
Autotuning Convolutions is Easier Than You Think

NICOLAS TOLLENAERE, GUILLAUME IOOSS, INRIA, France
STÉPHANE POUGET, University of California Los-Angeles, USA

HUGO BRUNIE, CHRISTOPHE GUILLON, INRIA, France
ALBERT COHEN, Google, France
P. SADAYAPPAN, University of Utah, USA

FABRICE RASTELLO, INRIA, France

A wide range of scientiic and machine learning applications depend on highly optimized implementations of tensor computa-

tions. Exploiting the full capacity of a given processor architecture remains a challenging task, due to the complexity of the

microarchitectural features that come into play when seeking near-peak performance. Among the state-of-the-art techniques

for loop transformations for performance optimization, AutoScheduler [Zheng et al. 2020a] tends to outperform other systems.

It often yields higher performance as compared to vendor libraries, but takes a large number of runs to converge, while also

involving a complex training environment.

In this paper, we deine a structured coniguration space that enables much faster convergence to high-performance code

versions, using only random sampling of candidates. We focus on two-dimensional convolutions on CPUs. Compared to

state-of-the-art libraries, our structured search space enables higher performance for typical tensor shapes encountered

in convolution stages in deep learning pipelines. Compared to auto-tuning code generators like AutoScheduler, it prunes

the search space while increasing the density of eicient implementations. We analyze the impact on convergence speed

and performance distribution, on two Intel x86 processors and one ARM AArch64 processor. We match or outperform the

performance of the state-of-the-art oneDNN library and TVM’s AutoScheduler, while reducing the autotuning efort by at

least an order of magnitude.

CCS Concepts: · Software and its engineering→ Source code generation; Dynamic compilers.

Additional Key Words and Phrases: Code generation, Optimisation space, Microkernel, Convolution

1 INTRODUCTION

Tensor computations are at the core of many applications in scientiic computing, signal processing, data analytics
and machine learning. Their optimized implementation is therefore of considerable interest. While vendor
libraries have originally been the result of extensive manual eforts [Van Zee and van de Geijn 2015], today’s
leading approaches involve domain-speciic code generators. Such code generators are typically controlled by an
expert, or by an autotuning algorithm often referred to as an autoscheduler. Focusing on convolution operations,
the range of available options is the following:

• Vendor libraries like oneDNN [Intel 2018] and cuDNN [NVIDIA 2018] have been manually optimized
by expert HPC and software engineers. They used to dominate the HPC landscape. But with the growing

Authors’ addresses: Nicolas Tollenaere, Guillaume Iooss, INRIA, Grenoble, France, nicolas.tollenaere/guillaume.iooss@inria.fr; Stéphane

Pouget, University of California Los-Angeles, Los Angeles, USA, pouget@cs.ucla.edu; Hugo Brunie, Christophe Guillon, INRIA, Grenoble,

France, hugo.bruinie/christophe.guillon@inria.fr; Albert Cohen, Google, Paris, France, albertcohen@google.com; P. Sadayappan, University

of Utah, Salt Lake City, USA, psaday@gmail.com; Fabrice Rastello, INRIA, Grenoble, France, fabrice.rastello@inria.fr.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).

1544-3566/2022/11-ART

https://doi.org/10.1145/3570641

ACM Trans. Arch. Code Optim.

https://doi.org/10.1145/3570641

2 • Nicolas Tollenaere, Guillaume Iooss, Stéphane Pouget, Hugo Brunie, Christophe Guillon, Albert Cohen, P. Sadayappan, and Fabrice
Rastello

diversity of operations and architectures, manual eforts do not scale. In particular, while modern libraries
use JIT optimization, they cannot fully adapt to every given tensor shape of a CNN layer in a DNN pipeline.

• Polyhedral compilers such as Diesel [Elango et al. 2018], Polly [Grosser et al. 2012], Pluto [Bondhugula
et al. 2008], PPCG [Verdoolaege et al. 2013], Tensor Comprehensions, [Vasilache et al. 2018], Tiramisu
[Baghdadi et al. 2019] automatically generate multi-level tiled code for aine loop nests. However, a
signiicant limitation is that none of them can directly optimize across tile sizes, which is critical for eicient
CNN implementations.

• Autotuning can be performed by systems like AutoTVM [Chen et al. 2018b] or AutoScheduler [Zheng
et al. 2020a] both part of the TVM domain-speciic compiler [Chen et al. 2018a]. A search process guided
by a dynamically constructed machine learning model [Chen et al. 2018b] iterates through tiled loop
conigurations, where code is generated, compiled and executed on the target platform. AutoTVM has been
demonstrated to outperform polyhedral compilers [Chen et al. 2018b], and AutoScheduler to outperform
AutoTVM [Zheng et al. 2020a].

• Analytical modeling and optimization. Recent research has shown that a comprehensive characteriza-
tion and optimization across all possible tiled loop conigurations for CNNs is feasible [Li et al. 2021]. The
approach is semi-automatic: manual reasoning to build analytical models of data movement, in conjunction
with the automated resolution of nonlinear optimization problems to optimize tile sizes.

Among existing solutions, AutoScheduler [Zheng et al. 2020a] has demonstrated higher performance of
optimized codes over both automatic and semi-automatic tools, as well as vendor libraries. AutoScheduler deines
a space in which it samples candidate implementations. It runs a batch of candidates on the target platform,
and trains and reines a regression cost model using the performance measurements from executed candidates.
The cost model is used to select samples for the next batch, focusing on the candidates with the best predicted
performance by the cost model. This approach is very efective in generating high-performance code, but the
training environment in the autotuning loop is rather cumbersome. The convergence rate is also slow, at least a
thousand runs, which takes several hours for each optimized stage in a DNN pipeline.

When analyzing the programs sampled across multiple AutoScheduler sessions, we observed that the cost model
tends to rediscover some classical principles of eicient code generation, such as outer product microkernels. A
microkernel is an unrolled and vectorized portion of computation, whose data footprint its inside the innermost
level of the memory architecture, i.e., CPU registers. The implementations in vendor libraries (such as oneDNN)
relies heavily on a very small set of microkernels, written in assembly code or with vector intrinsics [Li et al.
2021; Van Zee and van de Geijn 2015]. This is efective when the unroll factor divides the problem size, but
lacks lexibility overall. Indeed, the best implementations found by AutoScheduler often leverage unconventional
microkernels, unrolled along up to 5 dimensions, with a variety of unroll factors.

These observations raise the question of how much of the search acceleration beneits of AutoScheduler’s ML
modeling could be achieved by the use of expert knowledge embedded into the optimization search space.

Contributions. This paper introduces a structured space capturing such expert knowledge. Its structure derives
from the oline (and automatic) identiication of a collection of eicient microkernels, embedded into an original,
hierarchical tiling scheme. We show that the plain random sampling of candidates in this space allows for much
faster convergence than AutoScheduler with comparable performance.

We focus on two-dimensional convolutions on CPU. While accelerators are the dominant platform for training,
latency-bound inference tasks are still typically served by CPUs.
The construction of our structured coniguration space is as follows: We start with an oline preselection of

high-performing, automatically-generated microkernels. This step in problem-size independent and performed
only once for each target microarchitecture. Then, online search operates within a hierarchy of strictly divisible

tiles. The structure of the online search derives from this divisibility constraint, and from the requirement that

ACM Trans. Arch. Code Optim.

Autotuning Convolutions is Easier Than You Think • 3

every tile decomposes into the microkernels identiied oline. Since some problem sizes are not divisible by any
tile size corresponding to an eicient microkernel, we allow for the sequential combination of two microkernels

with the appropriate multiplicity matching the tensor sizes for a speciic convolution stage to be optimized.
Compared to state-of-the-art libraries, our structured search space enables higher performance for typical tensor
shapes encountered in convolution stages in deep learning pipelines. Compared to automatic generators like
AutoScheduler, it prunes the search space while increasing the density of eicient implementations.

While our approach applies to a wider class of tensor computations, our experiments focus on CNNs with 2D
convolutions. We evaluate the impact of the structure of the search space on the performance distribution.
We describe our implementation and evaluate it on 20+ CNN layers from 2 ML inference models (ResNet-18

and Yolo-9000). We match or outperform the performance of the state-of-the-art oneDNN library [Intel 2018] and
TVM’s AutoScheduler [Chen et al. 2018a; Zheng et al. 2020a], while reducing the autotuning efort by at least an
order of magnitude.

Outline. The rest of the paper is organized as follows: Sec. 2 provides a high-level overview of our approach.
Sec. 3 introduces the principles of the structured search space. Sec. 4 presents the overall autotuning strategy.
Sec. 5 reports experimental results and compares with state-of-the-art frameworks and libraries. Sec. 6 revisits
the principles of our autotuning strategy in the form of an ablation study. Sec. 7 discusses related work before
the conclusion in Sec. 8.

2 OVERVIEW OF THE APPROACH

Let us illustrate the overall approach by observing the structure of the generated code and how it conditions the
structure of the search space itself. Please refer to Section 3.1 for a formal deinition of the concepts used in this
section.

