
Perfect Zero-Knowledge in Constant Rounds

Mihir Bellare� Silvio Micaliy Rafail Ostrovskyz

MIT Laboratory for Computer Science

545 Technology Square
Cambridge, MA 02139

Abstract

Quadratic residuosity and graph isomorphism are classic problems and the canonical ex-
amples of zero-knowledge languages. However, despite much research e�ort, all previous zero-
knowledge proofs for them required either cryptography (and thus unproven assumptions) or an
unbounded number of rounds of message exchange.

For both (and similar) languages, we exhibit zero-knowledge proofs that require 5 rounds
and no unproven assumptions. Our solution is essentially optimal, in this setting, due to a
recent lowerbound argument of Goldreich and Krawzcyk.

1 Introduction

Interactive proofs and especially zero-knowledge ones have found many applications, most notably

in the �eld of secure protocols. In all such proofs, interaction is the crucial resource, as prover and

veri�er exchange messages in rounds. The fundamental problem here is whether the number of

rounds induces a hierarchy. That is, can we prove more languages in zero knowledge given more

rounds?

In a cryptographic setting the answer is no. But little is known for perfect zero-knowledge proofs.

These are the ones that can be proven to be zero-knowledge without making use of cryptography

or unproven assumptions. For this reasons, perfect zero-knowledge is the right context for studying

the intrinsic properties of this notion.

There is a gap in what we are able to prove about perfect Zero-Knowledge (ZK): Goldreich

and Krawczyk [3] show that a language outside BPP requires more than 3 rounds from any perfect

ZK proof. On the other hand, the classic examples for perfect zero-knowledge, the languages of

quadratic residuosity and graph isomorphism, required an unbounded number of rounds. In this

paper we show

Theorem 1.1 The languages of graph isomorphism and quadratic residuosity have 5 round perfect

zero knowledge interactive proofs.

� Supported in part by NSF grant CCR-87-19689.
y Supported in part by NSF grant DCR-84-13577 and ARO grant DAALO3-86-K-0171.
z Part of the work was done at Boston University, Department of Computer Science, 111 Cummington St., Boston

MA 02215 and partially supported by NSF grant DCR-86-07492.

1

More generally, we show that any random self-reducible language has a 5 round perfect zero knowl-

edge interactive proof.

Perfect zero-knowledge works by carefully exploiting the structure of the problem at hand. It

is important not only in practice (where we do not know which functions are one-way), but also in

a theoretical setting. For example, our best way to prove that a language L, for which no e�cient

algorithm is known, is not NP-complete involves exhibiting a perfect zero-knowledge proof for it

[2].

Let us now see, at a very high level, why achieving perfect ZK in constant rounds is hard.

Essentially, in a ZK proof, the con�dence that a theorem is true is transferred by discrete amounts,

or tokens. Each token consists of an elementary protocol that decreases the probability of error by

a factor of, say, 2. Thus, after k tokens have been exchanged, this probability will be reduced to

2�k . Tokens can be exchanged sequentially or in parallel (that is concurrently). The ZK constraint

implies that the messages exchanged for a single token can be simulated in expected polynomial

time. That is, a probabilistic, e�cient simulator can output a token in expected, say, 2 trials

without any intervention of the prover, and knowing nothing about the proof. Thus, if the proof

transfers tokens one at a time, it is easy for the simulator to generate the view relative to k of

them: in expected two trials the simulator will output a \good" �rst token; after that, in expected

two more trials, will output a second \good" token, and so on. Thus, overall, the entire view of

the protocol can be simulated in expected 2k trials. If, however, the prover transfers tokens \all

together," the job of the simulator is much harder: the expected number of trials so that all k of

them will simultaneously are \good," is 2k.

This phenomenon { which will be made more precise in the context of graph isomorphism { is

what defeated researchers ever since ZK came about.

The main result of this paper is a technique for squeezing the number of rounds in a interactive

proof, while preserving simulatability. The technique is quite general, and in fact it applies to

all known perfect ZK proofs. It will be presented here, though, for graph isomorphism only, for

easiness of presentation.

The proof of our main theorem involves several new ideas. In particular, a non-cryptographic

committal scheme and a novel method of simulation in modes. In fact, although the protocol only

requires 5 rounds and is surprisingly simple, the simulation argument is quite complex.

Moreover, our result is essentially optimal due to the general 4-round lower bound of Goldreich

and Krawczyk [3].

2 De�nitions

2.1 General

If S is a �nite set then jSj denotes its cardinality and

Sk = S � S � � � � � S| {z }
k

denotes its k-fold cross product. The length of a binary string x is denoted jxj and the empty string

is denoted �.

2

2.2 Probability Spaces and Algorithms

These notations and conventions for probabilistic algorithms are derived from [6] and further ex-

tended.

We emphasize the number of inputs received by an algorithm as follows. If algorithm A receives

only one input we write \A(�)"; if it receives two we write \A(�; �)", and so on.

If A is a probabilistic algorithm then, for any input i the notation A(i) refers to the probability

space which to the string � assigns the probability that A, on input i, outputs �. We point out the

special case in which A takes no inputs; in this case A refers to the algorithm itself whereas the

notation A() refers to the probability space obtained by running A on no input.

If S is a probability space we denote by PS(e) the probability that S associates with element

e. We denote by [S] the set of elements to which S assigns positive probability.

If f(�) and g(�; � � �) are probabilistic algorithms then f(g(�; � � �)) is the probabilistic algorithm

obtained by composing f and g (i.e. running f on g's output). For any inputs x; y; : : : the associated

probability space is denoted f(g(x; y; � � �)).
If S is a probability space then x S denotes the algorithm which assigns to x an element

randomly selected according to S (that is, x is assigned the value e with probability PS(e)) (in the

case that [S] consists of only one element e we write x e rather than x feg).

For probability spaces S; T; : : :, the notation

P(p(x; y; � � �) : x S; y T ; � � �)

denotes the probability that the predicate p(x; y; � � �) is true after the (ordered) execution of the

algorithms x S, y T , etc. The notation

f f(x; y; � � �) : x S; y T ; � � � g

denotes the probability space which to the string � assigns the probability

P(� = f(x; y; � � �) : x S; y T ; � � �) ;

f being some function.

