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Abstract. \Zero-knowledge arguments" is a fundamental cryptographic

primitive which allows one polynomial-time player to convince another

polynomial-time player of the validity of an NP statement, without re-

vealing any additional information in the information-theoretic sense.

Despite their practical and theoretical importance, it was only known

how to implement zero-knowledge arguments based on speci�c algebraic

assumptions; basing them on a general complexity assumption was open

since their introduction in 1986 [BCC, BC, CH]. In this paper, we �-

nally show a general construction, which can be based on any one-way

permutation.

We stress that our scheme is e�cient: both players can execute only

polynomial-time programs during the protocol. Moreover, the security

achieved is on-line: in order to cheat and validate a false theorem, the

prover must break a cryptographic assumption on-line during the con-

versation, while the veri�er can not �nd (ever!) any information uncon-

ditionally (in the information theoretic sense).

? Part of this work was done while visiting Bellcore, and part at IBM T.J. Watson

Research Center.



1 Introduction

Reducing complexity assumptions for basic cryptographic primitives is a ma-

jor current research program in cryptography. Characterizing the necessary and

su�cient complexity conditions needed for primitives helps us develop the the-

oretical foundations of cryptography, and further, reducing requirements for a

primitive may imply more concrete underlying functions for its practical imple-

mentations.

Here we study the problem of secure transfer of the proof of \validity of an

NP assertion" in this perspective. We note that the ability to convey proofs for

NP in a secure way (i.e., in zero-knowledge (ZK) fashion, as de�ned by [GMR])

has a large variety of applications in cryptography and distributed computing.

Informally, proving some fact in zero-knowledge is a way for one player (called

\prover") to convince another player (called \veri�er") that certain fact is true,

while not revealing any additional information. In our setting, we assume that

both players are polynomially bounded (thus NP proofs where the prover has

a witness, are the natural setting). We must make complexity assumptions for

implementing the above task since in our setting these protocols imply existence

of a one-way function. The assumptions could be used in two di�erent ways:

1. Zero-knowledge proofs [GMR, GMW]: The prover can not convince the veri-

�er to accept a false theorem, even if he gets help from an in�nitely powerful

computation; while the veri�er (or anyone overhearing the protocol), if he

ever breaks the assumption (say, after 100 years), can extract additional

information about the proof (thus, the security is only ensured computa-

tionally).

2. Zero-knowledge arguments [CH, BC, BCC]: The veri�er can not extract ad-

ditional information even if he is given in�nite time ( i.e., security is perfect);

however, the prover (assumed to be polynomial-time) can cheat in his proof

only if he manages to break the assumption on-line during the execution

of the protocol. This is the reason to call it an "argument" rather than a

"proof".

In many practical settings, ZK-arguments may be preferable to ZK- proofs:

the veri�er must only be sure that the prover did not break the assumption

during their interaction (which lasted, say, ten seconds or minutes). Notice that

while assuring that the assumption can never be broken is unreasonable, the

assumption that something can not be broken during the next ten minutes can



be based on the current state of the art. On the other hand, the prover has

absolute (i.e. information-theoretic) guarantee that no additional information is

released, even if the veri�er spends as much time as it desires trying (o�-line)

to extract it. (Thus, the notion of zero-knowledge arguments is useful if there is

a need to maintain the secrecy for very long time independent of the possible

future advance of cryptanalysis).

So far the complexity assumptions needed for perfect-zero-knowledge argu-

ments were too strong | they required speci�c algebraic assumptions. This is in

contrast with zero-knowledge interactive proofs, which can be based on any one-

way function. In this work we �nally dispose of speci�c algebraic assumptions

for zero-knowledge arguments:

Main result: If one-way permutations exist, then it is possible for polynomial-time

players to perform a perfect zero-knowledge arguments for all of NP

In our proof, we construct an information-theoretically secure bit-commitment

scheme, which has additional applications like information-theoretically secure

coin-ipping.We can implement the scheme (with almost-perfect security) based

on k-regular one-way functions. One practical implication of our result is that

secure arguments can now be based on functions which are DES-like ciphers.

1.1 Background and organization

Past successes in establishing basic cryptographic primitives on general assump-

tions (initiated in [Y82]) have shown that various primitives, which were orig-

inally based on speci�c algebraic functions, can be based on the existence of

general one-way functions or permutations. For example, Naor [N] showed that

computationally secure bit commitments (i.e., bit commitments which can be

broken o�-line given su�cient resources) can be constructed from a pseudo-

random generators (a notion originated and �rst implemented based on a dis-

crete logarithm assumption in [BM]). The later, in turn (after a long sequence

of papers) can now be based on any one-way function [ILL, H]. Another primi-

tive that can now be based on any one-way function as well is digital-signature

[NY, Ro]. Furthermore these primitives (and primitives derived from them, e.g.

identi�cation) were shown to imply a one-way function (thus they are equivalent)

[IL]. On the other hand, basing the primitive of oblivious transfer on a general

one-way permutation which is not a trapdoor5 was shown to be \a seemingly

5 a trapdoor implies that there is an information which enables easy inversion



hard task" [IR] { when based on black box reductions, it will separate P and

NP (on the positive side, a trapdoor permutation is su�cient).

