StVEC: A Vector Instruction Extension for High Performance Stencil Computation

Naser Sedaghati, Renji Thomas, Louis-Noél Pouchet, Raddofescu, P. Sadayappan
Department of Computer Science and Engineering
The Ohio State University
{sedaghat,thomasr,teodores,pouchet,saday}@csestaie-edu

Abstract—Stencil computations comprise the compute-
intensive core of many scientific applications. The data access
pattern of stencil computations often requires several adjaaat
data elements of arrays to be accessed in innermost parallel
loops. Although such loops are vectorized by current compilers
like GCC and ICC that target short-vector SIMD instruction
sets, a number of redundant loads or additional intra-register
data shuffle operations are required, reducing the achievable

element of vector with the same index, in order to produce
vector resultd. Assuming that the hardware vector size is 4
(as in SSE for float data), and thaf0] and B[0] are aligned

to a boundary that is a multiple of the hardware vector size,
the vector code generated by a compiler for S1, in every
iteration of the outer loop, will use % — 1 aligned vector
load and store operations to read/write the elements afd

performance. Thus, even when all arrays are cache resident,
the peak performance achieved with stencil computations is
considerably lower than machine peak.

In this paper, we present a hardware-based solution for this
problem. We propose an extension to the standard addressing
mode of vector floating-point instructions in ISAs such as
SSE, AVX, VMX etc. We propose an extended mode of

A — compute A[4*i:4] by loading B[4*i:4] (the notation
A[i:V] denotes a vector of V consecutive elements of A
starting at index i) and multiplying with a vector register
containing four identical copies of the scal&r.

g > i | < - for (t =0; t <T; t++4)
paired-register addressing and its hardware implementation, for (i =4, i <N i++)
to overcome the performance limitation of current short-vector S1: Ali] +=B[i] *» K
SIMD ISA’s for stencil computations. Further, we present a
code generation approach that can be used by a vectorizing for E‘ =0t u Tt F).H
compiler for processors with such an instructions set. Using an 59 0;[,(i = B : 1] s :<;)
optimistic as well as a pessimistic emulation of the proposed
instruction extension, we demonstrate the effectiveness of ¢h for (t =0; t <T; t++)
proposed approach on top of SSE and AVX capable processors. for (i =4, i <N i++)
We also synthesize parts of the proposed design using a 45nm 83: A[i] += Bli-1] ~ B[i];

CMOS library and show minimal impact on processor cycle

time. Figure 1. Vector multiply-add loop with different multiply epands:

aligned-constant (S1), unaligned-constant (S2), unediealigned (S3).
I. INTRODUCTION

. . . . Code | Nehalem| Sandy Bridge| Core2 Quad| Phenom
Stencil computations arise in the core kernels of many (i7-920) | (i7-2600K) (Q6600) (9850BE)
scientific applications and their optimization has been the [S1 4.10 11.36 3.70 3.84
focus of several recent publications [1], [2], [3], [4], [$B]. S2 | 375 7.80 0.87 2.71
Stencil codes are generally easily vectorized by compilers S3 2.83 6.51 0.83 2.21
Table |

such as GCC and Intel's ICC because they typically feature
parallel innermost loops where array elements are accessed
at unit stride. However, as we illustrate using a simple
example below, the realized performance often falls far With loop S2, the number of vector multiplication op-
short of machine peak, even when all accessed data mrations and the number of vector load/store operations is
resident in the L1 cache. The main reason for the loss ofthe same as for S1, but eithdror B will require unaligned
performance is that when compiling stencil codes for currenload/store operations. With loop S3, in addition to unadign
vector instruction architectures, it is necessity to uskeei loads, redundant loads or intra-register data movement ope
redundant and unaligned load operations or intra-registegitions will be required since an overlapping and unaligned
shuffle or other intra-register data reorganizing openatio vector is involved in the multiplication of B[4*i-1:4] and
In this paper we propose a hardware based solution alonB[4*i:4]. Table | shows the performance of S1, S2, and
with a compiler code generation approach to address th83 on four different processors (the details of the hardware
problem. platforms are provided later in Section.lV). It may be seen
Consider the following loops S1, S2, and S3 (shown inthat on all platforms, the performance of S2 is worse than
Figure 1). The first loop S1 multiplies a scalar elemé&ht S1 and S3 is worse than S2. All three statements execute
with each element of vectoB, and add the result to an the same number of vector arithmetic operations and process

PERFORMANCE(GFLOPS)FORS1, S2AND S3ON DIFFERENT
MACHINES FORN=1024AND T=500000.

the same number of distinct data elements. The difference iA. StVEC Functionality: An Example
performance is due to the overheads incurred by one or more
of the following: i) redundant load of data elements into
different "slots" in different vector registers, ii) ungtied

Considering the stencil example in Figure 1(S3), we
demonstrate how such a vectorizable loop executes on a 4-

loads instead of aligned loads, and iii) shuffle or alignmentv;’]',de vector unit (trc:tal 128'5’_'& wide vecFor op(farﬁndss;. F%r
operations to move data elements into a different position j this purpose, we show two different versions of the code

a vector register. With all current and proposed shorterect generated and vectorized by Intel ICC compiler for two

SIMD instruction set architectures, stencil computatioils dr:ﬁe_renftf_ x_86-t_)ase_d machlr_1es. fo r:]avmg a ck()jser (;OOk a
incur overheads similar to that of S3, limiting achievable "€ Inefficiencies in execution for the generated codes, we

performance then demonstrate how StVEC allows efficient vector code
In this paper, we propose an architectural solution withgeneration and execution. Note that, only for demonstnatio

compiler support to address the problem. The key idea is tgurposes, we use Intel's SSE instruction notations (i.enxm

: . register names, SSE ISA, etc).
enhance the addressing modes for vector operands in vector i .
arithmetic instructions, by allowing elements from a pair In order to vectorize the loop nest in Figure 1(S3), at every

of registers to form one of the operands. We present al'qeration of the innermost loop, the vector multiplication
architectural design and its simulation to assess the ovefB3li — 1] * Bli) requires two operands whose memory
heads. We also present a compiler algorithm for generatin?IIgnmentS are different. Using stride 4 for vectorizing th
intrinsics-based code for the extended architecture.dJain 100P. and since the index starts at 4, first vector operand
number of stencil benchmarks, we experimentally evaluatéB[Z - ”) is an unaligned acces; ("_e' vt—;ctor load) to mem-
the effectiveness of the approach by using an optimistic an&hry while the S?CO"‘fd operar;d?’[z}) IS hghgned. Based on
pessimistic emulation of the approach on four platforms. TdN€ €OSt estimation for underlying architectures, vezing

the best of our knowledge this is the first hardware-baseGOMPilers (e.g. Intel ICC) tend to generate different vecto

solution along with compiler support to address the perforNStructions in order to deal with such overlapping memory
mance limitations of current short-vector SIMD architeess 2¢Cesses. The following subsections describe in detas th

for stencil computations. We note that in the following, we M0 POssible existing compiler solutions along with snapsh

assume complementary loop transformations such as Ioo%f the vector register file (VRF) after executing each code.

