Solving the Live-out lterator Problem, Part |

Louis-Noél Pouchet

pouchet@cse.ohio-state.edu

Dept. of Computer Science and Engineering, the Ohio State University

September 2010

888.11

OHIO
SIAIE

UNIVERSITY

Outline: Solving the Live-out Iterator Problem, Part |

Reminder: step-by-step methodology

Q Problem definition: Understand and define the problem

© ./ Examples: Find various example, and compute the desired output by
hand

© — Restriction: Find an algorithm, maybe restricted to simpler cases
© Generalization: Generalize the algorithm to work on all cases

@ Proof: Prove the algorithm is complete and correct

@ Complexity: Study the complexity of the algorithm

osu 2

Outline:

Solving the Live-out Iterator Problem, Part |

Outline for today

» Find a useful restriction of the problem

» Typically, add extra properties on the input
» And/or remove some properties on the output

» Build and solve the problem for it

» Maximal reuse of existing solutions
> Keep in mind the general problem

osu

Live-out Iterators: problems: Solving the Live-out Iterator Problem, Part |

Summary of the problems

List the problems to solve

> Multiple statements
> Which loop executes last?

v

Min/max expressions
> The value depends on the expressions
> Need to substitute surrounding iterators with the last value for which the
loop test is true, not necessarily the exit value of the loop iterator

v

Conditionals
> aloop may not execute, how to determine its last execution?
» Parametric loop bounds

> The loop may not execute at all!
» What is the value to use in the substitution? The exit value?

v

Loop iterator symbols being assigned after the loop execution
> How to compute the exit value in this case?

osu 4

Live-out Iterators: problems: Solving the Live-out Iterator Problem, Part |

Another view: Solution-driven

Order the problems starting with the simplest solution

@ Start from the set of programs with:
> no conditional,
no min/max,
no parameter,
no iterator symbol assigned in the loop body,
a single statement

vVYyVvVYlyYy

@ Adding multiple statement support

© Adding parameters

@ Adding conditionals

@ Adding min/max

© Adding iterator symbol assigned in the loop body

osu 5

Finding a good restriction: Solving the Live-out Iterator Problem, Part |

A useful restriction of the problem

» What if a loop always iterates at least once?
> Property: [b < Ub
> The exit value is the last value for which the test is true + 1
» Impact on conditionals, min/max, iterator assigned in body?

» What if a conditional is always true?
» Property: the conditional is an affine form of the parameters only

» Under these assumptions, what about min/max expressions?

osu 6

Finding a good restriction: Solving the Live-out Iterator Problem, Part |

Overview of the approach

@ Find a good, general algorithm for our restricted case

© Modify it to generalize to:

> arbitrary conditionals
> arbitrary loop bounds

© Modify the input specification to cover only programs where iterator
symbols are never assigned outside the loop

osu 7

Designing the algorithm: Solving the Live-out Iterator Problem, Part |

Reminder: algorithm writing 101

Determine the input and output
Find a correct data structure to represent the problem
> Don't hesitate to convert the input to a suitable form, and to preprocess it

©0

© Try to reduce your problem to a variation of a well-known one

» Sorting? Path discovery/reachability? etc.
> Look in the litterature if a solution to this problem exists

© Decide wheter you look for a recursive algorithm or an imperative one,
or a mix

» Depends on how you think, how easy it is to exhibit invariants, what is the
decomposition in sub-problems, ...

@ Write the algorithm :-)
@ Run all your examples on it, manually, before trying to prove it

osu 8

Designing the algorithm: Solving the Live-out Iterator Problem, Part |

Determine the input and output

Input:
» an AST A of a program such that:
A represents a Static Control Part
For each loop in A, the lower bound is always smaller than the upper bound
Conditionals are always true
There is no loop iterator symbol assigned outside its defining loop

vVvyVvVey

Output:

» an AST B containing A which is appended another AST that assigns to
each loop iterator in A the value it takes when A is executed

osu

Designing the algorithm: Solving the Live-out Iterator Problem, Part |

Find a good representation for the problem

i j<=4%i-4 i<=n
oo 000 00
m ® O O 0 0 O @ j<=m
® © 6 6 0 O
3¥>==2%i+8 / @ Integral point outside polyhedron
-9 @® O 0O 0 0 O e © Integral point inside polyhedron
e O Integral lexicographic minimum candidate
1217 °
[

