
Automatic Correction of Loop Transformations

Nicolas Vasilache Albert Cohen Louis-Noël Pouchet
ALCHEMY Group, INRIA Futurs and Paris-Sud 11 University

firstname.lastname@inria.fr

Abstract

Loop nest optimization is a combinatorial problem. Due
to the growing complexity of modern architectures, it in-
volves two increasingly difficult tasks: (1) analyzing the
profitability of sequences of transformations to enhance
parallelism, locality, and resource usage, which amounts to
a hard problem on a non-linear objective function; (2) the
construction and exploration of search space of legal trans-
formation sequences. Practical optimizing and paralleliz-
ing compilers decouple these tasks, resorting to a prede-
fined set of enabling transformations to eliminate all sortsof
optimization-limiting semantical constraints. State-of-the-
art optimization heuristics face a hard decision problem on
the selection of enabling transformations only remotely re-
lated to performance.

We propose a new design where optimization heuristics
first address the main performance anomalies, then cor-
rect potentially illegal loop transformations a posteriori,
attempting to minimize the performance impact of the nec-
essary adjustments. We propose a general method to cor-
rect any sequence of loop transformations through a com-
bination of loop shifting, code motion and index-set split-
ting. Sequences of transformations are modeled by compo-
sitions of geometric transformations on multidimensional
affine schedules. We provide experimental evidence of the
scalability of the algorithms on real loop optimizations.

1. Introduction

Loop tiling, fusion, distribution, shifting as well as uni-
modular transformations are pervasive tools to enhance lo-
cality and parallelism. In most real-world programs, a blunt
use of these transformations violates the causality of the
computation. On the bright side, loop optimization design-
ers observed that a sequence of systematic preconditioning
steps can often eliminate these violations; these steps are
called enabling transformations. On the other side, this
puts a heavy burden on any locality and parallelism en-
hancement heuristic [20]: the hard profitability problem it
deals with is complicated by a decision problem to identify

enabling transformations. Loop shifting or pipelining [6]
and loop skewing [27] are such enabling transformations
of the schedule, while loop peeling isolates violations on
boundary conditions [13] and variable renaming or privati-
zation removes dependences. Unfortunately, except in spe-
cial cases (e.g., the unimodular transformation framework),
one faces the combinatorial decision problem of choosing
enabling transformations with no guarantee that they will do
any good. This approach does not scale to real programs, in-
volving sequences of tens or hundreds of carefully selected
enabling transformations.

Our method makes these enabling transformations obso-
lete, replacing them by a much more tractable “apply and
correct” approach. While selecting these enabling transfor-
mations a priori is a complex decision problem involving
legality and profitability, our method takes the opposite di-
rection: we compute the transformations needed to make
a candidate sequence legal a posteriori. We rely on the
polyhedral model, which promotedaffine schedulesas an
abstract intermediate representation of the program seman-
tics. The main algorithm to exhibit a “good” legal sched-
ule in this model has been proposed by Feautrier [11] and
was recently improved [12]. This algorithm, and its main
extensions [19, 15, 3], rely on linear optimization models
and suffer from multiple sources of combinatorial complex-
ity: (1) the number of polyhedra it considers is exponential
in the program size; (2) the dimensionality of the polyhedra
is proportional to the program size, which incurs an expo-
nential complexity in the ILP the algorithm relies on.

Radical improvements are needed to scale these algo-
rithms to real-size loop nests (a few hundred statements or
more), and to complement linear programming with more
pragmatic empirical operation research heuristics. Our con-
tribution reduces the dimensions of this combinatorial prob-
lem: it allows operation research heuristics to focus on the
linear part of the schedule and perform a simpler scalable
correction pass on the constant part of the schedule.

Our first contribution isan automatic correction algo-
rithm to fix an illegal transformation sequencewith “min-
imal changes”, based on the analysis ofdependence viola-
tions. This correction scheme amounts to translating (a.k.a.
shifting) the schedule until dependences are satisfied. We

prove two important properties: (1) the algorithm is sound
andcomplete: any multidimensional affine schedule will be
corrected as long as dependence violations can be corrected
by translation; (2) it applies apolynomialnumber of opera-
tions on dependence polyhedra.

Our second contribution is a novel, more practical for-
mulation of index-set splitting: it is the most general tech-
nique to decompose iteration domains, allowing to build
more expressive piecewise affine schedules. Its state-of-the-
art formulation is another complex decision problem [13]
associated with a non-scalable scheduling algorithm. Our
approach replaces it by a simple heuristic, combined with
the automatic correction procedure. This is extremely help-
ful, considering that each decision problem has a combina-
torial impact on phase selection, ordering and parametriza-
tion. The ability to directly control code size expansion is
another advantage of this reformulation.

Our third contribution is a practical implementation of
these algorithms in the URUK platform [14]. Building
on recent scalability improvements in polyhedral compila-
tion [25], we show the effectiveness of our automatic cor-
rection scheme on two full SPEC CPU2000fp benchmarks.

The paper is structured as follows. We discuss related
work in Section 2. The polyhedral model and array de-
pendence analysis are briefly introduced in Section 3. We
then define the correction problem in Section 4 and a com-
plete algorithm to fix an illegal transformation by means of
affine translations. Section 5 revisits and improves index-
set splitting in the context of schedule corrections. Section 6
presents experimental results.

2. Related Work

The induced combinatorial of enabling transformation
decision problems drive the search for a more compositional
approach, where transformation legality is guaranteed by
construction, using the Farkas lemma on affine schedules.
As stated in the introduction, this is one of our main moti-
vation, but taking all legality constraints into account makes
the algorithms not scalable, and suggest staging the selec-
tion of a loop nest transformation into an “approximately
correct” combinatorial step – addressing the main perfor-
mance concerns – and a secondcorrectionstep. The idea
of applying “after-thought” corrections on affine schedules
was first proposed by Bastoul [3]. However, it relies on con-
sidering the program and all its dependences at each step of
the resolution, and so does not scale with program size.

We follow the idea of correcting illegal schedules, but
focus on a particular kind of correction that generalizes
loop shifting, fusionanddistribution [1]. These three clas-
sical (operational) program transformations boil down to
the same algebraic translation in multidimensional affine
scheduling. These are some of the most important enabling

transformations in the context of automatic loop paralleliza-
tion [1, 6]. They induce less code complexity than, e.g.,
loop skewing (which may degrade performance due to the
complexity of loop bound expressions), and can cope with
a variety of cyclic dependence graphs. Yet the maximal par-
allelism problem, seen as a decision one, has been proved
NP-complete by Darte [6]. This results from the inability to
represent coarse-grain data-parallelism in loops in a linear
fashion (many data-parallel programs cannot be expressed
with multidimensional schedules [19]). Although we use
the same tools as Darte to correct schedules, we avoid this
pitfall by stating our problem as a linear optimization.

Decoupling research on the linear and constant parts of
the schedule has been proposed earlier [7, 6, 26]. These
techniques all use simplified representation of dependences
(i.e., dependence vectors) and rely on finding enabling
transformations for their specific purpose, driven by opti-
mization heuristics. Our approach is more general as it ap-
plies to any potentially illegal affine schedule. Alternatively,
Crop and Wilde [5] and Feautrier [12] attempt to reduce the
complexity of affine scheduling with a modular or structural
decomposition. These algorithms are effective, but still re-
sort to solving large integer-linear programs. They are com-
plementary to our correction scheme.

