balanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>4× Xeon 7450 / ICC 11</td>
<td>1×</td>
<td>2.4×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4× Opteron 8380 / ICC 11</td>
<td>1×</td>
<td>2.2×</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Running Example

Maximal distribution: best for Intel Xeon 7450
Poor data reuse, best vectorization

Example \((tmp = A.B, D = tmp.C)\)

```plaintext
parfor (i1 = 0; i1 < N; ++i1)
  parfor (j1 = 0; j1 < N; ++j1)
  R:   tmp[i1][j1] = 0;
parfor (i1 = 0; i1 < N; ++i1)
  for (k1 = 0; k1 < N; ++k1)
    parfor (j1 = 0; j1 < N; ++j1)
  S:   tmp[i1][j1] += A[i1][k1] * B[k1][j1];

{R} and {S} and {T} and {U} distributed
parfor (i2 = 0; i2 < N; ++i2)
  parfor (j2 = 0; j2 < N; ++j2)
T:   D[i2][j2] = 0;
parfor (i2 = 0; i2 < N; ++i2)
  for (k2 = 0; k2 < N; ++k2)
    parfor (j2 = 0; j2 < N; ++j2)
U:   D[i2][j2] += tmp[i2][k2] * C[k2][j2];
```

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>Max. fusion</th>
<th>Max. dist</th>
<th>Balanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>4× Xeon 7450 / ICC 11</td>
<td>1×</td>
<td>2.4×</td>
<td>3.9×</td>
<td></td>
</tr>
<tr>
<td>4× Opteron 8380 / ICC 11</td>
<td>1×</td>
<td>2.2×</td>
<td>6.1×</td>
<td></td>
</tr>
</tbody>
</table>
Running Example

Balanced distribution/fusion: best for AMD Opteron 8380
Poor data reuse, best vectorization

Example \((tmp = A.B, D = tmp.C)\)

\[
\begin{align*}
\text{parfor} & \quad (c1 = 0; c1 < N; c1++) \\
& \quad \text{parfor} (c2 = 0; c2 < N; c2++) \\
R: & \quad \text{C}[c1][c2] = 0; \\
\text{parfor} & \quad (c1 = 0; c1 < N; c1++) \\
& \quad \text{parfor} (c2 = 0; c2 < N; c2++) \\
T: & \quad \text{E}[c1][c3] = 0; \\
& \quad \text{parfor} (c2 = 0; c2 < N; c2++) \\
S: & \quad \text{C}[c1][c2] += \text{A}[c1][c3] \times \text{B}[c3][c2]; \\
& \quad \{S,T\} \text{ fused, \{R\} and \{U\} distributed} \\
\text{parfor} & \quad (c1 = 0; c1 < N; c1++) \\
& \quad \text{parfor} (c2 = 0; c2 < N; c2++) \\
U: & \quad \text{E}[c1][c2] += \text{C}[c1][c3] \times \text{D}[c3][c2];
\end{align*}
\]

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>Max. fusion</th>
<th>Max. dist</th>
<th>Balanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>4× Xeon 7450 / ICC 11</td>
<td>1×</td>
<td>2.4×</td>
<td>3.9×</td>
<td>3.1×</td>
</tr>
<tr>
<td>4× Opteron 8380 / ICC 11</td>
<td>1×</td>
<td>2.2×</td>
<td>6.1×</td>
<td>8.3×</td>
</tr>
</tbody>
</table>
Running Example

Example ($tmp = A.B, D = tmp.C$)

```matlab
parfor (c1 = 0; c1 < N; c1++)
    parfor (c2 = 0; c2 < N; c2++)
        R: C[c1][c2] = 0;
        parfor (c1 = 0; c1 < N; c1++)
            for (c3 = 0; c3 < N; c3++) {
                T: E[c1][c3] = 0;
                parfor (c2 = 0; c2 < N; c2++)
                    S: C[c1][c2] += A[c1][c3] * B[c3][c2];
            }
        } S, T fused, {R} and {U} distributed
    parfor (c1 = 0; c1 < N; c1++)
        for (c3 = 0; c3 < N; c3++)
            parfor (c2 = 0; c2 < N; c2++)
                U: E[c1][c2] += C[c1][c3] * D[c3][c2];
```

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>Max. fusion</th>
<th>Max. dist</th>
<th>Balanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>4× Xeon 7450 / ICC 11</td>
<td>1×</td>
<td>2.4×</td>
<td>3.9×</td>
<td>3.1×</td>
</tr>
<tr>
<td>4× Opteron 8380 / ICC 11</td>
<td>1×</td>
<td>2.2×</td>
<td>6.1×</td>
<td>8.3×</td>
</tr>
</tbody>
</table>

The best **fusion/distribution choice** drives the quality of the optimization.
Loop Structures

Possible grouping + ordering of statements

- \{\{R\}, \{S\}, \{T\}, \{U\}\}; \{\{R\}, \{S\}, \{U\}, \{T\}\}; ...
- \{\{R,S\}, \{T\}, \{U\}\}; \{\{R\}, \{S\}, \{T,U\}\}; \{\{R\}, \{T,U\}, \{S\}\}; \{\{T,U\}, \{R\}, \{S\}\}; ...
- \{\{R,S,T\}, \{U\}\}; \{\{R\}, \{S,T,U\}\}; \{\{S\}, \{R,T,U\}\}; ...
- \{\{R,S,T,U\}\};

Number of possibilities: \(\gg n!\) (number of total preorders)
Loop Structures

Removing non-semantics preserving ones

- \{\{R\}, \{S\}, \{T\}, \{U\}\}; \{\{R\}, \{S\}, \{U\}, \{T\}\}; ...
- \{\{R,S\}, \{T\}, \{U\}\}; \{\{R\}, \{S\}, \{T,U\}\}; \{\{R\}, \{T,U\}, \{S\}\}; \{\{T,U\}, \{R\}, \{S\}\};...
- \{\{R,S,T\}, \{U\}\}; \{\{R\}, \{S,T,U\}\}; \{\{S\}, \{R,T,U\}\};...
- \{\{R,S,T,U\}\}

