
PolyOpt/C
A Polyhedral Optimizer for the ROSE compiler

Edition 0.2, for PolyOpt/C 0.2.1
March 12th 2012

Louis-Noël Pouchet

This manual is dedicated to PolyOpt/C version 0.2.1, a framework for Polyhedral Opti-
mization in the ROSE compiler.

Copyright c© 2009-2011 Louis-Noël Pouchet / the Ohio State University.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 published by the Free Software Founda-
tion. To receive a copy of the GNU Free Documentation License, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

i

Table of Contents

1 Introduction . 1

2 Specifics of Polyhedral Programs 3
2.1 Static Control Parts . 3
2.2 Additional Restrictions in PolyOpt/C . 3
2.3 Allowed Control-Flow Operations . 4

2.3.1 In for initialization statement . 4
2.3.2 In for test statement . 5
2.3.3 In for increment statement . 5
2.3.4 In if conditional statement . 6
2.3.5 Examples . 6

3 Optimization Paths . 9
3.1 --polyopt-fixed-tiling . 9

3.1.1 Description . 9
3.1.2 Example . 9

3.2 --polyopt-parametric-tiling . 11
3.2.1 Description . 11
3.2.2 Example . 11

3.3 --polyopt-parallel-only . 13
3.3.1 Description . 13
3.3.2 Example . 13

4 Fine-tuning Optimizations . 15
4.1 SCoP Detection . 15
4.2 Tuning Optimizations . 15

5 Troubleshooting . 17

6 References . 19

Chapter 1: Introduction 1

1 Introduction

PolyOpt is a polyhedral loop optimization framework, integrated in the ROSE compiler.
The main features are:

• Automatic extraction of regions that can be optimized in the polyhedral model

• Full support of PoCC (the Polyhedral Compiler Collection) analysis and optimizations

• Dependence analysis with Candl

• Program transformations for tiling and parallelism with Pluto

• Code generation with CLooG

• Parametric tiling with PTile

• Numerous under-the-hood functionalities and optimizations

Note, only a subset of C/C++ is currently supported by PolyOpt/C. See PolyOpt/Fortran
for Fortran support.

Communication: The main mailing list is polyhedral@cse.ohio-state.edu. You can also con-
tact directly Louis-Noel Pouchet pouchet@cse.ohio-state.edu for any question. PoCC is also
available as a stand-alone software on sourceforge

mailto:polyhedral@cse.ohio-state.edu
mailto:pouchet@cse.ohio-state.edu
http://pocc.sourceforge.net

Chapter 2: Specifics of Polyhedral Programs 3

2 Specifics of Polyhedral Programs

2.1 Static Control Parts

Sequences of (possibly imperfectly nested) loops amenable to polyhedral optimization are
called static control parts (SCoP) [5], roughly defined as a set of consecutive statements such
that all loop bounds and conditionals are affine functions of the surrounding loop iterators
and parameters (variables whose value is unknown at compile time but invariant in the loop
nest considered). In addition, for effective data dependence analysis we require the array
access functions to also be affine functions of the surrounding iterators and parameters.

For instance, a valid affine expression for a conditional or a loop bound in a SCoP with
three loops iterators i,j,k and two parameters N,P will be of the form a.i + b.j + c.k + d.N
+ e.P + f, a,b,c,d,e,f are arbitrary (possibly 0) integer numbers.

The following program is a SCoP:

� �
for (i = 0; i < N; i++)

for (j = 0; j < N; j++) {

A[i][j] = A[i][j] + u1[i]*v1[j]

if (N - i > 2)

A[i][j] -= 2;

}
 	
Numerous elements can break the SCoP property, for instance:

• if conditionals involving variables that are not a loop iterator or a parameter, e.g., if
(A[i][j] == 0).

• if conditionals involving loop iterators and/or a parameter to form a non-affine ex-
pression, e.g., if (i * j == 0).

• Non-affine for initialization or test condition, e.g., for (j = 0; j < i * i; ++i).

• Non-affine array access, e.g., A[i*N][j % i] or A[B[i]].

2.2 Additional Restrictions in PolyOpt/C

PolyOpt/C automatically extracts maximal regions that can be optimized in the Poly-
hedral framework. We enforce numerous additional constraints to ensure the correctness of
the SCoP extraction, in particular due to dependence analysis consideration:

• The only allowed control statements are for and if.