Our contribution also helps improving the productivity
of domain experts. A typical case is the design of domain-
specific program generators [22, 8], a pragmatic solution
to the design of adaptive, nearly optimal libraries. Al-
though human-written code is concise (code factoring in
loops and functions), optimizing it for modern architectures
incurs several code-size increasing steps, including function
inlining, specialization, loop versioning, tiling, pipelining
and unrolling. Domain-specific program generators (also
known as active libraries) rely on feedback-directed and it-
erative optimization. Our approach focuses the problem on
the dominant performance anomalies, eliminating the ma-
jority of the transformation steps (the enabling ones).

3. Polyhedral Model

The polyhedral model is a thorough tool to reason about
analysis, optimization and parallelization of loop nests.We
use the notations of the URUK framework [14], a normal-
ized representation of programs and transformations. Under
the normalization invariants of this framework, it is possible
to apply any sequence of transformations without worrying
about its legality, lifting the tedious constraint of ensuring
the legality of a transformation before applying it. Only af-
ter applying a complete transformation sequence do we care
about its correctness as a whole.

Polyhedral Representation. The target of our optimiza-
tions are sequences of loop nests with constant strides and

affine bounds. This includes non-rectangular, non-perfectly
nested loops, and conditionals with Boolean expressions
of affine inequalities. Loop nests fulfilling these hypothe-
ses are amenable to representation in the polyhedral model.
We call Static Control Part(SCoP) anymaximal syntactic
program segmentsatisfying these constraints [14]. Invari-
ant variables within a SCoP are calledglobal parameters,
and refereed to asg; the dimension ofg is denoted bydg.1

In classical loop nest optimization frameworks, the basic
unit of transformation is the loop; the polyhedral model in-
creases expressiveness, applying transformations individu-
ally to each statement. For each statementSwithin a SCoP,
we extract the following information:

• its depthdS as the number of loops enclosingS;

• its iteration vectoriS as the vector of dimensiondS

scanning execution instances ofS;

• its iteration domainDS as a matrix ofdS+dg columns,
bearing the affine inequalities defining all valid itera-
tion vectors forS; formally,{iS |DS· (iS | g)t ≥ 0};
• its schedule ΘS as a matrix of size

(2dS+1,dS+dg+1) assigning a logical execu-
tion date to each execution instanceiS in DS. By
definition, the execution of statement iterations
follows the lexicographic order on multidimensional
execution dates;

• the set of all its memory references of the form
〈X, f S(iS)〉 whereX is an array andf S is its affine sub-
script function. We also consider more general non-
affine references with conservative approximations.

Each iterationiS of a statementS is called aninstance, and
is denoted by〈S, iS〉.

Polyhedral compilation usually distinguishes between
three steps: first, represent an input program in the for-
malism, then apply a transformation to this representation
and finally generate the target (syntactic) code. It is well
known that arbitrarily complex sequences of loop transfor-
mations can be captured in one single transformation step of
the polyhedral model [27, 14]; this includes parallelism ex-
traction and exploitation [12, 19, 15]. Yet to ease the com-
position of program transformations on the polyhedral rep-
resentation, we further split the representation of the sched-
uleΘ into smaller, interleaved, matrix and vector parts:

• the AS part is a square matrix of size(dS,dS) and
expresses the speed at which different statement in-
stances execute along a given dimension;

• theΓS matrix of size(dS,dg) allows to perform multi-
dimensional shifting with respect to global parameters;

1We insert the non-parametric constant as the last element ofg and will
not distinguish it through the remainder of the paper.

• theβS vector of size(dS+1) encodes the syntactical,
loop-independent interleaving of statements at every
loop depth.

Such encodings with 2dS + 1 dimensions were pre-
viously proposed by Feautrier [11], then by Kelly and
Pugh [16]. We refer the reader to the URUK framework for
a complete formalization and analysis [14]. For improved
readability, we use a small example at depth 1 (i.e., domain
dimensiondS1 = dS2 = 1) and 1 parameterN (i.e.,dg = 1).

for (i=0; i<N; i++)
S1 A[i] = i;

for(i=0; i<=N; i++)
S2 B[i] = A[i+1];

AS1 = [1] AS2 = [1]
βS1 = [0,0] βS2 = [1,0]
ΓS1 = [0,0] ΓS2 = [0,0]

Figure 1. Original

for (i=0; i<=N; i++)
S2 B[i] = A[i+1];
S1 A[i] = ...;

AS1 = [1] AS2 = [1]
βS1 = [0,1] βS2 = [0,0]
ΓS1 = [0,0] ΓS2 = [0,0]

Figure 2. Fusion
for (i=0; i<=N-4; i++)

S1 A[i] = ...;
for (i=N-3; i<=N; i++)

S2 B[i-N+3] = A[i-N+4];
S1 A[i] = ...;

for (i=N+1; i<=2*N-3; i++)
S2 B[i-N+3] = A[i-N+4];

AS1 = [1] AS2 = [1]
βS1 = [0,0] βS2 = [0,1]
ΓS1 = [0,0] ΓS2 = [1,−3]

Figure 3. Shift

for (i=0; i<=N; i++)
S2 B[i] = A[i+1];

if (i%2 == 0)
S1 A[i/2] = i/2;

for (i=N+1; i<=2N; i++)
if (i%2 == 0)

S1 A[i/2] = i/2;

AS1 = [2] AS2 = [1]
βS1 = [0,0] βS2 = [0,1]
ΓS1 = [0,0] ΓS2 = [0,0]

Figure 4. Slow

The original code is shown on Figure 1. Using our
framework, it is natural to express transformations like fu-
sion, fission and code motion by simple operations on the
β vectors — Figure 2 — even for misaligned loops with
different parametric bounds [25]. Shifting by a constant
amount or by a parametric amount — Figure 3 — is equally
simple with operations on theΓ. We also show the result of
slowingS1 by a factor 2, operating onA with respect toS2

— Figure 4. It is the duty of the final code generation algo-
rithm [24, 2] to reconstruct loop nests from affine schedules
and iteration domains.

An important property is that modifications ofβ andΓ
are commutative and trivially reversible. It is obvious that
this does not hold in AST representations of the program.
Typically, on Figure 3, one would need to rebuild the origi-
nal statementS1 from the prologue and kernel when work-
ing with an AST representation. Whereas in the polyhedral
model,S1 is still a single statement until the final regener-
ation of the code, which alleviates such annoying pattern-
matching based reconstructions. This crucial observation
is fundamental for defining a complete correction scheme,
avoiding the traditional decision problems associated with
the selection of enabling transformations.

