
Enhancing High-Level Synthesis with Automated Pragma
Insertion and Code Transformation Framework

Stéphane Pouget
pouget@cs.ucla.edu

University of California, Los Angeles

Louis-Noël Pouchet
pouchet@colostate.edu
Colorado State University

Jason Cong
cong@cs.ucla.edu

University of California, Los Angeles

Abstract
High-level synthesis, source-to-source compilers, and various De-
sign Space Exploration techniques for pragma insertion have sig-
nificantly improved the Quality of Results of generated designs.
These tools offer benefits such as reduced development time and en-
hanced performance. However, achieving high-quality results often
requires additional manual code transformations and tiling selec-
tions, which are typically performed separately or as pre-processing
steps. Although DSE techniques enable code transformation up-
front, the vastness of the search space often limits the exploration
of all possible code transformations, making it challenging to deter-
mine which transformations are necessary. Additionally, ensuring
correctness remains challenging, especially for complex transfor-
mations and optimizations.

To tackle this obstacle, we first propose a comprehensive frame-
work leveraging HLS compilers. Our system streamlines code trans-
formation, pragma insertion, and tiles size selection for on-chip data
caching through a unified optimization problem, aiming to enhance
parallelization, particularly beneficial for computation-bound ker-
nels. Them employing a novel Non-Linear Programming (NLP) ap-
proach, we simultaneously ascertain transformations, pragmas, and
tile sizes, focusing on regular loop-based kernels. Our evaluation
demonstrates that our framework adeptly identifies the appropriate
transformations, including scenarios where no transformation is
necessary, and inserts pragmas to achieve a favorable Quality of
Results.

Keywords: HLS, code transformation, pragma insertion, non-linear
problem

1 Introduction
High-level synthesis (HLS) compilers and source-to-source com-
pilers are indispensable tools in accelerating hardware design by
automating the translation of high-level programming languages
like C/C++ or Python into hardware descriptions. They offer no-
table advantages, such as reduced development time and enhanced
performance for hardware designs [4, 6–9, 18, 26, 34, 35, 37–39].
However, achieving a good quality of results (QoR) often requires
manual code transformations and pragma insertions, which can be
facilitated with either Design Space Exploration (DSE) [5, 23, 24,
27, 28, 28, 29, 40] or source-to-source compilers [8, 37] to guide the
synthesis process. These pragmas aid in optimizing the generated
hardware code. Despite the improvements in productivity, both
code transformation and ensuring the correctness of the transfor-
mations remains challenging. The HLS design space encompasses
various code transformations and pragma placements. However,
exploring this joint space can be daunting due to its vastness, with
millions of potential points, and traditional analytical methods
struggle to efficiently navigate it. Key issues include the lack of
convexity and regularity in this space. Moreover, separating code
transformation and pragma insertion into distinct optimization

problems complicates the search and may necessitate initiating the
search for one optimization problem upon any changes occurring
in the other.

Our primary research objective is to develop a system capable of
autonomously conducting search-friendly code transformation, tile
size selection to cache the data on-chip and integrating hardware
pragmas for HLS to enhance parallelization. We seek to attain a
favorable QoR, especially for computation-bound designs, where
maximizing parallelism is crucial for optimizing QoR. To address
this challenge, we introduce Sisyphus, a framework built on top of
HLS compilers. This framework automates code transformation, in-
cluding loop splitting, permutation, tiling, and pragma insertion for
unrolling, pipelining, and on-chip data caching while partitioning
arrays to ensure efficient parallelization, all within a single opti-
mization problem. Even though several exploration methods could
be used, we chose to employ a Non-Linear Programming (NLP)
approach. This method facilitates rapid exploration of the entire
theoretical space. We develop an analytical model that integrates
considerations of latency and resource utilization, building upon
previous research [23, 24]. Our focus lies specifically on regular
loop-based kernels [20], ensuring meticulous control over the cor-
rectness of code transformations and the accuracy of cost models.
This model relies on parameters derived from both the program’s
schedule and the pragma configuration. To facilitate seamless code
transformation while respecting constraints and pragma insertion,
we have designed a novel template tailored to these objectives. In
our template, we incorporate a two-level tiling strategy, where each
tiling level corresponds to particular HLS optimizations such as fine-
grained unrolling, pipelining, coarse-grained unrolling, or tiling.
As a result, the loop trip counts become variables, with each loop
associated with a specific pragma determined by the tiling level. By
solving the NLP problem, we determine these trip counts, as well
as other parameters like the array partitioning factor, enabling the
automatic generation of the corresponding C++ code.
In summary, we introduce the following contributions:

• A novel template that streamlines code transformation, pragma
insertion, and tiles size selection for data caching by consolidat-
ing these tasks into a single optimization problem. This approach
not only simplifies the search space but also ensures that only
legal transformations are considered.

• We develop a novel NLP approach tailored to exploring this joint
space, particularly focusing on regular loop-based kernels. The
NLP allows for the exploration of a space whose resources are
set by the user.

• Our framework acts as a comprehensive, fully automated system,
offering end-to-end functionality. With it, we conduct thorough
evaluations and attain QoR designs that are comparable or su-
perior to those achieved by AutoDSE, NLP-DSE and HARP, all
without the necessity of Design Space Exploration. Furthermore,
Sisyphus accurately identifies the appropriate transformation,
even in cases where no transformation is required.

ar
X

iv
:2

40
5.

03
05

8v
1

 [
cs

.S
E

]
 5

 M
ay

 2
02

4

https://orcid.org/0000-0003-3950-5818
https://orcid.org/0000-0001-5103-3097
https://orcid.org/0000-0003-2887-6963

Trovato and Tobin, et al.

The paper is organized into the following sections. Section 2 lays
out the motivation behind our approach and the proposed solution.
Following that, Section 3 presents the range of code transformation
and pragma insertion we consider. In Section 4, we introduce a non-
linear formulation based on this model to automatically discover
schedule and pragma configurations through NLP optimization.
Moving forward, Section 5 elaborates on our code generation pro-
cess. Finally, sections 6, 7 and 8 are dedicated to evaluating our
method, presenting related work, and drawing conclusions.

2 Background and Motivation
2.1 Space to explore
The exploration space for optimizing an HLS design encompasses
pragma insertion, code transformation, and data caching, all while
adhering to resource constraints. While various objective functions
can be considered, our focus in this work is on minimizing latency
by maximizing parallelism. This objective function is especially
potent for computation-bound kernels, addressing the bottleneck
caused by insufficient parallelization. These different elements of
the space (pragma insertion, code transformation, and data caching)
are inherently interconnected. Inserting unrolled pragmas influ-
ences array partitioning and thus the utilization of BRAM. The
schedule and pragmas influence the possibility of caching data on-
chip, and the choice of schedule impacts how we want to unroll
based on loop properties (e.g., reduction loop), and so on. Thus, the
choice of one element affects the others, necessitating backtrack-
ing if the spaces are separated. This complexity complicates the
exploration of the space and also requires constant verification of
the legality of transformations.

2.2 Limitation of the current DSE
Several frameworks [8, 37, 42] enable code transformations and
pragma insertion, but their spaces are limited for both. Transforma-
tions are restricted to loop property-based permutations or the use
of Pluto [1], which tiles the program but may restrict parallelization
for FPGAs and does not consider FPGA-specific optimizations such
as pipelining or array partitioning.

On the other hand, numerous Design Space Explorations (DSEs)
[24, 27–29] explore pragma insertion for a fixed loop order. Al-
though the user may initially set the schedule, it can be difficult,
even for experts, to predict which transformations are necessary
prior to pragma insertion. Furthermore, the multitude of code trans-
formations renders the exploration of each pragma impractical in
terms of scalability.

We will now examine examples that highlight the limitations of
current methods. For this, we use two different HLS DSE methods,
AutoDSE [29] and NLP-DSE [23, 24]. A comparison with HARP
[28] will be presented in Section 6. AutoDSE trents the compiler
Merlin [35] as a black box, adjusting pragmas based on identified
bottlenecks from previous iterations. In contrast, NLP-DSE employs
Nonlinear Programming DSE, utilizing a lower bound-based objec-
tive function to achieve high QoR within a short timeframe. Both
of this DSE use the AMD/Xilinx source-to-source compiler Merlin
[35]. The compiler employs different code transformations such as
strip-mining via the TILE pragma or for partial loop unrolling. It
typically avoids permutations, except when partially unrolling the
two innermost loops, in which case the compiler strip-mines these
loops and applies permutations to the resulting fully unrolled ones.