Number of possibilities: 1 to 200 for our test suite
Loop Structures

For each partitioning, many possible loop structures

- \{R\}, \{S\}, \{T\}, \{U\}
- For S: \{i, j, k\}; \{i, k, j\}; \{k, i, j\}; \{k, j, i\}; ...
- However, only \{i, k, j\} has:
 - outer-parallel loop
 - inner-parallel loop
 - lowest striding access (efficient vectorization)
Possible Loop Structures for 2mm

- 4 statements, 75 possible partitionings
- 10 loops, up to 10! possible loop structures for a given partitioning

- **Two steps:**
 - Remove all partitionings which breaks the semantics: from 75 to 12
 - Use static cost models to select the loop structure for a partitioning: from $d!$ to 1

- Final search space: **12 possibilities**
Contributions and Overview of the Approach

- Empirical search on possible fusion/distribution schemes
- **Each structure drives the success of other optimizations**
 - Parallelization
 - Tiling
 - Vectorization

- Use static cost models to compute a complex loop transformation for a specific fusion/distribution scheme

- Iteratively test the different versions, retain the best
 - Best performing loop structure is found
Search Space of Loop Structures

- **Partition the set of statements into classes:**
 - This is deciding loop fusion / distribution
 - Statements in the same class will share at least one common loop in the target code
 - Classes are ordered, to reflect code motion

- **Locally on each partition, apply model-driven optimizations**

- Leverage the polyhedral framework:
 - Build the smallest yet most expressive space of possible partitionings
 [Pouchet et al., POPL’11]
 - Consider **semantics-preserving partitionings only**: orders of magnitude smaller space
Summary of the Optimization Process

<table>
<thead>
<tr>
<th>description</th>
<th>#loops</th>
<th>#stmts</th>
<th>#refs</th>
<th>#deps</th>
<th>#part.</th>
<th>#valid</th>
<th>Variability</th>
<th>Pb. Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>2mm</td>
<td>6</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>75</td>
<td>12</td>
<td>✓</td>
<td>1024x1024</td>
</tr>
<tr>
<td>3mm</td>
<td>9</td>
<td>6</td>
<td>12</td>
<td>19</td>
<td>4683</td>
<td>128</td>
<td>✓</td>
<td>1024x1024</td>
</tr>
<tr>
<td>adi</td>
<td>11</td>
<td>8</td>
<td>36</td>
<td>188</td>
<td>545835</td>
<td>1</td>
<td>✓</td>
<td>1024x1024</td>
</tr>
<tr>
<td>atax</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>12</td>
<td>75</td>
<td>16</td>
<td>✓</td>
<td>8000x8000</td>
</tr>
<tr>
<td>bicg</td>
<td>3</td>
<td>4</td>
<td>10</td>
<td>10</td>
<td>75</td>
<td>26</td>
<td>✓</td>
<td>8000x8000</td>
</tr>
<tr>
<td>correl</td>
<td>5</td>
<td>6</td>
<td>12</td>
<td>14</td>
<td>4683</td>
<td>176</td>
<td>✓</td>
<td>500x500</td>
</tr>
<tr>
<td>covar</td>
<td>7</td>
<td>7</td>
<td>13</td>
<td>26</td>
<td>47293</td>
<td>96</td>
<td>✓</td>
<td>500x500</td>
</tr>
<tr>
<td>doitgen</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>13</td>
<td>4</td>
<td>✓</td>
<td>128x128x128</td>
</tr>
<tr>
<td>gemm</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>✓</td>
<td>1024x1024</td>
</tr>
<tr>
<td>gemver</td>
<td>7</td>
<td>4</td>
<td>19</td>
<td>13</td>
<td>75</td>
<td>8</td>
<td>✓</td>
<td>8000x8000</td>
</tr>
<tr>
<td>gesummv</td>
<td>2</td>
<td>5</td>
<td>15</td>
<td>17</td>
<td>541</td>
<td>44</td>
<td>✓</td>
<td>8000x8000</td>
</tr>
<tr>
<td>gramschmidt</td>
<td>6</td>
<td>7</td>
<td>17</td>
<td>34</td>
<td>47293</td>
<td>1</td>
<td>✓</td>
<td>512x512</td>
</tr>
<tr>
<td>jacobi-2d</td>
<td>5</td>
<td>2</td>
<td>8</td>
<td>14</td>
<td>3</td>
<td>1</td>
<td>✓</td>
<td>20x1024x1024</td>
</tr>
<tr>
<td>lu</td>
<td>4</td>
<td>2</td>
<td>7</td>
<td>10</td>
<td>3</td>
<td>1</td>
<td>✓</td>
<td>1024x1024</td>
</tr>
<tr>
<td>lducmp</td>
<td>9</td>
<td>15</td>
<td>40</td>
<td>188</td>
<td>10^{12}</td>
<td>20</td>
<td>✓</td>
<td>1024x1024</td>
</tr>
<tr>
<td>seidel</td>
<td>3</td>
<td>1</td>
<td>10</td>
<td>27</td>
<td>1</td>
<td>1</td>
<td>✓</td>
<td>20x1024x1024</td>
</tr>
</tbody>
</table>

Table: Summary of the optimization process
Experimental Setup

We compare three schemes:

- **maxfuse**: static cost model for fusion (maximal fusion)
- **smartfuse**: static cost model for fusion (fuse only if data reuse)
- **Iterative**: iterative compilation, output the best result
Performance Results - Intel Xeon 7450 - ICC 11

Performance Improvement - Intel Xeon 7450 (24 threads)

- perf. imp / ICC -fast -parallel
- pocc-maxfuse
- pocc-smartfuse
- iterative
Performance Results - AMD Opteron 8380 - ICC 11