tiling [7] have been performed to control data cache missest/ @lS0 show how StVEC can help overcoming the bottle-
ck in stencil computation’s performance. We assess code

ensuring the loop nest to be considered accesses data tHt

fits into the L1 cache. The selection and application of suctgTiciency of the different approaches in terms of number
transformations is orthogonal to the work presented here. of overhead instructions (i.e. unnecessary/redundartorvec

The paper is organized as follows. Section. Il presentéoad’ register alignment, register copy, etc) generatad pe

the instruction set enhancement and the hardware imples-tenCII computation (multiplication, in this case).

mentation of a register file to enable the new addressing EXtra vector load with alignmentOne way to generate

modes. Section. Il develops the code generation algorithn§ode for building an unaligned operand is to load two con-
through a sequence of examples of increasing complexity€cutive vector slots from memory and combine them using
and performance. The approach to experimental evaluatiofdt@ manipulation instructions (i.ehuffle or palignr).

is discussed in Section. IV and Section. V reports on thelNiS case (shown in Figuré?a) as generated code for

experimental evaluation of the proposed approach. Relatetftél Core2 Quad and the VRF snapshot) is cost-efficient for
work is discussed in Section. VI and conclusions are pro_archltectures where unaligned loads are either expensive o
vided in Section.VII. not supported. As generated assembly code showiggnr
useszmml (that holds a copy oB[i]) and another vector
slot xmm14 (which arbitrarily selected by compiler to hold
Bli — 4]) in order to generate the unaligned multiplication
Stencil computation typically involves access to adjaceneperand,B[i —1]. Note that this approach requires registers
array elements. As a result, vectorized stencil code ofses u to hold copies due to limitation in a destructive instruatio
operands that span multiple vector registers. Aligningarec format where first source operand and destination must be
instruction operands requires additional loads and/offlshu the same. In terms of code efficiency, this solution requires
operations even though the needed operands are alreadyfpur overhead operations (two loads, one copy and one
the register file (albeit unaligned). StVEC proposes changeshuffle) for every single vector multiplication.
to how operands are addressed and read from the physical Unaligned vector load: For architectures where un-
vector register file to allow automatic alignment of opeand aligned loads are successfully implemented with lowerscost
when needed. This eliminates the need for additional align(i.e. Intel Nehalem), vectorizing compilers generate theec
ment instructions, significantly improving performance of as shown in Figurée?(b). Neither multiplication operands
stencil code. requires extra permutations in this case. We only need two

Il. VECTORISA ENHANCEMENT VIA STVEC

ris[i-l]%
ris[i]
[e T £ 1T g h]

stz eo-o M 'y B [a [b [c[d
i-4 i-3 i-2 i-1 i +1 i+2 i+3
xmm 127 0 127 0
0 \ I I I | \ I I I |
[hJTITIEITIT TTHT (T (TG (TR (TR (8T
v Az a2 \ I | | \
i i i i i i i i i i i i i
15 A e 1L b J[a] N AN) \ | | Il)
LOOP: LOOP: LOOP:
1 novaps 16+B(...), %m2 1 nmovups 12+B(...), %l 1 nmovaps 16+B(...), %m2
2 nmovaps %m®2, %l 2 mul ps 16+B(...), %nmil 2 stmul ps $3, %, %xmme, %xmme
3 palignr $12,B(...), %nmil 3 addps 16+A(...), %l 3 addps 16+A(...), %me
4 mul ps 9%, % mml 4 nmovaps 9%&mmi, 16+A(...) 4 nmovaps 9%&m2, 16+A(...)
5 addps 16+A(...), Y%xmi 5 addq $4, % dx 5 ; circulate the buffer(s)
6 nmovaps %&mmi, 16+A(...) 6 cnpq $1020, % dx 6 addq $4, % dx
7 addq $4, % dx 7 ib Loor 7 cnpq $1020, % dx
8 cnpq $1020, % dx 8 ib LOOP
9 ib LooP
(@) (b) (€)
Figure 2. lllustrtion of VRF use and assembly code for codenfiéigure. 1 (S3): (a) Using extra vector load and alignmentructsions, (b) Using

unaligned vector loads and (c) using StVEC.

registers £mm1 and zmm15) to hold unalignedB[i — 1] operand, B[i — 1]). This solves the overlapping vectors
and alignedB]i] operands, respectively. However, for vector because elements are loaded once but can be (re)used many
ISAs where unaligned vector load is not supported (i.e. irtimes. As a result, there are elements in the VRF (crossed
IBM Power), this approach is not practical. In terms of code45 degrees hatching representing f, and g) that need
efficiency, this solution executes two unaligned loads forto be read for more than one vector operands, but don't
every vector multiplication. need to be loaded more than once, due to the StVEC ISA
We use the VRF snapshot for the two solutions to describgupport. Therefore, StVEC eliminates the need for register
their execution inefficiency. We show execution of the onlyalignment (using the VRF augmentation to implement in-
vector multiplication B[i — 1]+ B[i]) using labeled elements Pplace implicit alignment) and also the need for unaligned
for simplicity. For the solution in Figur@?@a) with extra memory access. In fact, as shown in Section Ill, using some
vector load, in order to build the aligned operand (45 degreecode optimization techniques (i.e. using software pipegn
hatching), all the elements,(f, g, andh) need to be stored to eliminate register copy in thieuffer circulationprocess),
in one register £mm?2). However, the unaligned operand StVEC can improve the stencil computation performance by
(90 degrees hatching) requires four elements that aredpre@nly executing onelignedvector load per stencil computa-
across two different vector registeré in zmml15 ande, tion. Providing more details, the following is how StVEC'’s
f, and g in zmm1). Moreover, this operand leaves four €xecution model works in practice.
already-loaded elements untouched &, ¢, and h). Thus,
the first solution suffers from unnecessary memory accesseB. StVEC Execution Model
register copy and also the necessity for alignment instruc- As discussed briefly, StVEC introduces a set of new arith-
tions. Second approachUialigned vector loaji however, metic instructions, that can handle unaligned operands- wit
suffers from redundant memory accesses due to overlagyt introducing execution of some overhead instructions. F
between the two vector operands (elementg, andg that hardware simplicity, and also destructive instructiomfat
are loaded into both vector registersunl and zmml5). (first source operand is the destination as well), StVEC only
This cost is in addition to the necessity for architectures t Supports una"gnment for the Second source Operand_ To
support unaligned memory access. build such an operand, in cases where it does not fit into
StVEC (no shuffle and no unaligned loadds shown one vector register, the instruction requires three piefes
in Figure ??(c), using StVEC, one can load vectors one byinformation: abaseregister, anextensionregister, and an
one usingalignedvector loads. Then, by a simple hardware offset value. Thebaseregister is used to locate the vector
support in the VRF, vector elements can be read fronregister in which the first group of elements of the source
two different vector registers (i.e. to build the unalignedoperand is stored. Thextensionhowever, determines which

vector register contains the second group of elements. The-SIVEC Instruction | Operation |
stvadd k, VRq, VR, VR, | VR += VR, (KWK, VR,{0K

qffsetvalue is used to identify whgre the first eleme.nt o_f the s & VRy VR, VR. | VE. = VR.{kWK}, VR, 0K}
first group located in thdaseregister. Thus, considering stomul k, VR, VR,, VR, | VR. *= VR {KW-K}, VR,{OK}

the example in Figure&?(c), in order to buildB[i — 1], stvdiv k, VRs,VRy, VR, VR I= VR {kW-K}, VE,{0:k}
an adequate indexing information would contain register Table II
Specifiers()x()l and0xz02 (fOf xmm]l andxzmm?2 as the base STVEC INSTRUCTION FORMAT FOR BASIC SINGLEPRECISION

and extension registers, respectively) and the offsetevafu FLOATING POINT VECTOR OPERATIONSVECTOR OF SIZEW).