If S is a �nite set we will identify it with the probability space which assigns to each element

of S the uniform probability 1
jSj
. Thus x S denotes the operation of selecting an element of S

uniformly at random (again in the case that the set is of only one element e we write x e rather

than x feg), and for any e 2 S we denote by PS(e) the probability 1
jSj

that S assigns to e.

Furthermore we let U(S) denote the uniform probability 1
jSj
.

We let PPT denote the set of probabilistic (expected) polynomial time algorithms.

2.3 Interactive TMs and Protocols

An interactive Turing Machine (ITM) is a Turing machine which is equipped with a read-only

input tape, a random tape, a work tape, one read-only communication tape and one write-only

communication tape. The random tape contains random bits and can be read only left to right,

and when we say that an ITM ips a coins we mean that it reads the next bit of its random tape.

An interactive protocol is a pair (A;B) of ITMs who share the same input tape and such that

A's write only communication tape is B's read only communication tape, and vice versa. ITM A is

not computationally bounded while there is a polynomial p such that ITM B's computation time

is bounded by p(k) when the common input is of length k. The two machines take turns in being

active, with A being active �rst. During an active stage a machine performs some compuatation

3

using its input tape, random tape, work tape, and communications tapes and then writes some

string on its write only communication tape for the other machine to read. As soon as a machine

writes a message it is deactivated and the other machine is activated. A machine can terminate the

computation of the protocol by not sending any message in its active stage. Furthermore, machine

B can terminate the protocol by accepting or rejecting (outputting \accept" or \reject"); in this

case we say that (A;B) accepts or rejects the common input. We denote by

P((A;B) accepts x)

the probability that (A;B) accepts the common input x. This probability is taken over the random

tapes of both A and B.

The compuatation time of machine B is the sum of its compuation times during its active

stages, and it is this which is bounded by p(k). Each active stage of a machine is called a round ;

the number of rounds is thus a measure of the amount of interaction in the protocol.

The conversation between A and B is the sequence �1; �1; �2; �2; : : : ; of messages written by

these machines on their communication tapes, and

De�nition 2.1 (A$B)(x) denotes the probability space of all conversations between A and B

on input x (the probability here is taken over the random tapes of both parties).

Sometimes we want to make the coin tosses of B explicit. For any R 2 f0; 1g� we write B(R) for
the (deterministic) machine B with R as its random tape. Then

De�nition 2.2 (A$B(R))(x) denotes the probability space of conversations between A and B(R)

on input x (the probability is over the random tapes of A).

We let B(R; x; �1�1 : : :�i�1�i�1) denote the next message that B(R) sends when the conversation

upto this point was �1�1 : : :�i�1�i�1. More precisely, we let B(R; x; �1) denote the message that

B(R) sends if it is activated for round 2 with the message �1 6= � on its read only communication

tape. If this response of B(R) is some �1 6= � we then let B(R; x; �1�1�2) denote the message that

B(R) sends if it is now activated for round 4 with �2 6= � on its read only communication tape,

and so on.

Finally, it is convenient to de�ne

De�nition 2.3 The state of the ITM B at any point in its computation consists of the contents

of its tapes, the positions of the heads on these tapes, and the internal state of the machine.

2.4 Interactive Proof Systems and Zero Knowledge

De�nition 2.4 An interactive protocol (P; V) is an interactive proof system for the language L if

the following conditions hold:

� Completeness : For every x 2 L,

P((P; V) accepts x) � 1� 2�jxj :

� Soundness : For every ITM bP and every x 62 L,

P((bP; V) accepts x) � 2�jxj :

P and V are referred to as the prover and the veri�er respectively.

4

The view of the veri�er during an interaction with the prover is everything he sees: that is, his

own coin tosses and the conversation between himself and the prover. Accordingly we de�ne

De�nition 2.5 Let (P; bV) be an interactive protocol and let x 2 f0; 1g�. The view of bV on input

x is the probability space

View
(P;bV)

(x) = f (R;C) : R f0; 1gp(jxj) ; C (P$ bV (R))(x) g ;

where p is a polynomial bounding the running time of bV .
De�nition 2.6 An interactive proof system (P; V) for L is a perfect zero knowledge interactive

proof system for L if for every polynomial time ITM bV there exists a PPT algorithm SbV (�) such
that for all x 2 L it is the case that SbV (x) = View

(P;bV)
(x) (this SbV is called the simulator).

Perfect zero knowledge represents the strongest notion of zero knowledge in that we require the

distribution produced by the simulator to exactly equal the view of the veri�er. Weaker versions

(namely computational and statistical zero knowledge) are de�ned in [5], but we will not be con-

cerened with those here, and when we say \zero knowledge" we always mean perfect.

3 Graph Isomorphism: Background

3.1 Preliminaries

A graph G = (V;E) is a set of nodes (or vertices) V together with a set of edges E � V � V .

We will always consider the vertex set of an n node graph to be [n] = f1; 2; : : : ; ng, and will only

consider undirected graphs (i.e. (i; j) 2 E i� (j; i) 2 E).

We represent graphs by their adjacency matrices. The adjacency matrix of the n node graph

G = ([n]; E) is the n by n matrix AG = [aij] de�ned by

aij =

(
1 if (i; j) 2 E
0 otherwise.

Since the graph is undirected its adjacency matrix is symetric.

Let Sn denote the set of permuations on [n]. Permuting the nodes of a graph G = ([n]; E)

according to a � 2 Sn yields a graph �(G) = ([n]; �(E)) de�ned by

�(E) = f (�(i); �(j)) : (i; j) 2 E g :

De�nition 3.1 A pair of graphs G0 = ([n]; E0) and G1 = ([n]; E1) are isomorphic (written G0
�=

G1) if there is a � 2 Sn such that G1 = �(G0).

Isomorphism de�nes an equivalence relation on the set of n node graphs, and we let

[G] = f �(G) : � 2 Sn g

denote the isomorphism class of the n node graph G. For an n node graph H we further let

[G! H] = f � 2 Sn : �(G) = H g

denote the set of all permutations mapping G to H . An important fact about this set is that for

�xed G its size does not depend on H . More formally,

5

Lemma 3.1 Let G be an n node graph. The collection of sets f [G! H] gH2[G] form a partition

of Sn and moreover all the sets in this partition are of the same size.