Dependence Analysis. Array dependence analysis is the
starting point for any polyhedral optimization. It computes
non transitively-redundant, iteration vector to iteration vec-
tor, directed dependences [9, 25]. In order to correct de-
pendence violations, it is first needed tocompute the exact
dependence information between every pair of instances,
i.e., every pair of statement iterations. Considering a pair
of statementsSandT accessing memory locations where at
least one of them is a write, there is a dependence from an
instance〈S, iS〉 of S to an instance〈T, iT〉 of T (or 〈T, iT〉
depends on〈S, iS〉) if and only if the following instance-
wise conditions are met: (1) both instances belong to the
corresponding statement iteration domain:DS

i · i
S≥ 0 and

DT
i · i

T ≥ 0, (2) both instances refer to the same memory
location: f S · iS = f T · iT , and (3) the instance〈S, iS〉 is ex-
ecuted before〈T, iT〉 in the original execution:ΘS · iS≪
ΘT · iT , where≪ is the lexicographic order on vectors.

The multidimensional logical date at which an instance
is executed is determined, for statement S, by the 2dS+ 1
vector given byΘS· iS. The schedule of statement instances
is given by the lexicographic order of their schedule vectors
and is the core of the code generation algorithm.

The purpose of dependence analysis is to compute a di-
rected dependence multi-graph DG. Unlike traditional re-
duced dependence graphs, an arcS→ T in DG is labeled
by a polyhedron capturing the pairs of iteration vectors (iS,
iT) in dependence.

Violated Dependences. After transforming the SCoP, the
question arises whether the resulting program still executes
correct code. Our approach consists in saving the depen-
dence graph, before applying any transformation [25], then
to apply a given transformation sequence, and eventually to
run a legality analysis at the very end of the sequence.

We consider a dependence fromS to T in the original
code and we want to determine if it has been preserved in
the transformed program.

Violated dependence analysis[25] efficiently computes
the iterations of the Cartesian product spaceDS×DT that
were in a dependence relation in the original program
andwhose order has been reversed by the transformation.
These iterations, should they exist, do not preserve the
causality of the original program. LetδS→T denote the de-
pendence polyhedron fromS to T; we are looking for the
exact set of iterations ofδS→T such that there is a depen-
dence fromT to Sat transformed depthp. By reasoning in
the transformed space, it is straightforward to see that the
set of iterations that violate the causality condition is the in-
tersection of a dependence polyhedron with the constraint
setΘS· iS≥ΘT · iT .

We denote a violated dependence polyhedron at depthp
by VIOS→T

p . We also define a slackness polyhedron at depth
p which contains the set of points originally in dependence

and that are still executed in correct order after transforma-
tion. Such a polyhedron will be referred to asSLAS→T

p .

4. Correction by Shifting

We propose a greedy algorithm to incrementally correct
violated dependences, from the outermost to the innermost
nesting depth. This algorithm addresses a similar prob-
lem as retiming, in an extended multidimensional case with
parametric affine dependences [18, 6]. The basic idea is to
correct violations via iterative translation of the schedules;
these translations reflect into loop shifting for the case of
loop-carried violated dependences and into loop fusion or
distribution for the loop-independent case [25].

4.1. Violation and Slackness

At depthp, the question raises whether a subset of those
iterations – whose dependence has not yet been resolved up
to depthp – are in violation and must be corrected.

When correcting loop-carried violations, we define the
following affine functions fromZ

dS+dT+dg+1 to Z
dg+1:2

• ∆VIOΘS→T
p = AS

p,•−AT
p,•+ΓS

p,•−ΓT
p,• which computes

the amount of time units at depthp by which a specific
instance ofT executes before one ofS.

• ∆SLAΘS→T
p = −AS

p,•+ AT
p,•− ΓS

p,•+ ΓT
p,• which com-

putes the amount of time units at depthp by which a
specific instance ofSexecutes before one ofT.

Then, let us define the parametric extremal values of these
two functions:

• SHIFTS→T = max
X∈DS×DT

{

∆VIO ΘS→T
p ·X > 0 | X ∈ VIOS→T

p

}

• SLACKS→T = min
X∈DS×DT

{

∆SLAΘS→T
p ·X ≥ 0 | X ∈ SLAS→T

p

}

We use the parametric integer linear program solver PIP
[10] to perform these computations. The result is a piece-
wise, quasi-affine function of the parameters (affine with
additional parameters to encode modulo operations). It is
characterized by a disjoint union of polyhedra where this
function is quasi-affine. This piecewise affine function is
encoded as aparametric quasi-affine selection tree– or
quast– [10, 9].

The loop-independent case is much simpler. Each vio-
lated dependence must satisfy conditions onβ:

• if VIOS→T
p 6= /0∧βS

p > βT
p, SHIFTS→T = βS

p−βT
p

• if VIOS→T
p 6= /0∧βS

p≤ βT
p, SLACKS→T = βS

p−βT
p

The correction problem can then be reformulated as finding
a solution to a system of differential constraints on paramet-
ric quasts. For any statementS, we shall denote bycS the

2We writeAp,• to express thepth line andA1..p−1,• for lines 1 top−1.

unknown amount of correction: a piecewise, quasi-affine
function;cS is called theshift amountfor statementS. The
problem we need to solve becomes:

∀(S,T) ∈ SCoP,

{

cT −cS ≤ −SHIFTS→T

cT −cS ≤ SLACKS→T

Such a problem can be solved with a variant of the Bellman-
Ford algorithm [4], with piecewise quasi-affine functions
(quasts) labeling the edges of the graph. Parametric case
distinction arises when considering addition and maximiza-
tion of the shift amounts resulting from different depen-
dence polyhedra. In addition, for correctness proofs of the
Bellman-Ford algorithm to hold, triangular inequalities and
transitivity of the≤ operator on quasts must also hold. The
algorithm in Figure 5 allows to maintain case disjunction
while enforcing all the required properties for any configu-
ration of the parameters. At each step of the separation al-
gorithm, two cases are computed and tested for emptiness.
TheSHIFTCOND predicate holds the linear constraints on the
parameters for a given violation to occur. Step 15 imple-
ments the complementary check.3 As an optimization, it is
often possible to extend disjoint conditionals by continuity,
which reduces the number of versions (associated with dif-
ferent parameter configurations), hence reduce complexity
and the resulting code size. For example:

if (M = 3) then 2
else if (M ≥ 4) then M−1

∣

∣

∣

∣

≡ if (M ≥ 3) then M−1

Experimentally, performing this post processing allows up
to 20% less versioning at each correction depth. Given the
multiplicative nature of duplications, this can translateinto
exponentially smaller generated code.

4.2. Constraints graphs

We outline the construction of the constraints graph used
in the correction. For depthp, the violated dependence
graph VDGp is a directed multigraph where each node rep-
resents a statement in the SCoP. The construction of VDGp

proceeds as follows. For each violated polyhedronVIOS→T
p ,

the minimal necessary correction is computed and results
in a parametric conditional and a shift amount. We add an
edge, between S and T in VDGp of typeV (violation), dec-
orated with the tuple(VIOS→T

p ,SHIFTCOND,−SHIFTS→T).
WhenV type arcs are considered, they bear the minimal
shifting requirement by whichT mustbe shifted for the cor-
rected values ofΘS andΘT to nullify the violated polyhe-
dronVIOS→T

p . Notice however that shiftingT by SHIFTS→T

amount does not fully solve the dependence problem. It
solves it for the subset of points

{

X ∈ VIOS→T
p | ∆VIOΘS→T

p < SHIFTS→T
}

. The remain-
ing points - the facet of the polyhedron such that

{

X ∈

3Unlike the more costly separation algorithm by Quilleré [23] used for
code generation, this one only needs intersections (no complement or dif-
ference).