0x03. As discussed in Section. lll, since vector elements in
the baseregister could be loaded in previous iteration(s) of We stipulate a vector register file design that includes four
the vectorized loop, it is required to generate regist@yco banks, with each bank containing a single word (32-bits) of
instruction(s) to circulate these temporary buffers. Hesve the multi-word register. Normally all four banks would be
using other compiler optimizations (i.e. software pipielg), accessed with the same address to access a single register.
we will remove the extra register copies. Note that, dueStVEC changes this design to allow each bank to be accessed
to the inherent stride-1 access pattern for stencils (thawith a different address. In addition, each bank can provide
are considered in this work), knowing one offset value isan element associated to any position in the final output. To
sufficient to identify all the vector elements. Meaning, for support this, we add logic at the output of the register file
offset value ofi, vector width of W, and the two given that shift the output of each bank to the required position in
source operands, we can find the elements in two groupshe vector operation’s input operand. No changes to thewrit
first from [i:W — i] in baseregister and second fronf:f] port to the register file are needed since all the realignment
in the extensionregister. Also, in general, one can assumeoperations are done when reading from the register file.
that the twobaseand extensionregisters are distinct (and For the rest of this paper, a generic notation (s&add
not necessarily always consecutive registers suchwas1 for vector-add in StVEC format) and 128-bit wide vector
and zmm?2 in Figure ?7?(c)). elements are considered as the reference cases to which the
From the functional perspective, for a second vectorStVEC extension will be introduced in details. However,
operand named’OPR,, baseandextensiorregisters,VR,, StVEC can be extended to support all the primitive vector
and VR, and different values of offseifs the second vector arithmetic instructions (i.e. addition, subtraction, tiplica-

operand will be found as shown in Figure 3. tion and division) in the existing vector ISAs.
VRE [ofs] VOPR2 C. StVEC Instruction Format

: : ; ; o |]l [x|l xo] There are three source operands as vector registers (VR)
[[e [x][%] T and an additional 8-bit immediate value encoded in an

: : : : 1] [vo][xs | x2][x| StVEC instruction. First operand is thienm8 value for

i i i i e e offset, k. Second and third places are taken lyseand

' ! ! : IR EREREE extensionregisters, respectively. The last operand is used
[va][v2 | va vo] = for destination vector register. Four primitive StVEC dag

; ; ; ; [v2 |[va | vo][xs | precision floating point vector operations are shown in

(3] . ..
Table Il. The same pattern is used for double-precision
(@) (b) instructions as well.

Figure 3. Operand encoding: (a) Two source vector registéRs, (X, Note that StVEC instructions are designed as register-

elements) andVRy (Y, elements), (b) Different permutations for second register type such that all source operands are vector-regis
vector operandVOPEz, based on values of offset, ofs. ters. Register-memory or register-immediate formats have
be converted by the compiler to sequence of move-compute
operations in order to be mapped to register-register .style
To illustrate how to use the StVEC format, suppeserdd
Qnstruction is generated with the following operands:

According to the Figure 3, ibffset(i.e. ofs) is zero, then
second operand is the same as Haseregister, VR,. If
offsetis one, the decoder will select the row associated t
VR, in banks 1, 2 and 3 and 16, in bank 0, and so on.
Therefore, other than offset value of zero, the first group of stvadd $2, VRy, VRo, VR7
elements is inVR, (starting at the position equals to the
offset value) and the second group is stored in VRy. AlsoAccording to the Table I, the execution results in adding
number of elements in the first and second groupg\&e VR; with an operand whose first two elements are taken
ofs) and (ofs), respectively. Note thalV refers to the vector from VR, and the second two elements are taken fidRYy,.
width. So, for a vector of size 4 and offset of 2, we have:

As suggested earlier in this section, StVEC only requires
some changes to the "read-ports" of the vector register file. VR7 = VR7 + VR2{2: 2}, VRo{0: 2}

[Offset [Wo [Wi | Wa | W3 |
0x00 [By | B1 | B2 | B3
Decoding StVEC instructions requires special handling of 0x01 | B; | B, [Bs | Bo
the baseand extensionregisters and also the offset value. 002 | B2 | Bs | Bo | By
e 0x03 | Bs [Bo | B1 | B2

The Decoder generates distinct addresses for each of the

: ; Table Il
vector register banks using the Bank Address Generato(/ECTORREGISTERADJUSTMENT(VRA) MAPPING BETWEEN BANKS

D. Decoding StVEC Instructions

(BAG) logic. The BAG logic usebaseandextensiomregister OUTPUTS(B) AND FINAL ADJUSTED ELEMENTS (W).
specifiers (7-bit each, in this case) plus the offset value to
compute the address for each register bank. However, in order to support StVEC execution model,

The four bank addresses will be carried along the otheX/RF has to be modified in the following way. Each bank
information with the vector operand to the operand-reads provided with its own 7-bit address. Instead of having a
stage where they will be fed to the register file. Note thatsingle decoder feeding the signals (i.e. bit/line selet) all
the BAG logic can be implemented anywhere in the pipelinefour banks, each bank is outfitted with its own decoder. This
after the renaming logic and before the register-read stageis designed to facilitate read accesses to arbitrary egist

StVEC instructions read their second operand in twoof each bank. In addition, each bank can provide elements
different registers. As a result, they are dependent orethreassociated to any position in the final output. To support
registers rather than two in the case of regular vectothis, we add Vector Register Adjustment (VRA) logic to the
operations. These dependencies have to be enforced by thatput of the VRF. The VRA shifts the register elements to
out-of-order scheduling logic. For instance, if the precgs the appropriate positions in the operand (e.g. a block from
uses reservation stations to store pending instructi@sgrf bank 2 is moved to position 0 in the output when the offset
vation station entries need to have one additional pointefs 0x02). The new VRF design is shown in Figure 4.
to the instruction generating the third register value. The
same is true for a reorder buffer-based implementation. The [— [—
scheduling logic has to enforce these dependencies and not 7:‘* — —
allow the dispatch of an instruction until all dependent ™ =

