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Iterative Optimization

@ Instead of predicting profitability of a transformation,
perform it and run the program

@ Most of the time, adresses parameters tuning or phase
selection

@ Alternatively, some works replace the heuristic itself by
iterative search

— We focus on Loop Nest Optimization
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Drawbacks

Limitations:
@ The set of combinations of transformations is huge!
@ Only a subset of them respects the program semantics

— Only a (very small) subset of transformation sequences is
actually tested

— The search space is either too restrictive, or too large due
to the postponed legality check

= Can we improve the search space construction: model all
sequences of transformations, and model only legal ones?
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Iterative Optimization in the Polyhedral
Model

@ Focus on a Static Control program Parts (SCoP)

@ Use a polyhedral abstraction to represent program
information

@ Use iterative optimization techniques in the constructed
search space

— In the polyhedral model (Feautrier, 92):
@ Compositions of transformations are easily expressed
@ Transformation legality is easily checked
@ Natural expression of parallelism
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A Three-Stage Process

1 Analysis: from code to model
— Existing prototype tools
— GCC GRAPHITE branch in development

2 Transformation in the model
— Build a search space of (legal) transformations

3 Code generation: from model to code
— Use the CLooG tool for code generation (Bastoul, 04)
— Produce C compilable code
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Extract the Instance Set

do i =0, n
R s(i) = 0
do 3 =0, n
s | s(i) = s(i) + a(i,3) * x(3)
end do
end do

lteration domain of S:

o iteration vector Xs = ()

@ Exact set of instances of S is
Ds:{i,jl0<i<n 0<j<n}
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A schedule of a program is a function which associates a
logical date (a timestamp) to each instance of each statement.
It can be written, for a statement S (T is a constant matrix):

0s(x) = T (7)
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Scheduling a Program

Definition (Schedule)

A schedule of a program is a function which associates a
logical date (a timestamp) to each instance of each statement.
It can be written, for a statement S (T is a constant matrix):

0s(x) = T (7)

@ Two instances having the same date can be run in parallel

@ Schedule dimension corresponds to the number of nested
sequential loops
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Program Transformations in the Model

@ Every composition of loop transformations can be
expressed as affine schedules (Wolf, 92)

= A schedule is the result of an arbitrarily complex
composition of transformation
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A Scheduling Example
Original Schedule
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| a(i,3) =a(i,j) 0.2 | a(i,3) =a(i,j) * 0.2
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A Scheduling Example
Another Schedule
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a(i,j) = a(i, j) * 0.2 | a@i,3) =a@E,j) = 0.2
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Context

@ Focus on one-dimensional schedules (T is a constant row
matrix)

@ One-dimensional schedule can represent compositions of:

Transformation | Description

reversal Changes the direction in which a loop
traverses its iteration range
skewing Makes the bounds of a given loop depend on

an outer loop counter
interchange | Exchanges two loops in a perfectly nested
loop, a.k.a. permutation

peeling Extracts one iteration of a given loop
shifting Allows to reorder loops
fusion Fuses two loops, a.k.a. jamming

distribution | Splits a single loop nest into many,
a.k.a. fissionorsplitting
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Potential Transformations

do i =1, 3
R s(i) =0
do § =1, 3
S ‘ s(i) = s(i) + a(i) (3) » x(3)

The two prototype affine schedules for R and S are:

Or(XR) t1n.l:R + 1.0+ t3;.1
93(Xs) = t1s.ls+t25.j3—|—t3s.n—|—t4s.1
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do i =1, 3
R s(i) =0
do § =1, 3
S ‘ s(i) = s(i) + a(i) (3) » x(3)

The two prototype affine schedules for R and S are:

Or(XR) t1n.l:R + 1.0+ t3;.1
93(Xs) = t1s.ls+t25.j3—|—t3s.n—|—t4s.1

= For —1 < t < 1, there are 59049 values!
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Potential Transformations

—a e
L
I

The two prototype affine schedules for R and S are:

Or(Xg) =
0s(Xs) =

tig.ig + top.n + 13,1
t1s.i3 + t25-j3 =+ tgs.n—l— t4s'1

= For —1 < t < 1, there are 59049 values!