SeparateMinShifts: Eliminate redundancy in a list of shifts
Input:
redundantlist: list of redundant shift amounts and conditions

Output: non redundant list of shift amounts and conditions
resultinglist ← empty list

1 while(redundantlist not empty)
2 if(resultinglist is empty)
3 resultinglist.append(redundantlist.head)
4 redundantlist ← redundantlist.tail
5 else
6 tmplist ← empty list
7 SHIFT1 ← redundantlist.head
8 redundantlist ← redundantlist.tail
9 while(resultinglist not empty)
10 SHIFT2 ← resultinglist.head
11 resultinglist ← resultinglist.tail
12 cond1 ← SHIFTCOND

1 ∧ SHIFTCOND
2 ∧ (SHIFT2 < SHIFT1)

13 if(cond1 not empty)
14 tmplist.append(cond1, SHIFT1)
15 cond2 ← SHIFTCOND

1 ∧ SHIFTCOND
2 ∧ (SHIFT2 ≥ SHIFT1)

16 if(cond2 not empty)
17 tmplist.append(cond2, SHIFT2)
18 if(cond1 is empty and cond2 is empty)
19 tmplist.append(SHIFTCOND

1 , SHIFT1)
20 tmplist.append(SHIFTCOND

2 , SHIFT2)
21 resultinglist ← tmplist
22 return resultinglist

Figure 5. Conditional separation

VIOS→T
p | ∆VIOΘS→T

p = SHIFTS→T
}

- are carried for cor-
rection at the next depth and will eventually be solved at the
innermostβ level, as will be seen shortly.

For a loop-independent VDGp, the correction is simply
done by reordering theβp values. No special computa-
tion is necessary as only the relative values ofβS

p andβT
p

are needed to determine the sequential order. When such
a violated, it means the candidate dependence polyhedron
VIOS→T

p is not emptyand βS
p > βT

p. The correction algo-
rithm forces the synchronization of the loop independent
schedules by settingβS

p = βT
p and carriesVIOS→T

p to be cor-
rected at depthp+1.

For each original dependenceδS→T in the DG that has
not been completely solved up to current depth add an edge
between S and T in VDGp of type S (slackness). Such
an edge is decorated with the tuple (VIOS→T

p , SLACKCOND,
SLACKS→T). WhenS type edges are considered, they bear
the maximal shifting allowed forSso that the causality re-
lation S→ T is ensured. If at any time a node is shifted by
a quantity bigger than one of the maximal allowed outgoing
slacks, it will give rise to new outgoing shift edges.

4.3. The Algorithm

The correction algorithm is interleaved with the incre-
mental computation of the VDG at each depth level. The
fundamental reason is that corrections at previous depths
need to be taken into account when computing the violated
dependence polyhedra at the current level. The main idea
for depthsp > 0 is to shift targets of violated dependences
by theminimal shifting amount necessary. If any of those
incoming shifts is bigger than any outgoing slack, the out-

CorrectLoopDependentNode: Corrects a node by shifting
Input:
node: A node in VDGp

Output: A list of parametric shift amounts and conditionals
for the node
corrections ← corrections of node already

computed in previous passes
1 foreach(edge (S, node, Vi) incoming into node)
2 compute minimal SHIFTS→node and SHIFTCOND

3 corrections.append(SHIFTS→node, SHIFTCOND)
4 if(corrections.size > 1)
5 corrections ← SeparateMinShifts(corrections)
6 foreach(edge (node, T) outgoing from node)
7 foreach(corr in corrections)
8 compute a new shift VIOnode→T

p using corr for node

9 if(VIOnode→T
p not empty)

10 addedge(node, T, V , VIOnode→T
p) to VDGp

11 else
12 compute a new slack SLAnode→T

p using corr for node

13 addedge(node, T, S , SLAnode→T
p) to VDGp

14 removeedge(edge) from VDGp

15return corrections

Figure 6. Shifting a node for correction
CorrectLoopDependent: Corrects a VDG by shifting
Input:
VDG: A node in VDGp

Output: A list of parametric shift amounts and conditionals
for the node
corrections ← empty list

1 for(i = 1 to |V| − 1)
2 nodelist ← nodes(VDG) with incoming edge of type V
3 foreach(node in nodelist)
4 corrections.append(CorrectLoopDependentNode(node))
5 return corrections

Figure 7. Correcting a VDG
CorrectSchedules: Corrects an illegal schedule
Input:
program: A program in URUK form
dependences: The list of polyhedral dependences of the program

Output: Corrected program in URUK form
1 Build VDG0

2 correctionList ← CorrectLoopIndependent(VDG0)
3 commit shifts in correctionList
4 for(p=1; p<=max(S ∈ SCoP) {rank(βS)})
5 Build VDGp

6 correctionList ← CorrectLoopDependent(VDGp)
7 commit shifts in correctionList
8 correctionList ← CorrectLoopIndependent(VDGp)
9 commit shifts in correctionList

Figure 8. Correction algorithm

going slacks turn into new violations that need to be cor-
rected. During the graph traversal, any node is seen at most
|V|−1 times, whereV is the set of vertices. At each traver-
sal, we gather the previously computed corrections along
with incoming violations and we apply the separation phase
of Figure 5. For loop-carried dependences, the algorithm to
correct a node is outlined in Figure 6.

We use an incrementally growing cache to speed up
polyhedral computations, as proposed in [25]. Step 8 of
Figure 6 uses PIP to compute the minimal incoming shift
amount; it may introduce case distinctions, and since we la-
bel edges in the VDG with single polyhedra and not quasts,

it may result in inserting new outgoing edges. When many
incoming edges generate many outgoing edges, Step 11
separates these possibly redundant amounts using the al-
gorithm formerly given in Figure 5. In practice, PIP can
also introduce new modulo parameters for a certain class
of ill-behaved schedules. These must be treated with spe-
cial care as they will expanddg and are generally a hint
that the transformation will eventually generate code with
many internal modulo conditionals. On the other hand, for
loop-independent corrections all quantities are just integer
differences, without any case distinction. The much sim-
pler algorithm is just a special case.

The full algorithm recursively computes the current
VDG for each depthp, taking into account previously cor-
rected dependences and is outlined in Figure 8. Termina-
tion and soundness are straightforward, from those of the
Bellman-Ford version [4] applied successively at each depth
on theSHIFT amount.

Lemma 1 (Depth-p Completeness)If shifting amounts
satisfying the system of violation and slackness constraints
at depth p exist, the correction algorithm removes all viola-
tions at depth p.