In the upcoming examples, we utilize the HLS compiler Vitis
2023.2, excluding the unsafe-math option. We examine two scenar-
ios: the kernel gemm from Polybench [21] as shown in Listing 1,
and CNN.

1 for (i = 0; i < 200; i++) {

2 for (j = 0; j < 220; j++)

3 C[i][j] *= beta;

4 for (k = 0; k < 240; k++)

5 for (j = 0; j < 220; j++)

6 C[i][j] += alpha * A[i][k] * B[k][j];}

Listing 1. Code original of gemm

The gemm kernel’s original loop order, as illustrated in Listing 1,
situates a non-reduction loop innermost for the second statement.
This arrangement facilitates AutoDSE and NLP-DSE in unrolling
this loop and pipelining the reduction loop. However, partially un-
rolling the reduction loop in this scenario diminishes performance
due to the increased initiation interval (II) of the pipeline resulting
from unrolling the reduction loop. As a consequence, the designs
yielding the best QoR for these two methods achieve a throughput
of approximately 20 GF/s. Listing 1 highlights the design found
by AutoDSE. The pragmas with 𝑓 𝑎𝑐𝑡𝑜𝑟 = 1 or pipeline off are not
utilized in the final design. However, they illustrate the potential
space explored by AutoDSE with various factors. In such instances,
a transformation becomes imperative to augment parallelization.

1 #pragma ACCEL parallel factor=1

2 #pragma ACCEL pipeline off

3 #pragma ACCEL TILE FACTOR =5

4 for (i = 0; i < 200; i++) {

5 #pragma ACCEL tile factor=1

6 #pragma ACCEL pipeline off

7 #pragma ACCEL parallel FACTOR =4

8 for (j = 0; j < 220; j++)

9 C[i][j] *= beta;

10 #pragma ACCEL tile factor=1

11 #pragma ACCEL parallel factor=1

12 #pragma ACCEL pipeline flatten

13 for (k = 0; k < 240; k++)

14 #pragma ACCEL pipeline off

15 #pragma ACCEL tile factor=1

16 for (j = 0; j < 220; j++) // fully unrolled

17 C[i][j] += alpha * A[i][k] * B[k][j];}

Listing 2. Code of gemm found by AutoDSE

When dealing with Convolutional Neural Networks (CNNs),
there’s significant room for code optimization, especially consid-
ering the need for tiling. Each loop split introduces various per-
mutations, leading to a vast range of options, totaling 2.23 × 1013
potential combinations of loop orders and tile sizes. Despite achiev-
ing satisfactory QoR — 42.15 GF/s for AutoDSE and 31.80 GF/s for
NLP-DSE — both methods fall short of fully exploiting the avail-
able level of parallelism, hinting at further optimization potential.
However, exhaustively exploring each code transformation proves
practically infeasible due to the sheer volume of possibilities. While
the Merlin compiler can leverage strip mining to enhance on-chip
data caching potential, its capabilities in this regard are constrained
by the inability to permute the loops.

2.3 Overview of Sisyphus
To address these limitations, we propose Sisyphus, which focuses
on linear code to offer a space capable of exploring only legal code
transformations, pragma insertions, and tile size selections as a sin-
gle optimization problem. Leveraging a Non-Linear Programming

Enhancing High-Level Synthesis with Automated Pragma Insertion and Code Transformation Framework

(NLP) approach, Sisyphus can efficiently explore this space, benefit-
ing from accurate modeling enabled by compile-time analysis feasi-
ble for linear code. The space comprises three levels of tiling, each
corresponding to a specific optimization: fine-grained unrolling,
pipelining, and coarse-grained unrolling, with loops executed se-
quentially and data transferred between off-chip and on-chip.

For gemm, Sisyphus excels in boosting parallelism by splitting
and permuting loops, all without depending on the reduction loop.
In this particular setup, the NLP discovers the configuration show-
cased in Listing 3.

1 // possibilities to cache on-chip A, B and C

2 /* ******** Level 0 ******** */

3 for (int i0 = 0; i0 < 1; i0++)

4 // possibilities to cache on-chip C

5 for (int j0 = 0; j0 < 1; j0++)

6 // possibilities to cache on-chip C

7 /* ******** Level 1 ******** */

8 for (int i1 = 0; i1 < 1; i1++)

9 for (int j1 = 0; j1 < 55; j1++)

10 #pragma HLS pipeline

11 /* ******** Level 2 ******** */

12 for (int i2 = 0; i2 < 200; i2++)

13 #pragma HLS unroll

14 for (int j2 = 0; j2 < 4; j2++)

15 #pragma HLS unroll

16 C[i0*200+i2][j0*220+j1*4+j2] *=beta ;

17 /* ******** Level 0 ******** */

18 for (int i0 = 0; i0 < 1; i0++)

19 // possibilities to cache on-chip A and C

20 for (int j0 = 0; j0 < 1; j0++)

21 // possibilities to cache on-chip B and C

22 for (int k0 = 0; k0 < 60; k0++)

23 // possibilities to cache on-chip A and B

24 /* ******** Level 1 ******** */

25 for (int i1 = 0; i1 < 1; i1++)

26 for (int k1 = 0; k1 < 1; k1++)

27 for (int j1 = 0; j1 < 220; j1++)

28 #pragma HLS pipeline

29 /* ******** Level 2 ******** */

30 for (int i2 = 0; i2 < 200; i2++)

31 #pragma HLS unroll

32 for (int j2 = 0; j2 < 1; j2++)

33 #pragma HLS unroll

34 for (int k2 = 0; k2 < 4; k2++)

35 #pragma HLS unroll

36 i = i0*200+i2; j = j0*220+j1*1+j2;

37 k = k0 * 4 + k2;

38 C[i][j] +=alpha * A[i][k] * B[k][j];

Listing 3. Code of gemm found by Sisyphus
Both pipelined loops feature an II of 1, enabling a throughput of

210 GF/s. Partially unrolling the reduction loop allows for parallel
execution of the two multiplications.

Concerning CNN, the NLP swiftly identifies a solution within 4.5
minutes. This solution optimizes tile configuration, caches a data
tile of the array on-chip, partially unrolls one reduction loop and
two non-reduction loops, and pipelines a non-reduction loop. As a
result, the design achieves a throughput of 339 GF/s. The design
discovered by Sisyphus is showcased in Listing 4.

1 for (int i0 = 0; i0 < 16; i0++) {

2 load_weight(weight ,vweight ,i0); // size 16*256*5*5

3 load_output(output , voutput , i0); // size 16*224*224

4 for (int j0 = 0; j0 < 256; j0++) {

5 load_input(input , vinput , j0); // size 228*228

6 for (int q0 = 0; q0 < 5; q0++)

7 for (int w0 = 0; w0 < 14; w0++)

8 for (int h1 = 0; h1 < 224; h1++)

9 #pragma HLS pipeline

10 for (int i2 = 0; i2 < 16; i2++) // unrolled

11 for (int w2 = 0; w2 < 16; w2++) // unrolled

12 for (int p2 = 0; p2 < 5; p2++){ // unrolled

13 i = ...

14 output[i2][h][w] += weight[i2][j][p][q]

15 * input[j2][h+p][w+q];}}

16 store_output(voutput , output , i0);}

Listing 4. Code of CNN found by Sisyphus

3 Unified Space
We proceed to develop a methodology that integrates code trans-
formation, tile size selection and pragma insertion into a unified
optimization framework. This involves implementing maximal dis-
tribution for code transformation, followed by the design and imple-
mentation of a template capable of executing code transformation,
tiles size selection and pragma insertion simultaneously. We il-
lustrate our code transformation process step by step using the
example provided in Listing 1.

Maximum Distribution To kickstart the process, we begin by
thoroughly distributing the program, with the goal of maximizing
the distance between each statement. This distribution strategy
creates ample opportunities for parallelization by maximizing the
separation between dependencies. Typically, this results in one
statement per loop body with perfectly nested loops. To achieve
this, we employ ISCC [31]. It allows us to explore various sched-
ule distributions and validate the legality of transformations by
ensuring dependency constraints are preserved. After distribution,
the example (Listing 1) yields two loop bodies. The first statement
iterates through loops 𝑖 and 𝑗 , while the second statement iterates
through loops 𝑖 , 𝑘 , and 𝑗 .