Q Q
— —

registers are available. In theory, adding an extra depeyde
could slow down execution. In practice this is not an issue
because these are true dependencies for stencil codes and ,
the input operands have to be in the register file anyway " g

decoder
decoder
decoder
decoder

— 1 banko

| o bankz

. [J [| .
before execution can proceed. 0 [E— [E— "L |
| I | I L I
E. Modified Vector Register File %2 52 ¥ ¥
. 2
The second change in the pipeline is re-structuring the ofset—<{ Vector Register Adjustment)
vector register file. In general, a vector register file (VRF) 32 32 32 32
is constructed of multiple register banks, each containing vestor [T ~ 2t =
[we] [[wo]|

one single element. Number of banks is equal to the vector
width and number of such physical registers is the same
as number of rows in the VRF. In order to demonstrate

the architectural changes, we use a sample VRF model yra |ogic is similar to a shifter except for theffsetvalue
containing 128 registers of 128-bit wide each (4 32-bityhich does not directly imply the “shift amount”. Table

banks). Note that there is no hardware change introduceg| presents the mapping between the offset value, output
to the vector load instructions by StVEC. Therefore, unlikegiements of the banksB§, Bi, B», and Bs) and also the

read ports, write ports of the vector register file are notsn 4 adjusted elementsif,, W1, W and Ws).

subject to any h-ardware change;. o _ For aligned operands (offset zerd}, elements will be

~ Toread a 4-wide vector (128-bit), a 7-bit register specifierassigned tav’s, with no shift involved. But, in cases where
is fed into the VRF. The corresponding read-port decodepfiset is not zero (i.e. an unaligned operand), the VRA

causes the same row to be selected in all the four bankgy pyild the final "aligned” output.

When words are read from the banks, i.e. at the end of

the register-read stage, slot 0 of the output vector operang Generalizing StVEC

contains a word from bank 0, slot 1 from bank 1 and so on. The requirement for an architecture to support StVEC exe-
In this normal vector read operation, words are placed in theution model is to be able to decode the proposed instruction
appropriate output slots such that no adjustment operatioformat and feature the vector register file such that anyitra
(i.e. shift or rotate) will be required. elements spread across different rows can be obtained by

Figure 4. Read-port of a modified VRF including the VRA logic.

one register read operation. Such a general extension cdh Auto-vectorization Using Intrinsics

be implemented on top of the existing SIMD ISAs, such as | the following, we present a target-independent algo-
Int.els SSE or AVX fa.m|||eS anq IBM-Freescale-MOtOI‘OlaS rithm to generate vector intrinsics using vectors of giﬁe
Altivec (known as VMX) family. Note that performance \ith abstract intrinsics such amdd, etc. to represent vector
improvement achieved by StVEC extension (as will begperations. Our experiments (discussed in Section. V) are
shown in Section V) substantially depends on the underlyingyased on the SSE and AVX vector instruction sets, but the
architecture and on the penalty paid by executing unalignegdgde generation approach can be used with other vector
memory accesses and data manipulation instructions. instruction sets such as Altivec, LRBni, etc.

I1l. CODE GENERATION 1) .Basi(? Vector Intrinsic; Generati.onThe input to this

In this section, we describe the compiler algorithm for &lgorithm is a representation of an innermost vectorizable

code generation. We first discuss how to create vectorizelﬁ’Op dthat _(t:)onformst to :.he cotndltlogs Statﬁd _abovr(?. Wet
code for stencil loops using standard vector intrinsicemh now describ€ a Systemalic vector code synthesis scheme 1o

we show how to generate code to use StVEC ins’[ructions.transm.e t.h's. loop into a SIMD'?ed. Io.op, using standard
vector intrinsics (such as SSE intrinsics; but we use an

A. Program Representation abstract notation instead of a target specific notation).

The code generation algorithm operates on an abstract The first stage of the algorithm is to create a basic
syntax tree (AST) representation of the input programSIMDized version of the loop, where each stride-1 read
suitable for detection of innermost loops as well as complexnemory reference in the scalar code is translated to a vector
loop transformations such as peeling, unrolling and saffwa load in the generated code. Note that to preserve clarity,
pipelining. We assume the code is in three-address formye outline a general algorithm operating on abstract vector
in order to simplify the process of copying and/or moving operations, which does not distinguish between aligned
specific operations in the loop. The focus of our algorithmand unaligned data. Later in this section, we explain how
is innermost loops that are vectorizable; we assume the resode can be generated using only aligned loads exclusively,
quired transformations have been done beforehand to expo#ieereby avoiding any overheads of unaligned loads.
such loops [8]. The algorithm proceeds as follows, on each candidate

We assume candidate innermost vectorizable loops havenermost loopL:
the following properties: 1. Peel a suitable number of iterations at the end of the

« Loop bounds are expressions that do not change durinop, so that the number of vectorized iterations is a perfec

an execution of the loop. multiple of the vector length.

« The loop induction variable increments by steps of 1. 2. Change the loop to increment by the vector length.

« Dependence analysis ensures the absence of loog- For all variablesV with stride-0 access i, splatV’

carried dependences in the loop. into a vector temporary;,,, and substitute the references

« The loop has a single entry and single exit point. to V in L with Vip,p.

We require all memory references in the innermost loop tc#. For all read references. with stride-1 access i, create
be of stride-0 or stride-1. That is, for all memory referes)ce a vector loadVL;,,, and insert it before the reference, and
two consecutive iterations of the loop must either accessubstitute the reference. with VL.
two consecutive data elements in memory (stride 1) ob. For all write references,, with stride-1 access irL,
the same element in memory (stride 0). Note that stride-Treate a vector stor&S,,, and insert it after the reference,
implies that the innermost loop iterator appears only in theand substitute the refereneg with VSy,,,.
right-most dimension of an array reference for row-major6. Remove unnecessary loads and store, typically coming
implementation of arrays in languages like C/C++. from multiple reads to the same address. Compute use-def

Without loss of generality, for the context where the chains to remove loads and stores to temporaries.
StVEC-based code generation is performed, the expres- Substitute all arithmetic operations with their vector
sion expr used to dereference a memory address (e.g. igquivalent.

Al . .][expr]) is of the form
We illustrate the application of the algorithm using the

simple example shown in Figure 5(a). The translation code
where liexpr is an arbitrary expression of program sym- with vector intrinsics is shown in Figure 5(b). Note that for
bols whose value is loop invariant during loop execution,simplicity the lower boundary of the loogbg) in Figure 5
iterator is the loop iterator and: is an arbitrary scalar is assumed to be an aligned version of the original dble (
constant. For instance, in the referenfe | [42*N + | 2) Software Pipelining:The above algorithm presents a
+ 3] with j as the innermost loop iteratof2 « N is a loop simple translation of a loop into its vector equivalent, by
invariant expression ifV is never assigned in the loofy using multiple vector loads for adjacent memory accesses.
andc = 3 is the scalar constant for the reference. In order to improve the efficiency of the generated code