’ ‘ matvect ‘ locality ‘ matmul ‘ gauss ‘ crout ‘
Bounds —1,1 —1,1 —1,1 -1,1 -3,3
#Sched. | 21 x10% | 5.9x10% [ 1.9x10* [ 5.9 x 10* [ 2.6 x 10™




Iterative Optimization in the Polyhedral Model: Legal Scheduling Space 2nd HIiPEAC Industrial Workshop

Objectives

@ Build the set of all legal program versions (i.e. which
respects all the data dependence of the program)



Iterative Optimization in the Polyhedral Model: Legal Scheduling Space 2nd HIiPEAC Industrial Workshop

Objectives

@ Build the set of all legal program versions (i.e. which
respects all the data dependence of the program)

— Perform an exact dependence analysis
— Build the set of all possible values of T



Iterative Optimization in the Polyhedral Model: Legal Scheduling Space 2nd HIiPEAC Industrial Workshop

Objectives

@ Build the set of all legal program versions (i.e. which
respects all the data dependence of the program)

— Perform an exact dependence analysis
— Build the set of all possible values of T

= The resulting space represents all the distinct possible ways
to legally reschedule the program, using arbitrarily complex
sequences of transformations.
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Dependence Expression

@ Need to represent the exact set of instances in
dependence

@ Exact computation made possible thanks to the SCoP and
Static reference assumptions (Feautrier, 92)

@ Use a subset of the Cartesian product of iteration domains:

do i=1, 3
R s(i) =0
do j =1, 3
s

s | s =s@) +a@) (@) * x(3)
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Dependence Expression

@ Need to represent the exact set of instances in
dependence

@ Exact computation made possible thanks to the SCoP and
Static reference assumptions (Feautrier, 92)

@ Use a subset of the Cartesian product of iteration domains:

do i =1, 3
R s(i) =0
do j =1,
s | s(i) = s(i) + a(d)(§) = x(J)
lterationsofR O O O
1 0 0 [
-1 0 0o 0 3 ir ~
D 0 1 0 [ is >
: o -1 o0 o0 3 is | —=
RS 0 0 1 0 —1 n = o
0 0o -1 0 3 1
—0—0—!%[- R 0 0 0
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Dependence Expression

@ Need to represent the exact set of instances in
dependence

@ Exact computation made possible thanks to the SCoP and
Static reference assumptions (Feautrier, 92)

@ Use a subset of the Cartesian product of iteration domains:

doi=1, 3
R s(i) =0
do j =1,
s | s = s(i) +a(d) () * x(3)
lterationsofR O O O
1 0 0 [
" M ) —1 0 0 0 3 in -
lterationsofS @ @ @ A A s) 2
DR&S: 0o -1 0o o0 3 s —
" M ) 0 0 10 -1 n =0
0 0o -1 0 3 1
= i 1 —1 0 0 0
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Dependence Expression

@ Need to represent the exact set of instances in
dependence

@ Exact computation made possible thanks to the SCoP and
Static reference assumptions (Feautrier, 92)

@ Use a subset of the Cartesian product of iteration domains:

do i =1, 3
R s(i) =0
do j =1,
S | st =s@) +ad) @) » x(3)
Iterations of R
1 0 o o0 —1
 J 1 0o 0o o 3 -
Iterations of S . 0 1 0 0o -1 Z
Dpss : o -1 o0 0o 3 s | ==
| o 0 1 0 - "l =0
—t—= 0 0 —1 0 3 1
i 0 0 0
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Formal Definition [1/2]

Legal Schedule

= Assuming RJS, 6r(xg) and 0s(xs) are legal iff:
Aps = 0s(xs) — Or(Xg) — 1

Is non-negative for each point in Dgss.
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Formal Definition [2/2]

— We can express the legality condition as a set of affine
non-negative functions over Dg;s

Lemma (Affine form of Farkas lemma)

Let D be a nonempty polyhedron defined by the inequalities
A% + b > 0. Then any affine function f(X) is non-negative
everywhere in D iff it is a positive affine combination:

f(X) = Ao + X (A% + b), with \g > 0 and X > 0.