Strip-mining Following maximal distribution, we perform strip-
mining on each loop twice. This process replaces the original loop,
with a trip count 𝑇𝐶_𝐼0, with three new loops, each having trip
counts𝑇𝐶_𝐼0_0,𝑇𝐶_𝐼0_1 and𝑇𝐶_𝐼0_2 with𝑇𝐶_𝐼0_0×𝑇𝐶_𝐼0_1×
𝑇𝐶_𝐼0_2 = 𝑇𝐶_𝐼0. Since strip mining is inherently legal, there is
no necessity to validate the legality of this transformation. Sub-
sequently, we can arrange the loops in different permutations if
it is legal. Following the implementation of three levels of strip-
mining, the first loop body of the code from Listing 1 undergoes
transformation into the code depicted in Listing 5.

1 for (i0 = 0; i0 < TC_I0_0; i0++)

2 for (i1 = 0; i1 < TC_I0_1; i1++)

3 for (i2 = 0; i2 < TC_I0_2; i2++)

4 for (j0 = 0; j0 < TC_J0_0; j0++)

5 for (j1 = 0; j1 < TC_J0_1; j1++)

6 for (j2 = 0; j2 < TC_J0_2; j2++)

7 i = i0 * TC_I0_1 * TC_I0_2 + i1 * TC_I0_2 + i2;

8 ...

9 C[i][j] *= beta;

Listing 5. Code of the first loop body of gemm with three level strip
mining

Trovato and Tobin, et al.

Following the explanation provided in the next paragraph, strip
mining allows us to create opportunities for fine-grained unrolling,
pipelining, sequential execution, coarse-grained unrolling and tiling
if loop permutation is legal. This expands the range of possibilities,
allowing each loop to integrate diverse hardware directives and be
reorganized across different levels of the code.

Loop Permutation Next, we consider possible permutations of
the strip-mined loops. If these permutations are legal, we estab-
lish three loop levels. We ensure legality by checking dependency
preservation using ISCC [31].

The innermost level facilitates fine-grained unrolling (complete
unrolling), which increases parallelism by duplicating statements
and can utilize tree reduction if a reduction loop is unrolled and the
option is enabled. The middle level facilitates pipelining, enhancing
throughput by overlapping loop iterations. Finally, the outermost
level coordinates coarse-grained unrolling, tiling, and/or sequen-
tial execution, optimizing to increase the parallelism, and control-
ling the size of the on-chip buffer through tiling. If the loop body
consists of only one statement and loop permutation is feasible,
we disable coarse-grained unrolling. This will achieve equivalent
results because our template permits unrolling the same loop in-
nermost for fine-grained unrolling. Furthermore, coarse-grained
unrolling entails duplicating each array, including read-only arrays,
to ensure full overlapping of the modules, even when there are no
dependencies between the concurrently executed modules.

In scenarios where permutations enable us to achieve perfectly
nested loops capable of being pipelined, only one loop can usually
be pipelined. Trying to pipeline all loops simultaneously, akin to
pragma loop_pipelined, significantly complicates the design and
extends synthesis times unreasonably. Thus, if a loop in the middle
level is pipelined, it implies that the trip counts of the other loops (in
the middle level) are reduced to one, ensuring manageable design
complexity and synthesis times. As explained earlier, loop order
selection is not necessary at the pipeline level. In the fine-grained
level, arranging loops is straightforward; placing the reduction
loop innermost enables efficient tree reduction. Conversely, at the
coarse-grained or tiled level, prioritizing memory transfer latency
is key. Therefore, we opt for a loop order that maintains the output
stationary, minimizing costs associated with loading on-chip and
storing off-chip during tile iterations, especially when the output
is not fully transferred to the chip.

In the context of our example, these transformations yield the
code presented in Listing 3, with each level corresponding to specific
transformations. It is notable that our framework maintains the
original loop order. In Listing 3, if the loop on line 12 (𝑖2) iterates
once and the loop on line 3 (𝑖0) iterates 200 times, we keep the
original loop order, then proceed to pipeline and partially unroll
loop 𝑗 .

Fusion We have opted not to incorporate fusion into our model
for several reasons. Firstly, our objective is to maximize paralleliza-
tion for computation-bound kernels. Fusion may reduce or mini-
mize the dependency distances between statements, limiting po-
tential parallelization opportunities. Additionally, since our focus
is on computation-bound kernels, the primary bottleneck lies in
computation. Therefore, we are willing to incur a minor cost, even
if it involves transferring a tiled array multiple times.

Space Therefore, the challenge involves determining the trip
counts of each loop (e.g., 𝑇𝐶_𝐼0_0). Additionally, the design must
adhere to resource constraints, including the usage of DSP and

on-chip memory. Hence, the trip counts corresponding to fully
unrolled loops must be constrained to avoid over-utilization of DSP
resources. The on-chip buffers must not exceed the on-chip memory
capacity. Consequently, for a large problem size, the outermost level
will enable control over the buffer sizes. Thus, the space we consider
encompasses the original schedule on which we can insert pragmas,
but it also includes all the transformations mentioned previously
for which the pragmas are inserted.

4 NLP
Presented here is a comprehensive set of constraints and variables
employed in a non-linear program aimed at discovering the theo-
retical solution space outlined in Section 3. We employ the method-
ology proposed by [23, 24], adapted to our specific context. Similar
to their approach, we establish an estimation of the latency by as-
suming optimistic DSP utilization, assuming perfect resource reuse.
However, we afford the user the flexibility to adjust the DSP limit
or opt for a pessimistic DSP utilization scenario, where no reuse
between statements is considered. Moreover, users have the ability
to adjust the size of on-chip memory, define the maximum num-
ber of array partitions, and customize the latency and resources
allocated for each operation. This flexibility ensures adaptability
across various platforms and compilers.

To gather all the required information for the NLP, we utilize
PoCC [19] to extract the intermediate representation.

4.1 Variables
Tables 1 and 2 delineate the sets, variables, and constants utilized
in our NLP formulation.

Set Description

L,A,S the set of loops, arrays and statements
S1 the set of statements alone in a loop body
O𝑠 the list of operations of the statements 𝑠
L𝑠 the set of nested loops which iterate the statement 𝑠
L𝑟𝑒𝑑
𝑠 the set of reduction loops which iterate the statement 𝑠

C𝑎𝑑 the set of loops which iterates the array 𝑎 at the dimen-
sion 𝑑

V Level of the strip mining, 0 for coarse-
grained/sequential, 1 for pipeline and 2 for fine-grained
unrolled

𝐴𝑃𝑎,𝑑 Array Partition for the array 𝑎 in dimension 𝑑

Constant Description

𝑇𝐶𝑙 Trip Count of the loop 𝑙 before strip-mining
𝐼 𝐼𝑙 II of the loop 𝑙
𝐼𝐿𝑝𝑎𝑟 , 𝐼𝐿𝑟𝑒𝑑 Iteration Latency of the operations without (𝑝𝑎𝑟) and

with (𝑟𝑒𝑑) dependencies of the statement 𝑠
𝐷𝑆𝑃𝑠𝑜𝑝 Number of DSP used for the statement 𝑠 for the opera-

tion 𝑜𝑝
𝐷𝑆𝑃𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 Number of DSP available for the FPGA used
𝑚𝑎𝑥𝑝𝑎𝑟𝑡 Maximum array partitioning defined by the user
𝑓 𝑡_𝑎𝑟𝑟𝑎_𝑙𝑜𝑜𝑝𝑙 Footprint of the array 𝑎 if transferred to on-chip after

the loop 𝑙
𝑟𝑒𝑢𝑠𝑒𝑜𝑝𝑡 Boolean for optimistic reuse

Table 1. Overview of the set and constant employed in formulating
the NLP

Enhancing High-Level Synthesis with Automated Pragma Insertion and Code Transformation Framework

Variable Description

𝑡𝑐𝑙,𝑙𝑒𝑣𝑒𝑙 TC of the loop 𝑙 for the level of strip-mining
𝑙𝑜𝑜𝑝𝑙_𝑈𝐹 Coarse-grained unroll factor of the loop 𝑙 at level 0 of the

strip-mining
𝑙𝑜𝑜𝑝𝑙_𝑝𝑖𝑝 Boolean to know if the loop 𝑙 is pipelined at level 1 of the

strip-mining
𝑐𝑎𝑐ℎ𝑒𝑙_𝑎𝑟𝑟𝑎Boolean to know if the array 𝑎 is transferred on-chip after

the loop 𝑙 at level 0 of the strip-mining
Table 2. Overview of the variable employed in formulating the NLP

4.2 Constraints
Now, we explore the precise meaning and implications of each
constraint.

Trip Count Equation 1 constrain the trip count of each loop,
ensuring that the product of the trip counts equals the original trip
count.