Structure of the generated code. Fig. 1 and 2 illustrate the two-level code generation strategy for convolutions
and the nature of microkernels in this context.
As shown in Fig. 2(a), the generated code can be divided into two parts. The innermost loops, which are

register-resident, correspond to the microkernel. Apart from the reduction loop on � , these loops are unrolled
and vectorized, in order to use fully the capability of the CPU’s computational units. Then, the microkernel is
repeated across the whole iteration space. The enclosing loops are the result of multi-level tiling.
A 2D convolution is a 7-dimensional nested loop. Its optimized implementation requires multi-level tiling.

Given a d-dimensional nested loop (� = 7 here), and a 5-level memory hierarchy (main-memory, L3, L2, L1 caches
and registers), the total number of nested loops for tiling at all levels is 5� (35 here). This is illustrated in Fig. 2(a)
as a set of outermost � tile-loops that step through L3-level tiles. Each L3-level tile has � tile-loops to step through
a set of L2-level tiles, and so on, with the register-level tiles being marked as a microkernel. In practice, eicient
tiled implementations will only have a small subset of active tile loops at a level, while the remaining ones are
degenerate with a range of a single iteration and hence removed from the code. However, we cannot know a

priori which tile-loops are active versus degenerate; iguring this out is one of the responsibilities of autotuning.
Fig. 2(b) shows the code we generate on one sample convolution for a target platform with a vector size of

16 elements. It uses two microkernels, one corresponding to a slice of the convolution iteration space with tile
extents [� : 8,� : 1,� : 1, � : 2 × 16], and another with tile extents [� : 13,� : 1,� : 1, � : 2 × 16]. The L1-level
tile (color-coded blue) spans the full range of 128 iterations along C, which covers the full problem extent along
C. An L2-level tile (color-coded red) spans a range of 8 + 2 × 13 = 34 along H and a range of 2 × 32 = 64 along K
(which is the full problem extent). An L3-level tile (color-coded green) spans 4 × 34 = 136 along H, 136 along
W. At this point the full problem extent has been covered and therefore the outermost tile loops (color-coded
black in Fig. 2(a)) are degenerate. This example illustrates how combining two well-performing microkernels can

ACM Trans. Arch. Code Optim.

4 • Nicolas Tollenaere, Guillaume Iooss, Stéphane Pouget, Hugo Brunie, Christophe Guillon, Albert Cohen, P. Sadayappan, and Fabrice
Rastello

for (� = 0 ; � < � ; � += 1)

for (� = 0 ; � < � ; � += 1)

for (� = 0 ; � < � ; � += 1)

for (ℎ = 0 ; ℎ < � ; ℎ += 1)

for (� = 0 ; � <� ; � += 1)

for (� = 0 ; � < � ; � += 1)

for (� = 0 ; � < � ; � += 1)

� [�,�,ℎ, �] = � [�,�, �, �, �] ∗ � [�, �,ℎ + �, � + �]

Fig. 1. 2D Convolution (unit stride).

. . .
r,s
k

w
h

c
n

⇒
Reg_Tile (microkernel)

. . .

d

L1_Tile

d

L2_Tile

d

L3_Tile

d

d

Oline
�kernel

synthesis{

• Once per HW platform
• Agnostic to layer speciication

(a) Multi-level tiling and split two-level optimization.

Vectorized on k

Unroll k by 2

Unroll h by 8
c: 0..127

Vectorized on k

Unroll k by 2

Unroll h by 13
c: 0..127

iter twice along h

k: 0..1
w: 0..135
h: 0..3

(b) Yolo9000 layer 5.

Fig. 2. Code generation sketch using microkernel composition. The let side (a) shows the generated code’s generic structure
aligned with the memory hierarchy. The right side (b) shows a concrete example for the convolution sizes � = 64, � = 128,
� =� = 136 and � = � = 1. Note that 136 = (8 + 13 × 2) × 4. Loop colors match the cache level they fit into.

be used to perfectly cover the full iteration space using a small collection of pre-selected microkernels, without
needing to use any low-performance code for łpartialž tiles.

Structure of the search space. Based on the code structure observations above, we elaborate on general principles
about our structuring of the search space.

• Preselecting microkernels: High-performing candidates require high-performing microkernels. It is es-
sential for any multi-level tiling strategy to eventually decompose the problem into one or more unrolled
microkernels with the following properties: fully vectorized arithmetic operations, fully vectorized loads
and stores in innermost loops, enough Instruction Level Parallelism (ILP) to saturate vector compute units,
while keeping register pressure under control to avoid spilling. We deine a suiciently broad space of
possible microkernels, varying the number of dimensions considered for unrolling as well as lower and
upper bounds on the unroll factor. We measure the performance of all these microkernels, and retain those
approaching the peak performance of the target CPU. This process is independent of the problem size and
needs to be performed only once per microarchitecture. Compared to AutoScheduler, this approach elimi-
nates all choices about vectorization (which dimensions to be considered) and unrolling (which dimensions
to unroll and how much) from the search space for a speciic problem size.

ACM Trans. Arch. Code Optim.

Autotuning Convolutions is Easier Than You Think • 5

• Divisibility constraint: Partial tiles hurt performance and pollute the search space with sub-par candidates. In
particular, as a consequence of the previous principle, we exclude situations where sub-optimal microkernels
would be necessary to handle trailing iterations when the unroll factor for a problem dimension does not
divide the size of this dimension. To eliminate such situations, we only consider microkernels and tiles
whose sizes divide those of enclosing tiles and the problem itself. This eliminates vasts regions of the search
space, compared to AutoScheduler, where the density of high-performing candidates is extremely low.

• Combination of microkernels: Enforcing divisibility is sometimes inconvenient; it can be relaxed by

combining microkernels with the appropriate multiplicity. Indeed, when a problem extent is a large prime
number, it may be impossible to enforce strict divisibility and stay within cache capacity constraints.
Combining two microkernels of diferent sizes, repeated an appropriate number of times, allows us to
match any problem size or any enclosing tile size. This marginally increases the size of the search space, in
cases where divisibility alone does not allow for a suiciently broad range of tile and microkernel sizes.

We will analyze the efect of these principles on the performance distribution, and show that (i) this search
space contains implementations whose performance is on par with AutoScheduler’s best candidates, and (ii) the
performance distribution is such that even random sampling is suicient to ind good conigurations much faster
than AutoScheduler.

3 SEARCH SPACE PRINCIPLES

We now present the principles underlying our search space in greater details. Section 3.1 starts with notations
and background concepts. In Section 3.2, we discuss the relation between the divisibility constraint, the need to
consider a large number of microkernels, and the possibility of combining two of those. Section 3.3 formalizes the
representation of candidates within the search space. We introduce the notion of an optimization coniguration,
a list of speciiers, each one corresponding to a (potentially unrolled or vectorized) loop level in the generated
code. This notion specializes the notion of schedule in Halide or TVM to relect the structural principles and
domain-speciic nature of our search space. We inally discuss in Section 3.4 how to generate code from a
coniguration.

3.1 Background: Sketching the generated code

Notations and targeted tensor operations. In the rest of the paper, lowercase variables refer to problem dimensions
or loop iterations (� , � , �), and uppercase variables to problem sizes or loop bounds on each corresponding
dimension (resp. � , � , �). The iteration space is the set of integer vectors formed by the iterations of loops
enclosing a given computational statement.
In the class of computations we consider, we assume that any dimension is either parallelÐ� and �Ðor a

reductionÐ� and all dimensions are permutable (i.e., amenable to loop interchange). While associativity can be
used to parallelize reductions, we do not exploit it.

We also assume that a tensor may be accessed multiple times but always with the same subscript expressions,
which are aine functions of surrounding loop iterators. For example, tensorA of shape {�, � | 0 ≤ � < � , 0 ≤ � < �}

may be subscripted by [�, �], corresponding to the access function (�, �, � ↦→ �, �). We also assume that a loop index
cannot appear twice inside an access function: for example, � [�, �] is forbidden. These conditions are satisied by
all tensor contractions and convolutions, including strided variants.

Microkernel and tiling. A microkernel refers to an eicient region of code composed of a (large) basic block
resulting from the full unrolling of innermost parallel loops, enclosed into zero or more perfectly nested reduction
loops. It is generally written in assembly language or using vector intrinsics, aiming for the following objectives:
(i) efective utilization of vector ALUs; (ii) efective reuse of (vector) registers across iterations through unrolling

ACM Trans. Arch. Code Optim.

6 • Nicolas Tollenaere, Guillaume Iooss, Stéphane Pouget, Hugo Brunie, Christophe Guillon, Albert Cohen, P. Sadayappan, and Fabrice
Rastello

for (�� = 0 ; �� < � ; �� += 6)

for (�� = 0 ; �� < � ; �� += 32)

for (� = 0 ; � < � ; � += 1)

�kernel_gemm6,32 (�,�, �, �� , �� , �)

Fig. 3. Tiled sgemm with microkernel.

and register promotion; (iii) adequate Instruction-Level Parallelism (ILP) to hide the latency of pipelined functional
units (multiply-and-add).
Tiling [Coleman and McKinley 1995; Rivera and Tseng 1999] is a loop transformation that partitions the

iteration space into sets, called tiles and executed atomically. We only consider programs with rectangular
iteration spaces, and rectangular tiles. Tiled code has additional loops compared to the original code: loops over
tiles called tile-loops, and loops inside a tile called point-loops. Such a partitioning allows us to control the amount
of data accessed per tile, a.k.a. footprint, to make sure it does not exceed a given cache capacity.