expr = liexpr + iterator + ¢

mub = ub - (ub % 3*W;
V1l = vsplat(0.5);
for (i =1b; i < ub; ++i) mub = ub - (ub % 2xW; V2_1 = vload(&A[0]);
B[i] = (A[i] + Ali+1])*0.5; V1 = vsplat(0.5); V3_1 = vload(&A[W) ;
V2_1 = vload(&A[0]); for (i =1lba; i <mub - W i += 3*W{
(a) V3_1 = vload(&Al1]); V2_2 = vl oad(&Ali +WW) ;
for (i =1lba; i <mb - W i += 2xW{ V4 = stvadd(V2_1, Vv2_1, V3_1, 1);
V2_2 = vload(&Ali +W); V5 = vnul (V4, V1);
V3_2 = vload(&A[i +1+W); vstore(&B[i], V5);
V4 = vadd(V2_1, V3_1); V2_1 = vl oad(&A[i +WWW) ;
V5 = vimul (V4, V1); V4 = stvadd(V3_1, V3_1, V2_2, 1);
vstore(&B[i], V5); V5 = vrul (V4, V1);
mub = ub - (ub %W; V2_1 = vload(&A[i +WW) ; vstore(&B[i +W, V5);
V1l = vsplat(0.5); V3_1 = vl oad(&A[i +1+WW); V3_1 = vl oad(&A[i +WHW-WW) ;
for (i =1lba; i < mub; i+= W{ V4 = vadd(V2_2, V3_2); V4 = stvadd(V2_2, Vv2_2, Vv2_1, 1);
V2 = vload(&A[i]); V5 = vmul (V4, V1); V5 = vl (V4, V1);
V3 = vl oad(&A[i +1]); vstore(&B[i +W, V5); vstore(&B[i +WW, V5);
V4 = vadd(V2, V3); } }
V5 = viul (V4, V1); V4 = vadd(V2_1, V3_1); V4 = stvadd(V2_1, V2_1, V3.1, 1);
vstore(&B[i], V5); V5 = vrul (V4, V1); V5 = vl (V4, V1);
} vstore(&B[i], V5); vstore(&B[i], V5);
for (; i < ub; ++i) for (; i < ub; ++i) for (; i < ub; ++i)
Bli] = (Ali] + Ali+1])+0.5; Bli] = (Ali] + Ali+1])*0.5; Bli] = (Ali] + Ali+1])*0.5;
(b) (c) (d)

Figure 5. StVEC code generation example: original loop f#}irisics translation (b), intrinsics plus software-pipe (c) final StVEC code (d).

we perform software pipelining [9]. The objective is to 1) New Intrinsics ProposedStandard vector intrinsics
overlap computation and data movement, benefiting fronsuch asvadd, vnul , vsub and vdi v operate on two
instruction-level parallelism. We illustrate this withstage vector variables and perform the arithmetic operation on
pipelining, where data is fetched one iteration ahead of itdhese two vectors. Our extension consists in four new
use. The algorithm for software pipelining is sketched adntrinsics that each use three vectors and an offset. They
follows: are shown in Figure 6.

1. Make a copy of the relevantl oad operations before

the loop. Rename the associated vector variables fiot Vi
to VX in the copy created. VI
2. Re-time thev| oad by one iteration in the loop body, —'t
and rename the associated vector variables frgi to

VXo.

3. Change references t&¥X into VX, in the arithmetic
vector operations in the loop body.

4. Make a copy of the relevant vector operationstor e
and arithmetic vector operations) after the loop. Renam
the associated vector variables froMX to VX, in the

Standard Extended

vadd (V2, V3) V1l = stvadd (V2, V3, V4, offset)
vsub (V2, V3) V1 stvsub (V2, V3, V4, offset)
viul (V2, V3) V1 stvimul (V2, V3, V4, offset)
vdiv (V2, V3) | VI = stvdiv (V2, V3, V4, offset)

Figure 6. New intrinsics

In the above, the arithmetic vector operation will use parts
of V3 and V4 to form the second operand of the vector
operation. Theof f set argument is used to specify how
fhany elements come froi3 and how many fronV4, as
discussed in Section II.

copy created.) , 2) Modified Code Generation Algorithmtn the basic

5. Peel the last iteration of the loop. code generation algorithm, there is one vector load per mem-
6. Unroll the loop by two, as we use a two-stage softwar€yry reference. When accessimji: W (i : W represents
pipelining, to avoid the need for variable swap. the W consecutive elements &fstarting from the address

7.1n fche p_art of the loop body corresponding to the second) andA[i +1: W in the same loop iteration, two distinct
loop iteration unrolled, substitute all references& by |9ads are performed at each iteration. Neither of the vector
VX3, and conversely. Ali:W or Ali +1: W is reused at the next iteration.
) . Our ISA extension allows the formation oA[i +1: W
Returning to the above example, the software-pipelineqyom Al : W andA[i +W W . An immediate benefit is the
version is shown in Figure 5(c). ability to reuseA[i +W W at the next iteration.
C. Integration of StVEC extension The modified code generation algorithm works by de-

We now present the code generation technique to usE—:-eCtmg the set(s) of/l oad operations such that there are

the StVEC ISA extension we have proposed. Our approacﬁOmmon scalar elements loaded from memory. Given two
.~ . __vector loadsvl oad(addr 1) andvl oad(addr2), they
is based on the introduction of four new vector intrinsics

and the required modification to our vector code synthesiéOad common scalar elements iff.

algorithm to use them. laddrl — addr2| < W Q)

If Eq (1) is true, then the vector arithmetic operationsregisters formed with aligned data are required. This iegpli
using these two loads can be converted into tlséivxx the equivalence of the problem of maximizing the number
equivalent. More precisely, the code generation algorithnof promotions tost vxxx operations with the problem of
constrains one of the two operands to be memory alignedninimizing the number of unaligned loads.
For the promotion to actually occur, we either have Considercst + i + ¢, the index expression of an array
addr1%W =0 or addr2%W = 0. used as an operand in an arithmetic operation in the original
The algorithm is outlined as follows, and proceeds byprogram, withib the value of the first iteration of the loap
analyzing the various vector loads generated by the previoult requires only aligned vector loads(ifst+1b+c) %W = 0.
basic vector intrinsics generation scheme: That is, if this property is verified for one of the two
1. Peel the z first loop iteration(s) if (Ib + operands of each of the operations that are the first to
liexpr grpays) oW # 0, x < W. The actual value of consume data elements from the main memory, the promo-
x is determined at run-time, so that the loop lower boundtion to thest vxxx equivalent operation is possible and no
Iba maximizes the number of aligned memory references irunaligned load is needed for this operation
the loop. Perform additional statement retiming to mininiz Each operation can be retimed freely (that is, iteration
the number of unaligned loads (details are provided inshifting is applied to this specific operation to modify winic

Section 11I-D). specificinstanceof the statements is executed in the same
2. Generate a basic intrinsics version, according to theteration of the loop) provided all dependent operations are
previous algorithm (without software pipelining). retimed by the same factor. Retiming changes which data

3. Given a set of vector loads to the same array, of theelement is accessed at a given iteration, i.e., affectshenet
form A[cst +i +c: W, for all £ > 0 and until unprocessed or not the data elements accessed at the first iteration are

loads remain, do aligned in memory. Consider the example below:
3.1.take the set of the vector loadsVL,, 0 < p < n such for (1 = 1b 1 <ub +) {
that k. W <|c,| < (k+1).W, Bli] = Ali] +Ali+]; /IR
3.2. if there is no aligned reference in the set (e.g. , DS AT e AesT S
Vp, ¢, %W = 0) or only one reference in the set, proceed
with the next set, Retiming S by +2 leads to the following code:
3.3.otherwise insert a vector loadL,,.,, which loads from T S R S ST
the addressst + i + (k + sign(c,)).W, convert all vector Bli] = Ali] + Ai+1]. /] R
operations that consum&L, such that one of the two for (i =1b +2 i <ub; ++) {