∀𝑙 ∈ L,
∏
𝑣∈V

𝑇𝐶𝑙,𝑣 = 𝑇𝐶𝑙 (1)

Coarse-grained unrolling We enforce coarse-grained unrolling
solely for non-reduction loops (Eq. 4), where the unroll factor (UF)
must divide and be less than or equal to the trip count of the cur-
rent loop (Eq. 5 and 2). As elaborated in Section 3, coarse-grained
unrolling is disregarded if there is only one statement within the
loop (Eq. 3).

∀𝑙 ∈ L, 𝑙𝑜𝑜𝑝𝑙_𝑈𝐹 ≤ 𝑇𝐶𝑙,0 (2)
∀𝑠 ∈ S1,∀𝑙 ∈ L𝑠 , 𝑙𝑜𝑜𝑝𝑙_𝑈𝐹 = 1 (3)

∀𝑠 ∈ S1,∀𝑙 ∈ L𝑟𝑒𝑑
𝑠 , 𝑙𝑜𝑜𝑝𝑙_𝑈𝐹 = 1 (4)

∀𝑙 ∈ L, 𝑙𝑜𝑜𝑝𝑙_𝑈𝐹%𝑇𝐶𝑙,0 == 0 (5)
Pipeline Constraints 6, 7, 8, and 9 facilitate the selection of

loop pipelining, allowing only one pipeline per nested loop and
computing the initiation interval (II) in accordance with the chosen
pipelined loop. The II is determined based on the loop’s properties
and the iteration latency of the reduction operation, specifically
when the loop being pipelined is a reduction loop, following the
approach outlined in [23, 24].

∀𝑙 ∈ L, 𝑙𝑜𝑜𝑝𝑙_𝑝𝑖𝑝 ∈ {0, 1} (6)
∀𝑙 ∈ L, (1 − 𝑙𝑜𝑜𝑝𝑙_𝑝𝑖𝑝) ×𝑇𝐶𝑙,1 == 1 (7)

∀𝑠 ∈ S,
∑︁
𝑙∈L𝑠

𝑙𝑜𝑜𝑝𝑙_𝑝𝑖𝑝 ≤ 1 (8)

∀𝑠 ∈ S, 𝐼 𝐼𝑠 =
∑︁
𝑙∈L𝑠

𝑙𝑜𝑜𝑝𝑙_𝑝𝑖𝑝 × 𝐼 𝐼𝑙 (9)

On-chip memory Constraints 10 and 11 ensure that each array
is cached on-chip at a single location within the code, and that the
on-chip tiled data fits within the available on-chip memory.

∀𝑙 ∈ L,∀𝑎 ∈ A, 𝑐𝑎𝑐ℎ𝑒𝑙_𝑎𝑟𝑟𝑎 ∈ {0, 1} (10)∑︁
𝑎∈A

∑︁
𝑙∈L

𝑐𝑎𝑐ℎ𝑒𝑙_𝑎𝑟𝑟𝑎 × 𝑓 𝑡_𝑎𝑟𝑟𝑎𝑦𝑎_𝑙𝑜𝑜𝑝𝑙 ≤ 𝑀𝑒𝑚 (11)

Array partitioning Equations 12, 13 and 14 guarantee that the
maximum array partitioning is not exceeded, and it ensures that the
partitioning of the array is greater than or equal to the maximum
unroll factor applied to that dimension. Thanks to Equation 13,
which ensures that each unroll factor (𝑇𝐶𝑙,2) divides 𝐴𝑃𝑎,𝑑 , 𝐴𝑃𝑎,𝑑
directly determines the array partitioning applied in the generated
code.

∀𝑎 ∈ A,
∏
𝑑∈N

𝐴𝑃𝑎,𝑑 ≤ 𝑚𝑎𝑥𝑝𝑎𝑟𝑡 (12)

∀𝑎 ∈ A,∀𝑑 ∈ N,∀𝑙 ∈ 𝐶𝑎𝑑 , 𝐴𝑃𝑎,𝑑%𝑇𝐶𝑙,2 == 0 (13)
∀𝑎 ∈ A,∀𝑑 ∈ N,∀𝑙 ∈ 𝐶𝑎𝑑 , 𝐴𝑃𝑎,𝑑 ≥ 𝑇𝐶𝑙,2 (14)

DSP utilization Lastly, Equations 15, 16, 17, and 18 compute the
DSP utilization under optimistic (full reuse) and pessimistic (no
reuse) DSP reuse assumptions.

𝐷𝑆𝑃𝑠_𝑢𝑠𝑒𝑑𝑜𝑝𝑡 =
∑︁

𝑜𝑝∈{+,−,∗,/}
max
𝑠∈S

(𝐷𝑆𝑃𝑠𝑜𝑝 /𝐼 𝐼𝑠) (15)

𝐷𝑆𝑃𝑠_𝑢𝑠𝑒𝑑𝑝𝑒𝑠 =
∑︁

𝑜𝑝∈{+,−,∗,/}

∑︁
𝑠∈S

(𝐷𝑆𝑃𝑠𝑜𝑝 /𝐼 𝐼𝑠) (16)

𝑟𝑒𝑢𝑠𝑒𝑜𝑝𝑡 × 𝐷𝑆𝑃𝑠_𝑢𝑠𝑒𝑑𝑜𝑝𝑡 ≤ 𝐷𝑆𝑃𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 (17)
(1 − 𝑟𝑒𝑢𝑠𝑒𝑜𝑝𝑡) × 𝐷𝑆𝑃𝑠_𝑢𝑠𝑒𝑑𝑝𝑒𝑠 ≤ 𝐷𝑆𝑃𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 (18)

4.3 Objective Function
We structure the objective function akin to the approach described
in [23, 24], tailoring it to meet the specific needs of our prob-
lem. Here, 𝐿𝑎𝑡2 corresponds to the fine-grained unrolled tile, 𝐿𝑎𝑡1
denotes the pipeline tile that incorporates the fine-grained un-
rolled tile, and recursively, 𝐿𝑎𝑡0 encompasses 𝐿𝑎𝑡1, enabling coarse-
grained unrolling and facilitating on-chip data caching.

𝐿𝑎𝑡2 = 𝐼𝐿𝑝𝑎𝑟 + 𝐼𝐿𝑠𝑒𝑞 ×∏
𝑙∈L𝑟𝑒𝑑 × log2 (𝑇𝐶𝑙,2)

𝐿𝑎𝑡1 = 𝐿𝑎𝑡2 + 𝐼 𝐼 × (𝑇𝐶𝑙,1 − 1)
𝐿𝑎𝑡0 =

∏
𝑙∈L

𝑇𝐶𝑙,0
𝑙𝑜𝑜𝑝𝑙 _𝑈𝐹

× 𝐿𝑎𝑡1

𝐿𝑚𝑒𝑚 =
∑
𝑙∈L max𝑎∈A (𝑐𝑎𝑐ℎ𝑒𝑙_𝑎𝑟𝑟𝑎 × 𝑓 𝑡_𝑎𝑟𝑟𝑎𝑦𝑎_𝑙𝑜𝑜𝑝𝑙)

𝑜𝑏 𝑗_𝑓 𝑢𝑛𝑐 = 𝐿𝑎𝑡0 + 𝐿𝑚𝑒𝑚

5 Code Generation and Optimization
The NLP allows us to find the trip count of each loop, the array
partitioning for each array, and the size of the on-chip buffers. By
considering the loop order and the pragmas applied to each loop
as described in Section 3, we can directly generate the code. We
automatically generate the functions that load data from off-chip
to on-chip with the maximum burst size possible and vice versa
with the functions that store the data off-chip. Additionally, we
incorporate further optimizations to enhance the QoR.