Fig. 3 shows a tiled matrix multiplication kernel as an illustrative example. It relies on an (inline) fully-unrolled
and vectorized microkernel of size 6 × 32.

High-performance libraries, such as BLIS, TCCG, oneDNN, rely on the use of a single microkernel with some
ixed tile sizes within the microkernel, e.g., 6 and 32 in the example of Fig. 3. When tile sizes do not divide tensor
shapes, the traditional approach involves conditional execution or padding to manage partial tiles.

As we will see in rest of this section, we consider a broader coniguration space, using a collection of microkernels

for use with diferent problem sizes. This also allows us to relax the divisibility constraint that must be satisied in
order to avoid partial tiles, by combining multiple fully-optimized microkernels in sequence.

3.2 Divisibility constraint and microkernels

In this section, we demonstrate the importance of combining microkernels instead of relying on (sub-optimal)
partial tiles. We consider the multiplication of very small matrices, such that the data footprint its inside the L1
cache, and we measure performance for a continuous range of problem sizes.

If the microkernel size perfectly divides the problem sizes, we observe a peak in performance. If the microkernel
size does not perfectly divide the problem size, the classical options are (i) to have a partial tile, smaller than the
microkernel that completes the work along the non-divisible dimensions; or (ii) to pad with zeros to make all
dimensions divisible, at the cost of extraneous computations and data movements. We also consider a third route:
(iii) to combine two diferent microkernels to cover the space without partial tiles. The method to determine
the best performing microkernel will be described in Section 4.1, and the selection algorithm is explained in
Section 4.2.

Comparison of diferent microkernel strategies. Figure 4 compares the sequential performance of small matrix
multiplication implementations, for problem sizes � = � = 128 and 8 ≤ � ≤ 49, on an Intel Xeon Gold 6230R CPU
(Cascade Lake-SP, with AVX512). Performance is shown as percentage of the absolute peak, corresponding to the
maximal utilization of the two vectorized FMA units of the microarchitecture.
MKL [Wang et al. 2014], Blis [Van Zee and van de Geijn 2015] and libxsmm [Heinecke et al. 2016] report the

performance of these libraries. Notice the peak every 8 elements of � for MKL and a peak every 12 elements for
BLIS. This gives us an indication about the size of their microkernel along dimension � . Libxsmm also considers
combinations of microkernels, but restricted to predeined sizes such as powers of 2 along the � dimension. Our
experiment shows that this is not enough to obtain consistent performance for all problem sizes.

łSingle microkernel, partial tilež reports the performance of the code generated by our framework, restricted to
using the BLIS microkernel only, with an unrolled partial tile to complete non-divisible dimensions. We observe a

ACM Trans. Arch. Code Optim.

Autotuning Convolutions is Easier Than You Think • 7

Fig. 4. Performance of small matrix multiplication kernels, for � = � = 128 and 8 ≤ � ≤ 50.

luctuation of periodicity 12 in its performance. As expected, for values of � with a low remainder modulo 12, the
performance is worse than for a high remainder due to the low performance of the partial tile.
łSingle microkernel, paddedž is also the performance of the code generated by our framework, but using a

padding strategy instead of a partial tile. We optimistically assumed that the padding overhead is free. As expected,
the performance for low remainders is quite poor due to the signiicant overhead. However, this penalty decreases
on larger sizes.

Finally, łCombination of microkernelsž corresponds to our microkernel combination strategy, which uses two
microkernels with a diferent size along the � dimension. We observe much more stability and high performance
overall for any value of � .

This experiment shows the importance of using all the microkernels available and to combine them, to avoid loss
of performance due to padding or partial tiles. This is particularly important for some convolution benchmarks,
such as Yolo9000, which have small problem sizes along most dimensions, which ampliies the penalty due to a
partial tile and which can have uncooperative divisors (such as 34 = 2 × 17 for Yolo9000-12).

In order to build such combination, we also need a larger variation of eicient microkernels, in order to cover
as many problem sizes as possible while respecting the divisibility constraint.

3.3 Optimization configuration

As discussed earlier, we embed the following constraints in our coniguration search space:
• We conigure tile loops over microkernels from a set of pre-selected high-performing versions generated in
an of-line kernel synthesis stage.

• As mentioned in Section 3.2, we forbid partial tiles, which are particularly ineicient on the innermost
levels of the generated code.

• Because the divisibility constraint would be too strict for some problem sizes, we consider combinations of
microkernels.

To formally deine this space, we need to describe a precise selection of code generation choices. This is the
role of the so-called optimization coniguration, a specialized form of schedule in Halide or TVM, matching the

ACM Trans. Arch. Code Optim.

8 • Nicolas Tollenaere, Guillaume Iooss, Stéphane Pouget, Hugo Brunie, Christophe Guillon, Albert Cohen, P. Sadayappan, and Fabrice
Rastello

for (� = 0 ; � < 128 ; �+= 16) {

for (� = 0 ; � < 72 ; �+= 6)

for (� = 0 ; � < �� ; �+= 1)

�kernel_gemm6,16

for (� = 72 ; � < 128 ; �+= 7)

for (� = 0 ; � < �� ; �+= 1)

�kernel_gemm7,16

}

Fig. 5. Microkernel composition example.Both microkernels must have the same sizes except for one dimension. This
dimension may be split into two loop nests, relaxing the divisibility constraint at the level of microkernels. This accommodates
for the partitioning ofmore problem sizes while guaranteeing near-optimal performance for all iterations of the split dimension.

domain-speciic structure of the code we aim to generate. A coniguration is a list of speciiers that describe the
layered structure of the generated code from the outermost loop inwards:

• R� inserts the outer loop along dimension � . This loop will iterate over the outer-level tiles along � . The size
of these tiles should divide the problem size � . Besides, R� may appear at most once for a given dimension
� .

• T�,� inserts a tile loop along dimension � . It iterates exactly � times along � . Again, � must divide the size
of the iteration space along � .

• U�,� virtually inserts a tile loop with T�,� then fully unrolls it (register tile). The divisibility constraint
holds.

• V� virtually inserts a tile loop with T�,� where � the vector length, then vectorizes it. Vectorization occurs
at the innermost level only: there may be at most one V•.

• �seq�� . [ℓ], where ℓ = [(�� , ��)]1≤�<� is a list of � ≥ 2 pairs introducing a sequence of � loops of size �� along
dimension � . Each one iterates over next-level tiles, deining parameter � = �� for the speciier introducing
these tiles. This speciier generates non-perfectly nested tiles, composing microkernels whose sizes do not
individually divide the size of a given dimension. For example, splitting a dimension � of size � = 34 into
two non-equal parts 22 and 12 with ℓ = [(2, 11), (1, 12)] fulills the divisibility constraint (no partial tiles)
while involving high-performance microkernels of size 11 and 12 along �.

Example. The naive implementation of a matrix multiplication would be represented as [R� ,R� , R�]. A higher
performance implementation, based on the BLIS [Van Zee and van de Geijn 2015] microkernel for loats (f32) on
AVX2 would be

[R� ,R� ,R� , T��
16 , �
, T��

6 ,�
, T�� ,� ,U6,� ,U2, � ,V�]

The generated code contains a microkernel of size (� = 6, � = 16, � = ��) known to be eicient, as it requires
only 15 vector registers and exposes enough ILP (12 independent multiply-add instructions issued between two
accumulation steps) [Van Zee and van de Geijn 2015]. Above it, loops � and � induce a 2D tile of size (�� , ��).
One may immediately notice that this approach assumes that � is a multiple of�� , itself being a multiple of 6
(similar constraints apply to � and �).

State-of-the-art libraries rely on ixed-size microkernels and tuned tiles sizes, and thus introduce partial,
sub-optimal tiles to cope with arbitrary problem sizes that do not fulill such a divisibility constraint. Assume for
example a matrix-multiplication of size � × � ×� = 128× 128× 64. 128 is not divisible by 6, but 128 = 12× 6+ 8× 7,
and eicient code can be obtained using the following coniguration:

[R� , �seq�� . [(12, 6), (8, 7)] , T�� ,� ,U�,� ,U2, � ,V�]

ACM Trans. Arch. Code Optim.

Autotuning Convolutions is Easier Than You Think • 9

which leads to the loop structure shown in Fig. 5.