• There is no function call in the SCoP.

4 PolyOpt - Polyhedral Optimization Framework

• There is no explicit pointer arithmetic/manipulation in the SCoP (no & nor * opera-
tors).

• goto, break and continue statements are forbidden.

• Arrays represent distinct memory locations (one per accessed array cell), and arrays
are not aliased (note: no check is performed by PolyOpt/C for this property, it is the
responsibility of the user to not feed ill-formed arrays).

• Loops increment by step of one.

2.3 Allowed Control-Flow Operations

PolyOpt/C supports a wide range of affine expressions, in particular conjunctions of
affine constraints can be used to bound the space. In all the following, we recall that
an affine expression must involve only surrounding loop iterators and parameters (scalar
variables that are invariant during the SCoP execution).

SCoP extraction is a syntactic process so there are clear definitions of what is allowed in
for (init; test; increment) and if (condition) statements. We note that if the loop
iterator of a for statement is used outside the scope of the loop, or is assigned in the loop
body, the loop will conservatively not be considered for SCoP extraction since PolyOpt/C
may change the exit value of loop iterators.

2.3.1 In for initialization statement

init can be either empty, or of the from <type> var = expressionLb. That is, a single
variable initialization is supported. The expressionLb is an affine expression, or possibly
a conjunction of expressions with the max(expr1, expr2) operator. The max operator can
either be written using a call to the max function together with using the --polyopt-safe-
math-func flag, or with the ternary operation a < b ? b : a.

If the loop has no lower bound, the polyhedral representation will assume an infinite
lower bound for the loop iterator: no analysis is performed to determine if there exists an
initialization of the loop iterator before the for statement.

As an illustration, all loops in the following code form a valid SCoP.� �
for (int i = max(max(N,M),P); i < N; i++)

for (j = max(i + 2 + 3*M, Q); j < N; j++)

for (k = i - 2 > 0 ? i - 2 : 0); k < N; k++)

for (l = 0; ; l++)

A[i][j] -= 2;
 	
Some examples of incorrect loop lower bound include:

Chapter 2: Specifics of Polyhedral Programs 5

• for (i = 0, j = 0; ...): more than one initialization.

• for (i = max(a,b) + max(c,d); ...): not a valid conjunction.

• for (i = max(a,b) + P; ...): not a valid conjunction.

• for (i = a < b ? b : a; ...): not a (syntactically) valid ternary max operator.

2.3.2 In for test statement

test can be either empty (infinite loop), or of the from var opComp expressionUb <&&

var opComp expressionUb2 <&& ...> >. That is, conjunction of upper bounds are sup-
ported via the && operator. The expressionUb is an affine expression, or possibly a con-
junction of expressions with the min(expr1, expr2) operator. The min operator can either
be written using a call to the min function together with using the --polyopt-safe-math-
func flag, or with the ternary operation a < b ? a : b. The opComp must be one of <, <=,

==.

As an illustration, all loops in the following code form a valid SCoP.� �
for (int i = 0; i < N && i < min(min(P,Q),R); i++)

for (j = 0; j <= (i < P ? P : i); j++)

for (k = 0; k <= 0; k++)

for (l = 0; ; l++)

A[i][j] -= 2;
 	
Some examples of incorrect loop lower bound include:

• for (i = 0; i < 1 || i < 2): disjunctions are not allowed.

• for (i = 0; i < min(a,b) + min(c,d); ...): not a valid conjunction.

• for (i = 0; min(i, N); ...): missing the var opComp part.

• for (i = 0; i > P; ...): incorrect comparison operator.

• for (i = 0; i < (a > b ? b : a); ...): not a (syntactically) valid ternary max opera-
tor.

2.3.3 In for increment statement

Loops must increment by step of one, and there must be a single operation in the increment
part. Typically only i++, ++i and i+=1 are supported increments. More complex increments
such as i += one or i += 1, j += 1 are not supported.

6 PolyOpt - Polyhedral Optimization Framework

2.3.4 In if conditional statement

For if statements, the conditional expression can be an arbitrary affine expression, and
a conjunction of expressions with the && operator. min and max are allowed, provided a
max constrains the lower bound of a variable and a min constraints the upper bound of a
variable. Most standard comparison operators are allowed: <, <=, ==, >=, >. Note that
else clause is not allowed, nor is !=.