Proof : It is easy to see that f [G! H] gH2[G] is just the collection of left cosets of the subgroup

Aut(G) = f � 2 Sn : �(G) = G g

of Sn. These sets are thus a partition of Sn, and moreover

j[G! H]j =
n!

jAut(G)j

for all H 2 [G]. 2

A basic component of graph isomorphism protocols is the creation of a random isomorphic copy of

a given graph G. That is, given the adjacency matrix of G we wish to create the adjacency matrix

of a random element of [G]. The following lemma is useful in this regard.

Lemma 3.2 If �;H are chosen as � Sn ; H �(G) then

(1) H is randomly and uniformly distributed over [G]

(2) � is randomly and uniformly distributed over [G! H].

Proof : Follows directly from Lemma 3.1. 2

3.2 The Goldreich-Micali-Wigderson Protocol

The �rst zero knowledge proof for graph isomorphism was given by Goldreich, Micali and Wigderson

[4] and we use many of their ideas in our protocol. It will be helpful to briey review their protocol

here.

The protocol in [4] consists of serial repetions of a small atomic protocol. This atomic protocol

is as follows. On input a pair of isomorphic graphs (G0; G1) the prover sends the veri�er a random

isomorphic copy H of G0, and the veri�er responds by sending a bit q selected at random. The

prover must now provide an isomorphism � between Gq and H . If G0 and G1 are really isomorphic

he can always do this, but if not then the probability that he could do it is � 1
2
, regardless of how

he might attempt to select H .

The simulator for this protocol begins by picking a bit i and a permutation ' at random, and

then constructing the random isomorphic copy H = '(Gi) of Gi. He now runs the veri�er on input

H . With probability 1
2
the veri�er's request q is equal to i, and the simulator can provide ' as the

isomorphism. In expected two tries, he has a simulation of the atomic protocol.

Serial repetitions of the atomic proof are easily simulatable in the same manner { each run can

be simulated in expected two tries and thus the whole in expected polynomial time.

3.3 Why Does Straightforward Parallelization Fail?

Could we run the above atomic protocol k times in parallel and maintain zero knowledge? Di�-

culties crop up when we are dealing with cheating veri�ers.

For example, suppose we run k versions of the atomic protocol in parallel, and the prover is deal-

ing with a cheating veri�er bV who acts as follows. When the prover sends randomly selected graphs

H1; : : : ; Hk each isomorphic to G0, the veri�er bV sends back bits q1; : : : ; qk which are computed,

6

say, by hashing in a very complicated way the inputs and the prover's message: that is,

(q1; : : : ; qk) = complex-hash(G0; G1; H1; : : : ; Hk) :

Although q1; : : : ; qk have not been picked by the prescribed protocol, the prover at this stage will,

for each i, provide an isomorphism �i 2 [Gqi! Hi]. The simulator must generate this same view of

the cheating veri�er. It is not at all clear how he can do this. There is no obvious way in which he

can \anticipate" the veri�er's queries. In essence, he must be able to simultaneously satisfy many

conditions: namely, he must come up with randomly distributed graphs H1; : : : ; Hk for which he

also knows isomorphisms �i 2 [Gqj! Hi] where (q1; : : : ; qk) = complex-hash(G0; G1; H1; : : : ; Hk).

This may not be possible in polynomial time unless graph isomorphism is easy. Thus the naive

parallel execution of the original atomic proof yields a proof system which may not be a zero

knowledge one.

Furthermore Goldreich and Krawczyk [3] provide evidence that these di�culties are intrinsic:

their results imply that the protocol of [4] would be parallelizable only if the language LGI was in

BPP, and the latter seems unlikely.

4 A Constant Round Protocol for Graph Isomorphism

We present the protocol and show that it is an interactive proof system for graph isomorphism.

The simulator is in the next section.

4.1 The Interactive Protocol

We specify the interactive protocol (P; V) by giving the programs for the prover P and the veri�er

V . The common input is a pair of n node graphs (G0; G1), and k denotes the length of this input.

Program for the Prover P :

Auxiliary Input: � 2 [G1! G0]

(P1) P selects 0; 1 Sn and sets A0 = 0(G0), A1 = 1(G0). His message to V is �1 =

(A0; A1).

(P2) P receives a message �1. He now selects '1; : : : ; 'k Sn and sets Hi = 'i(G0) for all

i = 1; : : : ; k. His message to V is �2 = (H1; : : : ; Hk).

(P3) P receives a message �2. He checks that

� �1 is of the form (Q1; : : : ; Qk) where each Qi is an n node graph

� �2 is of the form ((q1; : : : ; qk); (�1; : : : ; �k)) where qi 2 f0; 1g and �i 2 Sn for each i

� Qi = �i(Aqi) for each i.

If any of these checks fail, P aborts the protocol here. Otherwise, P sets

�i =

(
'i if qi = 0

'i� if qi = 1.

for i = 1; : : : ; k. His message to V is then �3 = ((0; 1); (�1; : : : ; �k)).

end of Program for P

Remark: Notice that we have speci�ed P as having an auxiliary (private) input; namely an

isomorphism between G1 and G0. Since P is not computationally bounded he could, of course,

7

compute such an isomorphism on his own. We present the program in this manner to empahsize

the fact that P in fact runs in probabilistic polynomial time if he is given such an isomorphism, a

fact which is useful in practice.

Program for the Veri�er V :

(V1) V receives a message �1. He checks that �1 is of the form (A0; A1) where each Ai is an

n node graph, and if this is not the case then rejects. Otherwise he selects �1; : : : ; �k

Sn ; q1; : : : ; qk f0; 1g, and sets Qi = �i(Aqi) for all i = 1; : : : ; k. His message to P is

�1 = (Q1; : : : ; Qk).

(V2) V receives a message �2. He sends to P the message �2 = ((q1; : : : ; qk); (�1; : : : ; �k)).

(V3) V receives a message �3. He checks that

� �2 is of the form (H1; : : : ; Hk) where each Hi is an n node graph

� �3 is of the form ((0; 1); (�1; : : : ; �k)) where each i and each �i is in Sn
� 0(G0) = A0 and 1(G0) = A1 and �i(Gqi) = Hi for all i = 1; : : : ; k.

If this is the case then V accepts, else V rejects.

end of Program for V

We will prove that

Theorem 4.1 The interactive protocol (P; V) constitutes a constant round zero knowledge inter-

active proof for LGI .

4.2 A Brief Intuitive Look at the Protocol

Let us try to explain the main ideas behind this protocol, building on the discussion of x3.3.