3.4 Code generation

We next show how we generate C code from a computation speciication, problem size and the associated
coniguration. Generating a loop requires knowledge of the sizes of the sub-tiles, and so our code generator
proceeds from innermost loop outwards. Calling a sub-coniguration the suix of a coniguration, at a given step the
already generated code (that corresponds to inner levels) is fully speciied by the corresponding sub-coniguration.
In the following, the size of a sub-coniguration refers to the size of the corresponding (parameterized) sub-
iteration space. For the example from Sec. 3.1, the sub-coniguration of the BLIS microkernel (including the
reduction loop on �) is: ��kernel = [T�� ,� ,U6,� ,U2, � ,V�]. Its size along � , � , and � is respectively 6, 16 and �� .

Overview. Our code generator traverses the coniguration right to left in a single pass. At every level, we keep
track of the following information: (i) the size of the loops that are already generated; (ii) for each dimension, the
name of the last index used by a for loop (to handle tiling).
Before applying our code generation algorithm, we apply a preprocessing step to get rid of the �seq speciier

and its parameter � . We introduce a new speciier Seq that corresponds to the sequential composition of a list of
sub-conigurations. In our case, the list of the �seq speciiers is always of size 2. The corresponding rewriting rule
is:

[. . . , �seq�� . [(�1, �1), (�2, �2)] , �] ⇒ [. . . , Seq([T�1,� , � [�/�1]], [T�2,� , � [�/�2]])]

where � is the sub-coniguration following the �seq speciier, and � [�/�] is this sub-coniguration where � was
substituted by the value � . We now have a tree of speciiers instead of a list of speciiers, on which we can still
iterate from the leaves (innermost loops) to the root of the tree (outermost loops).

Code generation rules. Let us now survey the diferent speciiers and how code generation operates for each
one:

• Sequence Seq: combine sequentially the generated code corresponding to the sub-conigurations inside
the Seq.

• Vectorization V� : based on the hypotheses on the code structure presented in Sec. 3.1, one may determine
which operations should be vectorized by traversing the graph starting from the loads:
ś read (�, �) is vectorized if � appears in the access function � .
ś Op (�,�) is vectorized if one of its operands (� or �) is vectorized. If one of them is a scalar, it is
broadcasted.

ś write (�,� , �) is vectorized if � is a vector and � appears in the access function � . These conditions must
be both true or false, else this is an error.

The C code uses Intel intrinsics to manipulate vectors.
• Unroll U�,� : Unroll the computation over the � dimension � times by duplicating the generated code of its
sub-coniguration, while updating the value of the loop index on the � dimension in each duplication.

• Tiling T�,� or R� : Add a loop over the generated code of its sub-coniguration that iterates � times, and
whose value is increased by the value of the sub-coniguration. In the case of R� , one may deduce the
correct number of iterations by comparing the size of the sub-coniguration with the problem sizes. This
changes the current loop index in use over the � dimension.

4 STRUCTURED SEARCH SPACE CONSTRUCTION AND EXPLORATION

Let us now present the overall autotuning strategy. We restrict ourselves to 2D convolutions in the following
(shown in Fig. 1). Our strategy can be generalized to any program in the class of programs described in Section 3.1,

ACM Trans. Arch. Code Optim.

10 • Nicolas Tollenaere, Guillaume Iooss, Stéphane Pouget, Hugo Brunie, Christophe Guillon, Albert Cohen, P. Sadayappan, and Fabrice
Rastello

provided the identiication of a suitable class of microkernels, identifying a vectorization dimension (here �), a
microkernel reuse dimension (here �) and a dimension along which we can compose two microkernels (here ℎ).

4.1 Ofline stage

The oline stage consists of identifying the best performing microkernels, which will efectively structure the
search space (through divisibility constraints) and serve as building blocks for code generation.

Microkernel space deinition. As mentioned in Section 3.1, a good microkernel must satisfy several constraints
to be eicient: usage of vector units, good ILP to hide latency, and keeping vector register pressure under control.

In the context of 2D convolutions, these guidelines translate into the following constraints on the formation of
a microkernel and its enclosing loop:

• The dimension � is the one being vectorized, because it contains the simplest access pattern among� , ℎ
and � . This allows to store the elements of the output tensor O and the parameter tensor K in the vector
registers.

• The microkernel must have a loop along the � dimension surrounding it. This allows to reuse partially
accumulated reductions in the output array promoted to vector registers. Keeping register pressure under
control translates into imposing constraints on the dimensions of the microkernel.

Let us consider a microkernel whose unrolling factors are size� along the � dimension. Notice that these
unrolling factors correspond to the sizes of the microkernel, except for the vectorized dimension � , where the
size of the microkernel is (vector_size × size�). Let us count the number of vector registers it requires. The output
tensor uses size� × sizeℎ × size� vector registers and its elements must stay in them to have reuse. The input
tensor accesses are not vectorized, thus they need at least 1 vector register to perform a broadcast. The parameter
tensor requires size� × size� × size� × size� vector loads, and can erase them once they are used. Thus, it is better
to have speciic vector registers for them, but it is not required.

From this reasoning, we consider the following collection of microkernels, considering an AVX512 architecture
with 32 vector registers:

[Usize� ,� ,Usize� ,� ,Usize� ,� ,Usize� ,�,Usizeℎ,ℎ,Usize� ,� ,V�]

with the following set of constraints:
• 16 ≤ size� × sizeℎ × size� + size� × size� × size� × size� ≤ 36 (constraint on the footprint of the output and
the parameter tensors)

• 14 ≤ size� × sizeℎ × size� ≤ 28 (constraint to prioritize the output tensor)
• 1 ≤ size�, sizeℎ, size� , size� ≤ 16
• (size� , size�) ∈ {1, 3, 5, 7} such that if size� , size� > 1 then size� = size� .

This makes a total of 3059 microkernels, and we remark that the AVX512 BLIS microkernel ((�, �,�, ℎ, �, �) =
(2, 1, 12, 1, 1, 1)) is one of them.

Microkernel evaluation. To evaluate performance, we repeat the resulting unrolled basic block many times
along the � dimension (T512,�) and run the microkernel on a matching problem size. The results for a slice of the
space on AVX512 are shown in Fig. 6 (on an Intel Xeon Gold 6130, frequency set to 2.1 GHz, Debian GNU/Linux,
kernel version 4.19, and hardware counters monitored with PAPI v5.7.0).

Within this collection, 540 microkernels reach at least 80% of peak performance. We observe that the graph is
roughly convex with some local luctuations.We sort these microkernels into classes: a class is a set of microkernels
above the 80% performance threshold with identical sizes except for sizeℎ . Since the graph is roughly convex, the
values of sizeℎ in a given class typically form an interval. For example, {[Usizeℎ,ℎ,U2,� ,V�], 8 ≤ sizeℎ < 15} is one
of the classes of microkernels that is selected for AVX-512, as shown with the leftmost red vertical rectangular

ACM Trans. Arch. Code Optim.

Autotuning Convolutions is Easier Than You Think • 11

Fig. 6. Performance of microkernels in isolation for AVX512 in percentage of the machine peak, for the slice of the space
where � = � = � = � = 1. Microkernel sizesÐ� along the � dimension (horizontal axis) and � along the ℎ dimension (vertical
axis)Ðvary between 1 and 15. Only the upper-let triangle was evaluated, because high register pressure induces spills,
dramatically impacting performance on the other half. The red-bordered microkernels are the highest performing, thus are
the ones selected (ofline).

contour on Fig. 6. When combining microkernels to mitigate the divisibility constraint, we will pick two of those
from the same class (by using a �seqℎ� . [ℓ] speciier).

The measurement of all these microkernels takes about 50 minutes to complete on this architecture. This step
is problem-size agnostic and needs to be done only once per target architecture.

4.2 Online stage

Given a problem size, we will now describe how to derive a structured search space of optimization candidates
from the oline selection of microkernels. In particular, we will show how to select and combine two diferent
microkernels to satisfy the divisibility constraint, which is a fundamental issue when the size of a problem
dimension does not have many small prime divisors.

Microkernels and combination. The search space construction starts by considering all classes of microkernels
and selecting those whose sizes divide the problem sizes. Then, we look for the combination of two microkernels
difering only along the ℎ dimension that allows to cover the size of the ℎ dimension. For all pairs of microkernels
in the same class, of sizes ℎ1 and ℎ2, and given a problem size � , we look for a number of repetitions � and
� of these microkernels such that: (� × ℎ1 + � × ℎ2) divides � . For example, if � = 34 and considering two
microkernels of the same class of size ℎ1 = 11 and ℎ2 = 12, one may combine two microkernels of size 11 followed
by a microkernel of size 12, for a total of 34.

If no single microkernel or combination of microkernels would be found with this process, the fallback would
be to use a suboptimal microkernel, which is what we wanted to avoid by ruling out partial tiles. Fortunately, this

ACM Trans. Arch. Code Optim.

12 • Nicolas Tollenaere, Guillaume Iooss, Stéphane Pouget, Hugo Brunie, Christophe Guillon, Albert Cohen, P. Sadayappan, and Fabrice
Rastello

situation never happens on the architectures and micro-architectures we considered. Indeed, the classes of micro-
kernels identiied in Section 4.1 are large enough to accommodate for any possible size through the combination of
two microkernels (as long as the size of the convolution dimension of interest is greater than or equal to the small-
est microkernel in the selected class). For example, for the microkernel class {[U����ℎ,ℎ,U2,� ,V�], 8 ≤ ����ℎ < 16},
all problem sizes � above 8 can be obtained by a linear combination of two integral elements ℎ1 and ℎ2 from the
interval [8, 15] (e.g. 17 = 8 + 9).

