
Solving the Live-out Iterator Problem, Part I

Louis-Noël Pouchet
pouchet@cse.ohio-state.edu

Dept. of Computer Science and Engineering, the Ohio State University

September 2010

888.11



Outline: Solving the Live-out Iterator Problem, Part I

Reminder: step-by-step methodology

1
√

Problem definition: Understand and define the problem
2
√

Examples: Find various example, and compute the desired output by
hand

3 → Restriction: Find an algorithm, maybe restricted to simpler cases
4 Generalization: Generalize the algorithm to work on all cases
5 Proof: Prove the algorithm is complete and correct
6 Complexity: Study the complexity of the algorithm

OSU 2



Outline: Solving the Live-out Iterator Problem, Part I

Outline for today

I Find a useful restriction of the problem
I Typically, add extra properties on the input
I And/or remove some properties on the output

I Build and solve the problem for it
I Maximal reuse of existing solutions
I Keep in mind the general problem

OSU 3



Live-out Iterators: problems: Solving the Live-out Iterator Problem, Part I

Summary of the problems

List the problems to solve

I Multiple statements
I Which loop executes last?

I Min/max expressions
I The value depends on the expressions
I Need to substitute surrounding iterators with the last value for which the

loop test is true, not necessarily the exit value of the loop iterator

I Conditionals
I a loop may not execute, how to determine its last execution?

I Parametric loop bounds
I The loop may not execute at all!
I What is the value to use in the substitution? The exit value?

I Loop iterator symbols being assigned after the loop execution
I How to compute the exit value in this case?

OSU 4



Live-out Iterators: problems: Solving the Live-out Iterator Problem, Part I

Another view: Solution-driven

Order the problems starting with the simplest solution

1 Start from the set of programs with:
I no conditional,
I no min/max,
I no parameter,
I no iterator symbol assigned in the loop body,
I a single statement

2 Adding multiple statement support
3 Adding parameters
4 Adding conditionals
5 Adding min/max
6 Adding iterator symbol assigned in the loop body

OSU 5



Finding a good restriction: Solving the Live-out Iterator Problem, Part I

A useful restriction of the problem

I What if a loop always iterates at least once?
I Property: lb≤ Ub
I The exit value is the last value for which the test is true + 1
I Impact on conditionals, min/max, iterator assigned in body?

I What if a conditional is always true?
I Property: the conditional is an affine form of the parameters only

I Under these assumptions, what about min/max expressions?

OSU 6



Finding a good restriction: Solving the Live-out Iterator Problem, Part I

Overview of the approach

1 Find a good, general algorithm for our restricted case

2 Modify it to generalize to:
I arbitrary conditionals
I arbitrary loop bounds

3 Modify the input specification to cover only programs where iterator
symbols are never assigned outside the loop

OSU 7



Designing the algorithm: Solving the Live-out Iterator Problem, Part I

Reminder: algorithm writing 101

1 Determine the input and output
2 Find a correct data structure to represent the problem

I Don’t hesitate to convert the input to a suitable form, and to preprocess it
3 Try to reduce your problem to a variation of a well-known one

I Sorting? Path discovery/reachability? etc.
I Look in the litterature if a solution to this problem exists

4 Decide wheter you look for a recursive algorithm or an imperative one,
or a mix

I Depends on how you think, how easy it is to exhibit invariants, what is the
decomposition in sub-problems, ...

5 Write the algorithm :-)
6 Run all your examples on it, manually, before trying to prove it

OSU 8



Designing the algorithm: Solving the Live-out Iterator Problem, Part I

Determine the input and output

Input:
I an AST A of a program such that:

I A represents a Static Control Part
I For each loop in A, the lower bound is always smaller than the upper bound
I Conditionals are always true
I There is no loop iterator symbol assigned outside its defining loop

Output:
I an AST B containing A which is appended another AST that assigns to

each loop iterator in A the value it takes when A is executed

OSU 9



Designing the algorithm: Solving the Live-out Iterator Problem, Part I

Find a good representation for the problem

Example

for (i = 0; i <= N; ++i)
for (j = 0; j <= min(M, 4 * i - 4); ++j)
if (3 * j >= - 2 * i + 8)
S(i, j);

OSU 10



Designing the algorithm: Solving the Live-out Iterator Problem, Part I

Polyhedral representation

I Model iteration domains using inequalities
I inequalities for lower bounds, upper bounds, conditionals
I min/max simply produces multiple inequalities
I Warning: only executed instances are part of the iteration domain

I Using this representation, what is the geometric intuition of the exit value
of iterators?