. . . . B[i] = A[i] + Ali+1]; /Il R
operands is either a vector loaded aligned or a local vajabl Di-2] = Ali] + Ali+1]; // S
into the correspondingt vxxx equivalent. Ifc, > 0, _ , ,

. for (i =ub; i <ub + 2; ++i)

the operandVL, is replaced byVL,iign, Vinew,of fset, Di-2] = Ali] + Ali+1]; /] S
where VL4, corresponds to the vector load of address

i+ kW, andof fset = c,%W. If ¢, < 0, the operand After retiming, A[i] is an operand of both operations.
VL, is replaced by VL,ey, VLaign,of fset where As soon as(lb + 2)%W = 0, the vector loads required

of fset =W — c,%W. for these operations only loads aligned data. Since we can
4. Perform dead-code elimination, to remove vector loadsalways dynamically peel iterations of the loop such that
made useless through tisé vxxx promotion. (1ba)%W = 0, with = being the number of peeled iterations

5. Perform a 3-stage software pipelining, to maximize theand lba = b 4 2 + z, the loop lower bound in the above
reuse of the vector loads for tlst vxxx operations. Three example, only aligned loads are required. In general, the
stages are required to avoid register copy since the exdendeetiming factoro is chosen such that, for the first consumed
intrinsics address 3 vectors operands. operand, we haver = og. This allows the use of only
aligned loads for this operand. We generalize this reagonin
To illustrate the algorithm, we show its application on theby considering the only existing retiming constraetween

running example in Figure 5(d). operations: all dependent operations are to be retimed with
.) the samer factor to ensure that semantics is preserved. Since
D. Avoiding All Unaligned Loads we focus on synchronization-free inner loops, we note that

Thest vxxx operations allow the formation of one of the there is no loop-carried dependence. This implies thatfer t
operands from two registers that contain consecutive dataeperationsS1,.52,...,.Sn which are in dependence, the array
elements. We have discussed how loading only aligned datadex function that causes the dependence is identicakin th

in these two registers is enough for the¢ vxxx second chain of dependent operations, i.es; = cso = ... = cgp.
operand. Further, our design requires the first operand tdhis implies that the retiming factors required to align the
also be aligned. In other words, for the promotion of a vec-operand’s data access arg; = ogs2 = ... = og,, Which

tor arithmetic operation into itst vxxx equivalent, three will preserve the semantics. By computing individual

factors for each set of dependent operations in our 3-asldre€. Experimental Setup

representation, it is thus possible to eliminate all urediy The hardware platforms used for our experiments are four
loads on arithmetic operations. x86-64 based machines: Intel Sandy Bridge, Intel Core i7-
IV. EVALUATION METHODOLOGY 920 (Nehalemmicroarchitecture), Intel Core2 Quad Q6600,

The effectiveness of our design was assessed by usin d AMD Phe_nom 9850BEK(ION microarchitecture_)._We
se the following labels to refer to the four machings:

a number of stencil benchmarks, using a combination o b i7 2 and oh Machi h teristi
optimistic and pessimistic emulation on four different pro sb I/-n, cores and phenom Machine charactenstics are
provided in Table IV.

cessors, as explained below.

A. Baseline |mp|ementation; Machine | GHz | Cores | SIMD ISA Peak (GFlop/s)
: . o i7-sb 34 | 4 SSE4.2 + AVX | ~ 56

_ The basel_lne for comparlson_(named-mtrln) was an 7n 566 1 8 SSEZ4D =1

implementation of the kernels using standard SSE intrisic core2 24 | 4 SSSE3 ~ 19

as described in the first part of Section Ill. The generated [Phenom | 25 | 4 SSE4 ~ 20

codes use two-way unrolling and software pipelining to Table IV

perform register loads in the loop iteration prior to use. HARDWARE PLATFORMS USED FOR EMULATINGSTVEC

INSTRUCTIONS
B. StVEC Implementations:

Code using StVEC intrinsics was generated, as explained The peak throughput for the machines is shown for single-
in Section Ill. This code was then transformed to createcthre precision. The double-precision peak performance is aroun
variants. half that for single-precision. Vector data movement and

For thest-funcvariant, each StVEC intrinsic was replaced manipulation instructions perform differently on the four
by a sequence of standard SSE intrinsics that implement th@latforms, even though all are x86-64 architectures.
new intrinsic’s functionality. This version was used toifier Two compilers, GCC (version 4.4.4) and ICC (version
functional correctness of the generated StVEC code. 12.0) were used for the experimental study. Table V lists

The st-pesvariant is apessimisticemulation of the ex- different compiler optimization options used for enabling
tended instructions in that eacltvxzzz instruction in the auto-vectorization on different machines.
generated codes{-fung was replaced by a sequence of two

: - Options
vector arithmetic operations. For instance, the instoumcti Compiler | Common | i7-sb | i7-n core2 | phenom
"stomul 1, VRy, VR4, VR;" would be replaced by the [7cc Tast Xavx | -mssed.2| -msse3| -msse4
following two vector multiplications: GCC -03 -mavx | -msse4.2| -msse3| -msse4
vmul VRy, VR Table V
vmul VR7, VRy OPTIMIZATION OPTIONS FORICC/GCCON DIFFERENT MACHINES

This version is intended to mimic all data dependences of]
the StVEC instruction and an execution upper bound orP- Stencil Benchmarks
the time required for the StVEC instruction by executing A set of twelve stencil kernels was used to evaluate
a sequence of two vector arithmetic operations available othis work. The Jacobi kernels form a symmetric stencil
existing processors. pattern been used in many scientific computations, inctudin
The st-optvariant is anoptimistic version that was gen- image processing as well as explicit PDE solvers. We
erated by replacing the StVEC intrinsics simply with a experimented with Jacobi stencils in one-dimension (2, 3, 5
standard SSE intrinsic for that arithmetic operation, gsin and 7 points), 2D (5 and 9 points) and also 3D (27 points)
only one of the two paired registers in the StVEC intrinsic.with different weights for different points. We label the
This version serves as a basis for measuring a lower boungacobi kernels in the results section using dimensionality
for the execution time of the StVEC based program. Fomumber of points (i.ej2d5p represents 2-D 5-Point Jacobi).
the previously considered example, teeopt version of The Parallel Ocean Program (POP) is an ocean circulation
the stvmul intrinsic would execute only one vector mul- model that solves the three-dimensional primitive equustio
tiplication, "vmul VR;, VR4". Note that for anystvxxzx, and computes finite-difference discretizations. The twatmo
among all the three source registers (first operand, secondompute-intensive loop nests of the POP code (as labeled
base and second-extension), the extension registel/{Rg) popl and pop2) differ from the Jacobi stencils in that the
is the latest one which is defined in the program sequenceyeights (coefficients) are different at each grid point. The
according to our code generation algorithm. fdtd 2D kernel represents the core computation in the Finite
In our evaluation, we considered the auto-vectorizatiorDifference Time Domain method, widely used in compu-
performance by compiling a C version of the kernel, usingtational electromagnetics. Thécian 2D denoising kernel
the highest levels of compiler optimization. We used bothis used to remove noise from MRI images by repeatedly
ICC and GCC for our evaluation. executing a stencil computation. Finally, theattut 3D is

autovec st-pes st-opt E— autovec st-pes = st-opt —'

core2

Q Q
3 3
2 i7-sb & i7-sb core2
& L i & 15 - i7-n phenom
ZEERE i7-n pheno D
g &
o L o 1k
> >
<< <