Completing the coniguration. For each single microkernel that divides the problem sizes, or microkernel
combination that divides the problem sizes, we can enumerate all the possibilities of completing this microkernel
selection into a full coniguration:

• Set the coniguration (the list of speciiers) to the one corresponding to the chosen microkernel or combi-
nation of microkernels.

• Then, one needs to complete the coniguration along all dimensions for which the problem size is greater
than the microkernel size. For each dimension � , consider a divisor � of the dimension’s size � divided
by the size of the matching microkernel dimension. We can complete the coniguration by appending
the corresponding speciier T�,� to the left of the current coniguration. By performing this operation
recursively, and by considering all possible choices of dimension and divisor, we obtain the set of all possible
conigurations built on top of the selected microkernel.

• To beneit from register reuse, we impose that the irst dimension above the microkernel is � .
• When considering a sequence of two microkernels at dimension � with the combination � × ℎ1 + � × ℎ2,
we can insert �seq�� . [ℓ] at any occurrence of dimension � in the coniguration. Thus, we also consider all
possibilities of placement of this insertion. The value of the list ℓ is [(�, ℎ1), (�, ℎ2)].

Example. Consider the following class of microkernels (among others):

{[U�,ℎ,U2,� ,V�], 8 ≤ � ≤ 15}

for AVX512 and the Yolo9000-13 problem sizes (�,�, �/�,�/�) = (512, 256, 34, 3).
The problem size � on dimension ℎ is 34 = 2 × 17, hence there is no single microkernel from the considered

class that matches one of its divisors. Next, we consider combinations of 2 microkernels from that class; 2×11+12
is one such combination.
We need to complete this coniguration. By comparing the sizes of the combination of microkernel and the

problem, there is factor of 16 = 24 along the � dimension, no factor left along the ℎ dimension, and the whole
problem size left, along all other dimensions.

We have to pick � as the irst dimension above the microkernel, so let us pick 256 as his factor. The coniguration
is now:

[T256,� ,U�,ℎ,U2,� ,V�]

We continue completing the coniguration by picking a dimension and a factor at every level. At some point, we
need to decide at which level to place the sequential combination between the microkernel �seqℎ� . [(2, 11), (1, 12)],
which separates the two portions of the generated code that combines two diferent microkernels.

Finally, an example of full completions (among others) is:

[T16,� , �seqℎ� . [(2, 11), (1, 12)] , T17,�, T3,� , T3,� , T2,�, T256,� ,U�,ℎ,U2,� ,V�]

The construction of the structured search space is summarized in Fig. 7. We will see in the next section that the
resulting search space is suiciently small and suiciently dense with good candidates to yield excellent results
with random search only.

ACM Trans. Arch. Code Optim.

Autotuning Convolutions is Easier Than You Think • 13

Ofline stage: microkernel exploration (Sec. 4.1).

• Build the set of microkernel candidates with unroll factors satisfying a predeined, architecture-speciic set
of constraints (range of unroll factors, footprint of the output and parameter tensors).

• Generate fully vectorized code for every candidate and run all of them to table their performance.
• Sort the fastest ones into classes of microkernels (with identical sizes except for the sizeℎ dimension).

Online stage: construction of the optimization search space (Sec. 4.2).

Given the exact problem sizes:

• Build the set of (combinations of) microkernels from the classes, that divide the problem sizes.
• If the previous set is empty, fallback to a sub-optimal microkernel.
• For a given microkernel/combination:
ś For each dimension:
∗ Compute the number of outer loop iterations for every dimension at (coarser) microkernel granularity,
by dividing each problem size by the corresponding microkernel/combination size.

∗ Enumerate all the ordered factorizations of these outer loop sizes satisfying the divisibility constraint.
Each integer factor in the ordered factorization for a given dimension yields one level of tiling in the
generated code.

ś Select a nesting order between the tiling levels collected across all dimensions, to form the tiling strategy
above the microkernel.

ś If we consider a combination of microkernels, place the �seq�� . [ℓ] somewhere above the microkernel.

Fig. 7. Construction of the structured optimization space.

5 PERFORMANCE RESULTS

In this section, we evaluate the efectiveness of random sampling as a search algorithm. We compare the
performance of the generated code with oneDNN [Intel 2018] (Intel library, V2.3), AutoScheduler [Zheng et al.
2020a] (Ansor, autotuning, in TVM, 22 July 2021) and Mopt [Li et al. 2021] (analytical modeling). We also compare
its convergence rate against AutoScheduler, in terms of the number of conigurations generated and run.

Setup. The experiments were carried out on three architectures: (a) an 18-core Intel Xeon Gold 5220 Cascade
Lake processor (frequency set to 2.2 GHz) with 1 socket and 1 AVX512 fused multiply-add unit per core; and
(b) a 32-core Intel Xeon Gold 6130 Skylake processor (frequency set to 2.3 GHz) with 2 sockets and 2 AVX512
fused multiply-add units per core. Both architectures have 32KB L1 cache and 1024KB L2 cache per core. The
irst processor has a 24.75MB shared L3 cache, while the second one has a 22MB shared L3 cache. (c) a 32-core
ARM ThunderX2 CN99xx processor (frequency set to 2.2 GHz) with 2 sockets and 2 Neon vector units per core.
This high-end ARM microarchitecture has 32KB L1 cache, 256KB L2 cache per core and a 32MB shared L3 cache.

The OS is Debian GNU/Linux with kernel version 4.19, monitoring hardware counters using PAPI version
5.7.0. We compile the generated C code using gcc with the lags -O3 -march=native -fno-align-loops for
the Intel x86 architectures. For the ARM AArch64 architecture, we use clang instead of gcc because we observed
it produced faster code on our benchmarks. For AutoScheduler, we used the recommended template conv2d_
NHWC from the TVM library. This template is signiicantly faster than the alternative NCHWc.

We evaluate performance over the convolutions of two networks: Yolo-9000 [Redmon and Farhadi 2017] and
ResNet-18 [He et al. 2016].The sizes of their convolution layers can be found in Fig. 8.
To measure performance in a consistent, we embed the generated code in the TVM framework by using a

tensorize operator. We measure performance using the TVM function evaluator, with parameters repeat set to
5 and min_repeat_ms set to 100ms. This means that TVM repeats the operation for at least 100ms, then it repeats

ACM Trans. Arch. Code Optim.

14 • Nicolas Tollenaere, Guillaume Iooss, Stéphane Pouget, Hugo Brunie, Christophe Guillon, Albert Cohen, P. Sadayappan, and Fabrice
Rastello

Benchmark Problem sizes
(K, C, H/W, R/S)

Yolo9000-0 32, 3, 544, 3
Yolo9000-2 64, 32, 272, 3
Yolo9000-4 128, 64, 136, 3
Yolo9000-5 64, 128, 136, 1
Yolo9000-8 256, 128, 68, 3
Yolo9000-9 128, 256, 68, 1
Yolo9000-12 512, 256, 34, 3
Yolo9000-13 256, 512, 34, 1
Yolo9000-18 1024, 512, 17, 3
Yolo9000-19 512, 1024, 17, 1
Yolo9000-23 28269, 1024, 17, 1

Benchmark Problem sizes
(K, C, H/W, R/S)

ResNet18-1* 64, 3, 224, 7

ResNet18-2 64, 64, 56, 3

ResNet18-3 64, 64, 56, 1

ResNet18-4* 128, 64, 56, 3

ResNet18-5* 128, 64, 56, 1

ResNet18-6 128, 128, 28, 3

ResNet18-7* 256, 128, 28, 3

ResNet18-8 256, 128, 28, 3

ResNet18-9 256, 256, 14, 3

ResNet18-10* 512, 512, 14, 3

ResNet18-11* 512, 256, 14, 1

ResNet18-12 512, 512, 7, 3

Fig. 8. Convolution benchmarks and sizes. The stride is 1 by default, unless marked with a * (stride 2 convolutions). Dimension
� of Yolo9000-23 was padded to 28272 (a multiple of 16) to vectorize it on AVX512.

this process 1 + 5 times, i.e., the irst iteration is discarded. Among the remaining 5, TVM removes the exterma

and takes the average of the rest. Consistently with the majority of the reported performance experiments [Zheng

et al. 2020a], we consider a hot cache hypothesis: memory is not lushed between each run.

Performance measurement. Fig. 9 presents the performance results, reported as a fraction of the peak perfor-

mance of the multicore CPU. The performance of random sampling after 1000 runs is well above oneDNN and

Mopt, and is comparable to AutoScheduler after 1000 runs (which is the recommended amount of time for it

to converge [Zheng et al. 2020a]). For Yolo9000_00 and ResNet_01, the reduction size � is very small, so our

microkernel-based approach does not have much reuse potential above the selected pair of microkernels. In

comparison, AutoScheduler exploits the kernel dimensions � and � to increase the size of the reduction. For

Yolo9000_23, the output of AutoScheduler is not even vectorized, which explains the huge performance diference.