I It is simply the lexicographic maximum of the iteration domain + 1!
I Can we reuse existing algorithms to compute the lexicographic maximum

of the iteration domain?

OSU 11



Designing the algorithm: Solving the Live-out Iterator Problem, Part I

Reducing to a variation of a well-known problem

PIP: Parametric Integer Programming [Fea88]
In a nutshell:

I PIP input: A system of inequalities defining a parametric polyhedron

Example:



i≥ 0
i≤ N
j≥ 0
j≤M
j≤ 4∗ i−4
3∗ j≥−2∗ i+8

I PIP output: the lexicographic minimum of the system
Example:

if (7*n >= 10) {
if (7*m >= 12)
(i = 2, j = 2)

if (2*n+3*m >= 8)
(i = -m-(m div 2)+4, j = m)

}

OSU 12



Designing the algorithm: Solving the Live-out Iterator Problem, Part I

Problems to solve

I PIP outputs the lexicographic minimum, we want the maximum
I Simple: max(x) = min(−x)
I Need to insert variables x′=−x, y′=−y, etc. as the first variables of the

system, and compute the lexmin of the new system

I PIP does not produce an AST explicitly, it uses its internal
representation

I Need to convert PIPLib internal representation into an AST
I Need to dig into PIPLib documentation, should not be difficult

OSU 13



Designing the algorithm: Solving the Live-out Iterator Problem, Part I

On the road to write the algorithm

In a nutshell:
1 Convert the AST into its polyhedral representation

2 For a given statement, create the PIP problem for the lexmax

3 Convert the solution to the system into an AST

OSU 14



Designing the algorithm: Solving the Live-out Iterator Problem, Part I

Data structures [1/2]

Polyhedral representation:
I It is a array of elements of type Statement
I A Statement is a structure containing:

I Matrix : domain, for the iteration domain, using the same representation
as PIP input

I Matrix : schedule, for the schedule
I integer : nbIter, for the number of loops surrounding the statement
I (and more, but not useful here)

I Available functions:
I Statement[] : extractPolyhedralRepresentation(AST : A)
I Statement[] : orderInExecutionOrder(Statement[] : statementarray)

OSU 15



Designing the algorithm: Solving the Live-out Iterator Problem, Part I

Data structures [2/2]

PIP / PIPLib:
I PIPLib uses as an input a Matrix
I Calling PIPLib outputs a QUAST (quasi-affine solution tree)

I It is a tree where the leaves are all possible values for the lexicographic
minimum of the input system, the other nodes are conditions on
parameters

I Available functions:
I QUAST : computeLexicographicMinimum(Matrix : system)
I AST : convertQuastToAST(QUAST : solution)

OSU 16



Exercise: Solving the Live-out Iterator Problem, Part I

Exercise

Input:
I an AST A of a program such that:

I A represents a Static Control Part
I For each loop in A, the lower bound is always smaller than the upper bound
I Conditionals are always true
I There is no loop iterator symbol assigned outside its defining loop

Output:
I an AST B containing A which is appended another AST that assigns to

each loop iterator in A the value it takes when A is executed

Exercise: write an algorithm which implements the above description

OSU 17



Exercise: Solving the Live-out Iterator Problem, Part I

Algorithm to create a Lexmax system

Algorithm

Algorithm extendSystemForLexmax
Input:
Matrix: A, in PIPLib format
integer: nbVars
Output:
Matrix: in PIPLib format, with extra columns and equalities such

that lexmin(B) = lexmax(A) for the nbVars first variables

B← duplicateMatrix(A)
for i← 1 to nbVars do

B← insertColumnAtPosition(B, 1)
end for
for i← 1 to nbVars do

B← insertRowAtPosition(B, B.NbRows)
B[B.NbRows - 1][i]←-1
B[B.NbRows - 1][i + nbVars]← 1

end for
return B

OSU 18


	Outline
	Live-out Iterators: problems
	Finding a good restriction
	Designing the algorithm
	Exercise