5.1 Optimization for non-constant trip count
To optimize loops with non-constant trip counts, we implement
a code transformation that preserves the NLP’s estimation while
simplifying compilation for the HLS compiler. We achieve this by
replacing loops with non-constant trip counts with the maximal
trip count computed using PoCC [19]. Subsequently, we create a
function for all statements iterated by this loop, ensuring compli-
ance with the constraints of the non-constant trip count loop. This
function returns the computation if the constraints are met or re-
turns just the value of the output otherwise. Introducing a condition
solely above the statement results in excessive compilation times.
Therefore, we employ these techniques to reduce compilation time
and achieve designs with a good QoR.

5.2 Overlapping computation and communication
The constraints of the NLP consider the sum of the footprints of
all arrays used during the design execution. Thus, we have the
option, while already anticipating resource constraints, to overlap

Trovato and Tobin, et al.

the transfer of arrays between off-chip and on-chip (or vice versa)
at the same level or between the transfer of the arrays needed for
the next loop body with the computation of the current loop body.

To achieve this, we separate each loop body into different func-
tions, as well as the functions that transfer input data between
off-chip and on-chip. Additionally, we create new functions that
execute these independent functions in parallel. To ensure paral-
lel execution, within these newly created functions designed for
overlap, we include only independent functions.

5.3 Code transformation for HLS
To simplify the understanding of the HLS compiler, particularly
to ensure that the compiler can pipeline loops with the correct
initiation interval (II), we simplify the reductions (regardless of
whetherwe use tree reductions) in the fine-grained unrolled part. As
specified in section 3, the fully unrolled loops are placed innermost.
Therefore, before the reduction, we create a variable to accumulate
the reduction, which we then add to the output.

Additionally, we incorporate the pragma loop_flatten off on all
reduction loops above the pipeline. While theoretically, this ad-
justment could enhance the QoR, in practice, the compiler might
choose not to pipeline at all if it cannot flatten the loop and pipeline
correctly.

6 Evaluation
6.1 Setup
We employ kernels sourced from Polybench/C 4.2.1 [20], supple-
mented by a Convolutional Neural Network (CNN) kernel and
matrix multiplication tasks akin to those in the BERT transformer
model. Our computations utilize single-precision floating-point
data types as the default, facilitating comparison with AutoDSE
and NLP-DSE. We operate on medium-sized datasets from Poly-
Bench/C [20]. We also compare our approach with HARP [28],
which seeks to enhance High-Level Synthesis design exploration
by integrating a Graph Neural Network model that predicts HLS
tool behavior. They conduct exploration within this space utilizing
the GNN model for one hour and then synthesize the top-10 de-
signs. We use the medium-sized Polybench kernels found in their
training set with double-precision floating-point data types, aiming
to deploy HARP under optimal conditions. As detailed in [23, 24],
HARP’s effectiveness is not universally applicable without the nec-
essary fine-tuning or training, particularly when confronted with
diverse problem sizes.

We chose these problem sizes to demonstrate the efficacy of
our approach in transforming codes and inserting pragmas in sce-
narios where fully unrolling is not feasible. Additionally, we aim
to illustrate the effectiveness of our framework in tiling code for
substantial tasks such as CNN and bert_3072_100. This approach
ensures that only a portion (a tile) of each array fits on-chip, align-
ing with the available memory constraints. The problem size and
original loop order of CNN are I,J=256, H,W=224 and P,Q=5. For
bert_n_m matrix multiplication the schedule and problem size are
I=n, J=m, K=n (reduction).

We utilize the AMD/Xilinx Vitis HLS compiler [34] to showcase
the effectiveness of Sisyphus. Report generation is performed using
AMD/Xilinx Vitis 2023.2. When enabling tree reduction, we utilize
the "funsafe math optimizations" option to enable commutative/as-
sociative reduction operators, thereby facilitating reductions to be

implemented in logarithmic time. In our comparison with HARP
[28], we utilized the same parameters as the authors, employing
Vitis 2021.1 and activating the option for tree reduction. As our
designated hardware platform, we deploy the Xilinx Alveo U200
device with a target frequency of 250 MHz. We conduct an analysis
of the kernels and automatically generate each NLP problem using
PoCC [19]. Solving these NLP problems, we employ the AMPL
description language and utilize the commercial BARON solver
version 21.1.13 [25, 30]. For our experimental setup, we harness the
computing power of 2 AMD EPYC 7V13 64-Core Processor.

6.2 Experimental Evaluation
The aim of this evaluation is to demonstrate our capability to per-
form the proper transformation while simultaneously inserting
the correct hardware directives. To achieve this, we compare our
approach with three frameworks, that conduct design space explo-
ration to insert pragmas with a fixed schedule.

The input codes provided are the original codes from Polybench
or as described in the subsection 6.1. However, we modify the
kernels containing loops with non-constant trip counts using the
method outlined in Section 5.3. This adjustment ensures a fair
evaluation with the transformations we apply.

We compare our method with AutoDSE [29] and NLP-DSE [23,
24] described in Section 2, and HARP [28].

We generate the AutoDSE space automatically by running the
command ds_generator. We replace the unroll factor and tile size
with all factors of the trip count to ensure consistency within the
space. However, since maximum array partitioning is not a param-
eter within AutoDSE’s space, this space, as observed later with the
kernel atax, is slightly larger. AutoDSE is executed using the bottle-
neck method with a DSE timeout set to 1,000 minutes and a time-
out of 180 minutes for each HLS synthesis. NLP-DSE is executed
with the parameters specified in the paper, including a 30-minute
timeout for the BARON solver and the space provided as input is
{∞, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 1}. For HARP, we adhere
to the parameters outlined by the authors mentioned earlier.

In evaluating Sisyphus, we set a solver timeout of 14,400 seconds
(4 hours) for the Baron solver, which generates only one design. By
default, we assume that the compiler can efficiently reuse resources
between statements that are not executed in parallel. If the synthesis
results in the design exceeding DSP utilization, we relaunch the
NLP with a pessimistic DSP utilization assumption—meaning we
consider no reuse between statements—and regenerate the design
accordingly. For heat-3d, symm, syrk, syr2k, and bert_3072_100
we had to apply the constraint indicating no reuse (Eq. 16), as the
constraint with optimistic reuse (Eq. 15) resulted in kernels with
resource over-utilization. The maximum partitioning constraint,
𝑚𝑎𝑥𝑝𝑎𝑟𝑡 (cf. Section 4), is set at 1024, as determined by our use of
AMD/Xilinx compilers and FPGAs, adhering to their specified limit.

Each synthesis process begins with a C-simulation to verify the
correctness of the generated code.

6.3 Comparison of the methods
6.3.1 AutoDSE and NLP-DSE. Table 3 provides a comparison
among AutoDSE, NLP-DSE, and Sisyphus. The TR column denotes
the status of the tree reduction option, while the T column indi-
cates the specific transformations applied, with D representing
distribution, T for data tiling, and P for permutation. Across all
evaluated kernels, we consistently achieve comparable or superior

Enhancing High-Level Synthesis with Automated Pragma Insertion and Code Transformation Framework

performance, with the exception of the atax kernel, where AutoDSE
yields designs approximately 1% to 2% faster, and heat-3d, where
NLP-DSE makes a 1% improvement. However, the designs obtained
by AutoDSE fall outside our defined space due to the stringent con-
straint of a maximum array partitioning limit of 1024 imposed by
AMD/Xilinx Vitis. The design found by NLP-DSE for heat-3d shares
the same schedule and pragma as ours, but slight enhancements in
QoR are attributed to how Merlin handles memory transfer.