A few Mopt results are missing due to reproducibility issues with the available artifact. We reported such

situations with a performance at 0% of the machine peak. The performance of oneDNN is surprisingly low,

despite our eforts to explore the relevant coniguration and performance evaluation settings. However, we have

conirmed with the Intel developers that such results are in line with their expectations.

Convergence rate. Fig. 10 compares the convergence rate of AutoScheduler and our random sampling method.

We have run 6000 candidates in our space and we randomly picked 3000 of them, in order to produce the 8 traces

in the graph on the right. To understand these graphs, let us recall how the autotuning process in AutoScheduler

works: every 64 measurements, it rebuilds its cost model using the performance data collected so far. In particular,

the irst 64 candidates are picked randomly in the AutoScheduler search space, and model is updated every 64

runs.

Thanks to the structure of our space (resulting from staging the selection of microkernels and imposing the

divisibility constraint), we observe that random sampling alone converges much faster than AutoScheduler

despite the lack of a cost model. The high density of good candidates in our structured space results in a high

probability of reaching performance close to the maximum after 10ś20 runs only.

We also observed that AutoScheduler’s output is not very stable. Sometimes it converges very late, eliminating

much hope of reducing the number of runs below 3000. And the inal result itself is not very stable, with up

ACM Trans. Arch. Code Optim.

Autotuning Convolutions is Easier Than You Think • 15

Fig. 9. Sequential performance comparison with AutoScheduler, oneDNN, Mopt for AVX512 (Intel Xeon Gold 5220 and 6130),
and with AutoScheduler only for Neon (ARM ThunderX2), shown as percentage of machine peak. The averages given for
each CNN are weighted by the amount of computation in every layer.

to 10% performance variation across autotuning experiments. AutoScheduler seems to sufer from insuicient

lexibility in adapting its exploitation/exploration ratio, which results in its search algorithm getting stuck in

local maxima for too long.

About compilation time, the oline microkernel code generation and compilation stage takes about 50mn on a

single machine (and only needs to be run once). Selecting conigurations is almost instantaneous, and executing

them takes 30mn for 1000 conigurations (less than 2 seconds to compile and measure a single coniguration).

ACM Trans. Arch. Code Optim.

16 • Nicolas Tollenaere, Guillaume Iooss, Stéphane Pouget, Hugo Brunie, Christophe Guillon, Albert Cohen, P. Sadayappan, and Fabrice
Rastello

Fig. 10. Comparison of the convergence rate of 8 random samplings in our space, against 8 independent executions of
AutoScheduler (in blue), for sequential code generation, on Yolo9000_12, targeting an Intel Xeon Gold 6130. (i) The let
figure shows the maximum of the performance of the first 64 chosen implementations. The boxplot for AutoScheduler
summarizes the 8 executions, while the boxplot for random sampling represents 20 executions. (ii) The right figure shows the
best candidate found by AutoScheduler ater each batch of 64 runs, and compares it to the best candidate found by random
sampling for an equivalent number of runs.

AutoScheduler needs to reine and retrain a model every 64 measurements, so it takes about 2h to perform 3000

measurements. So, the average time spent per measurement is similar for both sides. It also needs to start over

for every new problem size, while running 20 random samples in our search space takes a few tens of seconds

per problem size.

6 ABLATION STUDY OF THE SEARCH SPACE PRINCIPLES

Important research questions remain, such as what aspect the structured search space contributes to improving

the density of good candidates, and to what extent each component of its design contributes to the performance

of the generated code.

6.1 Performance distribution in the search space

We would irst like to characterize the density of good candidates. To achieve this, we simply perform a random

sampling of the search space and report the performance distribution of the generated code. The methodology

for this random sampling is the following: list all microkernels and combinations of microkernels that divide

the problem sizes, then draw from this list uniformly, then draw a divisor of � (the reuse dimension) to nest the

microkernel in a reuse loop, then draw uniformly over the set of pairs (dimension, factor) for the levels above the

reuse loop, and (if applicable) insert the �seq�� . [ℓ] speciier at the appropriate level. We perform these draws

until completion of the coniguration. Notice that this algorithm is not uniform over the space of conigurations:

it has a bias in favor of the larger factors for a dimension, which is preferable as it tends to avoid inadequately

small tiles.

The resulting distributions are shown on Fig. 11. We observe that some problem sizes are easier to optimize

than others. Reaching good performance is particularly easy for ResNet-11, for example. On the contrary, some

problem sizes such as ResNet-01 and Yolo9000-00 are much harder to optimize, due to a small � dimension which

makes the microkernel reuse strategy less eicient. In such cases, exploiting other dimensions (� and �) for

ACM Trans. Arch. Code Optim.

Autotuning Convolutions is Easier Than You Think • 17

Fig. 11. Cumulative performance distribution for a random sampling algorithm, for 1000 sequential configurations, on an
Intel Xeon Gold 6130 CPU. The horizontal axis is the percentage of machine peak. The vertical axis is the ratio of draws that
has a performance above a given percentage of machine peak. The more area on the right side below the curve, the beter the
distribution is. The red bar marks the maximal performance observed over these 1000 draws.

ACM Trans. Arch. Code Optim.

18 • Nicolas Tollenaere, Guillaume Iooss, Stéphane Pouget, Hugo Brunie, Christophe Guillon, Albert Cohen, P. Sadayappan, and Fabrice
Rastello

reuse may be needed. Except for those diicult cases, the distribution is clearly favorable to random search. This

explains why random search quickly approaches the best performing candidate after a few draws.

6.2 Evaluation of the combination of microkernels

The next question is to evaluate the performance beneits of combining microkernels. We consider the randomly

drawn conigurations from the previous subsection, and we split them into two sets: the set of conigurations

that use a single microkernel, and the set of conigurations that use a combination of microkernel. Figure 12

compares the distribution of both sets of conigurations on a variety of problem sizes.

We observe that the performance with and without combinations of microkernels is comparable when both

possibilities are available. However, the last three Yolo9000 benchmarks only has combination conigurations.

Indeed, the size of the ℎ dimension is the prime number 17 for these three benchmarks. Since 17 is above the

unrolling limit (it breaks all register pressure limits), the only microkernels available in our space are those

unrolled along the � and � dimensions only. And these yield around 30% of peak performance, while combining

microkernels reach 85%.

To complement this analysis, we focused on the Yolo9000-18 benchmark and considered a microkernel with

an unrolling factor of 17 on dimension ℎ (U17,ℎV�). We ran 500 random conigurations while forcing the use of

this microkernel. We observed a maximum performance of 68% of the machine peak, clearly limited by register

spilling.

This study conirms the importance of combining microkernels, especially when the problem sizes are too small

and do not have small prime factors. In the majority of cases, it does not signiicantly impact the performance

distribution.

6.3 Evaluation of the tile size divisibility constraint

Let us inally investigate the impact of the divisibility constraint at tile level, i.e., the pros and cons of forcing

tile sizes to divide each other and the problem size along a given dimension. Note that we still enforce that any

microkernel is executed as a whole, i.e., tiles are composed of complete microkernels; in other words, the size

of tile dimension must always be a multiple of the corresponding microkernel size along that dimension.1 If

divisibility is not enforced at the tile level, some control low may be needed for early termination of one or more

tile dimensions.

In order to compare both spaces, we consider a diferent random selection algorithm, with two variations, for

the divisible coniguration space and for the non-divisible coniguration space. This ensures we have an identical

sampling bias across both spaces, to make the comparison as fair as possible.

The sampling algorithm is the following:

• First, we list all the microkernels and combination of microkernels that divide the problem sizes, then we

select one of them uniformly.

• For each dimension � , we randomly pick the level of tiling �� on this dimension, between 1 and 4 (4 being

the height of the memory hierarchy, not including the register level).

• For the non-divisible space: we select uniformly �� tile sizes between twice the microkernel sizes and the

problem sizes, then we sort them in increasing order.

• For the divisible space: we consider �� the ratio between the problem size and the microkernel size on

dimension � . We build all the decompositions of �� in �� elements (greater than 1, if possible), and we select

uniformly one of these decompositions.

1We evaluated the impact of this microkernel-speciic constraint in Section 3.2.

ACM Trans. Arch. Code Optim.

Autotuning Convolutions is Easier Than You Think • 19

Fig. 12. Study of the impact of the combination of microkernels on the distribution on an Intel Xeon Gold 6130. We report
the cumulative distribution of the space where combinations of microkernels are allowed (All) and where these combinations
are forbidden (Single). The ratio reported is the percentage of configurations using a single microkernel, on the totality of the
draws. Note that all the draws for the last 3 Yolo9000s are combinations of microkernels. For Yolo9000-18, we have added (in
green) 1000 runs that use a single suboptimal microkernel. This microkernel falls outside of our classes of high-performing
microkernels, but divides exactly the problem sizes. This is a situation where the combination of microkernels is particularly
useful (nearly 90% of peak instead of 70%).