Performance Improvement - AMD Opteron 8380 (16 threads)

Ohio State
Performance Results - Intel Atom 330 - GCC 4.3

Performance Improvement - Intel Atom 230 (2 threads)

Ohio State
Assessment from Experimental Results

1. Empirical tuning required for 9 out of 16 benchmarks

2. Strong performance improvements: $2.5 \times - 3 \times$ on average

3. Portability achieved:
 - Automatically adapt to the program and target architecture
 - No assumption made about the target
 - Exhaustive search finds the optimal structure (1-176 variants)

4. Substantial improvements over state-of-the-art (up to $2 \times$)
Conclusions

Take-home message:

⇒ Fusion / Distribution / Code motion highly program- and machine-specific

⇒ Minimum empirical tuning + polyhedral framework gives very good performance on several applications

⇒ Complete, end-to-end framework implemented and effectiveness demonstrated

Future work:

▶ Further pruning of the search space (additional static cost models)
▶ Statistical search techniques
Polyhedral Toolbox
Polyhedral Toolbox:

Polyhedral Software Toolbox

▶ Analysis:
 ▶ Extracting the polyhedral representation of a program: Clan, PolyOpt
 ▶ Computing the dependence polyhedra: Candl

▶ Mathematical operations:
 ▶ Doing polyhedral operations on \mathbb{Q}-, \mathbb{Z}- and \mathbb{Z}-polyhedral: PolyLib, ISL
 ▶ Solving ILP/PIP problems: PIPLib
 ▶ Computing the number of points in a (parametric) polyhedron: Barvinok
 ▶ Projection on \mathbb{Q}-polyhedra: FM, the Fourier-Motzkin Library

▶ Scheduling:
 ▶ Tiling hyperplane method: PLuTo
 ▶ Iterative selection of affine schedules: LetSee

▶ Code generation:
 ▶ Generating C code from a polyhedral representation: CLooG
 ▶ Parametric tiling from a polyhedral representation: PrimeTile, DynTile, PTile
Polyhedral Compilers

Available polyhedral compilers:

▶ Non-Free:
 ▶ IBM XL/Poly
 ▶ Reservoir Labs R-Stream

▶ Free:
 ▶ GCC (see the GRAPHITE effort)
 ▶ LLVM (see the Polly effort)
 ▶ PIPS/Par4All (C-to-GPU support)

▶ Prototypes (non exhaustive list!):
 ▶ **PolyOpt** from OSU, a polyhedral compiler using parts of PoCC and the Rose infrastructure
 ▶ **PoCC, the POlyhedral Compiler Collection**
 Contains Clan, Candl, Pluto, LetSee, PIPLib, PolyLib, FM, ISL, Barvinok, CLooG, ...
 ▶ SUIF, Loopo, Clang+ISL, ...
Polyhedral Methodology Toolbox

- Semantics-preserving schedules:
 - Dependence relation finely characterized with dependence polyhedra
 - Algorithms should harness the power of this representation (ex: legality testing, parallelism testing, etc.)

- Scheduling:
 - Scheduling algorithm can be greedy (level-by-level) or global
 - Beware of scalability
 - Special properties can be embedded in the schedule via an ILP (ex: fusion, tiling, parallelism)

- Mathematics:
 - Beware of the distinction between \mathbb{Q}-, \mathbb{Z}- and \mathbb{Z}-polyhedra: always choose the most relaxed one that fits the problem
 - Farkas Lemma is useful to characterize a solution set
 - Farkas Lemma is also useful to linearize constraints
(Partial) State-of-the-art in Polyhedral Compilation

(...In my humble opinion)

▶ Analysis
 ▶ Array Dataflow Analysis [Feautrier, IJPP91]
 ▶ Dependence polyhedra [Feautrier, IJPP91] (Candl)
 ▶ Non-static control flow support [Benabderrahmane, CC10]

▶ Program transformations:
 ▶ Tiling hyperplane method [Bondhugula, CC08/PLDI08]
 ▶ Convex space of all affine schedules [Vasilache, 07]
 ▶ Iterative search of schedules [Pouchet, CGO07/PLDI08]
 ▶ Vectorization [Trifunovic, PACT09]

▶ Code generation
 ▶ Arbitrary affine scheduling functions [Bastoul, PACT04]
 ▶ Scalable code generation [Vasilache, CC06/PhD07]
 ▶ Parametric Tiling [Hartono et al, ICS09/CGO10]
Some Ongoing Research [1/2]

- **Scalability**: provide more scalable algorithms, operating on hundreds of statements
 - Trade-off between optimality and scalability
 - Redesigning the framework: introducing approximations

- **Vectorization**: pre- and post-transformations for vectorization
 - Select the appropriate transformations for vectorization
 - Generate efficient SIMD code

- **Scheduling**: get (very) good performance on a wide variety of machines
 - Using machine learning to characterize the machine/compiler/program
 - Using more complex scheduling heuristics
Some Ongoing Research [2/2]

- GPU code generation
 - Specific parallelism pattern desired
 - Generate explicit communications

- Infrastructure development
 - Robustification and dissemination of tools
 - Fast prototyping vs. evaluating on large applications

- Polyhedral model extensions
 - Go beyond affine programs (using approximations?)
 - Support data layout transformations natively
Extra: Scheduling in the Polyhedral Model
Example: Semantics Preservation (1-D)
Example: Semantics Preservation (1-D)

Property (Causality condition for schedules)

Given $R \bowtie S$, Θ^R and Θ^S are legal iff for each pair of instances in dependence:

$$\Theta^R(\vec{x}_R) < \Theta^S(\vec{x}_S)$$

Equivalently: $\Delta_{R,S} = \Theta^S(\vec{x}_S) - \Theta^R(\vec{x}_R) - 1 \geq 0$
Example: Semantics Preservation (1-D)

Lemma (Affine form of Farkas lemma)