Xo and \T are called the Farkas multipliers.
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Formal Definition [2/2]

— We can express the legality condition as a set of affine
non-negative functions over Dg;s

Lemma (Affine form of Farkas lemma)

Let D be a nonempty polyhedron defined by the inequalities
A% + b > 0. Then any affine function f(X) is non-negative
everywhere in D iff it is a positive affine combination:

f(X) = Ao + X (A% + b), with \g > 0 and X > 0.

Xo and \T are called the Farkas multipliers.

= We can express the set of affine, non-negative functions
over Dpss
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An Example
doi=1, n
R s(i) =0
do j =1, n
s | s(d) = s(i) + a(i,§) = =x(3)

The two prototype affine schedules for R and S are:

I1RAiR +bp N+ 1
tigHls + g ds + l3g-N+ lag 1

>
Lml
I

The set of instances of R and S in dependence are
represented by:

1 —1 0 0 o0
7 0 0 0 0 in
—1 0 0o 1 0 is =0
Dgss : 0 1 0 0 o is -
0 —1 o 1 o0 n >0
0 0 10 o0 1 =
0o 0 -1 1 0
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An Example

The two prototype affine schedules for R and S are:

iR + g0+ fgp 1
t1s.ls + fgs.]s + t3s.n + f4s,1

@ Express the set of non-negative functions over Dgsg
@ Equate the coefficients
© Solve the system
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An Example

n
0
1

o ~

, n
= s

—a e
nw =
Ll

( (1) + a(di,3) = x(J)

The two prototype affine schedules for R and S are:

O0r(Xg) = I1R<ig+f2R4n+[3R41

0s(Xs) = tigds+lbg.s +l3gn+lg-1

We get the following system for R S:

Drss 1 —tp = Apy — by, +Ap
s bg = Abyg T D, T A0y
Is = g = b5~ Abig
no g =g = b+t AD 4 TAD g
1 5 tg—fy—1 = p
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An Example
doi=1, n
R s(i) =0
do j =1,
s | s(i) =s(i) +a(i,3) = x(3)

r(Xg) = f1R<iR+f2R4n+[3R41
0s(Xs) = tigls + fogis + t3g-N + l4g.1

We get the following system for R S:

Drss 1 —tp = Apy — by, +Ap
s bg = Abyg T D, T A0y
is by = )‘D1=5 - ADL6
no g =g = b+t AD 4 TAD g
1 5 tg—fy—1 = p

= The constraints on t gives the set of possible values to
respect the legality condition
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Construction Algorithm

@ Need to add the constraints obtained for each dependence
@ The set of legal transformations can be infinite
— Need to bound the space

= To each (integral) point in D; corresponds a different version
of the original program where the semantics is preserved.

20
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Legal Search Space

@ Multiple orders of magnitude reduction in the size of the
search space compared to state-of-the-art techniques

| Benchmark [ Bounds | #Sched | #Legal [ Time |

matvect 1,1 2.1 x 103 129 0.024
locality -1,1 59 x10* | 6561 | 0.022
matmul -1,1 1.9 x 10* 912 0.029
gauss —-1,1 59 x 10* 506 0.047
crout -3,3 [26x10™ 798 0.046

21
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Experimental Protocol

We provide a source-to-source framework. Given an input
program:

@ Use Letsee to generate a cLooG formatted file per legal
transformation.

© Generate the target code with cLooa.

© Compile and launch the whole set of transformed (C) code,
and sort the results regarding cycle count.

22
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Experimental Protocol

We provide a source-to-source framework. Given an input
program:

@ Use Letsee to generate a cLooG formatted file per legal
transformation.

© Generate the target code with cLooa.

© Compile and launch the whole set of transformed (C) code,
and sort the results regarding cycle count.