In order to prevent the veri�er from picking his questions as

complex-hash(G0; G1; H1; : : : ; Hk)

or any other bizarre function of the message he receives we will have him commit to his questions

before the prover sends his test graphs H1; : : : ; Hk. After receiving the test graphs from the prover

he decommits these questions which the prover then proceeds to answer. The hope, intuitively, is

that if the veri�er is in some sense committed to his questions before he sees the test graphs then

he cannot keep changing these questions from run to run in the simulation.

It must certainly be the case that the committals give no information about the actual questions,

since if the prover knew the questions beforehand he could cheat. How can such a committal,

secure against an in�nitely powerful prover, be accomplished? The usual method of implementing

committals is through a cryptographic assumption, which would destroy perfect zero knowledgeness.

We will instead use the input graphs themselves to implement the committal. The naive approach

of encoding a bit j as a random isomorphic copy of Gj does not work. To see this, consider what

happens if the two input graphs are not isomorphic: a cheating prover sees the committals in the

clear and prepares H1; : : : ; Hk accordingly.

We instead begin by having the prover send the veri�er a pair of graphs (A0; A1) both isomorphic

to G0. If the veri�er wishes to commit to a bit q he sends the prover a random isomorphic copy

B of Aq. If the graphs A0 and A1 are indeed isomorphic, the prover will have no information as

to the value of q. During the last step of the protocol, P must exhibit the isomorphisms between

8

A0 and G0 and between A1 and G0. If he does not do so, the veri�er rejects. If he does do so, the

veri�er is convinced that the prover could not predict his committed questions: both a committal

of a 0 and a committal of a 1 are just random isomorphic copies of G0.

We also must argue, though, that the veri�er is indeed committed to his questions. That is, he

cannot change his questions after seeing the graphs H1; : : : ; Hk from the prover. This is intuitively

so because otherwise the (cheating) veri�er could also �nd the isomorphism between the graphs

G0 and G1, making our proof system vacuously zero knowledge. In other words, we design the

simulator so that if the veri�er changes his committals the simulator will extract an isomorphism

between the original pair of input graphs G0 and G1 and thus be able to answer any questions

whatsoever. This idea of using changing decommittals to extract some secret comes from [1].

As this discussion might indicate, the simulator is in fact very complex and contains the real

heart of the argument. The protocol itself is surprisingly simple, and moreover, of just �ve rounds.

In discussing the protocol we will continue to use the informal terminology used here. We will re-

fer to the graphs (Q1; : : : ; Qk) sent by V in step (V1) as his committals . The ((q1; : : : ; qk); (�1; : : : ; �k))

of step (V2) are his decommittals and (q1; : : : ; qk) are the questions . The isomorphisms (�1; : : : ; �k)

sent by the prover in step (P3) are his answers .

4.3 Why is this an Interactive Proof?

Let us argue more formally that

Lemma 4.1 The interactive protocol (P; V) constitutes an interactive proof system for LGI .

Proof : We check the conditions of De�nition 2.4.

� Completeness : It is easy to see that if G0
�= G1 then P((P; V) accepts (G0; G1)) = 1.

� Soundness : Consider the interactive protocol (bP ; V) on input a pair of non-isomorphic graphs

(G0; G1). Suppose that (bP; V) accepts at the end of the protocol. By step (V3) we are as-

sured that A0
�= A1. This fact together with Lemma 3.1 implies that for each �xed choice of

(q1; : : : ; qk), the vector of graphs (Q1; : : : ; Qk) is randomly and uniformly distributed over [A0]
k.

Hence with q1; : : : ; qk chosen at random and since [G0]\ [G1] = ;, the probability that Hi 2 [Gqi]

for all i is � 2�k. So P((bP; V) accepts x) � 2�k . 2

5 The Simulator

We describe the simulator SbV for a polynomial time ITM bV .
5.1 Prelude

Central to our simulation is an idea that comes from the recent protocol of Brassard, Cr�epeau, and

Yung [1]. Very informally, they get a cheating veri�er to twice docommit a single set of committals

and then complete the simulation by (1) having \learned" the decommitals if they don't change,

or (2) extracting some secret if they do change.

The basic idea of running a cheating veri�er twice in order to \learn" something appeared in

the quadratic non-residuosity protocol of [5] and then in many later works; the novelty of the [1]

idea is in considering changing or unchanging decommitals and in one case extracting a secret.

9

Our case involves many additional complications over previous approaches. We approach the

simulation by �rst describing a [1] type \double running" process and seeing how this motiviates

the novel and crucial idea of modes of operation of the simulator.

5.2 Intuition: The \Double Running" Process

On input a pair of isomorphic n node graphs (G0; G1), the simulator's �rst action is to �ll the

random tape of bV with coin tosses R from its own random tape. It is now prepared to run bV (R)
as part of its program.

The simulator's next step is to select a pair of graphs (A0; A1) to correspond to the pair of

graphs that the prover would send in his �rst message.

Let us for the moment suppose it selects them exactly as the prover would, and see where this

leads. Thus, the simulator picks 0; 1 Sn and sets A0 = 0(G0) and A1 = 1(G0).

Setting �1 = (A0; A1), the simulator now writes �1 = (A0; A1) on bV (R)'s communication tape,

and then runs bV (R) to get his committals (Q1; : : : ; Qk). It then picks '01; : : : ; '
0

k Sn and sets

H 0
i = '0i(G0) for all i = 1; : : : ; k. It feeds bV (R) the message �02 = (H 0

1; : : : ; H
0

k) and runs it to obtain

its decommittals �02 = ((q01; : : : ; q
0

k); (�
0
1; : : : ; �

0

k)).

The message from the prover at this point would contain isomorphisms between Gq0
i
and H 0

i

for each i, and thus the simulator should provide such isomorphisms as well. But it is not in a

position to do so (unless, of course, all the q0i are 0). However, something has been accomplished:

the simulator now knows the decommittals of (Q1; : : : ; Qk).

The simulator takes advantage of this by selecting new graphs based on this information: it

selects '1; : : : ; 'k Sn and set Hi = 'i(Gq0
i
). That is, it selects (H1; : : : ; Hk) so that it can

answer the questions (q01; : : : ; q
0

k). Note that since G0
�= G1 the graphs (H1; : : : ; Hk) have the same

distribution as when the prover chooses them in his step (P2). The simulator can now certainly

supply isomorphisms between Hi and Gq0i
for each i, and, further, it can supply 0 mapping G0 to

A0 and 1 mapping G1 to A1. Moreover these are again distributed as they would be for the prover.