The proof derives from the completeness of Bellman-
Ford’s algorithm. Determining the minimal correcting shift
amounts to computing the maximal value of linear multi-
variate functions (∆VIOΘS→T

p and∆SLAΘS→T
p) over bounded

parametrized convex polyhedra (VIOS→T
p and SLAS→T

p).
This problem is solved in the realm of parametric inte-
ger linear programming. The separation algorithm ensures
equality or incompatibility of the conditionals enclosingthe
different amounts. The resulting quasts therefore satisfythe
transitivity of the operations of max, min,+ and≤. When
VDGp has no negative weight cycle, the correction at depth
p succeeds; the proof is the same as for the Bellman-Ford
algorithm and can be found in [4].�

As mentioned earlier, the computed shift amounts are
minimal such that the schedule at a given depth does not vi-
olate any dependence; full resolution of those dependences
is carried for correction at the next level. Another solution
would be to shift target statements bySHIFTS→T + 1, but
this is deemed too intrusive. Indeed, this amounts to adding
−1 to all negative edges on the graph, potentially making
the correction impossible.

The question arises whether a shift amount chosen at a
given depth may interfere with the correction algorithm at a
higher depth. The next lemma guarantees it is not the case.

Lemma 2 Correction at a given depth by the minimal shift
amount does not hamper correction at a subsequent depth.

For p > 1, if VDGp contains a negative weight cycle,
VDGp−1 contains a null weighted slackness cycle travers-
ing the same nodes. By construction, any violated edge at

for (i=0; i<=N; i++)
S1 A[i] = ...;
S2 A[1] = A[5];

for (i=0; i<=N; i++)
S3 B[i] = A[i+1];

AS1 = [1] AS2 = [1] AS3 = [1]
βS1 = [0,0] βS2 = [1,0] βS3 = [2,0]
ΓS1 = [0,0] ΓS2 = [0,0] ΓS3 = [0,0]

Figure 9. Original code

for (i=0; i<=N; i++)
S3 B[i] = A[i+1];
S2 A[1] = A[5];

for (i=0; i<=N; i++)
S1 A[i] = ...;

AS1 = [1] AS2 = [1] AS3 = [1]
βS1 = [2,0] βS2 = [1,0] βS3 = [0,0]
ΓS1 = [0,0] ΓS2 = [0,0] ΓS3 = [0,0]

Figure 10. Illegal schedule

for (i=0; i<=N; i++)
S2 if (i==0) A[1] = A[5];
S3 B[i] = A[i+1];
S1 A[i] = ...;

AS1 = [1] AS2 = [1] AS3 = [1]
βS1 = [2,0] βS2 = [2,0] βS3 = [2,0]
ΓS1 = [0,0] ΓS2 = [0,0] ΓS3 = [0,0]

Figure 11. After correcting

S1
B=[2,0]

S2
B=[1,0][1]

S3
B=[0,0][2]

[1]

S1
B=[2,0]

S2
B=[2,0][0]

S3
B=[0,0][2]

[2]

S1
B=[2,0]

S2
B=[2,0][0]

S3
B=[2,0][0]

[0]

Figure 12. Outline of the correction for p = 0

for (i=0; i<=N; i++)
S1 A[i] = ...;
S21 if (i==1 && N<=4) A[1] = A[5];
S22 if(i==5 && N>=5) A[1] = A[5];
S3 B[i] = A[i+1];

AS1 = [1] AS21 = [1] AS22 = [1] AS3 = [1]
βS1 = [2,0] βS21 = [2,0] βS22 = [2,0] βS3 = [2,0]
ΓS1 = [0,0] ΓS21 = [0,0] ΓS22 = [0,5] ΓS3 = [0,0]

Figure 13. Correcting + versioning S2

for (i=0; i<=N; i++)
S1 A[i] = ...;
S21 if (i==1 && N<=4) A[1] = A[5];
S22 if (i==5 && N>=5) A[1] = A[5];
S31 if (i>=1 && N<=4) B[i-1] = A[i];
S32 if (i>=6 && N>=5) B[i-6] = A[i-5];

AS1 = [1] AS21 = [1] AS22 = [1] AS31 = [1] AS32 = [1]
βS1 = [2,0] βS21 = [2,0] βS22 = [2,0] βS31 = [2,0] βS32 = [2,0]
ΓS1 = [0,0] ΓS21 = [0,0] ΓS22 = [0,5] ΓS31 = [0,1] ΓS32 = [0,6]

Figure 14. Correcting + versioning S3

S1
G=[0,0]

S2
G=[0,0]

[0, 1]

[0, 5] if(N>=5) S3
G=[0,0][0, 1]

[0]
S1

G=[0,0]

S2
G=[0,0]

[0, 0]

[0, 4] if(N>=5) S3
G=[0,0]

[0, 1]

[0, 5] if(N>=5)

[0,0]

Figure 15. Outline of the correction for p = 1

depthp presupposes that the candidate violated polyhedron
at previous depthVIOS→T

p−1 is not empty. Hence, for any vi-
olated edge at depthp, there exists a 0-slack edge at any
previous depths thus ensuring the existence of a 0-slack cy-
cle at any previous depths.�

In other words, the fact that a schedule cannot be cor-
rected at a given depth is an intrinsic property of the sched-
ule. Combined with the previous lemma, we deduce the
completeness of our greedy algorithm.

Theorem 1 (Completeness)If shifting amounts satisfying
the system of violation and slackness constraints exist at all
depths, the correction algorithm removes all violations.

Let us outline the algorithm on the example of Figure 9,
assumingN ≥ 2. Nodes represent statements of the pro-
gram and are labeled with their respective schedules (B for
β and G forΓ). Dashed edges represent slackness while
plain edges represent violations and are labeled with their
constant or parametric amount. Suppose the chosen trans-
formation tries to perform the modifications of the above
statements’ schedules according to the values in Figure 10.

The first pass of the correction algorithm for depthp = 0
detects the following loop independent violations:S1→ S2,

S1→ S2 if N ≥ 5, S1→ S3, S2→ S3 if N ≥ 5. No slack
edges are introduced in the initial graph. The violated de-
pendence graph is a DAG and the correction mechanism
will first pushS2 at the sameβ0 asS1. Then, after updating
outgoing edges, it will do the same forS3 yielding the code
of Figure 11. Figure 12 shows the resulting VDG. So far,
statement ordering within a given loop iteration is not fully
specified (hence the statements are considered parallel); the
code generation phase arbitrarily decides the shape of the
final code. In addition, noticeS2 andS3, initially located in
different loop bodies thanS1, have been merged through the
loop-independent step of the correction.

The next pass of the correction algorithm for depthp= 1
now detects the following loop carried violation: RAW
dependence〈S1,5〉 → 〈S2,0〉 is violated with the amount
5− 0 = 5 if N ≥ 5, WAW dependence〈S1,1〉 → 〈S2,0〉
is violated with the amount 1− 0 = 1, RAW dependence
〈S1, i +1〉→ 〈S3, i〉 is violated with the amounti +1− i = 1.
There is also a 0-slack edgeS2→ S3 resulting fromS2 writ-
ing A[1] andS3 reading it at iterationi = 0. All these in-
formation are stored in the violation polyhedron. A maxi-
mization step with PIP determines a minimal shift amount

of 5 if N ≥ 5. Stopping the correction after shiftingS2 and
versioning given the values ofN would generate the inter-
mediate result of Figure 13. However, since the versioning
only happens at commit phases of the algorithm in Figure 8,
the graph is given in Figure 15 and no node duplication is
performed yet. The algorithm moves forward to correcting
the nodeS3 and, at step 3, the slack edgeS2→ S3 is up-
dated with the new shift forS2. The result is an incoming
shift edge with violation amount 4 ifN ≥ 6; which yields
versions of Figure 16 after code generation optimization.