GF/s Perf. Improvement
Kernel TR T Sisyphus AutoDSE NLP-DSE
atax 1 D 1.96 0.99x 1.00x
atax 0 D 1.86 0.98x 1.00x
heat-3d - - 131.33 35.09x 0.99x
jacobi-2d - - 128.83 13.06x 6.60x
2mm 1 D,P 164.34 403.55x 1.33x
2mm 0 D,P 162.24 775.26x 1.36x
bert_100_64 1 D,P 88.30 1.08x 1.03x
bert_100_64 0 D,P 76.76 1.09x 1.09x
bert_100_768 1 D,P 218.08 1.04x 1.10x
bert_100_768 0 D,P 216.95 1.13x 1.13x
bert_100_3072 1 D,P 220.29 1.10x 1.10x
bert_100_3072 0 D,P 219.97 1.11x 1.11x
gemm 1 D,P 198.26 1.79x 1.51x
gemm 0 D,P 210.63 9.25x 9.57x
bicg 1 D,P 1.96 1.97x 1.97x
bicg 0 D,P 1.86 1.92x 1.93x
gemver 1 P 17.85 4.64x 1.77x
gemver 0 P 12.45 30.91x 7.24x
mvt 1 P 13.71 1.76x 1.76x
mvt 0 P 10.00 1.45x 1.45x
bert_3072_100 1 D,P,T 42.93 2.98x 3.31x
bert_3072_100 0 D,P,T 44.67 536.42x 626.60x
cnn 1 D,P,T 340.20 8.00x 8.91x
cnn 0 D,P,T 339.34 8.05x 10.67x
doitgen 1 D,P 53.22 1.33x 2.66x
doitgen 0 D,P 54.05 5.46x 2.71x
symm 1 D,P 236.82 8.15x 7.20x
symm 0 D,P 236.56 8.14x 7.19x
syr2k 1 D,P 428.12 9.28x 3.12x
syr2k 0 D,P 428.39 17.57x 3.13x
syrk 1 D,P 306.07 12.44x 4.40x
syrk 0 D,P 308.71 12.55x 4.43x
Average 153.65 59.99x 22.85x
Geo Mean 69.09 5.97x 2.89x

Table 3. Comparison of the Throughput (GF/s) achieved with Sisyphus,
AutoDSE and NLP-DSE

Sisyphus averages a speedup of 59.99x and 22.85x over AutoDSE
and NLP-DSE, respectively, across the evaluated kernels. In terms
of geometric mean, Sisyphus achieves a speedup of 5.97x and 2.89x.

Conserve the original schedule when needed In the case of atax
and jacobi-2d, Sisyphus preserves the original schedule and solely
inserts pragmas. Thus, it effectively maintains the existing schedule
while efficiently incorporating pragmas, a process comparable to
that of two DSEs dedicated to pragma insertion. Regarding heat-3d,
the original design opts for partial unrolling of the three loops with
unroll factors of 2, 2, and 38, respectively, enabling a level of paral-
lelism unattainable without code transformation. However, upon

evaluation, we found that this design was over-utilizing resources.
Therefore, the NLP solution, using a pessimistic constraint for DSP
reuse, resulted in a design with the original schedule.

Although we note improvements for jacobi-2d, it is noteworthy
that the same pragma insertion was utilized in at least one DSE.
However, despite this consistency, AMD/Xilinx Vitis 2023.2 failed to
synthesize the design generated by the source-to-source compiler
Merlin, which the two DSEs employ.

Code transformation to manage reduction loop In the cases of
2mm, bert, and gemm, we observe notable improvements resulting
from code transformations, particularly in effectively managing
the reduction loop. This enhancement is particularly evident with
bert_3072_100, where the reduction loop exhibits a large trip count,
as well as in gemm when tree-reduction is not used.

Code transformation with tiling The selection of tile size be-
comes crucial for determining which array sizes, particularly for
bert_3072_100 and CNN with their large arrays, should be cached
on-chip and where they should be transferred. Organizing the out-
ermost loop as output stationary (cf. Section 5.3), prompts the NLP
to perform partial transfers of the array iterated by these loops in
these examples. Consequently, the NLP’s choices in these scenarios
aim to optimize data reuse and minimize redundant memory trans-
fers. However, for CNN, its large size requires multiple transfers of
the array input (cf. Listing 4).

Code transformation for memory-bound kernel For mvt and
gemver, both memory-bound kernels, effective optimization entails
loop permutations to prevent redundant array transfers and accom-
modate array partitioning within the constraints of the AMD/X-
ilinx compiler’s 1024 limit. Sisyphus adeptly manages these loop
permutations and pragma insertions, guaranteeing optimized per-
formance for these kernels. Additionally, in the case of gemver
without tree reduction, the NLP reverses all loop orders to pipeline
the non-reduction loop, further enhancing the QoR. For bicg, fully
distributing and arranging the loops appropriately can enhance
parallelization capabilities.

Allow to achieve a parallelism not achievable without loop trans-
formation For doitgen, symm, syrk, and syr2k, the original schedule
imposes constraints on the achievable level of parallelism. This
limitation elucidates the performance enhancements facilitated by
Sisyphus. In the case of syrk and syr2k, the primary advantageous
transformation is the maximal loop distribution. Meanwhile, for
doitgen and symm, we observe QoR improvements because code
transformations enable a combination of loop unrolling not attain-
able even with maximal loop distribution.

6.3.2 HARP. In Table 4 we compare the throughput and resource
utilization (BRAM, DSP, LUT, FF) achieved with HARP [28]. The en-
hanced performance seen in both bicg and gemver can be attributed
to the same underlying factor observed in the comparison with Au-
toDSE and NLP-DSE. Regarding mvt, HARP produced comparable
performance to our own due to their use of the Merlin source-to-
source compiler, which facilitates loop permutations when partially
unrolling consecutive loops. This allows for them to find the same
schedule that our framework identified. However, for Gemm, the
design discovered by HARP falls outside our specified parameter
space, particularly because of our restriction on maximal array
partitioning. Nonetheless, it is worth noting that it is the only de-
sign among the top 10 evaluated that demonstrates a performance
enhancement over our framework.

Trovato and Tobin, et al.

GF/s Resource Utilization (%) Perf. Imp
BRAM,DSP,LUT,FF

Kernel HARP Sisyphus HARP Sisyphus
atax 1.72 1.77 78,52,49,50 38,26,25,31 1.03x
bicg 0.92 1.77 75,25,35,36 38,26,24,26 1.92x
gemm 125.59 99.96 29,80,55,40 1,67,51,34 0.80x
gemver 1.66 7.38 29,28,35,19 43,27,39,47 4.45x
mvt 7.07 7.06 40,78,43,30 21,64,33,26 1.00x
Average 27.39 23.58 1.84x
Geo Mean 4.71 6.95 1.47x
Table 4. Comparison of GF/s and resources utilization with HARP

6.4 Latency estimation
Implementing the post-optimization strategy outlined in Section
5.2 leads to a loss of the lower bound discussed in [23, 24], primarily
because we do not incorporate computation-communication over-
lap modeling into the NLP. This omission is deliberate, as including
such modeling would significantly increase search time.

Similarly, we opt against integrating the loop_flatten pragma
into our model, despite its potential automatic invocation by the
compiler for loops without reductions. As detailed in Section 5, we
intentionally deactivate it for loops with reductions. Although this
optimization’s automatic application results in the loss of the lower
bound, we have made this choice owing to its rare implementation.
Our aim is to avoid reliance on an optimization that may not be
consistently available.

In Figure 1, we depict the estimated latency by the NLP of the
evaluated designs and juxtapose them with the latencies reported
by HLS. Our post-optimization efforts reveal that most latencies
estimated by NLP exceed those reported by HLS, with the exception
of CNN with and without tree reduction. In the case of CNN (the
last two dots), the pragmas are implemented as anticipated, but the
lower bound of the computed unrolled part is not sufficiently tight.

Figure 1. Comparison of the latency reported by HLS with the esti-
mated latency obtained through NLP

6.5 Scalability of the NLP
Among the 42 NLP evaluations (including those with pessimistic
resource reuse), only 3 timed out after 4 hours. These timeouts
were specifically encountered during the bicg and atax kernels
with tree reduction, and the gemver kernel without tree reduction.
Throughout the search process, the NLP solver BARON maintains
two bounds: a lower bound, which may be unattainable, and the
lowest achievable bound discovered thus far. If the solver completes
before reaching the timeout, these two bounds are identical. In
the cases of atax and bicg, these two bounds were within 1% of
each other, while for gemver, the difference was 20%. The average
solving time was 33 minutes, while the geometric mean stood at
2.94 minutes. Out of 42 instances, 35 finished within an hour.

7 Related Work
Design Space Exploration (DSE) methodologies for pragma inser-
tion, such as those mentioned in [5, 12, 17, 23, 24, 27, 28, 28, 29, 33,
38, 40, 43], yield designs with a satisfactory QoR. However, they
often require extensive computational time, with AutoDSE taking
up to a day to complete. While users have the option to perform
code transformations before conducting DSE, the process typically
involves treating each code transformation and pragma insertion as
separate optimization problems. This decomposition of the problem
can result in a loss of QoR because predicting which transformation
is necessary to achieve an optimal design is challenging. The NLP-
DSE method, as explained in [23, 24], employs a non-linear solver
to integrate pragmas into the code. We build upon the methodology
developed by the authors and tailor it to our specific optimization
space to determine the pragmas and schedule for the kernel.