As an illustration, all loops in the following code form a valid SCoP.� �
if (i > max(M,N) && j == 0)

if (k < 32 && k < min(min(i,j),P))

A[i][j] = 42;
 	
Some examples of incorrect conditional expressions include:

• if (i == 0 || c == 0): disjunctions are not allowed.

• if (i < max(A,B)): not a valid max constraint.

• if (i == 42/5): not an integer term.

2.3.5 Examples

We conclude by showing some examples of SCoPs automatically detected by PolyOpt/C.
Note that the only constraints for the statements (e.g., R,S,T in the next example) involve
the lack of function calls, at most one variable is assigned in the statement, and using affine
functions to dereference arrays.� �

alpha = 43532;

beta = 12313;

for (int i = 0; i < N; i++) {

R: v1[i] = (i+1)/N/4.0;

S: w[i] = 0.0;

for (j = 0; j < N; j++)

T: A[i][j] = ((DATA_TYPE) i*j) / N;

}
 	� �
for (j = 1; j <= m; j++) {

stddev[j] = 0.0;

for (i = 1; i <= n; i++)

stddev[j] += (data[i][j] - mean[j]) * (data[i][j] - mean[j]);

stddev[j] /= float_n;

stddev[j] = sqrt(stddev[j]);

stddev[j] = stddev[j] <= eps ? 1.0 : stddev[j];

}
 	

Chapter 2: Specifics of Polyhedral Programs 7

Chapter 3: Optimization Paths 9

3 Optimization Paths

Three main optimization paths are available in PolyOpt/C. They are geared towards
improving data locality for fewer data cache misses, and both coarse- and fine-grain shared
memory parallelization with OpenMP. They will be applied on all Static Control Parts that
were automatically detected in the input program. Program transformations are generated
via the PoCC polyhedral engine.

3.1 --polyopt-fixed-tiling

3.1.1 Description

This path automatically computes and applies a complex, SCoP-specific sequence of loop
transformations to enable parallel blocked (if possible) execution of the SCoP. The default
tile size is 32, and can be specified at compile time only. Parallel loops are marked with
OpenMP pragmas, inner-most vectorizable loops are marked with ivdep pragmas. Parallel
or pipeline-parallel tile execution is achieved when tiling is possible.

The Pluto module is used to compute the loop transformation sequence, in the form of
a series of affine multidimensional schedules.

Giving the flag --polyopt-fixed-tiling to PolyOpt/C is equivalent to giving the se-
quence:

• --polyopt-pluto-fuse-smartfuse

• --polyopt-pluto-tile

• --polyopt-pluto-parallel

• --polyopt-pluto-prevector

• --polyopt-generate-pragmas

3.1.2 Example

Given the input program:� �
for (i = 0; i < n; i++)

for (j = 0; j < n; j++) {

C[i][j] *= beta;

for (k = 0; k < n; k++)

C[i][j] +=A[i][k] * B[k][j] * alpha;

}
 	

http://pocc.sourceforge.net

10 PolyOpt - Polyhedral Optimization Framework

One can optionally specify a file to set the tile sizes, to override the default 32 value.
This file must be called tile.sizes, and be stored in the current working directory. It
must contain one tile size per dimension to be tiled. For example:� �
$> cat tile.sizes

16 64 1
 	
The result of --polyopt-fixed-tiling on the above example, with the specified

tile.sizes file is shown below. Note, if a tile.sizes file exists in the current working
directory it will always be used.� �
{

int c6;

int c3;

int c1;

int c2;

int c4;

if (n >= 1) {

#pragma omp parallel for private(c4, c2, c6)

for (c1 = 0; c1 <= (((n + -1) * 16 < 0?

((16 < 0?-((-(n + -1) + 16 + 1) / 16) :

-((-(n + -1) + 16 - 1) / 16))) : (n + -1) / 16)); c1++)

for (c2 = 0; c2 <= (((n + -1) * 64 < 0?

((64 < 0?-((-(n + -1) + 64 + 1) / 64) :

-((-(n + -1) + 64 - 1) / 64))) : (n + -1) / 64)); c2++)

for (c4 = 16 * c1; c4 <= ((16 * c1 + 15 < n + -1?