So are we done? No, because ((q01; : : : ; q
0

k); (�
0
1; : : : ; �

0

k)) might not have been bV (R)'s response if it
had been given (H1; : : : ; Hk) as the second message (recall this is a possibly cheating veri�er).

However the simulator might have been lucky, so it restores bV (R) to the state where it is

ready to receive the second message and feeds it �2 = (H1; : : : ; Hk). It then runs bV (R) to

get �2 = ((q1; : : : ; qk); (�1; : : : ; �k)). If (q1; : : : ; qk) = (q01; : : : ; q
0

k) then the simulator can output

(R; (�1; �1; �2; �2; �3)) and halt, where �3 = ((0; 1); ('1; : : : ; 'k)); note that this is a perfectly

correct simulation. But what if there was a j such that qj 6= q0j? It is not clear what the simulator

could do.

We now make the following important observation. Suppose that the simulator had begun

by selecting (A0; A1) di�erently. Namely, it would pick 0; 1 Sn and set A0 = 0(G0) and

A1 = 1(G1). (Notice that since G0
�= G1, both A0 and A1 are still just randomly distributed

isomorphic copies of G0 and from bV (R)'s point of view there is nothing to di�erentiate this choice

of the simulator's from the original one described above). The simulator now proceeds exactly as

before. Suppose the result of the two runs again resulted in there being a j such that qj 6= q0j (say

qj = 0 and q0j = 1). Then the simulator is now in a good position: it can compute an isomorphism

� between the original pair of input graphs G0 and G1. Namely, it sets � = �1
0 ��1

j �0j1. It is then

in the same position as the prover: it can compute isomorphisms �i between Hi and Gqi to answer

10

the questions1.

Notice however that this new way of picking (A0; A1) is not good for the case when bV (R)'s
decommittals remain the same. This is because if the simulator chooses A0 = 0(G0) and A1 =

1(G1) he does not know an isomorphism between G0 and A1 which the prover's last step would

require him to provide.

Section 5.3 will summarize and discuss what exactly these ideas have achieved; let us conclude

here by emphasizing the nature of the \double running" process itself. This is the name we give to

the above described procedure of running bV (R) once on dummy graphs (H 0
1; : : : ; H

0

k) to get some

decommittals, preparing appropriate new graphs (H1; : : : ; Hk), and then running bV (R) again and

seeing whether or not his decommittals change. Note that this process is indpendent of the manner

in which (A0; A1) were chosen and depends only on the graphs (A0; A1) themselves.

5.3 Overview of the Algorithm

Let us summarize what we have achieved while introducing some terminology, and sketch a rough

outline of the complete simulator program.

We consider two modes of operation of the simulator:

Mode 0: SbV selects 0; 1 Sn and sets A0 = 0(G0), A1 = 1(G0).

Mode 1: SbV selects 0; 1 Sn and sets A0 = 0(G0), A1 = 1(G1).

Whatever the mode may be, the simulator goes through the \double running" process. This process

has one of two outcomes

� The decommittals remain the same (i.e. (q1; : : : ; qk) = (q01; : : : ; q
0

k))

� The decommittals change (i.e. (q1; : : : ; qk) 6= (q01; : : : ; q
0

k))

and these are independent of the mode. As we have just seen, the outcome from the point of view

of the simulator is summarized by the following table:

Decommittals remain the same Decommittals change

mode = 0 Output a simulation and halt unsuccesful

mode = 1 unsuccesful Extract an isomorphism � 2 [G1! G0]

The simulator's goal will be to reach either the top left or the bottom right points of this table. To

do this it will operate in runs, where a run consists of

� Picking a mode (and (A0; A1) correspondingly)

� Executing the double running process.

If the outcome falls in one of the categories marked \unsuccesful" in the table, the simulator will

try another run, picking the mode in some way that reects the failure of the previous run. The

obvious choice would be to switch modes every time, but for technical reasons the following turns

out to be better: the simulator

� Picks the initial mode to be 1

� Switches to mode 0 for the second run if the �rst run was unsuccesful

1 A subtle point arises: although the simulator knows an isomorphism between G1 and G0, it is not quite in a

postion to terminate because it does not know a random isomorphism between G0 and A1 such as the prover would

provide in his last message. We will deal with this di�culty later.

11

� Thereafter never changes the mode (i.e. if future runs are unsuccesful, begins a new run in

mode 0).

Notice that this leads to a potentially in�nite number of runs; we will have to show not only that

the simulator produces the right distribution but that it halts in expected polynomial time.

This is the global outline; many details remain. One is how the simulator will terminate in the

case that it extracts an isomorphism between the input graphs (see the footnote page 11). Another

is how we deal with messages of bV (R) that are of an inappropriate format (for example, bV (R)'s
�rst message might not even be a sequence of n node graphs as the prover expects). We call such

messages of bV (R) \garbage" and will have to handle them with care. These issues are dealt with

in the following code.

5.4 The Program for the Simulator

Let p be the polynomial bounding the computation time of bV . It will be convenient for us to

describe the algorithm for the simulator SbV (�) via another algorithm MbV (�; �) which takes as input,

in addition to a pair of isomorphic graphs (G0; G1), a string R 2 f0; 1gp(j(G0;G1)j) which will used

as the random tape of bV . Thus
Program for SbV :
Input: (G0; G1) 2 LGI

(1) SbV sets R to be the �rst p(k) bits of its random tape, were k is the length of (G0; G1)

Comment This string will be used by MbV as the random tape of bV .

(2) SbV runs MbV on inputs (G0; G1) and R.

end of Program for SbV
and we can concentrate on MbV . With a little abuse of language, we will continue to refer to MbV
as the \simulator".

5.5 The Machine MbV
The basic framework and ow of control of the algorithm MbV is diagramed in Figure 1. A detailed

description follows below. The description of the main subroutine Try Mode is on page 15.

Program for MbV :
Input: (G0; G1) 2 LGI and R 2 f0; 1gp(k) where k = j(G0; G1)j

(M1) MbV sets first-run yes and mode 1.

Comment Note the initial mode is 1.

(M2) MbV records the state S0 of bV (R) at this point.
Comment This is the initial state of bV (R).

(M3) MbV restores bV (R) to the state S0 recorded in step (M2).

Comment Start a run.