5. Correction by Index-Set Splitting

Index-set splitting has originally been crafted as an en-
abling transformation. It is usually formulated as a decision
problem to express more parallelism by allowing the con-
struction of piecewise affine functions. Yet, the iterative
method proposed by Feautrier et al. [13] relies on calls to
a costly, non scalable, scheduling algorithm, and aims at
exhibiting more parallelism by breaking cycles in the origi-
nal dependence graph. However, significant portions of nu-
merical programs do not exhibit such cycles, but still suf-
fer from major inefficiencies; this is the case of the sim-
plified excerpts from SPEC CPU2000fp benchmarksswim
andmgrid, see Figures 17–18. Other methods fail to en-
able important optimizations in the presence of paralleliza-
tion or fusion preventing dependences, or when loop bounds
are not identical. Feautrier’s index-set splitting heuristic
aims at improving the expressiveness of affine schedules.
In the context of schedule corrections, the added expressive-
ness helps our greedy algorithm to find less intrusive (i.e.,
deeper) shifts. Nevertheless, since not all schedules may
be corrected by a combination of translation and index-set
splitting, it is interesting to have a local necessary criterion
to rule out impossible solutions.

5.1. Correction Feasibility

When a VDG contains a circuit with negative weight,
correction by translation alone becomes infeasible. If no
circuit exists in the DG, then no circuit can exist in any
VDG, since by construction, edges of the VDG are built
from edges in the DG. In this case, whateverA, β andΓ
parts are chosen for any statement, a correction is found.

If the DG contains circuits, a transformation modifyingβ
andΓ only is always correctable. Indeed, the reverse trans-
lation onβ andΓ for all statements is a trivial solution. As a
corollary, any combination of loop fusion, loop distribution
and loop shifting [1] can be corrected. Thanks to this strong
property of our algorithm, we often eliminate the decision
problem of finding enabling transformations such as loop
bounds alignment, loop shifting and peeling. This observa-
tion leads to a local necessary condition for ruling out non
admissible correctable schedules.

Lemma 3 Let C= S→ S1→ . . .→ Sn→ S be a circuit in
the DG. By successive projections onto the image of every
dependence polyhedron, we can incrementally construct a
polyhedronδS→PSi that contains all the instances of S and
Si that are transitively in dependence along the prefix P of
the circuit. If δS→S is not empty, the function ASp,•−AS

p,•

must be positive for a correction to exist at depth p.

Without this necessary property, index-set splitting would
not enhance the expressiveness of affine schedules enough
for a correction to be found (by loop shifting only). This is
not sufficient to ensure the schedule can be corrected.

5.2. Index-Set Splitting for Correction

Our splitting heuristic aims at preserving asymptotic lo-
cality and ordering properties of original schedule while
avoiding code explosion. The heuristic runs along with the
shifting-based correction algorithm, by splitting only tar-
get nodes of violated dependences. Intuitively, we decom-
pose the target domain when the two following criteria hold:
(1) the amount of correction is “too intrusive” with respect
to the original (illegal) schedule; (2) it allows a “significant
part” of the target domain to be preserved. A correction is
intrusive if it is a parametric shift (Γ) or a motion (β).

if (N<=4)
A[0] = ...;
A[1] = ...;
A[1] = A[5];
B[0] = A[1];
for (i=2; i<=N; i++)
A[i] = ...;
B[i-1] = A[i];

B[N-1] = A[N];

elseif (N>=5)
for (i=0; i<=4; i++)

A[i] = ...;
A[5] = ...;
A[1] = A[5];
for (i=6; i<=N; i++)

A[i] = ...;
B[i-6] = A[i-5];

for (i=N+1; i<=N+6; i++)
B[i-6] = A[i-5];

Figure 16. Versioning after code generation

To assess the second criterion, we consider for every in-
coming shift edge, the projection of the polyhedron onto ev-
ery non-parametric iterator dimension. A dimension whose
projection is non-parametric and included in an interval
smaller than a given constant (3 in our experiments) is
calleddegenerate. In the following example, dimensionj
is degenerate and simplifies into 2i +2≥ 6 j ≥ 2i−5:























−2i + 3 j + 4M + 5 ≥ 0
i + j − M + 2 ≥ 0
i − 3 j + 2M − 9 ≥ 0
−i + M ≥ 0
i ≥ 0

The separation and commit phases of our algorithm cre-
ate as many disjoint versions of the correction as needed
to enforce minimal shifts. The node duplications allow to
express different schedules for different portions of the do-
main of each statement. To determine if a domain split
should be performed, we incrementally remove violated

parts of the target domain corresponding to intrusive cor-
rections until either: we run out of incoming violations, or
the remaining part of the domain is degenerate. The intu-
ition is to keep a non-degenerate core of the domain free of
any parametric correction, to preserve locality properties of
the original schedule. In the end, if the remaining portion
of the domain still has the same dimension as the original
one, a split is performed that separates the statement into
the core that is not in violation and the rest of the domain.

Index set splitting is thus plugged into our correction al-
gorithm as a preconditioning phase before step 4 of Fig-
ure 8. Notice that a statement is only split a finite number
of times, since each incoming shift edge is split at most once
at each depth. To limit the number of duplications, we al-
low only the core of a domain to be split among successive
corrections. If a statement has already been decomposed at
a given depth, only its core still exhibits the same locality
properties as the original schedule. It is then unnecessary,
and even harmful as far as code size is concerned, to further
split the out-of-core part of the domain.

Original code in Figure 17 is a simplified version of one
of the problems to solve when optimizingmgrid. The fu-
sion of the first and third nests is clearly illegal since it
would reverse the dependence from〈S1,N−1〉 to 〈S2〉, as
well as every dependence from〈S1, i〉 to 〈S3, i + 1〉. To en-
able this fusion, it is sufficient to shift the schedule ofS2 by
N−1 iterations and to shift the schedule ofS3 by 1 iteration.
Fortunately, only iterationi = 0 of S3 (after shifting by 1) is
concerned by the violated dependence fromS2: peeling this
iteration ofS3 gives rise toS31 andS32. In turn,S31 is not
concerned by the violation fromS2 while S32 must still be
shifted byN−1 and eventually pops out of the loop. In the
resulting optimized code in Figure 17, the locality benefits
of the fusion are preserved and the legality is ensured.

A simplified version of theswim benchmark exhibits the
need for a more complex split. The original code in Fig-
ure 18 features two doubly nested loops separated by an
intermediate diagonal assignment loop, with poor temporal
locality on arrayA. While allowing to maintain the order of
the original schedule for a non-degenerate, triangular por-
tion of S1 andS3 instances (i.e.,{(i, j) ∈ [1,N] | j 6= i}); the
optimized code in Figure 18 also exhibits much more reuse
opportunities and yields better performance.