Various code transformations have been devised for CPUs [1],
GPUs [32], and FPGAs [3, 10, 13–15, 22, 41, 42]. While code trans-
formations for CPUs and GPUs yield remarkable results tailored to
their respective architectures, they may not be inherently suitable
for FPGA targets aimed at achieving high parallelism. Pluto [1], con-
sidered state-of-the-art, performs code transformations including
tiling to minimize dependency distance between memory accesses,
thereby facilitating data reuse. However, in our scenario, reducing
dependency distance could potentially constrain parallelization ef-
forts. Regarding [41, 42], they employ Pluto on different scopes of
the kernel for code transformation, yet its pragma insertion capabil-
ities are limited, making it incomparable to our work. Conversely,
[3, 10, 13–15, 22] pursue a distinct objective from ours. [22] aims
to minimize communication between off-chip and on-chip, which
results in better QoR than ours for memory-bound kernels. The
works [3, 10, 13–15] concentrate on code transformations aimed at
enhancing pipelining techniques. However, these objectives may
not be suitable for computation-bound kernels requiring high levels
of parallelization.

The [2, 6, 8, 36, 37] compilers undertake code transformation and
pragma insertion. However, these transformations are somewhat
limited, mostly encompassing heuristic modifications based on loop
properties. Moreover, the scope of pragma insertion is more limited
compared to our proposed approach.

The choice of tile sizes significantly impacts the QoR. In line with
our methodology, [11, 16] employ a cost model to determine the tile
size. However, while [16] focuses on minimizing communication
overhead, our approach differs. On the other hand, [11] investigates
tiles size selection for Convolutional Neural Networks (CNNs) with
three-level CPU caching.

8 Conclusion
This paper addresses challenges in optimizing HLS via code trans-
formation and pragma insertion. While HLS and source-to-source
compilers accelerate hardware design, achieving high-quality re-
sults often demands manual code intervention, prone to errors and
time-consuming. To address this, Sisyphus is introduced, automat-
ing code transformation and pragma insertion for HLS into a single
optimization problem. Using Non-Linear Programming (NLP), Sisy-
phus determines code transformations and pragma placements
simultaneously, ensuring optimized performance within resource
constraints.

Enhancing High-Level Synthesis with Automated Pragma Insertion and Code Transformation Framework

References
[1] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. 2008. A

Practical Automatic Polyhedral Parallelizer and Locality Optimizer. In Proceed-
ings of the 29th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Tucson, AZ, USA) (PLDI ’08). Association for Computing Ma-
chinery, New York, NY, USA, 101–113. https://doi.org/10.1145/1375581.1375595

[2] Hongzheng Chen, Niansong Zhang, Shaojie Xiang, Zhichen Zeng, Mengjia
Dai, and Zhiru Zhang. 2024. Allo: A Programming Model for Composable
Accelerator Design. Proc. ACM Program. Lang. 8, PLDI, Article 171 (jun 2024).
https://doi.org/10.1145/3656401

[3] Young-kyu Choi and Jason Cong. 2018. HLS-Based Optimization and Design
Space Exploration for Applications with Variable Loop Bounds. In 2018 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). 1–8. https://doi.
org/10.1145/3240765.3240815

[4] Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees Vissers, and
Zhiru Zhang. 2011. High-Level Synthesis for FPGAs: From Prototyping to
Deployment. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 30, 4 (2011), 473–491. https://doi.org/10.1109/TCAD.2011.2110592

[5] Lorenzo Ferretti, Giovanni Ansaloni, and Laura Pozzi. 2018. Lattice-Traversing
Design Space Exploration forHigh Level Synthesis. In 2018 IEEE 36th International
Conference on Computer Design (ICCD). 210–217. https://doi.org/10.1109/ICCD.
2018.00040

[6] SitaoHuang, KunWu,Hyunmin Jeong, ChengyueWang, Deming Chen, andWen-
Mei Hwu. 2021. PyLog: AnAlgorithm-Centric Python-Based FPGAProgramming
and Synthesis Flow. IEEE Trans. Comput. 70, 12 (2021), 2015–2028. https:
//doi.org/10.1109/TC.2021.3123465

[7] Intel. 2024. Intel. https://www.intel.com/content/www/us/en/software/
programmable/quartus-prime/hls-compiler.html

[8] Yi-Hsiang Lai, Yuze Chi, Yuwei Hu, Jie Wang, Cody Hao Yu, Yuan Zhou, Jason
Cong, and Zhiru Zhang. 2019. HeteroCL: A Multi-Paradigm Programming
Infrastructure for Software-Defined Reconfigurable Computing. In Proceedings
of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (Seaside, CA, USA) (FPGA ’19). Association for Computing Machinery,
New York, NY, USA, 242–251. https://doi.org/10.1145/3289602.3293910

[9] Jiajie Li, Yuze Chi, and Jason Cong. 2020. HeteroHalide: From Image Processing
DSL to Efficient FPGA Acceleration. In Proceedings of the 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (Seaside, CA, USA)
(FPGA ’20). Association for Computing Machinery, New York, NY, USA, 51–57.
https://doi.org/10.1145/3373087.3375320

[10] Peng Li, Louis-Noël Pouchet, and Jason Cong. 2014. Throughput optimization for
high-level synthesis using resource constraints. In Int. Workshop on Polyhedral
Compilation Techniques (IMPACT’14).

[11] Rui Li, Yufan Xu, Aravind Sukumaran-Rajam, Atanas Rountev, and P. Sadayappan.
2021. Analytical characterization and design space exploration for optimization
of CNNs. In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (Virtual, USA) (ASP-
LOS ’21). Association for Computing Machinery, New York, NY, USA, 928–942.
https://doi.org/10.1145/3445814.3446759

[12] Hung-Yi Liu and Luca P. Carloni. 2013. On learning-based methods for design-
space exploration with High-Level Synthesis. In 2013 50th ACM/EDAC/IEEE
Design Automation Conference (DAC). 1–7.

[13] Junyi Liu, Samuel Bayliss, and George A. Constantinides. 2015. Offline Synthesis
of Online Dependence Testing: Parametric Loop Pipelining for HLS. In 2015 IEEE
23rd Annual International Symposium on Field-Programmable Custom Computing
Machines. 159–162. https://doi.org/10.1109/FCCM.2015.31

[14] Junyi Liu, John Wickerson, Samuel Bayliss, and George A Constantinides. 2017.
Polyhedral-based dynamic loop pipelining for high-level synthesis. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems 37, 9 (2017),
1802–1815.

[15] Junyi Liu, JohnWickerson, and George A Constantinides. 2016. Loop splitting for
efficient pipelining in high-level synthesis. In 2016 IEEE 24th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE,
72–79.

[16] Junyi Liu, John Wickerson, and George A. Constantinides. 2017. Tile size se-
lection for optimized memory reuse in high-level synthesis. In 2017 27th Inter-
national Conference on Field Programmable Logic and Applications (FPL). 1–8.
https://doi.org/10.23919/FPL.2017.8056810

[17] Anushree Mahapatra and Benjamin Carrion Schafer. 2014. Machine-learning
based simulated annealer method for high level synthesis design space explo-
ration. In Proceedings of the 2014 Electronic System Level Synthesis Conference
(ESLsyn). 1–6. https://doi.org/10.1109/ESLsyn.2014.6850383

[18] Microchip. 2023. SmartHLS Compiler Software. https://www.microchip.com/en-
us/products/fpgas-and-plds/fpga-and-soc-design-tools/smarthls-compiler

[19] PoCC [n. d.]. PoCC, the Polyhedral Compiler Collection 1.3. http://pocc.
sourceforge.net

[20] PolyBench [n. d.]. PolyBench/C 4.2.1. http://polybench.sourceforge.net
[21] Polybench [n. d.]. PolyBench/C: the Polyhedral Benchmark suite. http://tinyurl.

com/m7ztgex.
[22] Louis-Noel Pouchet, Peng Zhang, P. Sadayappan, and Jason Cong. 2013.