Let \mathcal{D} be a nonempty polyhedron defined by $A\vec{x} + \vec{b} \geq \vec{0}$. Then any affine function $f(\vec{x})$ is non-negative everywhere in \mathcal{D} iff it is a positive affine combination:

$$f(\vec{x}) = \lambda_0 + \vec{\lambda}^T (A\vec{x} + \vec{b}), \text{ with } \lambda_0 \geq 0 \text{ and } \vec{\lambda} \geq \vec{0}.$$

λ_0 and $\vec{\lambda}^T$ are called the Farkas multipliers.
Example: Semantics Preservation (1-D)
Example: Semantics Preservation (1-D)

- Causality condition
- Farkas Lemma

Affine Schedules → Valid Farkas Multipliers → Legal Distinct Schedules

Many to one
Example: Semantics Preservation (1-D)

\[\Theta^S(\bar{x}_S) - \Theta^R(\bar{x}_R) - 1 = \lambda_0 + \bar{\lambda}^T \left(D_{R,S} \left(\bar{x}_R \right) + \bar{d}_{R,S} \right) \geq 0 \]

\[
\begin{align*}
D_{R\delta S} & : \\
i_R & : \\
i_S & : \lambda_{D_{1,1}} - \lambda_{D_{1,2}} + \lambda_{D_{1,3}} - \lambda_{D_{1,4}} \\\ni_S & : -\lambda_{D_{1,1}} + \lambda_{D_{1,2}} + \lambda_{D_{1,5}} - \lambda_{D_{1,6}} \\\j_S & : \lambda_{D_{1,7}} - \lambda_{D_{1,8}} \\\n & : \lambda_{D_{1,4}} + \lambda_{D_{1,6}} + \lambda_{D_{1,8}} \\\n & : \lambda_{D_{1,0}} \end{align*}
\]
Example: Semantics Preservation (1-D)

\[\Theta^S(\vec{x}_S) - \Theta^R(\vec{x}_R) - 1 = \lambda_0 + \vec{\lambda}^T \left(D_{R,S} \left(\vec{x}_R \right) + \vec{d}_{R,S} \right) \geq 0 \]

\[
\begin{align*}
D_{R \delta S} & \quad i_R : \quad -t_{1R} = \lambda_{D_{1,1}} - \lambda_{D_{1,2}} + \lambda_{D_{1,3}} - \lambda_{D_{1,4}} \\
i_S & \quad t_{1S} = -\lambda_{D_{1,1}} + \lambda_{D_{1,2}} + \lambda_{D_{1,5}} - \lambda_{D_{1,6}} \\
j_S & \quad t_{2S} = \lambda_{D_{1,7}} - \lambda_{D_{1,8}} \\
n & \quad t_{3S} - t_{2R} = \lambda_{D_{1,4}} + \lambda_{D_{1,6}} + \lambda_{D_{1,8}} \\
n & \quad t_{4S} - t_{3R} - 1 = \lambda_{D_{1,0}}
\end{align*}
\]
Example: Semantics Preservation (1-D)

- Affine Schedules
 - Causality condition
 - Farkas Lemma

- Valid Farkas Multipliers
 - Identification
 - Projection

- Legal Distinct Schedules

- Solve the constraint system
- Use (purpose-optimized) Fourier-Motzkin projection algorithm
 - Reduce redundancy
 - Detect implicit equalities
Example: Semantics Preservation (1-D)

- Affine Schedules
 - Causality condition
 - Farkas Lemma

- Valid Farkas Multipliers
 - Identification
 - Projection

- Valid Transformation Coefficients

- Legal Distinct Schedules
Example: Semantics Preservation (1-D)

- Causality condition
- Farkas Lemma
- Identification
- Projection

One point in the space ⇔ one set of legal schedules w.r.t. the dependences

These conditions for semantics preservation are not new! [Feautrier,92]
Generalization to Multidimensional Schedules

p-dimensional schedule is not $p \times 1$-dimensional schedule:

- Once a dependence is strongly satisfied ("loop"-carried), must be discarded in subsequent dimensions
- Until it is strongly satisfied, must be respected ("non-negative")

→ Combinatorial problem: lexicopositivity of dependence satisfaction

A solution:

- Encode dependence satisfaction with decision variables [Feautrier,92]
 \[\Theta^S_k(\vec{x}_S) - \Theta^R_k(\vec{x}_R) \geq \delta, \quad \delta \in \{0, 1\} \]
- Bound schedule coefficients, and nullify the precedence constraint when needed [Vasilache,07]
Legality as an Affine Constraint

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules $\Theta^R, \Theta^S \ldots$ of dimension m, the program semantics is preserved if the three following conditions hold:

(i) $\forall D_{R,S}, \delta_p^{D_{R,S}} \in \{0, 1\}$

(ii) $\forall D_{R,S}, \sum_{p=1}^{m} \delta_p^{D_{R,S}} = 1$ \hspace{1cm} (1)

(iii) $\forall D_{R,S}, \forall p \in \{1, \ldots, m\}, \forall \langle \bar{x}_R, \bar{x}_S \rangle \in D_{R,S},$ \hspace{1cm} (2)

$$\Theta^S_p(\bar{x}_S) - \Theta^R_p(\bar{x}_R) \geq - \sum_{k=1}^{p-1} \delta_k^{D_{R,S}}(K.n + K) + \delta_p^{D_{R,S}}$$

→ Note: schedule coefficients must be bounded for Lemma to hold

→ Scalability challenge for large programs
Extra 2: Results on Loop Fusion/Distribution
Compiler Optimizations for Performance

- High-level loop transformations are critical for performance...
 - Coarse-grain parallelism (OpenMP)
 - Fine-grain parallelism (SIMD)
 - Data locality (reduce cache misses)

Overview:
Compiler Optimizations for Performance

- High-level loop transformations are critical for performance...
 - Coarse-grain parallelism (OpenMP)
 - Fine-grain parallelism (SIMD)
 - Data locality (reduce cache misses)

- ... But deciding the best sequence of transformations is hard!
 - Conflicting objectives: more SIMD implies less locality, etc.
 - It is machine-dependent and of course program-dependent
 - Expressive search spaces are required, but challenge the search!
Compiler Optimizations for Performance

- High-level loop transformations are critical for performance...
 - Coarse-grain parallelism (OpenMP)
 - Fine-grain parallelism (SIMD)
 - Data locality (reduce cache misses)

- ... But deciding the best sequence of transformations is hard!
 - Conflicting objectives: more SIMD implies less locality, etc.
 - It is machine-dependent and of course program-dependent
 - Expressive search spaces are required, but challenge the search!