6. Experimental Results

The whole correction scheme (shifting, versioning and
index-set splitting) was implemented in the URUK frame-
work [14]. Our prototype tool was applied to real-world
loop optimization problems, providing evidence of the ben-
efits and scalability of our algorithms.

for (i=0; i<N; i++)
S1 A[i] = ...;
S2 A[0] = A[N-1];

for (i=1; i<N; i++)
S3 B[i] = A[i-1];

S1 A[0] = ...;
for (i=1; i<N-1; i++)

S1 A[i] = ...;
S31 B[i+1] = A[i];
S1 A[N-1] = ...;
S2 A[0] = A[N-1];
S32 B[1] = A[0];

Figure 17. mgrid-like (original and optimized)

for (i=0; i<N; i++)
for (j=0; j<N; j++)

S1 A[i][j] = ...;
for (i=0; i<N; i++)

S2 A[i][i] = ...;
for (i=1; i<N; i++)
for (j=1; j<N; j++)

S3 B[i][j] = A[i][j];

for (i=1; i<N; i++)
for (j=1; j<i-1; j++)

S1 A[i][j] = ...;
S3 B[i][j] = A[i][j];
S1 A[i][i] = ...;
S2 A[i][i] = ...;
S3 B[i][i] = ...;

for (j=i+1; j<N; j++)
S1 A[i][j] = ...;
S3 B[i][j] = A[i][j];

Figure 18. swim-like (original and optimized)

Scalability Experiments. Our correction algorithm is ap-
plicable under many different scenarios (multidimensional
affine schedules and dependence graphs), and we believe
it is an important leap towards bridging the gap between
the abstraction level of compact loop-based programs and
their adaptation to modern architectures. To make its bene-
fits more concrete, we apply it to one of the most important
loop transformation for locality: loop fusion. It is often im-
peded by combinatorial decision problems such as shifting,
index-set splitting and loop bounds alignment to remove fu-
sion preventing edges. To give an intuition of the correc-
tion effort needed to exhibit unexploited locality, we study
the case of aggressive loop fusion on the SPEC CPU2000fp
programsswim andmgrid.

We start from inlined versions of the programs which
represent 100% of the execution time forswim and 75% for
mgrid. As a locality-enhancing heuristic, we try to apply
loop fusion for all loops and at all loop levels. Since this
transformation violates numerous dependences, our correc-
tion mechanism is applied on the resulting multidimen-
sional affine schedules. Very simple examples derived from
these experiments have been shown in Figures 17–18. Both
loops exhibit “hot statements” with important amounts of
locality to be exploited after fusion. As indicated in the Fig-
ure 19,mgrid has 3 hot statements in a 3-dimensional loop,
but 12 statements are interleaved with these hot loops and
exhibit dependences that prevent fusion at depth 2;swim
exhibits 13 hot statements with 34 interleaved statements
preventing fusion at depths 2 and 3.

Application of our greedy algorithm successfully results
in the aggressive fusion of the compute cores, while induc-
ing only small shifts. Formgrid, the hot statements once in
different loop bodies – separated by distances(4×N,0,0)
and (8×N,0,0) – are fused towards the innermost level
with final translation vectors(0,0,0) for the first,(2,1,0)

Program mgrid swim
source statements 31 99
corrected statements 47 138
source code size 88 132
corrected code size 542 447
hot statements 3 13
fusion preventing statements 12 34
peel 12 20
triangular splits 0 5
original distance (4N,0,0) (8N,0,0) 3·(0,3N,0) 6·(0,5N,0)
final distance (2,1,0) (3,3,0) 11·(0,0,0) (0,1,0) (0,0,1)

Figure 19. Correction Experiments
Benchmark St. Dep. Dim. All Legal Incomp.

compress-1024 6 56 2 6.2×1024 6480 9
edge-2048 3 30 3 1.7×1024 3.1×107 1467
latnrm-256 11 75 2 4.1×1018 1.9×109 678
lmsfir-256 9 112 2 1.2×1019 2.6×109 19962

Figure 20. Search Space Size

for the second and(3,3,0) for the third one.4 For swim,
the original statements once in separate doubly nested loops
have been fused thanks to an intricate combination of trian-
gular index-set splitting, peeling of the boundary iterations,
and shifting; 11 statements required no shifting, 1 required
(0,1,0) and the other(0,0,1). Peeling and index-set split-
ting are required as to avoid loop distribution and are quanti-
fied in the 7th and 8th rows in the table. Overall, the number
of extra statements introduced by index set splitting is about
20–30% which is quite reasonable.

No existing optimizing compiler is capable (up to our
knowledge) of discovering the opportunity and applying
such aggressive fusions. In addition, existing compilers
deal with combinatorial decision problems associated with
the selection of enabling transformations. All these decision
problems disappear naturally with our correction scheme,
in favor of more powerful heuristics that aim at limiting the
amount of duplication in the resulting code while enforc-
ing the compute intensive part of the program benefits from
locality or parallelization improvements.

Iterative Optimization With Affine Schedules. Recent
results by Pouchet et al. show the benefit of affine schedul-
ing to construct and traverse a search space containing only
distinct, legal transformations [21]. Despite orders of mag-
nitude of reduction in the size of the search space, com-
pared to state-of-the-art filtering approaches, the method
still faces two major drawbacks: first, it is designed for
one-dimensional schedules while its natural extension to the
case of multidimensional ones leads to further explosion of
the size of the search space second, the search space has
many dimensions with little impact on performance [21] but
exponential impact on search space size.

Finding a correction for a given schedule means com-

4Intuitively, a multidimensional distance of(4×N,0,0) is equivalent
to 4×N.N2 +0.N+0, assuming every loop hasN iterations.

puting a value forΓ and β, providedA. Figure 20 sum-
marizes our results, showing dramatic reductions in the
size of the search space on four kernels extracted from the
UTDSP benchmark suite [17] (with schedule coefficients
bounded in interval[−1,1]). The table shows: the num-
ber of distinct affine schedules (All, legal or not), ofdis-
tinct legalaffine schedules (Legal), and ofdistinct legal in-
completescheduleswhere a correction by shifting and fu-
sion/distribution exists(Incomp.). We also report the num-
ber of statements (St.), dependences (Dep.) and the sched-
ule dimension (Dim.).

Our technique dramatically accelerates iterative, feed-
back directed optimizations by removing degrees of free-
dom shown to have a lower impact on performance, nar-
rowing the exploration to the most representative subspaces.
Overall, the thorough iterative search of all incomplete le-
gal schedules of the above-mentioned UTDSP kernels takes
a few minutes. The best automatically corrected transfor-
mations achieve speedups from 10% to 368% on an AMD
Athlon64 2.4GHz.

Expert-Driven Semi-Automatic Optimization. When
an expert performs assisted semi-automatic optimization ,
long sequences of transformations can be found that dra-
matically improve the execution speed. For example, to op-
timize the SPEC CPU2000fpswim benchmark, Girbal et
al. [14] crafted a sequence of 40 transformations:

• 3 shifts along the outermost loop, determined by the
expert as the only way to enable aggressive fusion
on the innermost loops without resorting to complex
index-set splitting (Figure 18);

• 2 aggressive nested fusion steps for locality;

• 8 multidimensional shifts aimed at enabling the previ-
ous fusions and making them legal;

• 10 statement motion steps with the same purpose;

• 12 loop peeling steps to isolate some non-fusable parts;

• 1 register blocking (or unroll-and-jam) step to improve
memory locality (2 stripmine and 1 interchange);

• 2 loop unrolling transformations to improve ILP and
help the compiler exhibit register reuse.