• Finally, to select the permutation, we consider the set of pairs (dimension, tile sizes or factor), plus the

�seq�� . [ℓ] speciier in case of combination of microkernels, and we pop uniformly elements of this set,

until completion of the coniguration.

Notice that a slight bias discrepancy remains in the tile size selection: the divisible space samples ratios between

two levels of tiling, while the non-divisible space samples tile size directly. So, for example, it will be impossible

for the divisible space to have a tile size whose value is strictly between half the problem size and the problem

size, while for the non-divisible space no such constraint exist.

Figure 13 shows the distribution of 1000 random conigurations, for the divisible space and for the non-divisible

space. We observe that the maximal performance is similar across for both distributions. Also, observing the

portion corresponding to the best performing conigurations, we do not observe a signiicant trend. We conclude

that the divisibility constraint does not induce performance loss in practice.

7 RELATED WORK

TVM AutoScheduler. AutoScheduler [Zheng et al. 2020a] is TVM’s [Chen et al. 2018a] state of the art integrated

autotuner for tensor operations (in particular CNNs). It is formed of several components:

• The program sampler builds randomly the loop structure (sketch) from some speciic derivation rules. These

rules reduce the size of the search space, for example by imposing constraints to the order of the loops. In

ACM Trans. Arch. Code Optim.

20 • Nicolas Tollenaere, Guillaume Iooss, Stéphane Pouget, Hugo Brunie, Christophe Guillon, Albert Cohen, P. Sadayappan, and Fabrice
Rastello

Fig. 13. Study of the impact of the divisibility constraint on an Intel Xeon Gold 6130. We choose randomly 1000 configurations
in a space with the divisibility constraint on the tile sizes above the microkernel, then we choose 1000 other configurations
without the divisibility constraint.

the case of a single tensor operation, any program generated through AutoScheduler’s program sampler

can be expressed in terms of the speciiers introduced in Section 3.3.

• The performance tuner proceeds iteratively over batches of 64 sampled programs. It collects newly sampled

programs, and 20% of the best-performing programs so far. Then, it resorts to evolutionary search to mutate

these programs. The mutated programs are evaluated through a cost model (a gradient boosting decision

tree), to estimate their performance without having to execute them. From these estimations, a batch of 64

new programs is built and run.

Performance measurements on the new batch allow retraining (and improving) the cost model. In particular,

because the cost model is untrained on the irst 64 runs, its selection is efectively random.

• The task scheduler partitions the diferent compute operations. All the operators of a given partition are

optimized as a whole. In our context of a single operation, this part is not relevant.

Optimization of aine programs. To optimize aine programs, some methods are based on analytical models

and operation research. This is the main approach used by polyhedral based compilers [Baghdadi et al. 2019;

Bondhugula et al. 2008; Elango et al. 2018; Grosser et al. 2012; Vasilache et al. 2018; Verdoolaege et al. 2013]

that leverage parametric integer linear programming. Although such approaches are well suited to expose

parallelism [Feautrier 1992a,b] and coarse grain locality [Bondhugula et al. 2008], we believe it may not be the

right formalism for tile size selection or register level optimizations. On the other hand, the ability to count

ACM Trans. Arch. Code Optim.

Autotuning Convolutions is Easier Than You Think • 21

points in a polyhedron [Barvinok 1994] allows to automatically generate (non-linear) cost models, which in turns

enabled Li et al. [Li et al. 2019] to build and analytical model for the selection of a permutation scheme.2

Cloog [Bastoul 2004] is a powerful algorithm to automatically generate imperative code for scanning a union

of polyhedra. Polyhedral compilers leverage such code generation capabilities, but face the challenge of dealing

with a very general class of imperfect nests and transformations. It is diicult in such a broad context to compete

with domain-speciic optimizations. Our code generator involves simple polyhedron scanning algorithms, and the

divisibility constraint enables generation of high-quality compiler friendly code without heroic eforts [Grosser

et al. 2015].

Optimization of machine learning programs. There exist many compilers specialized for machine learning:

PlaidML [Chen et al. 2019] using polyhedral techniques, XLA [Google [n. d.]] for TensorFlow [Abadi et al. 2016],

Halide [Ragan-Kelley et al. 2013], or TVM [Chen et al. 2018a]. TVM, as opposed to most approaches, does

not rely on numerical libraries. Its strategy is to select the best schedule using autotuning with an ML-based

performance model. Contrary to our approach that decouples the search into microkernel optimization and loop

tiling/permutation search, the TVM search space is lat. In TVM, optimizations related to strength reduction

and register tiling are left to the compiler. TVM has been extended with FlexTensor [Zheng et al. 2020b] and

Ansor (a.k.a. AutoScheduler) [Zheng et al. 2020a]. We also compare to AutoTVM, the auto optimizer of TVM.

Telamon [Beaugnon et al. 2017] tackles this problem by building a very large, lat search space where optimization

choices are tied together by dependency constraints. Then the exploration combines an elaborate performance

model to prune the search space with feedback from actual executions.

A recent paper [Gibson and Cano 2022] considers the problem of transferring a schedule found byAutoScheduler

across problem sizes. This transfer is performed by relaxing the ratio of the last tile along each dimension, in

order to match other similar problem sizes. They report a signiicant speed-up in convergence, which is coherent

with our observations. Indeed, the transfer conserves the inner loops, which contain a performant microkernel,

which contributes signiicantly to obtain a good strategy.

Linear algebra and CNN libraries. Frameworks such as TBLIS [Matthews 2018] or TCCG [Springer and Bienti-

nesi 2016] aim at creating portable optimized code for BLAS or tensor contraction kernels. These frameworks

implement an eicient predeined scheduling scheme which is very efective, in particular for matrix multi-

plication [Goto and Van De Geijn 2008]. These frameworks take advantage of advanced optimizations: tensor

transposition, tensor blocking or sub-viewing, data prefetching, vectorization, block scheduling, unrolling and

register promotion. The register tile shape is predeined using expert knowledge on instruction level and reg-

ister pressure. Thanks to aggressive autotuning and JIT/AoT code versioning, MKL [Wang et al. 2014] and

oneDNN [Intel 2018] are the best available Intel libraries which implement all these techniques.

8 CONCLUSION

We presented a structured search space for tensor compiler construction and autotuning. Our approach allows a

simple random search to match or outperform the state-of-the-art tool, AutoScheduler, at a fraction of the cost.

This search space is based on the automatic generation and preselection of near-peak performance microkernels,

and on the imposition of divisibility constraints on tile sizes and unroll factors. These principles allow pruning

the search space, increasing the density of near-optimal candidates. The divisibility constraint can be relaxed, in

cases where it does not allow a suicient number of tiling scenarios, by allowing the sequential combination of

microkernels.

2Note that the MobileNet results presented by Li et al. are actually not MobileNet but 2D convolutions with identical shapes as the CNN’s

original depthwise separable convolutions; we choose to leave these layers out to avoid propagating the confusion any further, but our results

on those shapes are consistent with the results presented earlier.

ACM Trans. Arch. Code Optim.

22 • Nicolas Tollenaere, Guillaume Iooss, Stéphane Pouget, Hugo Brunie, Christophe Guillon, Albert Cohen, P. Sadayappan, and Fabrice
Rastello

Our results show that in exploring a search space to look for the best candidates, the structure of the space and

its domain-speciic pruning can be as important as the metric and the search strategy. This may sound obvious,

but much of the recent work focuses on the latter design dimensions, using elaborate analytical modeling or

learning processes. Of course, it would be interesting to further improve the efectiveness of domain-speciic

code generators and autotuners, by combining rather than choosing between these strategies. This is the topic

of our current eforts, building on analytical as well as empirical, ML-based modeling. We also would like to

broaden the search space to include transformations such as packing or prefetching, to carefully study their

performance impact and determine when they are needed. And of course this study needs to be extended beyond

CPU architectures, and beyond convolutions.

Acknowledgments. This work was supported in part by the Bpifrance Programme d’Investissements d’Avenir

(PIA) as part of the ES3CAP project. Experiments presented in this paper were carried out using the Grid’5000

testbed, supported by a scientiic interest group hosted by Inria and including CNRS, RENATER and several

Universities as well as other organizations (see https://www.grid5000.fr).

REFERENCES
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jefrey Dean, Matthieu Devin, Sanjay Ghemawat, Geofrey Irving,

Michael Isard, et al. 2016. Tensorlow: A system for large-scale machine learning. In 12th USENIX symposium on operating systems design

and implementation (OSDI’16). USENIX Association, USA, 265ś283.

Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia Suriana, Shoaib

Kamil, and Saman P. Amarasinghe. 2019. Tiramisu: A Polyhedral Compiler for Expressing Fast and Portable Code. In IEEE/ACM International

Symposium on Code Generation and Optimization, (CGO 2019), Mahmut Taylan Kandemir, Alexandra Jimborean, and Tipp Moseley (Eds.).

IEEE, 193ś205.