- Our approach:
 - Convexity: model optimization spaces as convex set (ILP, scan, project, etc.)
 - Pruning: make our spaces contain all and only semantically equivalent programs in our framework
 - Optimization: decompose in two more tractable sub-problems without any loss of expressiveness, empirical search + ILP models
Overview:

Spaces of Affine Loop transformations

All unique bounded affine multidimensional schedules

All unique semantics-preserving affine multidimensional schedules

All unique semantics-preserving fusion / distribution / code motion choices
Overview:

Spaces of Affine Loop transformations

- All unique bounded affine multidimensional schedules
- All unique semantics-preserving affine multidimensional schedules
- All unique semantics-preserving fusion / distribution / code motion choices

Bounded: 10^{200}
Legal: 10^{50}
Empirical search: 10
Spaces of Affine Loop transformations

All unique bounded affine multidimensional schedules

1 point \leftrightarrow 1 unique transformed program
Affine Schedule

Definition (Affine multidimensional schedule)

Given a statement S, an affine schedule Θ^S of dimension m is an affine form on the d outer loop iterators \vec{x}_S and the p global parameters \vec{n}. $\Theta^S \in \mathbb{Z}^{m \times (d+p+1)}$ can be written as:

$$\Theta^S(\vec{x}_S) = \begin{pmatrix}
\theta_{1,1} & \cdots & \theta_{1,d+p+1} \\
\vdots & & \vdots \\
\theta_{m,1} & \cdots & \theta_{m,d+p+1}
\end{pmatrix}
\begin{pmatrix}
\vec{x}_S \\
\vec{n} \\
1
\end{pmatrix}$$

Θ^S_k denotes the k^{th} row of Θ^S.

Definition (Bounded affine multidimensional schedule)

Θ^S is a bounded schedule if $\theta^S_{i,j} \in [x, y]$ with $x, y \in \mathbb{Z}$.
Space of Semantics-Preserving Affine Schedules

All unique bounded affine multidimensional schedules

All unique semantics-preserving affine multidimensional schedules

1 point \leftrightarrow 1 unique semantically equivalent program (up to affine iteration reordering)
Semantics Preservation

Definition (Causality condition)

Given Θ^R a schedule for the instances of R, Θ^S a schedule for the instances of S. Θ^R and Θ^S preserve the dependence $D_{R,S}$ if $\forall \langle \vec{x}_R, \vec{x}_S \rangle \in D_{R,S}$:

$$\Theta^R(\vec{x}_R) \prec \Theta^S(\vec{x}_S)$$

\prec denotes the lexicographic ordering.

$$(a_1, \ldots, a_n) \prec (b_1, \ldots, b_m) \text{ iff } \exists i, \ 1 \leq i \leq \min(n, m) \text{ s.t. } (a_1, \ldots, a_{i-1}) = (b_1, \ldots, b_{i-1}) \text{ and } a_i < b_i$$
Lexico-positivity of Dependence Satisfaction

- $\Theta^R(\vec{x}_R) \prec \Theta^S(\vec{x}_S)$ is equivalently written $\Theta^S(\vec{x}_S) - \Theta^R(\vec{x}_R) \succ \vec{0}$
Lexico-positivity of Dependence Satisfaction

- $\Theta^R(\vec{x}_R) \prec \Theta^S(\vec{x}_S)$ is equivalently written $\Theta^S(\vec{x}_S) - \Theta^R(\vec{x}_R) \succ \vec{0}$
- Considering the row p of the scheduling matrices:

$$\Theta^S_p(\vec{x}_S) - \Theta^R_p(\vec{x}_R) \geq \delta_p$$
Lexico-positivity of Dependence Satisfaction

- $\Theta^R(\vec{x}_R) \prec \Theta^S(\vec{x}_S)$ is equivalently written $\Theta^S(\vec{x}_S) - \Theta^R(\vec{x}_R) > 0$
- Considering the row p of the scheduling matrices:

$$\Theta^S_p(\vec{x}_S) - \Theta^R_p(\vec{x}_R) \geq \delta_p$$

- $\delta_p \geq 1$ implies no constraints on $\delta_k, k > p$
- $\delta_p \geq 0$ is required if $\nexists k < p, \delta_k \geq 1$
Lexico-positivity of Dependence Satisfaction

- $\Theta^R(\vec{x}_R) < \Theta^S(\vec{x}_S)$ is equivalently written $\Theta^S(\vec{x}_S) - \Theta^R(\vec{x}_R) > \vec{0}$
- Considering the row p of the scheduling matrices:

$$\Theta^S_p(\vec{x}_S) - \Theta^R_p(\vec{x}_R) \geq \delta_p$$

- $\delta_p \geq 1$ implies no constraints on δ_k, $k > p$
- $\delta_p \geq 0$ is required if $\not\exists k < p$, $\delta_k \geq 1$

- Schedule lower bound:

Lemma (Schedule lower bound)

Given Θ^R_k, Θ^S_k such that each coefficient value is bounded in $[x, y]$. Then there exists $K \in \mathbb{Z}$ such that:

$$\Theta^S_k(\vec{x}_S) - \Theta^R_k(\vec{x}_R) > -K.\vec{n} - K$$
Convex Form of All Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules Θ^R, Θ^S ... of dimension m, the program semantics is preserved if the three following conditions hold:

(i) $\forall D_R, S, \delta_p^{D_R,S} \in \{0, 1\}$

(ii) $\forall D_R, S, \sum_{p=1}^{m} \delta_p^{D_R,S} = 1$

(iii) $\forall D_R, S, \forall p \in \{1, \ldots, m\}, \forall \langle \bar{x}_R, \bar{x}_S \rangle \in D_{R,S}$,
Convex Form of All Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules $\Theta^R, \Theta^S \ldots$ of dimension m, the program semantics is preserved if the three following conditions hold:

(i) $\forall \mathcal{D}_{R,S}, \delta_p^{\mathcal{D}_{R,S}} \in \{0, 1\}$

(ii) $\forall \mathcal{D}_{R,S}, \sum_{p=1}^{m} \delta_p^{\mathcal{D}_{R,S}} = 1$

(iii) $\forall \mathcal{D}_{R,S}, \forall p \in \{1, \ldots, m\}, \forall \langle \bar{x}_R, \bar{x}_S \rangle \in \mathcal{D}_{R,S}$,
Convex Form of All Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules $\Theta^R, \Theta^S \ldots$ of dimension m, the program semantics is preserved if the three following conditions hold:

(i) $\forall \mathcal{D}_{R,S}, \delta_p^{\mathcal{D}_{R,S}} \in \{0, 1\}$

(ii) $\forall \mathcal{D}_{R,S}, \sum_{p=1}^{m} \delta_p^{\mathcal{D}_{R,S}} = 1$

(iii) $\forall \mathcal{D}_{R,S}, \forall p \in \{1, \ldots, m\}, \forall \langle \vec{x}_R, \vec{x}_S \rangle \in \mathcal{D}_{R,S}$,

$$\Theta^S_p(\vec{x}_S) - \Theta^R_p(\vec{x}_R) \geq \delta_p^{\mathcal{D}_{R,S}}$$
Convex Form of All Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules $\Theta^R, \Theta^S \ldots$ of dimension m, the program semantics is preserved if the three following conditions hold:

(i) $\forall D_{R,S}, \forall p \in \{0, 1\}$

(ii) $\forall D_{R,S}, \sum_{p=1}^{m} \delta^D_{R,S} = 1$

(iii) $\forall D_{R,S}, \forall p \in \{1, \ldots, m\}, \forall \langle \bar{x}_R, \bar{x}_S \rangle \in D_{R,S},$

$$\Theta^S_p(\bar{x}_S) - \Theta^R_p(\bar{x}_R) \geq \delta^D_{R,S} - \sum_{k=1}^{p-1} \delta^D_{R,S} \cdot (K \cdot \bar{n} + K)$$
Convex Form of All Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules $\Theta^R, \Theta^S \ldots$ of dimension m, the program semantics is preserved if the three following conditions hold:

(i) \[\forall D_{R,S}, \delta_p^{D_{R,S}} \in \{0, 1\} \]

(ii) \[\forall D_{R,S}, \sum_{p=1}^{m} \delta_p^{D_{R,S}} = 1 \]

(iii) \[\forall D_{R,S}, \forall p \in \{1, \ldots, m\}, \forall \langle \vec{x}_R, \vec{x}_S \rangle \in D_{R,S}, \]

\[\Theta_p^S(\vec{x}_S) - \Theta_p^R(\vec{x}_R) - \delta_p^{D_{R,S}} + \sum_{k=1}^{p-1} \delta_k^{D_{R,S}}(K.n + K) \geq 0 \]

→ Use **Farkas lemma to build all non-negative functions over a polyhedron** (here, the dependence polyhedra) [Feautrier,92]
Convex Form of All Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules \(\Theta^R, \Theta^S \ldots \) of dimension \(m \), the program semantics is preserved if the three following conditions hold:

(i) \(\forall \mathcal{D}_{R,S}, \delta_p^{D_{R,S}} \in \{0, 1\} \)

(ii) \(\forall \mathcal{D}_{R,S}, \sum_{p=1}^{m} \delta_p^{D_{R,S}} = 1 \)

(iii) \(\forall \mathcal{D}_{R,S}, \forall p \in \{1, \ldots, m\}, \forall \langle \bar{x}_R, \bar{x}_S \rangle \in \mathcal{D}_{R,S}, \)

\[
\Theta^S_p(\bar{x}_S) - \Theta^R_p(\bar{x}_R) - \delta_p^{D_{R,S}} + \sum_{k=1}^{p-1} \delta_k^{D_{R,S}}(K.n + K) \geq 0
\]

\(\rightarrow \) Use Farkas lemma to build all non-negative functions over a polyhedron (here, the dependence polyhedra) [Feautrier,92]

\(\rightarrow \) Bounded coefficients required [Vasilache,07]
Space of Semantics-Preserving Fusion Choices

All unique bounded affine multidimensional schedules

All unique semantics-preserving affine multidimensional schedules

All unique semantics-preserving fusion / distribution / code motion choices

1 point ↔ 1 unique semantically equivalent program (up to "partial" statement reordering)
Fusion in the Polyhedral Model

for (i = 0; i <= N; ++i) {
 Blue(i);
 Red(i);
}

Perfectly aligned fusion
Fusion in the Polyhedral Model

Fusion with shift of 1
Not all instances are fused

```c
Blue(0);
for (i = 1; i <= N; ++i) {
    Blue(i);
    Red(i-1);
}
Red(N);
```
Fusion in the Polyhedral Model

Fusion with parametric shift of P
Automatic generation of prolog/epilog code

for (i = 0; i < P; ++i)
 Blue(i);
for (i = P; i <= N; ++i) {
 Blue(i);
 Red(i-P);
}
for (i = N+1; i <= N+P; ++i)
 Red(i-P);
Fusion in the Polyhedral Model

```
for (i = 0; i < P; ++i)
    Blue(i);
for (i = P; i <= N; ++i) {
    Blue(i);
    Red(i-P);
}
for (i = N+1; i <= N+P; ++i)
    Red(i-P);
```