16 * c1 + 15 : n + -1)); c4++)

#pragma ivdep

#pragma vector always

for (c6 = 64 * c2; c6 <= ((64 * c2 + 63 < n + -1?

64 * c2 + 63 : n + -1)); c6++)

(C[c4])[c6] *= beta;

#pragma omp parallel for private(c4, c2, c3, c6)

for (c1 = 0; c1 <= (((n + -1) * 16 < 0?

((16 < 0?-((-(n + -1) + 16 + 1) / 16) :

-((-(n + -1) + 16 - 1) / 16))) : (n + -1) / 16)); c1++)

for (c2 = 0; c2 <= (((n + -1) * 64 < 0?

((64 < 0?-((-(n + -1) + 64 + 1) / 64) :

-((-(n + -1) + 64 - 1) / 64))) : (n + -1) / 64)); c2++)

for (c3 = 0; c3 <= n + -1; c3++)

for (c4 = 16 * c1; c4 <= ((16 * c1 + 15 < n + -1?

16 * c1 + 15 : n + -1)); c4++)

#pragma ivdep

#pragma vector always

for (c6 = 64 * c2; c6 <= ((64 * c2 + 63 < n + -1?

64 * c2 + 63 : n + -1)); c6++)

(C[c4])[c6] += ((((A[c4])[c3]) * ((B[c3])[c6])) * alpha);

}

}
 	

Chapter 3: Optimization Paths 11

3.2 --polyopt-parametric-tiling

3.2.1 Description

NOTE: The parametric tiling path is still experimental, and correctness of the generated
code is not guaranteed in all cases. In particular, a known issue is when parametric tiling is
applied on a loop nest where the outer loop is sequential (wavefront creation is required) and
the inner loops are permutable but not fusable. We are working hard to fix this remaining
problem.

To the best of our knowledge, the generated code is correct when all statements in a
(possibly imperfectly nested) loop nest can be maximally fused. Remember that polyhedral
transformations are automatically computed before the parametric tiling pass to enforce
this property on the code when possible. The above issue impacts only program parts
where it is not possible to exhibit a polyhedral transformation making either the outer loop
parallel, or all loops fusable in the loop nest. This is not a frequent pattern, for instance
none of the 28 benchmarks of the PolyBench 2.0 test suite exhibit this issue.

This path automatically computes and applies a complex, SCoP-specific sequence of loop
transformations to enable parallel blocked execution of the SCoP. The generated code is
parametrically tiled when possible, and the tile sizes can be specified at runtime via the
__pace_tile_sizes[] array. By default, the tile sizes are set to 32. Parallel loops are
marked with OpenMP pragmas.

The Pluto module is used to compute a loop transformation sequence that makes tiling
legal, when possible, and the PTile module performs parametric tiling. Parallel or pipeline-
parallel tile execution is achieved if tiling is possible.

Giving the flag --polyopt-parametric-tiling to PolyOpt/C is equivalent to giving
the sequence:

• --polyopt-pluto-fuse-smartfuse

• --polyopt-pluto-parallel

• --polyopt-codegen-use-ptile

• --polyopt-codegen-insert-ptile-api

3.2.2 Example

The PACE tiling API requires to use the function PACETileSizeVectorInit(int*, int,

int) to fill-in the tile sizes. This function takes an array of integers, the number of tile
size parameters, and a unique identifier for the SCoP. This function can be in another
compilation unit, inserted automatically by the PACE compiler, or added manually by the
user. It allows to select the tile size at run-time, before the computation starts.

12 PolyOpt - Polyhedral Optimization Framework

The result of --polyopt-parametric-tiling on the above dgemm example is shown
below.� �
{

int ___pace_tile_sizes[3];

PACETileSizeVectorInit(___pace_tile_sizes,3,2);

int c2;

int c2t1;

int c1;

int c3;

int c1t1;

float T1c3 = (float)(___pace_tile_sizes[0]);

int c3t1;

float T1c2 = (float)(___pace_tile_sizes[1]);

float T1c1 = (float)(___pace_tile_sizes[2]);

if (n >= 1) {

{

int tmpLb;

int tmpUb;

tmpLb = round(-1 + 1 / T1c1);

tmpUb = round(n * (1 / T1c1) + 1 / T1c1 * -1);