Alexander I. Barvinok. 1994. A polynomial time algorithm for counting integral points in polyhedra when the dimension is ixed. Mathematics

of Operations Research 19, 4 (1994), 769ś779.

Cedric Bastoul. 2004. Code Generation in the Polyhedral Model Is Easier Than You Think. In Proceedings of the 13th International Conference

on Parallel Architectures and Compilation Techniques (PACT ’04). IEEE Computer Society, 7ś16.

Ulysse Beaugnon, Antoine Pouille, Marc Pouzet, Jacques Pienaar, and Albert Cohen. 2017. Optimization Space Pruning without Regrets.

In Proceedings of the 26th International Conference on Compiler Construction (Austin, TX, USA) (CC 2017). Association for Computing

Machinery, New York, NY, USA, 34ś44. https://doi.org/10.1145/3033019.3033023

Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. 2008. A Practical Automatic Polyhedral Program Optimization System.

In ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). Association for Computing Machinery, New

York, NY, USA, 101ś113.

Huili Chen, Rosario Cammarota, Felipe Valencia, and Francesco Regazzoni. 2019. PlaidML-HE: Acceleration of Deep Learning Kernels to

Compute on Encrypted Data. In 37th IEEE International Conference on Computer Design, ICCD 2019, Abu Dhabi, United Arab Emirates,

November 17-20, 2019. IEEE, 333ś336. https://doi.org/10.1109/ICCD46524.2019.00053

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze,

Carlos Guestrin, and Arvind Krishnamurthy. 2018a. TVM: An Automated End-to-End Optimizing Compiler for Deep Learning. In 13th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 18). USENIX Association, 578ś594.

Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018b.

Learning to Optimize Tensor Programs. Advances in Neural Information Processing Systems 31 (2018), 3389ś3400.

Stephanie Coleman and Kathryn S McKinley. 1995. Tile size selection using cache organization and data layout. ACM SIGPLAN Notices 30, 6

(1995), 279ś290.

Venmugil Elango, Norm Rubin, Mahesh Ravishankar, Hariharan Sandanagobalane, and Vinod Grover. 2018. Diesel: DSL for Linear Algebra and

Neural Net Computations on GPUs. In Proceedings of the 2nd ACM SIGPLAN International Workshop on Machine Learning and Programming

Languages. ACM, 42ś51.

Paul Feautrier. 1992a. Some Eicient Solutions to the Aine Scheduling Problem: I. One-dimensional Time. International Journal of Parallel

Programming 21, 5 (Oct. 1992), 313ś348. https://doi.org/10.1007/BF01407835

Paul Feautrier. 1992b. Some Eicient Solutions to the Aine Scheduling Problem. Part II. Multidimensional Time. International Journal of

Parallel Programming 21, 6 (Dec. 1992), 389ś420. https://doi.org/10.1007/BF01379404

Perry Gibson and José Cano. 2022. Transfer-Tuning: Reusing Auto-Schedules for Eicient Tensor Program Code Generation. In 31st

International Conference on Parallel Architectures and Compilation Techniques (PACT). Chicago.

ACM Trans. Arch. Code Optim.

https://www.grid5000.fr
https://doi.org/10.1145/3033019.3033023
https://doi.org/10.1109/ICCD46524.2019.00053
https://doi.org/10.1007/BF01407835
https://doi.org/10.1007/BF01379404

Autotuning Convolutions is Easier Than You Think • 23

Google. [n. d.]. XLA : optimiser le compilateur pour le machine learning. https://www.tensorlow.org/xla?hl=fr

Kazushige Goto and Robert Van De Geijn. 2008. High-Performance Implementation of the Level-3 BLAS. ACM Trans. Math. Software 35, 1,

Article 4 (2008), 14 pages.

Tobias Grosser, Armin Größlinger, and Christian Lengauer. 2012. Polly - Performing Polyhedral Optimizations on a Low-Level Intermediate

Representation. Parallel Processing Letter 22, 4 (2012).

Tobias Grosser, Sven Verdoolaege, and Albert Cohen. 2015. Polyhedral AST Generation Is More Than Scanning Polyhedra. ACM Transactions

on Programming Languages Systems 37, 4, Article 12 (July 2015), 50 pages. https://doi.org/10.1145/2743016

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). 770ś778. https://doi.org/10.1109/CVPR.2016.90

Alexander Heinecke, Greg Henry, Maxwell Hutchinson, and Hans Pabst. 2016. LIBXSMM: Accelerating Small Matrix Multiplications by

Runtime Code Generation. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis

(Salt Lake City, Utah) (SC ’16). IEEE Press, Article 84, 11 pages.

Intel. 2018. oneAPI deep neural network library (oneDNN). https://01.org/.

Rui Li, Aravind Sukumaran-Rajam, Richard Veras, Tze Meng Low, Fabrice Rastello, Atanas Rountev, and P. Sadayappan. 2019. Analytical

cache modeling and tilesize optimization for tensor contractions. In Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis (SC), Michela Taufer, Pavan Balaji, and Antonio J. Peña (Eds.). ACM, 13 pages.

Rui Li, Yufan Xu, Aravind Sukumaran-Rajam, Atanas Rountev, and P. Sadayappan. 2021. Analytical Characterization and Design Space

Exploration for Optimization of CNNs. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming

Languages and Operating Systems. Association for Computing Machinery, New York, NY, USA, 928ś942.

Devin A. Matthews. 2018. High-Performance Tensor Contraction without Transposition. SIAM Journal on Scientiic Computing 40, 1 (2018),

C1śC24.

NVIDIA. 2018. CuDNN: GPU Accelerated Deep Learning. https://developer.nvidia.com/cudnn.

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman P. Amarasinghe. 2013. Halide: a language

and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines. In ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, Hans-Juergen Boehm and Cormac

Flanagan (Eds.). ACM, 519ś530. https://doi.org/10.1145/2491956.2462176

Joseph Redmon and Ali Farhadi. 2017. YOLO9000: Better, Faster, Stronger. In IEEE Conference on Computer Vision and Pattern Recognition.

IEEE Computer Society, 6517ś6525.

Gabriel Rivera and Chau-Wen Tseng. 1999. A comparison of compiler tiling algorithms. In International Conference on Compiler Construction.

Springer, Springer Berlin Heidelberg, Berlin, Heidelberg, 168ś182.

Paul Springer and Paolo Bientinesi. 2016. Design of a high-performance GEMM-like Tensor-Tensor Multiplication. arXiv:1607.00145

Field G. Van Zee and Robert A. van de Geijn. 2015. BLIS: A Framework for Rapidly Instantiating BLAS Functionality. ACM Trans. Math.

Software 41, 3, Article 14 (June 2015), 33 pages.

Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary DeVito, William S. Moses, Sven Verdoolaege, Andrew

Adams, and Albert Cohen. 2018. Tensor Comprehensions: Framework-Agnostic High-Performance Machine Learning Abstractions.

arXiv:1802.04730 [cs.PL]

Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez, Christian Tenllado, and Francky Catthoor. 2013. Polyhedral Parallel

Code Generation for CUDA. ACM Transactions on Architecture and Code Optimization 9, 4, Article 54 (Jan. 2013), 23 pages.

Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu, and Yajuan Wang. 2014. Intel Math Kernel Library. Intel,

167ś188.

Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen,

Joseph E. Gonzalez, and Ion Stoica. 2020a. Ansor: Generating High-Performance Tensor Programs for Deep Learning. In 14th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 20). USENIX Association, 863ś879. https://www.usenix.org/conference/

osdi20/presentation/zheng

Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and Kaiwen Sheng. 2020b. FlexTensor: An Automatic Schedule Exploration and Optimization

Framework for Tensor Computation on Heterogeneous System. In ASPLOS ’20: Architectural Support for Programming Languages and

Operating Systems, James R. Larus, Luis Ceze, and Karin Strauss (Eds.). ACM, 859ś873. https://doi.org/10.1145/3373376.3378508

ACM Trans. Arch. Code Optim.

https://www.tensorflow.org/xla?hl=fr
https://doi.org/10.1145/2743016
https://doi.org/10.1109/CVPR.2016.90
https://01.org/
https://developer.nvidia.com/cudnn
https://doi.org/10.1145/2491956.2462176
https://arxiv.org/abs/1607.00145
https://arxiv.org/abs/1802.04730
https://www.usenix.org/conference/osdi20/presentation/zheng
https://www.usenix.org/conference/osdi20/presentation/zheng
https://doi.org/10.1145/3373376.3378508

	Abstract
	1 Introduction
	2 Overview of the Approach
	3 Search space principles
	3.1 Background: Sketching the generated code
	3.2 Divisibility constraint and microkernels
	3.3 Optimization configuration
	3.4 Code generation

	4 Structured search space construction and exploration
	4.1 Offline stage
	4.2 Online stage

	5 Performance results
	6 Ablation Study of the Search Space Principles
	6.1 Performance distribution in the search space
	6.2 Evaluation of the combination of microkernels
	6.3 Evaluation of the tile size divisibility constraint

	7 Related work
	8 Conclusion
	References