Many other transformations may be required to enable fusion: interchange, skewing, etc.
Affine Constraints for Fusibility

- Two statements can be fused if their timestamp can overlap

Definition (Generalized fusibility check)

Given v_R (resp. v_S) the set of vertices of \mathcal{D}_R (resp. \mathcal{D}_S). R and S are fusible at level p if, $\forall k \in \{1 \ldots p\}$, there exist two semantics-preserving schedules Θ^R_k and Θ^S_k such that

$$\exists (\vec{x}_1, \vec{x}_2, \vec{x}_3) \in v_R \times v_S \times v_R, \quad \Theta^R_k(\vec{x}_1) \leq \Theta^S_k(\vec{x}_2) \leq \Theta^R_k(\vec{x}_3)$$

- Intersect \mathcal{L} with fusibility and distribution constraints
- **Completeness:** if the test fails, then there is no sequence of affine transformations that can implement this fusion structure
Fusion / Distribution / Code Motion

Our strategy:

1. Build a set containing all unique fusion / distribution / code motion combinations
2. Prune all combinations that do not preserve the semantics

Given two statements R and S, three choices:

1. R is *fully before* S → distribution + code motion
2. R is *fully after* S → distribution + code motion
3. otherwise → fusion

⇒ It corresponds to all total preorders of R and S
Affine Encoding of Total Preorders

Principle:

- Model a total preorder with 3 binary variables
 \[p_{i,j} : i < j \quad s_{i,j} : i > j \quad e_{i,j} : i = j \]
- Enforce totality and mutual exclusion
- Enforce all cases of transitivity through affine inequalities connecting some variables. Ex: \[e_{i,j} = 1 \land e_{j,k} = 1 \Rightarrow e_{i,k} = 1 \]
Affine Encoding of Total Preorders

Principle:

- Model a total preorder with 3 binary variables
 \[p_{i,j} : i < j \quad s_{i,j} : i > j \quad e_{i,j} : i = j \]

- Enforce totality and mutual exclusion

- Enforce all cases of transitivity through affine inequalities connecting some variables. Ex: \[e_{i,j} = 1 \land e_{j,k} = 1 \Rightarrow e_{i,k} = 1 \]

- This set contains one and only one point per distinct total preorder of \(n \) elements
Affine Encoding of Total Preorders

Principle:

- Model a total preorder with 3 binary variables

 \[p_{i,j} : i < j \quad s_{i,j} : i > j \quad e_{i,j} : i = j \]

- Enforce totality and mutual exclusion

- Enforce all cases of transitivity through affine inequalities connecting some variables. Ex: \(e_{i,j} = 1 \land e_{j,k} = 1 \Rightarrow e_{i,k} = 1 \)

- **This set contains one and only one point per distinct total preorder of** \(n \) **elements**

- Easy pruning: just bound the sum of some variables

 e.g., \(e_{1,2} + e_{4,5} + e_{8,12} < 3 \)

- Automatic removal of supersets of unfusable sets
Convex set of All Unique Total Preorders

\[O = \left\{ \begin{array}{l} 0 \leq p_{i,j} \leq 1 \\ 0 \leq e_{i,j} \leq 1 \\ 0 \leq s_{i,j} \leq 1 \end{array} \right\} \text{ constrained to: } O = \left\{ \begin{array}{l} 0 \leq p_{i,j} \leq 1 \\ 0 \leq e_{i,j} \leq 1 \\ p_{i,j} + e_{i,j} \leq 1 \\ \forall k \in]j,n[\quad e_{i,j} + e_{i,k} \leq 1 + e_{j,k} \\ e_{i,j} + e_{j,k} \leq 1 + e_{i,k} \\ \forall k \in]i,j[\quad p_{i,k} + p_{k,j} \leq 1 + p_{i,j} \\ \forall k \in]j,n[\quad e_{i,j} + p_{i,k} \leq 1 + p_{j,k} \\ e_{i,j} + p_{j,k} \leq 1 + p_{i,k} \\ e_{k,j} + p_{i,k} \leq 1 + p_{i,j} \\ \forall k \in]i,j[\quad e_{i,j} + p_{i,j} + p_{j,k} \leq 1 + p_{i,k} + e_{i,k} \end{array} \right\} \]

- Variables are binary
- Relaxed mutual exclusion
- Basic transitivity on \(e \)
- Basic transitivity on \(p \)
- Complex transitivity on \(p \) and \(e \)
- Complex transitivity on \(s \) and \(p \)

- Systematic construction for a given \(n \), needs \(n^2 \) Boolean variables
- Enable ILP modeling, enumeration, etc.
- Extension to multidimensional total preorders (i.e., multi-level fusion)
Pruning for Semantics Preservation

Intuition: enumerate the smallest sets of unfusible statements

- Use an intermediate structure to represent sets of statements
 - Graph representation of maybe-unfusible sets (1 node per statement)
 - Enumerate sets from the smallest to the largest

- Leverage dependence graph + properties of fusion / distribution

- Compute properties by intersecting \(L \) with additional fusion / distribution / code motion affine constraints

- Any individual point can be removed from \(O \)
Space of Semantics-Preserving Fusion Choices

All unique bounded affine multidimensional schedules

All unique semantics-preserving affine multidimensional schedules

All unique semantics-preserving fusion / distribution / code motion choices

1 point ↔ 1 unique semantically equivalent program (up to statement reordering)
Space of Semantics-Preserving Fusion Choices

1 point ↔ many unique semantically equivalent programs (up to iteration reordering)
Space of Semantics-Preserving Fusion Choices

All unique bounded affine multidimensional schedules

All unique semantics-preserving affine multidimensional schedules

All unique semantics-preserving fusion / distribution / code motion choices

1 point \iff 1 unique semantically equivalent program (up to limited iteration reordering)
Objectives for Effective Optimization