#pragma omp parallel for private(c2t1, c1, c2)

for (c1t1 = tmpLb; c1t1 <= tmpUb; ++c1t1)

for (c2t1 = round(-1 + 1 / T1c2);

c2t1 <= round(n * (1 / T1c2) + 1 / T1c2 * -1); ++c2t1)

for (c1 = (c1t1 * T1c1 > 0?c1t1 * T1c1 : 0);

c1 <= ((c1t1 * T1c1 + (T1c1 + -1) < n + -1?

c1t1 * T1c1 + (T1c1 + -1) : n + -1)); c1++)

for (c2 = (c2t1 * T1c2 > 0?c2t1 * T1c2 : 0);

c2 <= ((c2t1 * T1c2 + (T1c2 + -1) < n + -1?

c2t1 * T1c2 + (T1c2 + -1) : n + -1)); c2++)

(C[c1])[c2] *= beta;

}

{

int tmpLb;

int tmpUb;

tmpLb = round(-1 + 1 / T1c1);

tmpUb = round(n * (1 / T1c1) + 1 / T1c1 * -1);

#pragma omp parallel for private(c2t1, c3t1, c1, c2, c3)

for (c1t1 = tmpLb; c1t1 <= tmpUb; ++c1t1)

for (c2t1 = round(-1 + 1 / T1c2);

c2t1 <= round(n * (1 / T1c2) + 1 / T1c2 * -1); ++c2t1)

for (c3t1 = round(-1 + 1 / T1c3);

c3t1 <= round(n * (1 / T1c3) + 1 / T1c3 * -1); ++c3t1)

for (c1 = (c1t1 * T1c1 > 0?c1t1 * T1c1 : 0);

c1 <= ((c1t1 * T1c1 + (T1c1 + -1) < n + -1?

c1t1 * T1c1 + (T1c1 + -1) : n + -1)); c1++)

for (c2 = (c2t1 * T1c2 > 0?c2t1 * T1c2 : 0);

c2 <= ((c2t1 * T1c2 + (T1c2 + -1) < n + -1?

c2t1 * T1c2 + (T1c2 + -1) : n + -1)); c2++)

for (c3 = (c3t1 * T1c3 > 0?c3t1 * T1c3 : 0);

c3 <= ((c3t1 * T1c3 + (T1c3 + -1) < n + -1?

c3t1 * T1c3 + (T1c3 + -1) : n + -1)); c3++)

(C[c1])[c2] += ((((A[c1])[c3]) * ((B[c3])[c2])) *alpha);

}

}

}
 	

Chapter 3: Optimization Paths 13

3.3 --polyopt-parallel-only

3.3.1 Description

This path automatically computes and applies a complex, SCoP-specific sequence of loop
transformations to enable parallel execution of the SCoP while improving data locality.
In contrast to the other paths, no tiling is applied on the generated program. Parallel
loops are marked with OpenMP pragmas. The Pluto module is used to compute a loop
transformation sequence that expose coarse-grain parallelism when possible.

Giving the flag --polyopt-parallel-only to PolyOpt/C is equivalent to giving the
sequence:

• --polyopt-pluto-fuse-smartfuse

• --polyopt-pluto-parallel

• --polyopt-generate-pragmas

3.3.2 Example

The result of --polyopt-parallel-only on the above dgemm example is shown below.
Note that pre-vectorization is disabled in this mode, fixed tiling must be enabled for it
to be active. To prevent the distribution of the two statements, the user can rely on the
fine-tuning flags, e.g., --polyopt-pluto-fuse-maxfuse.� �
{

int c2;

int c1;

int c3;

if (n >= 1) {

#pragma omp parallel for private(c2)

for (c1 = 0; c1 <= n + -1; c1++)

for (c2 = 0; c2 <= n + -1; c2++)

(C[c1])[c2] *= beta;

#pragma omp parallel for private(c3, c2)

for (c1 = 0; c1 <= n + -1; c1++)

for (c2 = 0; c2 <= n + -1; c2++)

for (c3 = 0; c3 <= n + -1; c3++)

(C[c1])[c2] += ((((A[c1])[c3]) * ((B[c3])[c2])) * alpha);

}

}
 	

Chapter 4: Fine-tuning Optimizations 15

4 Fine-tuning Optimizations

PolyOpt/C offer numerous tuning possibilities, use --polyopt-help for a comprehensive
list. We distinguish two main categories of options that impact how the program will be
transformed: (1) options that control how SCoP are extracted; and (2) options that control
how each individual SCoP is transformed.