(M4) MbV picks (A0; A1) according to the value of mode:

� If mode = 0 then 0 Sn ; A0 0(G0) ; 1 Sn ; A1 1(G0)

� If mode = 1 then 0 Sn ; A0 0(G0) ; 1 Sn ; A1 1(G1)

12

first-run yes ; mode 1

?

Restore bV (R) to its initial state S0

?

mode = 0 ?
�

�

�

no

?

yes

?

0 Sn ; A0 0(G0)
1 Sn ; A1 1(G0)

?

0 Sn ; A0 0(G0)
1 Sn ; A1 1(G1)

?

The main Try Mode routine
(page 15) which sets the value of

the variable v-mode

?

v-mode = mode ?
�

�

�

no

?

?

yes

first-run ?
�

�

�

?

yes

no
�

��

mode 0
first-run no

�mode = 0 ?
�

�

�

?

no

?

yes

Extract an isomorphism � between G1 and G0

?

Restore bV (R) to its initial state S0

?

0 Sn ; A0 0(G0)

1 Sn ; A1 1(G0)

?

Try Mode

?

v-mode = 1 ?
�

�

�

no
�

��

�
yes

Output and Halt

Figure 1: Outline of the Program for MbV on input (G0; G1) and R

13

Comment If the mode is 0 then MbV picks (A0; A1) so that it knows a random isomorphism

in [G0! A0] and a random isomorphism in [G0! A1]; if the mode is 1 then it picks them so

that is knows a random isomorphism in [G0! A0] and a random isomorphism in [G1! A1].

Regardless of the mode, both A0 and A1 are randomly distributed over [G0] = [G1].

(M5) MbV invokes the Try Mode routine on inputs (A0; A1), R.

Comment The Try Mode routine returns various variables; see the code on page 15. MbV
will act on the values of these variables.

(M6) � If garbage = yes then

� If first-run = yes then MbV outputs

(R; (�1; �1; �
0

2; �
0

2))

and halts

� Otherwise it returns to step (M3)

� Otherwise MbV proceeds to step (M7).

Comment If bV (R)'s responses were of an inappropriate form then the simulator halts, as

the prover would, but only if this is the �rst run. If this is not the �rst run then it begins an

entire new run.

(M7) MbV branches according to v-mode:

� If v-mode = mode then MbV proceeds to step (M8)

� Otherwise, MbV branches according to

� If first-run = yes then MbV sets mode 0 and first-run no and goes to

step (M3)

� Otherwise it goes straight to step (M3)

Comment MbV begins a new run. If this was the �rst run then it switches modes;

otherwise it stays in the same mode.

(M8) MbV now branches according to the mode

� If (mode = 0) then MbV sets �3 = ((0; 1); ('1; : : : ; 'k)), outputs

(R; (�1; �1; �2; �2; �3))

and halts.

Comment We are in the case where bV (R)'s decommittals did not change (that is, ~q = ~q0)

and the mode was 0. So MbV can output a simulation.

� Otherwise MbV proceeds to step (M9)

(M9) MbV �xes a j such that qj 6= q0j and sets

� =

(
�1
0 ��1

j �0j1 if qj = 0 and q0j = 1

�1
0 (�0j)

�1�j1 if qj = 1 and q0j = 0.

Comment We are in the case where bV (R)'s decommittals change (that is, ~q 6= ~q0) and the

mode was 1. So MbV can extract an isomorphism � 2 [G1! G0] as shown. This is still not

enough to terminate, however, since MbV does not have a random isomorphism in [G0! A1].

So MbV will start from scratch again.

(M10) MbV restores bV (R) to its initial state S0
Comment Start a run

14

(M11) MbV picks (A0; A1) as 0 Sn ; A0 0(G0) ; 1 Sn ; A1 1(G0).

Comment MbV picks (A0; A1) so that it knows a random isomorphism in [G0! A0] and a

random isomorphism in [G0! A1].

(M12) MbV invokes the Try Mode routine on inputs (A0; A1), R.

Comment The Try Mode routine returns various variables on whose values MbV will act

below.

(M13) MbV checks

� If garbage = yes then MbV returns to step (M10)

� Otherwise it branches according to the value of v-mode:

� If v-mode = 0 then MbV returns to step (M10)

� Otherwise for i = 1; : : : ; k it sets

�i =

(
'i if qi = 0

'i� if qi = 1.

It sets �3 = ((0; 1); (�1; : : : ; �k)), outputs

(R; (�1; �1; �2; �2; �3))

and halts.

Comment MbV is looping, waiting for v-mode to again have the value 1. The �rst time it

detects this, it outputs a simulation and halts. Otherwise it tries Try Mode again.

end of Program for MbV
This completes the description of the main program for the simulator. We now describe the Try

Mode routine which executes the double running process.

The Try Mode Routine:

Input: (A0; A1), R.

(1) Set garbage no.

(2) Set �1 = (A0; A1).

(3) Write the message �1 on bV (R)'s communication tape and then run bV (R) in order to obtain

a message �1.

(4) Record the state S1 of bV at this point.

(5) Select '01; : : : ; '
0

k Sn and set H 0
i = '0i(G0) for all i = 1; : : : ; k.

(6) Write the message �02 = (H 0
1; : : : ; H

0

k) on
bV (R)'s communication tape and run bV (R) to get

his next message �02.

(7) Check that

� �1 is of the form (Q1; : : : ; Qk) where each Qi is an n node graph

� �02 is of the form (~q0; ~�0) where ~q0 = (q01; : : : ; q
0

k) with each q0i 2 f0; 1g,
~�0 = (�01; : : : ; �

0

k)

with each �0i 2 Sn
� Qi = �0i(Aq0i

) for each i.

and

� If this is indeed the case go to step 8

� Otherwise, set garbage yes and go to step 13.

15

(8) Restore bV to the state S1 recorded in step 4.

(9) Select '1; : : : ; 'k Sn and set Hi = 'i(Gq0
i
) for all i = 1; : : : ; k.

Comment The graphs H1; : : : ;Hk have been selected so that the simulator knows an isomor-

phism between Hi and Gq0

i
for each i and can thus answer the questions q0

1
; : : : ; q0

k.

(10) Write the message �2 = (H1; : : : ; Hk) on bV (R)'s communication tape and run bV (R) to get

his next message �2.