Objectives:

▶ Achieve efficient coarse-grain parallelization
▶ Combine iterative search of profitable transformations for tiling
 → loop fusion and loop distribution

Tiling Hyperplane method [Bondhugula,08]

▶ Model-driven approach for automatic parallelization + locality improvement
▶ Tiling-oriented
▶ Poor model-driven heuristic for the selection of loop fusion (not portable)
▶ Overly relaxed definition of fused statements
Fusibility Restricted to Non-negative Schedules

- Fusibility is not a transitive relation!
 - Example: sequence of matrix-by-vector products \(x = Ab, y = Bx, z = Cy \)
 - \(x = Ab, y = Bx \) can be fused, also \(y = Bx, z = Cy \)
 - They cannot be fused all together

- Determining the Fusibility of a group of statements is reducible to exhibiting compatible pairwise loop permutations
 - Extremely easy to compute all possible loop permutations that lead to fuse a pair of statements
 - Never check \(\mathcal{L} \) on more than two statements!

- Stronger definition of fusion
 - Guarantee at most \(c \) instances are not fused
 \[-c < \Theta^R_k(\vec{0}) - \Theta^S_k(\vec{0}) < c\]
 - No combinatorial choice
The Optimization Algorithm in a Nutshell

Proceeds from the outer-most loop level to the inner-most:

1. Compute the space of valid fusion/distribution/code motion choices

2. Select a fusion/distribution/code motion scheme in this space

3. Compute an affine schedule that implements this scheme
 - Static cost model to select the schedule
 - Compound of skewing, shifting, fusion, distribution, interchange, tiling and parallelization (OpenMP)
 - Maximize locality for each set of statements to be fused
Experimental Results

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>#loops</th>
<th>#stmts</th>
<th>#refs</th>
<th>#dim</th>
<th>#cst</th>
<th>#points</th>
<th>Time</th>
<th>perf-Intel</th>
<th>perf-AMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>advect3d</td>
<td>12</td>
<td>4</td>
<td>32</td>
<td>12</td>
<td>58</td>
<td>75</td>
<td>0.82s</td>
<td>1.47×</td>
<td>5.19×</td>
</tr>
<tr>
<td>atax</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>12</td>
<td>58</td>
<td>75</td>
<td>0.06s</td>
<td>3.66×</td>
<td>1.88×</td>
</tr>
<tr>
<td>bicg</td>
<td>3</td>
<td>4</td>
<td>10</td>
<td>12</td>
<td>58</td>
<td>75</td>
<td>0.05s</td>
<td>1.75×</td>
<td>1.40×</td>
</tr>
<tr>
<td>gemver</td>
<td>7</td>
<td>4</td>
<td>19</td>
<td>12</td>
<td>58</td>
<td>75</td>
<td>0.06s</td>
<td>1.34×</td>
<td>1.33×</td>
</tr>
<tr>
<td>ludcmp</td>
<td>9</td>
<td>14</td>
<td>35</td>
<td>182</td>
<td>3003</td>
<td>1912</td>
<td>0.54s</td>
<td>1.98×</td>
<td>1.45×</td>
</tr>
<tr>
<td>doitgen</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>6</td>
<td>22</td>
<td>13</td>
<td>0.08s</td>
<td>15.35×</td>
<td>14.27×</td>
</tr>
<tr>
<td>varcovar</td>
<td>7</td>
<td>7</td>
<td>26</td>
<td>42</td>
<td>350</td>
<td>47293</td>
<td>0.09s</td>
<td>7.24×</td>
<td>14.83×</td>
</tr>
<tr>
<td>correl</td>
<td>5</td>
<td>6</td>
<td>12</td>
<td>30</td>
<td>215</td>
<td>4683</td>
<td>0.09s</td>
<td>3.00×</td>
<td>3.44×</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>O</th>
<th>f</th>
<th>Time</th>
<th>perf-Intel</th>
<th>perf-AMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>advect3d</td>
<td>12</td>
<td>0.82s</td>
<td>1.47×</td>
<td>5.19×</td>
</tr>
<tr>
<td>atax</td>
<td>4</td>
<td>0.06s</td>
<td>3.66×</td>
<td>1.88×</td>
</tr>
<tr>
<td>bicg</td>
<td>3</td>
<td>0.05s</td>
<td>1.75×</td>
<td>1.40×</td>
</tr>
<tr>
<td>gemver</td>
<td>7</td>
<td>0.06s</td>
<td>1.34×</td>
<td>1.33×</td>
</tr>
<tr>
<td>ludcmp</td>
<td>9</td>
<td>0.54s</td>
<td>1.98×</td>
<td>1.45×</td>
</tr>
<tr>
<td>doitgen</td>
<td>5</td>
<td>0.08s</td>
<td>15.35×</td>
<td>14.27×</td>
</tr>
<tr>
<td>varcovar</td>
<td>7</td>
<td>0.09s</td>
<td>7.24×</td>
<td>14.83×</td>
</tr>
<tr>
<td>correl</td>
<td>5</td>
<td>0.09s</td>
<td>3.00×</td>
<td>3.44×</td>
</tr>
</tbody>
</table>

Table: Search space statistics and performance improvement

- **Performance portability:** empirical search on the target machine of the optimal fusion structure
- Outperforms state-of-the-art cost models
- Full implementation in the source-to-source polyhedral compiler PoCC
Conclusion

Take-home message:

⇒ Clear formalization of loop fusion in the polyhedral model
⇒ Formal definition of all semantically equivalent programs up to:
 ▶ statement reordering
 ▶ limited affine iteration reordering
 ▶ arbitrary affine iteration reordering

⇒ Effective and portable hybrid empirical optimization algorithm
 (parallelization + data locality)

Future work:

▶ Develop static cost models for fusion / distribution / code motion
▶ Use statistical techniques to learn optimization algorithms