5 05 -

G %, G %, G %, Q@ %, G %, Q@ %, G %, G %,
(a) Single Precision (b) Double Precision

Figure 7. Average (geometric means) of relative speedup WMES for single and double precision across machines and derapi

. Abs. i7-sb i7-n core2 phenom
a kernel from the Berkeley stencil probe [10] based on a GFlops| SP | DP | sP | DP | SP | DP| SP | DP

discretization of the heat equation PDE. 253 | 124] 104 | 52| 33| 33| 7.9 | 3.7

1d2p | 509 | 106 | 123 | 45 | 23 | 36 | 89 | 45

V. EXPERIMENTAL RESULTS i1d3p 229 | 115|126 | 55| 33| 43|99 | 45

. 185| 92 | 142|601 33| 34|93 |49

A. Performance Evaluation {asp | 242|166 182 | 78 50 42 | 11745

We evaluate StVEC's performance on multiple bench- 105)87 | 1389|7946 |37 | 119 63
189 | 11.8| 11.1| 6.0 | 43 | 45 | 11.0 | 48

marks_, across d|ffer_ent machines and \{Vlth two different | j1d7p 86 |37 |93 | 51| 39|36 99 |54
compilers. The goal is to observe StVEC's performance on - 314 166 130 | 58 | 54 | 49 | 103 52
a wide range of platforms. The results are summarized in 0P 1 272] 147 | 106 | 46 | 50| 3.1 | 11.6 | 6.0
Figure 7. We show the geometric mean of runtime relative | jadop | 04| 91 | 1327551 33133 83 | 34
to the baseline sp-intrin). For StVEC, we show the two - 30180 (84 148 3513258 30
versionsst-pesand st-opt For reference we also include 1205701 g1 | 36 |35 | 19| 21| 14|20 |11

performance obtained by automatic vectorization for each | pop1 | 1%3| 65 | 65 | 3412623143 |23
76 |42 |36 | 1918|1426 |12

compiler @utoveg. We show data for both single precision 0y | 123[67 [80 [40| 282556 |25
Figure 7(a) and double precision Figure 7(b) operations. pop 75 | 42 |38 |19|20| 14|26 |15
StVEC demonstrates consistent performance improvement| ¢qiq 180195 191 14614036160 |31

114|174 | 6.0 30| 34| 22| 54 2.8

across the two different compilersCC andGCQ), on all the 70193 185 1334234167 130
machines. WithtGCC, the StVEC performance improvement | heattut | 7" 2’ | 67 | 32| 37| 24| 57 | 33

ranges fron20% on thephenonto 2.47x on thecore2for rician | ¥47(33 | 11.2[2115512154 |20
st-optand 7% to 2.26x for st-pes The ICC improvements 114130 [86 | 2148|1144 |19
are very similar. Also note that bost-optand st-pescases Table Vi

ABSOLUTE PERFORMANCE NUMBERS FOR BASELINE CODESp-intrin):

are consistently higher thaautovec ICC (ToP) AND GCC BOTTOM).

StVEC performance improvement is, on average, much
higher for core2 that for the other machines. This is be-
cause unaligned memory instructions are very expensive obrecision benchmarks, respectively. Note that sttbptand
the Core 2 system. By eliminating these accesses, StVEEt-peskernels show significant improvement over most the
achieves a dramatic reduction in execution time. stencil kernels. The only exceptions &titd which sees a
StVEC performance improvements also scale well toperformance degradation amnidian which sees virtually no
double precision operations. Figure 7 shows average peRerformance gain. Thisltd benchmark uses 2-point stencil
formance improvements ranging frosh to 65% with GCC ~ Pattern in the outer loop which is not beneficial with the
and 32 to 53% with ICC for st-opt For double precision, StVEC execution model, where stencils in the innermost
StVEC does not achieve as large a speedup as for singleop can only benefit the ISA enhancement.
precision on the Core 2 system. This is because double rician is another case where there is little benefit from
precision code uses fewer unaligned memory operations th&tVEC. Althoughrician uses stencil code, its execution
can be eliminated by StVEC. time is mostly dominated by vector division operations
For reference absolute performance numbers (in GFlop/g¥hich are very expensive across all the hardware platforms.
of the baseline kernekp-intrin, on different machines and Consequently, eliminating unaligned memory operatiors an
compilers and for all the benchmarks are shown in Table VIshuffle operations has only marginal benefits.
We also take a closer look at StVEC's performance Overall, StVEC achieves very significant performance
across the benchmarks we test. Figure 8 and Figure Bnprovements which are consistent across most benchmarks,
show relative speedup for StVEC for single and doubledifferent compilers, architectures and computation preci

st-pes mm—
st-opt =
Q
S
o
i)
i)
jo N
(7]
[
2
5
[
o
Y83 F¥83 F¥83 FY8IZ FY8IT F¥8IZ FY8T FY8T FY8T FTY8T FTy8T Fy8T
m:am m:a(‘b U)Dam m:am m:a(‘b U)Dam m:am m:am U)Dam Ul:la(D m:am U)Dam
3 3 3 3 3 3 3 3 3 3 3 3
j1d2p j1d3p j1d5p j1d7p j2d5p j2d9p j3d27p pop1 pop2 fdtd heattut rician
Figure 8. Summary of single-precision improvement across mashin
3.5
st-pes mmmm
3 st-opt
o
3 25
()
& 2
(7]
2 15t
e 1f
o
05
0
$¥8% Y83 FI83 FTYS8T FT¥8T FI8IT FTYST FT¥8T FT8T FTY8Y Fy¥8T FI8T
[T o5 52 b 5 5@ [o5 50 6 5 5@ [T o5 5D b 5 5@ [T &5 5D b 5 5@
3 3 3 3 3 3 3 3 3 3 3 3
j1d2p j1d3p j1d5p j1d7p j2d5p j2d9p j3d27p pop1 pop2 fdtd heattut rician

Figure 9. Summary of double-precision improvement across meshin

sions. This shows that eliminating unaligned loads andwvord) registers. The VRA overhead ranges fr@s; to
efficiently re-using already loaded elements is benefiarl f 37% of the total VRF access time. Note that the standard
cases where unaligned memory access and data manipulatioall library used in the synthesis is not a production liarar
instructions are very expensive (or for architectures ttat As a result, the delay measurements are conservative. This
not support unaligned operations such as such as the IBMverhead can be reduced by using high-speed custom logic.
Power). Even with the additional overhead, the StVRF can still be
accessed in a single cycle at 3GHz (128 bit configuration)

B. Hardware Overhead or at 2GHz (256 bit configuration).
To estimate the overhead of the additional hardware

required by StVEC, we build a model of the StVEC Register VI. RELATED WORK

File using CACTI [11]. We augment this model with delay

information for the Vector Register Adjustment logic (Fig- Several recent studies [1], [2], [3], [4], [S], [6]. have
ure 4) required by StVEC. The Vector Register Adjustmenteported on different aspects of optimizing stencil compu-
logic design was synthesized using the Synopsys Desigﬁltions, including tiling, effective vectorization, andrgal-
Compiler [12] for 45nm technology using Nangate’s openlelization on shared-memory and distributed-memory sys-
Cell Library [13]. The synthesized logic is used to deterenin tems, as well as GPUs. However, we are unaware of any

the additional delay introduced by VRA. work that has proposed a architecture/compiler approach to
optimizing stencil computations.