(11) Check that

� �2 is of the form ((q1; : : : ; qk); (�1; : : : ; �k)) where qi 2 f0; 1g and �i 2 Sn for each i

� Qi = �i(Aqi) for each i.

and

� If this is indeed the case, set ~q = (q1; : : : ; qk); ~� = (�1; : : : ; �k), and go to step 13

� Otherwise return to step 8.

Comment Again, the simulator is checking that bV (R)'s message is of an appropriate form.

The action taken if it is not is, however, di�erent this time: the simulator simply loops, picking

new H1; : : : ;Hk until it �nds ones in response to which bV (R)'s response has the appropriate

form.

(12) Set

v-mode =

(
0 if ~q = ~q0

1 if ~q 6= ~q0 :

Comment The variable v-mode records whether or not bV (R)'s decommittals change.

(13) Return the following: garbage, v-mode, �1, �1, �
0
2, �

0
2, �2, �2, ('1; : : : ; 'k).

Comment This is the information Try Mode returns to the main algorithm.

end of Try Mode Routine

5.6 Remarks

In all of the above we have made the simplifying assumption that bV always sends a message when

it is its turn to do so. In reality bV could of course abort, accept or reject at any point. The

simulator can be easily modi�ed to deal with this. The idea would be to treat these cases just as

we treated messages of an inappropriate form above. These complications are not worth dealing

with explicitly.

In the case that the simulator extracts an isomorphism between G1 and G0 it cannot terminate

directly because, as we have pointed out earlier, it cannot provide a random isomorphism in [G0!
A1] (although having � it could of course provide a particular element of this set, namely 1�

�1).

The solution we would like to use is simply to start a new run as though in mode 0 and then use �

to answer bV (R)'s questions exactly as the prover would. This however would not lead to a correct

distribution. What we do instead is try the \double running" until we are once again in the same

situation (i.e. the bottom right corner of the table of x5.3) and then use � to construct appropriate

respones and halt. The reason this works will be clearer when we prove the correctness of the

simulator.

Figure 1 is a simpli�cation: it does not show how \garbage" is handled.

16

6 Why is this Perfect Zero Knowledge?

Two things have to be shown: that the simulator generates (P$ bV)(G0; G1), and that it halts in

expected polynomial time.

6.1 Preliminaries

We begin with terminology, notation, and a general analysis of the algorithm MbV . Fix a pair of n

node graphs (G0; G1) 2 LGI and let k be the length of (G0; G1). Let G = [G0] = [G1].

A run of MbV consists of

� Choosing (A0; A1)

� Executing Try Mode

Thus the passage from step (M3) to step (M5) constitutes a run, as does the passage from step (M10)

to step (M12). We call a run of the former kind a primary run and a run of the latter kind a

secondary run. There are three possiblities for any given run:

� The run is aborted via \garbage" being encountered at step 7 of Try Mode

� The run is good for mode 0

� The run is good for mode 1

where a run is good for mode i if Try Mode outputs v-mode = i. We denote the probabilities of

these events by g; h0; h1 respectively. Note that g + h0 + h1 = 1.

Next, some terminology:

De�nition 6.1 Suppose �1 = (A0; A1) and �1 = (Q1; : : : ; Qk) where each Ai and each Qi is an n

node graph. We say that a string �2 is (�1; �1)-good if it is of the form

(~q; ~�) = ((q1; : : : ; qk); (�1; : : : ; �k))

and

� qi 2 f0; 1g and �i 2 Sn for each i

� Qi = �i(Aqi) for each i.

De�nition 6.2 We say that C is complete if it is of the form (�1; �1; �2; �2; �3) where

� �1 = (A0; A1) 2 G � G

� �1 = (Q1; : : : ; Qk) where each Qi is an n-node graph

� �2 = (H1; : : : ; Hk) 2 G
k

� �2 = ((q1; : : : ; qk); (�1; : : : ; �k)) is (�1; �1)-good

� �3 = ((0; 1); (�1; : : : ; �k)) where 0(G0) = A0, 1(G0) = A1, and �i(Gqi) = Hi for each i.

De�nition 6.3 We say that C is incomplete if it is of the form (�1; �1; �2; �2) where

� �1 2 G � G

� �2 2 G
k

� Either �1 is not of the form (Q1; : : : ; Qk) with each Qi an n node graph, or �2 is not (�1; �1)-good

It is easy to see that

17

Lemma 6.1 Any C 2 [(P$ bV (R))(G0; G1)] is either complete or incomplete.

Proof : Omitted 2

De�nition 6.4 Suppose �02 = (~q0; ~�0) and �2 = (~q; ~�) are (�1; �1)-good. We say that �02 is

(�1; �1; �2; 0)-good if ~q = ~q0. Otherwise we say that it is (�1; �1; �2; 1)-good .

6.2 Correctness

Theorem 6.1 Suppose (G0; G1) 2 LGI . Then

SbV (G0; G1) = (P$ bV)(G0; G1) :

Proof : Follows from the program for the simulator (x5.4) and Lemma 6.2. 2

Lemma 6.2 Suppose (G0; G1) 2 LGI and R 2 f0; 1gp(k), where k = j(G0; G1)j). Then

MbV ((G0; G1); R) = (P$ bV (R))(G0; G1) :

Proof : It su�ces to show that

PMbV ((G0;G1);R)(C) = P
(P$bV (R))(G0;G1)

(C)

for any C 2 [(P $ bV (R))(G0; G1)]. We consider seperately the cases of C being complete and C

being incomplete.

First suppose C is complete. It is thus of the form (�1; �1; �2; �2; �3) where

� �1 = (A0; A1)

� �1 = (Q1; : : : ; Qk)

� �2 = (H1; : : : ; Hk)

� �2 = ((q1; : : : ; qk); (�1; : : : ; �k))

� �3 = ((0; 1); (�1; : : : ; �k))

are as described in De�nition 6.2 (G = [G0] = [G1]). It is easy to see that

P
(P$bV (R))(G0;G1)

(C)

= PG�G(A0; A1)PGk(H1; : : : ; Hk)P[G0!A0]�[G0!A1](0; 1)

P[Gq1!H1]�����[Gqk
!Hk](�1; : : : ; �k)

= U(G2) � U(Gk) �U([G0! A0]� [G0! A1]) �U([Gq1! H1]� � � � � [Gqk! Hk]) ;

this follows from the way the prover selects his messages (x4.1) and Lemmas 3.1 and 3.2. We will

compute PMbV ((G0;G1);R)(C) and show that it has this same value. Let

si = P(bV (R; (G0; G1); �1�1�2) is (�1; �1; �2; i)-good : �2 G
k)

f = P(bV (R; (G0; G1); �1�1�2) is not (�1; �1)-good : �2 G
k) ;

(i 2 f0; 1g). Observe that

f + s0 + s1 = 1 : (1)

Consider a primary run of MbV when it is in mode 0. This run will result in the output

C = (�1; �1; �2; �2; �3) if

18

� MbV gets 0; 1; A0; A1 in step (M4)

� The message �02 that MbV gets in step 6 of Try Mode is (�1; �1; �2; 0)-good.

