Background Introduction

- **Concept of Scenario**
 - Military/civilian naval/air/terrestrial scenarios
 - Battlefield, search and rescue of lost scouts/emergency responders, etc.
 - The entirety of the deployment connected via two or more redundant communication links
- **Available Links**
 - Satellites (Large latency, good availability, except for hostile jamming)
 - Remotely piloted aircrafts (Low latency, high mobility, intermittent, lossy link)

Problem Identification

- **Drawbacks of Single-path Communication**
 - Communication interruption
 - Long recovery time due to network outage
 - Manual intervention needed to recover
 - Hard management for network operators

- **Multiple Simultaneous Connections**
 - Aggregate bandwidth to gain higher throughput
 - Almost no-cost network handover
 - More reliable communication against link failure

Solution Design

- **Multi-path TCP**
 - Multiple interfaces with multiple connections
 - Simultaneously utilized to send data

- **Software-Defined Networking**
 - Separate the faulty/frail data plane from the robust network control plane
 - Network global view, centralized management and optimal performance

- **Architecture Overview**
 - MPTCP is enabled at
 - Each Host
 - Each End User
 - SDN-enabled switch/router at
 - Each SATCOM
 - Each aircraft
 - Centralized SDN controller
 - Connects every SDN-enabled switch
 - Runs Multi-commodity Flow (FDM-based) traffic manager
 - Periodically collects network stats from SDN-enabled switches
 - Calculates dynamic traffic flow allocation for every user based on their priorities

- **FDM-based traffic optimizer module**
 - Problem formulated as an Multi-Commodity Flow problem
 - Solve with the Flow Deviation Method (FDM)
 - Dynamically updates traffic flow allocation when the topology and traffic change

Emulation Environment

- **Implementation Detail**
 - Process-based nodes
 - Hosts
 - Stations
 - MPTCP enabled on every host and station with Linux kernel implementation
 - Traffic Control link
 - Bandwidth
 - Delay
 - Mobility is supported
 - SDN controller
 - OpenFlow API
 - Flow table
 - Decides routing
 - OVS queue
 - Restricts bandwidth
 - FDM module
 - Python implementation
 - Traffic generator:
 - D-ITG (custom rate)
 - iPerf (max rate)
 - Capture packets with Wireshark at any interfaces

Preliminary Evaluation

- **Mininet-WiFi Testbed**
 - One wireless AP as Aircraft
 - One Open vSwitch as SATCOM
 - One host node as ship
 - Two terrestrial nodes as users
 - Ethernet emulates SATCOM link
 - 802.11g emulates Aircraft link

- **Network configuration**
 - SATCOM backhaul network
 - 50Mbps and 250ms
 - Aircraft backhaul network
 - 1Mbps and 10ms
 - User demand: 3Mbps
 - Users randomly move near AP