[# Regs.| # Banks | Reg. size (bits)] BVRF (ns) [StVRF (ns) | Vectorization for short-vector SIMD architectures hawals
128 4 128 0.24 0.30 been a subject of much research [14], [15], [16], [17]. The
igg g %gg g'gi gi% majority of work on this topic addresses compiler algorithm
256 3 256 037 050 for generating efficient code for existing SIMD architeetsir

Table VI In contrast, in this paper, we propose a hardware/compiler
ACCESS TIME FOR BASELINE ANDSTVEC VECTOR REGISTER FILES approach to enhancing the performance of stencil computa-
(BVRF AND STVRF) IN 45NM CMOS TECHNOLOGY, tions on short-vector SIMD architectures.

Previous work has examined the benefits of flexible access

Table VII shows the access time for the StVEC Vectorand addressing of the register file. For instance, row-wise
Register File (StVRF) compared to a baseline Vector Regand column-wise access has been proposed for speeding

ister File (BVRF). We show access time for 128 and 256-up matrix operations [18], [19], [20]. These designs are
entry register files with 128 bit (4 word) and 256 bit (8 generally more complex than StVEC because they require

concurrent addressing and access to arbitrary words in thg3] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and

register file, including accessing the same word in differen
registers, needed for column-wise access. This requires a
complete redesign of the register file, with word level

address decoding. In [21], a flexible permutation of arbjtra

sized data blocks within SIMD registers is proposed. But
unlike StVEC, it does not allow operands to span multiple [5)

registers.

Henretty et al. have proposed a software-based method

(4]

to address the stream-alignment conflict of stencils [22]. [6]
Their technique requires either a program-wide data-layou

transformation or a data layout conversion before and after
stencil computations. In contrast, our approach imposes n

global layout constraints or data layout conversion ovadhe

VIl. CONCLUSION

limiting factor with implementation of stencil computati®

using current short-vector SIMD instruction sets such ds SS

— due to the unavoidable overhead of performing multiple[10]
loads of data elements from memory or inter-register shuffle
operations. An enhanced addressing mode was introduced
that allows data elements from two different vector registe [11]

1

to be combined to form operands for vector instructions. A

hardware implementation of register files was developed t
implement the enhanced addressing mode and a compil
code generation scheme was described for the enhanc

vector instruction set architecture. The effectivenesshef

new architecture and code generation strategy were demon-

(8]
This paper has addressed a fundamental performance
(9]

%12]
r

1%
[

14] A. E. Eichenberger, P. Wu, and K. O’Brien, “Vectorization for

]

strated by using a combination of optimistic and pessimisti [15]

emulation on four different x86 CPUSs.

ACKNOWLEDGMENTS

We are very thankful to the PACT'11 reviewers and
program committee for the valuable comments and feedback.

(16]

We also thank J. Holewinski, T. Henretty, A. Ashari, M. Rav- [17]

ishankar and J. Eisenlohr for their support, comments and

K. Yelick, “Optimization and performance modeling of sten-
cil computations on modern microprocessorSJAM Rev.
vol. 51, no. 1, 2009.

S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanu-
jam, A. Rountev, and P. Sadayappan, “Effective automatic
parallelization of stencil computations,” ILDI, 2007.

A. Solar-Lezama, G. Arnold, L. Tancau, R. Bodik,
V. Saraswat, and S. Seshia, “Sketching stencils,PltDI,
2007.

G. Wellein, G. Hager, T. Zeiser, M. Wittmann, and H. Fehske,
“Efficient temporal blocking for stencil computations by
multicore-aware wavefront parallelization,” iIEOMPSAC
2009.

M. Wolfe, “More iteration space tiling,” inSupercomputing
1989.

K. Kennedy and J. AllenOptimizing compilers for modern
architectures: A dependence-based approadhiorgan Kauf-
mann, 2002.

M. S. Lam, “Software pipelining: An effective scheduling
technique for vliw machines,” ifPLDI, 1988.

S. Kamil, P. Husbands, L. Oliker, J. Shalf, and K. Yelick, “Im-
pact of modern memory subsystems on cache optimizations
for stencil computations,” itMSP, 2005.

N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi,
“CACTI 6.0: A tool to model large caches,” HP Labs, Tech.
Rep. HPL-2009-85, 2009.

“Synopsys Design Compiler,” http://synopsys.com.

“Nangate Open Cell Library,” http://www.nangate.com/.

SIMD architectures with alignment constraint§SIGPLAN
Not., vol. 39, no. 6, 2004.

L. Fireman, E. Petrank, and A. Zaks, “New algorithms for
SIMD alignment,” inCC, 2007.

M. Hohenauer, F. Engel, R. Leupers, G. Ascheid, and
H. Meyr, “A SIMD optimization framework for retargetable
compilers,” ACM Trans. Archit. Code Optimvol. 6, no. 1,
20009.

D. Nuzman and A. Zaks, “Outer-loop vectorization: revisited
for short SIMD architectures,” ifPACT, 2008.

suggestions. This research was supported in part by funding8] Y- Jung, S. Berg, D. Kim, and Y. Kim, “A register file with

for the Center for Domain-Specific Computing (CDSC)

through the NSF Expedition in Computing Award CCF- [19]

0926127.

REFERENCES

[1] W. Augustin, V. Heuveline, and J. Weiss, “Optimized stencil
computation using in-place calculation on modern multicore

systems,” inEuro-Par, 2009.

(2]

H. Dursun, K.-I. Nomura, L. Peng, R. Seymour, W. Wang,
R. K. Kalia, A. Nakano, and P. Vashishta, “A multilevel par-
allelization framework for high-order stencil computations,”
in Euro-Par, 2009.

(20]

(21]

2

2]

transposed access mode,”I{eCD, 2000.

A. Shahbahrami, B. Juurlink, and S. Vassiliadis, “Matrix
register file and extended subwords: two techniques for em-
bedded media processors,” @F, 2005.

B. Hanounik and X. Hu, “Liner-time matrix transpose algo-
rithms using vector register file with diagonal registers,” in
IPDPS 2001.

L. Huang, L. Shen, Z. Wang, W. Shi, N. Xiao, and S. Ma,
“SIF: overcoming the limitations of SIMD devices via im-
plicit permutation,” inHPCA 2010.

T. Henretty, K. Stock, L.-N. Pouchet, F. Franchetti, J. Ra-
manujam, and P. Sadayappan, “Data layout transformation
for stencil computations on short-vector simd architectures,”
in CC, 2011.