= Exhaustive scan is achievable on small kernels

22
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Performance Distribution [1/2]

Figure: Performance distribution for matmul, locality, mvt and
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Performance Distribution [2/2]
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Some Speedups

Benchmark | Compiler [ Options | Parameters [ 1D best | Speedup |

h264 PathCC -Ofast N=8 352 36.1%
h264 GCC -02 N=8 234 13.3%
h264 GCC -03 N=8 250 25.0%
h264 ICC -02 N=8 290 12.9%
h264 ICC -fast N=8 N/A 0%
fir PathCC -Ofast N=150000 72 6.0%
fir GCC -02 N=150000 192 15.2%
fir GCC -03 N=150000 289 13.2%
fir ICC -02 N=150000 242 18.4%
fir ICC -fast N=150000 392 3.4%
MVT PathCC -Ofast N=2000 4934 27.4%
MVT GCC -02 N=2000 13301 18.0%
MVT GCC -03 N=2000 13320 21.2%
MVT ICC -02 N=2000 14093 24.0%
MVT ICC -fast N=2000 4879 29.1%
matmul PathCC -Ofast N=250 283 308.1%
matmul GCC -02 N=250 573 243.6%
matmul GCC -03 N=250 143 248.7%
matmul ICC -02 N=250 311 356.6%
matmul ICC -fast N=250 641 645.4%

25



Experimental Results: A Transformation Example

2nd HIiPEAC Industrial Workshop

The nvt Kernel

for (i = 0; i <= M; i++) {
s1 x1[i] = 0;
s2 x2[i] = 0;
for (j = 0; j <= M; Jj++) {
s3 x1[i] += a[il[3j] = yl[31;
s4 x2[1] += a[jl[i] = y2([]l;
}
}
[ Compiler | Option | Original | Best | Schedule [ Speedup |
05155:'513 = —i—n-1
050 (X, = —1
GCC 4.1.1 -03 6.9 5.1 527752 ; 35.3%
0s1(Xs1) = J+1 °
Osp(Xsp) = it+j+n+1
951?{31; = n—1 ;
0o (X = —n —
ICC 9.0.1 -fast 6.1 4.9 521°52 . 24.5%
0s1(Xs1) = j+n+1
0s2(Xsp) = j—n
gs1£{s1; = —i—-n—-1
R S2(Xs2 = —I=n o
PathCC 2.5 Ofast 7.3 5.9 01 (Xar) _ T 23.8%
Os0(Xsp) = —i+j+1

26
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Generated Code

Optimal Transformation for mvt, GCC 4 -O3, P4 Xeon

[i
(i
8 [i
S4: x2[i] += al[jl[i] * y2[]] for (cl = 1; cl <= M-1; cl++)
for (i = 0; i <= M; i++) {
S4(i,cl-1);
}
for (i = 0; 1 <= M; i++) {
S1(i);
for (i = 0; i <= M; i++) { S4(i,M-1);
S1(1); }
(1);
for (j = 0; j <= M; j++) { (0,0);
(i,3)7 S4(0,M);
S4(i,3); for (i =1 ; i <= M; it++)
} S4(1i,M);
}
for (cl = M+2; cl <= 3xM+1; cl++)
for (i = max(cl-2+«M-1,0); i <= min(M,cl-M-1); i++) {
(i,cl-i-M-1);
}

27
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Heuristic Scan

Propose a decoupling heuristic:

@ The general “form” of the schedule is embedded in the
iterator coefficients

@ Parameters and constant coefficients can be seen as a
refinement

— On some distributions a random heuristic may converge
faster

Figure: Heuristic convergence

[ Benchmark [ #Schedules [ Heuristic. | #Runs [ %Speedup |

locality 6561 Rand 125 96.1%
DH 123 98.3%

matmul 912 Rand 170 99.9%
DH 170 99.8%

mvt 16641 Rand 30 93.3%
DH 31 99.0%
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Conclusion

— Iterative Compilation Framework independent of the
compiler and the architecture
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