The result is a speedup of 38% on AMD Athlon64 w.r.t.
peak performance obtained using the best available com-
piler and optimization flags at that time5

On this transformation sequence, only the nested fu-
sion, register tiling and loop unrolling address the perfor-
mance problem. Our correction algorithms were able to
automatically discover the 30 multidimensional shifts and
peeling steps necessary to enable the nested fusion and reg-
ister tiling. Furthermore, when removing the 3 outermost

5-march=athlon64 -LNO:fusion=2:prefetch=2 -m64 -Ofast -msse2 -
lmpath; pathf90 always outperformed Intel ICC by a small percentage.

shifts, our correction scheme triggers a very sophisticated
index-set splitting, effectively enabling aggressive fusion, at
the cost of some control-flow overhead (triangular iteration
spaces). The speed-up drops to 15%, and adding register
blocking and unrolling does not help because of increased
control-flow overhead. On this example, the running time
of the correction algorithm is only a few seconds.

7. Conclusion and Perspectives

We presented a general and complete algorithm to
correct dependence violations on multidimensional affine
schedules. This algorithm is based on loop shifting, a gen-
eralization of software pipelining that may also simulate the
effect of loop fusion and distribution. We combined this al-
gorithm with the first index-set splitting technique that oper-
ates after affine schedules are computed. The result is a very
effective technique to dramatically reduce the complexity
of loop nest optimization in the polyhedral model. We
demonstrated its scalability on two real-world benchmarks,
although previous affine scheduling algorithms would only
consider much smaller kernels. Overall, we replaced the
combinatorial decision problem of finding a sequence of
enabling transformations, by an a posteriori tractable and
controllable correction step.

References

[1] R. Allen and K. Kennedy.Optimizing Compilers for Modern
Architectures. Morgan and Kaufman, 2002.

[2] C. Bastoul. Code generation in the polyhedral model is eas-
ier than you think. InParallel Architectures and Compila-
tion Techniques (PACT’04), Antibes, France, Sept. 2004.

[3] C. Bastoul and P. Feautrier. Adjusting a program transfor-
mation for legality.Parallel processing letters, 15(1):3–17,
March 2005.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduc-
tion to Algorithms. MIT Press, 1989.

[5] J. B. Crop and D. K. Wilde. Scheduling structured systems.
In EuroPar’99, LNCS, pages 409–412, Toulouse, France,
Sept. 1999. Springer-Verlag.

[6] A. Darte and G. Huard. Loop shifting for loop paralleliza-
tion. Intl. J. of Parallel Programming, 28(5):499–534, 2000.

[7] A. Darte, G.-A. Silber, and F. Vivien. Combining retiming
and scheduling techniques for loop parallelization and loop
tiling. Parallel Processing Letters, 7(4):379–392, 1997.

[8] S. Donadio, J. Brodman, T. Roeder, K. Yotov, D. Barthou,
A. Cohen, M. Garzaran, D. Padua, and K. Pingali. A lan-
guage for the compact representation of multiple program
versions. InLanguages and Compilers for Parallel Comput-
ing (LCPC’05), LNCS, Hawthorne, New York, Oct. 2005.
Springer-Verlag. 15 pages.

[9] P. Feautrier. Array expansion. InACM Intl. Conf. on Super-
computing, pages 429–441, St. Malo, France, July 1988.

[10] P. Feautrier. Parametric integer programming.RAIRO
Recherche Opérationnelle, 22:243–268, Sept. 1988.

[11] P. Feautrier. Some efficient solutions to the affine scheduling
problem, part II, multidimensional time.Intl. J. of Parallel
Programming, 21(6):389–420, Dec. 1992. See also Part I,
one dimensional time, 21(5):315–348.

[12] P. Feautrier. Scalable and structured scheduling.To appear
at Intl. J. of Parallel Programming, 28, 2006.

[13] P. Feautrier, M. Griebl, and C. Lengauer. On index set split-
ting. In Parallel Architectures and Compilation Techniques
(PACT’99), Newport Beach, CA, Oct. 1999. IEEE Computer
Society.

[14] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello,
M. Sigler, and O. Temam. Semi-automatic composition of
loop transformations for deep parallelism and memory hi-
erarchies.Intl. J. of Parallel Programming, 2006. Special
issue on Microgrids. 57 pages.

[15] M. Griebl. Automatic parallelization of loop programsfor
distributed memory architectures. Habilitation thesis. Fac-
ultät für Mathematik und Informatik, Universität Passau,
2004.

[16] W. Kelly. Optimization within a unified transformation
framework. Technical Report CS-TR-3725, University of
Maryland, 1996.

[17] C. Lee and M. Stoodley. UTDSP benchmark suite, 1998.
http://www.eecg.toronto.edu/ corinna/DSP/.

[18] C. E. Leiserson and J. B. Saxe. Retiming synchronous cir-
cuitry. Algorithmica, 6(1), 1991.

[19] A. W. Lim and M. S. Lam. Communication-free paralleliza-
tion via affine transformations. In24thACM Symp. on Prin-
ciples of Programming Languages, pages 201–214, Paris,
France, jan 1997.

[20] K. McKinley, S. Carr, and C.-W. Tseng. Improving data
locality with loop transformations.ACM Transactions on
Programming Languages and Systems, 18(4):424–453, july
1996.

[21] L.-N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilache. It-
erative optimization in the polyhedral model: Part I, one-
dimensional time. InInternational Symposium on Code
Generation and Optimization, pages 144–156, San Jose,
California, Mar. 2007. IEEE Comp. Soc.

[22] M. Püschel, B. Singer, J. Xiong, J. Moura, J. Johnson,
D. Padua, M. Veloso, and R. W. Johnson. SPIRAL: A gen-
erator for platform-adapted libraries of signal processing al-
gorithms.Journal of High Performance Computing and Ap-
plications, special issue on Automatic Performance Tuning,
18(1):21–45, 2004.

[23] F. Quilleré and S. Rajopadhye. Optimizing memory usage
in the polyhedral model. Technical Report 1228, IRISA,
Université de Rennes, France, Jan. 1999.

[24] F. Quilleré, S. Rajopadhye, and D. Wilde. Generation of
efficient nested loops from polyhedra.Intl. J. of Parallel
Programming, 28(5):469–498, Oct. 2000.

[25] N. Vasilache, A. Cohen, C. Bastoul, and S. Girbal. Violated
dependence analysis. InACM Intl. Conf. on Supercomputing
(ICS’06), Cairns, Australia, June 2006.

[26] S. Verdoolaege, M. Bruynooghe, G. Janssens, and
F. Catthoor. Multi-dimensional incremental loops fusion for
data locality. InASAP, pages 17–27, 2003.

[27] M. E. Wolf. Improving Locality and Parallelism in Nested
Loops. PhD thesis, Stanford University, Aug. 1992. Pub-
lished as CSL-TR-92-538.