4.1 SCoP Detection

The following options are available to control how SCoP extraction is being performed,
and in particular how non-compliant features are handled.

• --polyopt-safe-math-func: Consider function calls whose prototype is declared in
math.h (e.g., round, sqrt, etc.) as side-effect free functions, meaning a call to one of
these functions will not break the SCoP.

• --polyopt-approximate-scop-extractor: Over-approximate non-affine array
accesses to scalars (all array cells are approximated to be read/written for each array
reference).

• --polyopt-scop-extractor-verbose=1: Verbosity option. Reports which functions
have been analyzed.

• --polyopt-scop-extractor-verbose=2: Verbosity option. Reports which SCoPs
have been detected.

• --polyopt-scop-extractor-verbose=3: Verbosity option. Reports which SCoPs
have been detected.

• --polyopt-scop-extractor-verbose=4: Verbosity option. Reports which SCoPs
have been detected, print their polyhedral representation, print all nodes that broke
the SCoP.

4.2 Tuning Optimizations

The following options are available to control PoCC, the polyhedral engine. In particular,
those control the Pluto module that is responsible for computing the loop transformation
to be applied to the SCoP.

• --polyopt-pocc-verbose:

• --polyopt-pluto: Activate the Pluto module.

• --polyopt-pluto-tile: Activate polyhedral tiling.

• --polyopt-pluto-parallel: Activate coarse-grain parallelization.

• --polyopt-pluto-prevector: Activate fine-grain parallelization.

16 PolyOpt - Polyhedral Optimization Framework

• --polyopt-pluto-fuse-<maxfuse,smartfuse,nofuse>: Control which fusion heuris-
tic to use (default is smartfuse).

• --polyopt-pluto-rar: Consider Read-After-Read dependences for improved data lo-
cality.

Chapter 5: Troubleshooting 17

5 Troubleshooting

In PolyOpt/C, polyhedral programs are a constrained subset of C programs and it can be
difficult at start to understand why a program is not detected as a SCoP. Try using the
--polyopt-scop-extractor-verbose=4 option, and reading the papers referenced below.

For any other problem, please contact directly Louis-Noel Pouchet
pouchet@cse.ohio-state.edu.

mailto:pouchet@cse.ohio-state.edu

Chapter 6: References 19

6 References

[1] M. Baskaran, A. Hartono, S. Tavarageri, T. Henretty, J. Ramanujam, and P.
Sadayappan. Parameterized Tiling Revisited. In International Symposium on
Code Generation and Optimization (CGO’10), Apr 2010.

[2] Cédric Bastoul. Code Generation in the Polyhedral Model Is Easier Than
You Think. In IEEE International Conference on Parallel Architecture and
Compilation Techniques (PACT’04), Sept 2004.

[3] Uday Bondhugula and Albert Hartono and J. Ramanujam and P. Sadayappan.
A Practical Automatic Polyhedral Program Optimization System. In ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’08), Jun 2008.

[4] Paul Feautrier. Dataflow Analysis of Array and Scalar References. In Intl.
Journal of Parallel Programming, 20(1):23–53, 1991.

[5] Paul Feautrier. Some efficient solutions to the affine scheduling problem. Part
II, Multidimensional time. In Intl. Journal of Parallel Programming, 21(5):389–
420, 1992.

[6] Louis-Noel Pouchet, Uday Bondhugula, Cdric Bastoul, Albert Cohen, J. Ra-
manujam, P. Sadayappan and Nicolas Vasilache. Loop Transformations: Con-
vexity, Pruning and Optimization. In ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (POPL’11), Jan 2011.

	Introduction
	Specifics of Polyhedral Programs
	Static Control Parts
	Additional Restrictions in PolyOpt/C
	Allowed Control-Flow Operations
	In for initialization statement
	In for test statement
	In for increment statement
	In if conditional statement
	Examples

	Optimization Paths
	--polyopt-fixed-tiling
	Description
	Example

	--polyopt-parametric-tiling
	Description
	Example

	--polyopt-parallel-only
	Description
	Example

	Fine-tuning Optimizations
	SCoP Detection
	Tuning Optimizations

	Troubleshooting
	References