Polyhedral-Based Data Reuse Optimization for Configurable Computing. In

Proceedings of the ACM/SIGDA International Symposium on Field Programmable
Gate Arrays (Monterey, California, USA) (FPGA ’13). Association for Computing
Machinery, New York, NY, USA, 29–38. https://doi.org/10.1145/2435264.2435273

[23] Stéphane Pouget, Louis-Noël Pouchet, and Jason Cong. 2024. Automatic Hard-
ware Pragma Insertion in High-Level Synthesis: A Non-Linear Programming
Approach. In Proceedings of the 2024 ACM/SIGDA International Symposium on
Field Programmable Gate Arrays (Monterey,CA,USA) (FPGA ’24). Association
for Computing Machinery, New York, NY, USA, 184. https://doi.org/10.1145/
3626202.3637593

[24] Stéphane Pouget, Louis-Noël Pouchet, and Jason Cong. 2024. Automatic Hard-
ware Pragma Insertion in High-Level Synthesis: A Non-Linear Programming
Approach. arXiv (2024).

[25] N. V. Sahinidis. 2017. BARON 21.1.13: Global Optimization of Mixed-Integer
Nonlinear Programs, User’s Manual.

[26] Siemens. 2023. Catapult High-Level Synthesis. https://eda.sw.siemens.com/en-
US/ic/catapult-high-level-synthesis/

[27] Atefeh Sohrabizadeh, Yunsheng Bai, Yizhou Sun, and Jason Cong. 2022. Auto-
mated Accelerator Optimization Aided by Graph Neural Networks. In 2022 59th
ACM/IEEE Design Automation Conference (DAC).

[28] Atefeh Sohrabizadeh, Yunsheng Bai, Yizhou Sun, and Jason Cong. 2023. Robust
GNN-Based Representation Learning for HLS. In 2023 IEEE/ACM International
Conference on Computer Aided Design (ICCAD). 1–9. https://doi.org/10.1109/
ICCAD57390.2023.10323853

[29] Atefeh Sohrabizadeh, Cody Hao Yu, Min Gao, and Jason Cong. 2021. AutoDSE:
Enabling Software Programmers Design Efficient FPGA Accelerators. In The
2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(Virtual Event, USA) (FPGA ’21). Association for Computing Machinery, New
York, NY, USA, 147. https://doi.org/10.1145/3431920.3439464

[30] M. Tawarmalani and N. V. Sahinidis. 2005. A polyhedral branch-and-cut approach
to global optimization. Mathematical Programming 103 (2005), 225–249. Issue 2.

[31] Sven Verdoolaege. 2011. Counting affine calculator and applications. In First Inter-
national Workshop on Polyhedral Compilation Techniques (IMPACT’11), Chamonix,
France.

[32] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez, Chris-
tian Tenllado, and Francky Catthoor. 2013. Polyhedral parallel code generation
for CUDA. ACM Trans. Archit. Code Optim. 9, 4, Article 54 (jan 2013), 23 pages.
https://doi.org/10.1145/2400682.2400713

[33] Nan Wu, Yuan Xie, and Cong Hao. 2023. IronMan-Pro: Multiobjective De-
sign Space Exploration in HLS via Reinforcement Learning and Graph Neural
Network-Based Modeling. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 42, 3 (2023), 900–913. https://doi.org/10.1109/TCAD.
2022.3185540

[34] AMD Xilinx. 2023.2. Vitis. https://www.xilinx.com/products/design-tools/vitis.
html

[35] AMD Xilinx. 2024. Merlin. https://github.com/Xilinx/merlin-compiler
[36] Hanchen Ye, Hyegang Jun, and Deming Chen. 2024. HIDA: A Hierarchical

Dataflow Compiler for High-Level Synthesis. In Proceedings of the 29th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 1 (La Jolla,CA,USA) (ASPLOS ’24). Association for
Computing Machinery, New York, NY, USA, 215–230. https://doi.org/10.1145/
3617232.3624850

[37] Hanchen Ye, HyeGang Jun, Hyunmin Jeong, Stephen Neuendorffer, and Deming
Chen. 2022. ScaleHLS: A Scalable High-Level Synthesis Framework with Multi-
Level Transformations and Optimizations: Invited. In Proceedings of the 59th
ACM/IEEE Design Automation Conference (San Francisco, California) (DAC ’22).
Association for Computing Machinery, New York, NY, USA, 1355–1358. https:
//doi.org/10.1145/3489517.3530631

[38] Cody Hao Yu, Peng Wei, Max Grossman, Peng Zhang, Vivek Sarker, and Jason
Cong. 2018. S2FA: An Accelerator Automation Framework for Heterogeneous
Computing in Datacenters. In 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC). 1–6. https://doi.org/10.1109/DAC.2018.8465827

[39] Zhiru Zhang, Yiping Fan,Wei Jiang, Guoling Han, Changqi Yang, and Jason Cong.
2008. AutoPilot: A Platform-Based ESL Synthesis System. Springer Netherlands,
Dordrecht, 99–112. https://doi.org/10.1007/978-1-4020-8588-8_6

[40] Jieru Zhao, Liang Feng, Sharad Sinha, Wei Zhang, Yun Liang, and Bingsheng
He. 2017. COMBA: A comprehensive model-based analysis framework for high
level synthesis of real applications. In 2017 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). 430–437. https://doi.org/10.1109/ICCAD.
2017.8203809

[41] Ruizhe Zhao and Jianyi Cheng. 2021. Phism: Polyhedral High-Level Synthesis in
MLIR. arXiv preprint arXiv:2103.15103 (2021).

[42] Ruizhe Zhao, Jianyi Cheng, Wayne Luk, and George A Constantinides. 2022.
POLSCA: Polyhedral High-Level Synthesis with Compiler Transformations.
arXiv (2022).

[43] Guanwen Zhong, Alok Prakash, Yun Liang, Tulika Mitra, and Smail Niar. 2016.
Lin-Analyzer: A high-level performance analysis tool for FPGA-based accelera-
tors. In 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6.
https://doi.org/10.1145/2897937.2898040

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1145/3656401
https://doi.org/10.1145/3240765.3240815
https://doi.org/10.1145/3240765.3240815
https://doi.org/10.1109/TCAD.2011.2110592
https://doi.org/10.1109/ICCD.2018.00040
https://doi.org/10.1109/ICCD.2018.00040
https://doi.org/10.1109/TC.2021.3123465
https://doi.org/10.1109/TC.2021.3123465
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://doi.org/10.1145/3289602.3293910
https://doi.org/10.1145/3373087.3375320
https://doi.org/10.1145/3445814.3446759
https://doi.org/10.1109/FCCM.2015.31
https://doi.org/10.23919/FPL.2017.8056810
https://doi.org/10.1109/ESLsyn.2014.6850383
https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-and-soc-design-tools/smarthls-compiler
https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-and-soc-design-tools/smarthls-compiler
http://pocc.sourceforge.net
http://pocc.sourceforge.net
http://polybench.sourceforge.net
http://tinyurl.com/m7ztgex
http://tinyurl.com/m7ztgex
https://doi.org/10.1145/2435264.2435273
https://doi.org/10.1145/3626202.3637593
https://doi.org/10.1145/3626202.3637593
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/
https://doi.org/10.1109/ICCAD57390.2023.10323853
https://doi.org/10.1109/ICCAD57390.2023.10323853
https://doi.org/10.1145/3431920.3439464
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.1109/TCAD.2022.3185540
https://doi.org/10.1109/TCAD.2022.3185540
https://www.xilinx.com/products/design-tools/vitis.html
https://www.xilinx.com/products/design-tools/vitis.html
https://github.com/Xilinx/merlin-compiler
https://doi.org/10.1145/3617232.3624850
https://doi.org/10.1145/3617232.3624850
https://doi.org/10.1145/3489517.3530631
https://doi.org/10.1145/3489517.3530631
https://doi.org/10.1109/DAC.2018.8465827
https://doi.org/10.1007/978-1-4020-8588-8_6
https://doi.org/10.1109/ICCAD.2017.8203809
https://doi.org/10.1109/ICCAD.2017.8203809
https://doi.org/10.1145/2897937.2898040

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Space to explore
	2.2 Limitation of the current DSE
	2.3 Overview of Sisyphus

	3 Unified Space
	4 NLP
	4.1 Variables
	4.2 Constraints
	4.3 Objective Function

	5 Code Generation and Optimization
	5.1 Optimization for non-constant trip count
	5.2 Overlapping computation and communication
	5.3 Code transformation for HLS

	6 Evaluation
	6.1 Setup
	6.2 Experimental Evaluation
	6.3 Comparison of the methods
	6.4 Latency estimation
	6.5 Scalability of the NLP

	7 Related Work
	8 Conclusion
	References