� MbV gets '1 = �1; : : : ; 'k = �k and H1; : : : ; Hk in step 9 of Try Mode.

The probability of this is

p = PG�G(�1) � s0 �PGk(�2) �P[G0!A0]�[G0!A1]
(0; 1)

�P[Gq1!H1]�����[Gqk
!Hk]

('1; : : : ; 'k) �
X
j�0

f j

= U(G2) � s0 � U(G
k) �U([G0! A0]� [G0! A1])

�U([Gq1! H1]� � � � � [Gqk! Hk]) �
X
j�0

f j :

(Note that f 6= 1 since we are assuming that C is complete and C 2 [(P$ bV (R))(G0; G1)]).

On the other hand consider a secondary run ofMbV . Let � be the isomorphism that was obtained

in step (M9). This run will result in the output (�1; �1; �2; �2; �3) if

� MbV gets 0; 1; A0; A1 in step (M11)

� The message �02 that MbV gets in step 6 of Try Mode is (�1; �1; �2; 1)-good.

� MbV gets

'i =

(
�i if qi = 0

�i�
�1 if qi = 1.

(i = 1; : : : ; k) and H1; : : : ; Hk in step 9 of Try Mode.

The probability of this is

q = PG�G(�1) � s1 �PGk
(�2) �P[G0!A0]�[G0!A1](0; 1)

�P[Gq1!H1]�����[Gqk
!Hk]('1; : : : ; 'k) �

X
j�0

f j

= U(G2) � s1 � U(G
k) � U([G0! A0]� [G0! A1])

�U([Gq1! H1]� � � � � [Gqk! Hk]) �
X
j�0

f j :

How could MbV output C? It could do so either through a primary run or through a secondary run.

There are two alternatives:

� The �rst (primary) run is good for mode 0 (which happens with probabiity h0): In this case,

MbV initiates new runs while staying in mode 0. Each time it has a probabiity p of outputting

C and a probability 1� h0 of beginning a new run

� The �rst (primary) run is good for mode 1 (which happens with probability h1): In this case,

MbV initiates new runs until it again �nds a run good for mode 1. Each time it has a probability

q of outputting C and a probability 1� h1 of beginning a new run.

The probability that MbV outputs C can thus be written as

PMbV ((G0;G1);R)(C)

=

8><>:
h0 �

P
j�0(1� h0)

jp if h0 6= 0 and h1 = 0

h1 �
P

j�0(1� h1)
jq if h0 = 0 and h1 6= 0

h0 �
P

j�0(1� h0)
jp+ h1 �

P
j�0(1� h1)

jq otherwise

19

=

8><>:
p if h0 6= 0 and h1 = 0

q if h0 = 0 and h1 6= 0

p+ q otherwise

= p+ q

= U(G2) � (s0 + s1) � U(G
k) � U([G0! A0]� [G0! A1])

�U([Gq1! H1]� � � � � [Gqk! Hk]) �
X
j�0

f j

= U(G2) � U(Gk) �U([G0! A0]� [G0! A1]) �U([Gq1! H1]� � � � � [Gqk! Hk])

= P
(P$bV (R))(G0;G1)

(C) :

The third equality follows because if hi = 0 then si = 0 (i 2 f0; 1g). The fourth is obtained by

substituting the expressions for p and q derived above, and the �fth uses equation 1.

Next we consider the case that C is incomplete. This is considerably simpler since there is only one

point at which MbV would output an incomplete conversation. This is in the �rst run in step 7 of

Try Mode. Thus the probability of the incomplete conversation C is just the probability thatMbV ,
in the �rst run, gets �1 when it picks (A0; A1) in step (M4) and gets �2 when it picks (H 0

1; : : : ; H
0

k)

in step 5 of Try Mode. This probability is

PMbV ((G0 ;G1);R)(C) = PG�G(�1) �PGk(�2) ;

which again equals P
(P$bV (R))(G0;G1)

(C). 2

6.3 Termination

The idea is that all the potentially in�nite loops are being generated according to a common rule:

there is some event E which happens with probability p such that

� If E occurs the �rst time then we halt

� If E occurs the �rst time then we wait for E to occur again.

It can be shown that this procedure halts in expected 2 tries regardless of the value of p.

A full proof that the simulator halts in expected polynomial time will appear in the �nal paper.

References

[1] Brassard, G., C. Cr�epeau, and M. Yung, \Everything in NP can be Argued in Perfect Zero

Knowledge in a Bounded Number of Rounds," ICALP 89.

[2] Fortnow, L, \The Complexity of Perfect Zero Knowledge," Proceedings of the 19th ACM Sym-

posium on Theory of Computing , May 1987.

[3] Goldreich, O., and H. Krawczyk, \On the Composition of Zero Knowledge Proof Systems,"

manuscript.

[4] Goldreich, O., S. Micali, and A. Wigderson, \Proofs that Yield Nothing but their Validity",

Technical Report #498, Technion, 1988; preliminary version in Proceedings of the 27th IEEE

Symposium on Foundations of Computer Science, October 1986.

20

[5] Goldwasser, S., S. Micali, and C. Racko�, \The Knowledge Complexity of Interactive Proofs,"

Proceedings of the 17th ACM Symposium on Theory of Computing , May 1985.

[6] Goldwasser, S., S. Micali, and R. Rivest, \A Digital Signature Scheme Secure Against Adaptive

Chosen-Message Attacks," SIAM Journal on Computing , vol. 17, No. 2, (April 1988), 281-308.

[7] Tompa, M. and H. Woll, \Random Self Reducibility and Zero Knowledge Interactive Proofs

of Possession of Information," Proceedings of the 28th IEEE Symposium on Foundations of

Computer Science, October 1987.

21