0

osu 10

Designing the algorithm: Solving the Live-out Iterator Problem, Part |

Polyhedral representation

» Model iteration domains using inequalities
» inequalities for lower bounds, upper bounds, conditionals
> min/max simply produces multiple inequalities
» Warning: only executed instances are part of the iteration domain

» Using this representation, what is the geometric intuition of the exit value
of iterators?
> It is simply the lexicographic maximum of the iteration domain + 1!
> Can we reuse existing algorithms to compute the lexicographic maximum
of the iteration domain?

osu 1

Designing the algorithm: Solving the Live-out Iterator Problem, Part |

Reducing to a variation of a well-known problem

PIP: Parametric Integer Programming [Fea88]

In a nutshell:
» PIP input: A system of inequalities defining a parametric polyhedron
i>0
i<N
Example: j i }?/[
j<4xi—4

34j> —2%i+8

» PIP output: the lexicographic minimum of the system
Example:
if (7*n >= 10) {
if (7*m >= 12)

(l = 2!] = 2)
if (2*n+3*m >= 8)
(i = -m-(m div 2)+4, j = m)

osu 12

Designing the algorithm: Solving the Live-out Iterator Problem, Part |

Problems to solve

> PIP outputs the lexicographic minimum, we want the maximum
> Simple: max(x) = min(—x)
> Need to insert variables x = —x, y/ = —y, etc. as the first variables of the
system, and compute the lexmin of the new system

» PIP does not produce an AST explicitly, it uses its internal
representation

> Need to convert PIPLib internal representation into an AST
> Need to dig into PIPLib documentation, should not be difficult

osu 13

Designing the algorithm: Solving the Live-out Iterator Problem, Part |

On the road to write the algorithm

In a nutshell:
@ Convert the AST into its polyhedral representation

© For a given statement, create the PIP problem for the lexmax

© Convert the solution to the system into an AST

osu 14

Designing the algorithm: Solving the Live-out Iterator Problem, Part |

Data structures [1/2]

Polyhedral representation:
> ltis a array of elements of type Statement
> A Statement is a structure containing:

> Matrix : domain, for the iteration domain, using the same representation
as PIP input

> Matrix : schedule, for the schedule

> integer : nblter, for the number of loops surrounding the statement

> (and more, but not useful here)

» Available functions:

> Statement|] : extractPolyhedralRepresentation(AST : A)
> Statement|] : orderInExecutionOrder(Statement|| : statementarray)

osu

Designing the algorithm: Solving the Live-out Iterator Problem, Part |

Data structures [2/2]

PIP / PIPLib:
» PIPLib uses as an input a Matrix

» Calling PIPLib outputs a QUAST (quasi-affine solution tree)

> ltis a tree where the leaves are all possible values for the lexicographic
minimum of the input system, the other nodes are conditions on
parameters

» Available functions:

> QUAST : computeLexicographicMinimum(Matrix : system)
> AST : convertQuastToAST (QUAST : solution)

osu 16

Exercise: Solving the Live-out Iterator Problem, Part |

Exercise

Input:
» an AST A of a program such that:
A represents a Static Control Part
For each loop in A, the lower bound is always smaller than the upper bound
Conditionals are always true
There is no loop iterator symbol assigned outside its defining loop

vVvyYVvVy

Output:

» an AST B containing A which is appended another AST that assigns to
each loop iterator in A the value it takes when A is executed

Exercise: write an algorithm which implements the above description

osu 17

Exercise: Solving the Live-out Iterator Problem, Part |

Algorithm to create a Lexmax system

Algorithm

Algorithm extendSystemForLexmax

Input:

Matrix: A, in PIPLib format

integer: nbVars

Output:

Matrix: in PIPLib format, with extra columns and equalities such
that lexmin(B) = lexmax(A) for the nbVars first variables

B < duplicateMatrix(A)
for i< 1to nbVars do
B « insertColumnAtPosition(B, 1)
end for
for i< 1to nbVars do
B < insertRowAtPosition(B, B.NbRows)
B[B.NbRows - 1][i] -1
B[B.NbRows - 1][i + nbVars] «— 1
end for
return B

osu 18

	Outline
	Live-out Iterators: problems
	Finding a good restriction
	Designing the algorithm
	Exercise