Concerning secure proofs, Goldreich, Micali and Wigderson showed that zero-

knowledge proofs for NP can be done and require secure encryption functions

(the results of [N, ILL, H] give such functions under any one-way function); this

applies to general IP proofs as well [IY]. Further, zero-knowledge proofs and

zero-knowledge arguments for non-trivial languages as well as non-interactive

zero-knowledge proofs of [BFM, BDMP] imply the existence of one-way functions

[OW].

In contrast to computational zero-knowledge proofs, the primitive of perfect

zero-knowledge arguments for NP was much inferior in this respect: their con-

structions were known only under speci�c algebraic assumptions [BCC, BKK,

IY, BY, IN]. Our result gives the �rst general reduction: zero-knowledge NP-

arguments can be constructed given any one-way permutation.

Our construction has two stages. First, we show how to design an information-

theoretically secure bit commitment between two polynomial-time parties based

on any one-way permutation (we employ a technique that can be called \interactive-

hashing" introduced initially in a di�erent model involving an all-powerful party

[OVY1]). Moreover, we do it in such a way that the conversations in the commit-

ment protocol are simulatable (i.e. by an expected polynomial time algorithm).

Then, we apply the reduction of \perfectly-secure simulatable bit commitment"

to \perfect ZK-argument". (A general scheme connecting various commitments

to various ZK-systems was given in e.g. [IY] and can be used).

We note that this work di�ers from [OVY1] in that there the sender must

be able to invert one-way functions, whereas here the sender is e�cient (this is

the traditional cryptographic model). In [OVY1] we deal with oblivious transfer

and any technique succeeding in allowing a weak sender there, would be quite

signi�cant since it would implement oblivious transfer between polynomial time

parties using one-way permutations (see [IR]).

1.2 Relation to recent work on bit-commitment

Recently, models in which parties may have power beyond polynomial-time were

investigated; it is worth while pointing out the di�erences between the cur-

rent work and the recent one. By "From Strong to Weak BC", we denote Bit-

commitments (BC) protocols, in which even an in�nitely-powerful "Commiter"



can not cheat, (i.e. change the value of the committed bit) except with negligi-

ble probability, but the polynomial-time "Receiver" can "see" the commitment,

if he breaks the assumption. The result of [N] imply that under any one-way

function, there is a (Strong-to-Weak) BC from a polynomial-time Commiter to

a polynomial-time Receiver (that is, it is an e�cient protocol and the underlying

assumption in this case is optimal [IL]).

The work in [OVY2] investigated commitments between a strong and a

polynomial-time players where the strong player actually uses its non-polynomial-

time power. Thus, the main issue in that paper is how cryptographic assumptions

changes and can be relaxed when the power of players di�ers (rather than be-

ing polynomial-time for both players, as needed in practical applications). It is

shown that unless Distributional-NP=RP there is a (Strong-to-Weak) BC from

a Commiter with an (NP union co-NP) power to a polynomial-time Receiver.

Similarly, unless Distributional-PSPACE=RP, there is a (Strong-to-Weak) BC

from a (PSPACE) Commiter to a polynomial-time Receiver. Distributional-NP

is de�ned by Levin in the theory of average-case NP, whereas Distributional-

PSPACE is a complete (in Levin's sense) problem for PSPACE under a uniform

distribution. Thus, when allowing the commiter to use non-polynomial power

this theoretical result relaxes the assumptions in [N].

By "from Weak to Strong BC" we denote BC in which even an in�nitely-

powerful "receiver" can not "see" the commitment, but the polynomial-time

commiter can not change the value of the commitment if a complexity assump-

tion holds. In [OVY2] it is also shown, based on an oblivious transfer protocols

among unequal-power players introduced in [OVY1] (where interactive hashing

was presented), that given any one-way function, there is a (Weak-to-Strong) BC

from a polynomial-time Commiter to a (PSPACE) Receiver (and if the receiver

is NP, the same holds under a one-way permutation).

The main results in [OVY1] yield oblivious transfer under one-way func-

tion when players have unequal power. The cryptographic application of [OVY1]

(when both parties are polynomial time), is basing two-party secure computation

with one party having information theoretic security under general trapdoor per-

mutation assumption (whereas previously known under speci�c algebraic trap-

door functions). This is done by applying the results for one-way permutation

but by adding a trapdoor property to be useful in cryptographic scenarios (so

that computations are in polynomial-time).

In the current paper, we assume polynomial-time parties and do not use

non-polynomial-time computations. We stress again that this is the model for

cryptographic applications. Further, we make no use of trapdoor properties, as



BC's and secure interactive proofs do not need decryptions, but rather displaying

of pre-images (for decommitals). Our result here for BC can be stated as: given

any one-way permutation, there is an e�cient (Weak-to-Strong) BC protocol

from a polynomial-time Commiter to a polynomial-time Receiver (which may

be stronger); the BC is simulatable and is a commitment of knowledge.

1.3 Organization of the paper

In section 2, we give the model, the formal de�nitions of the problem, and the

assumptions. (Speci�cally, we present the model of interactive machines, the

de�nitions of perfect zero-knowledge arguments, the notion of commitment, and

the de�nition of one-way functions and permutations). In Section 3, we present

the new method for basing a perfectly-secure bit commitment on a one-way

permutation, and discuss its reduction to zero-knowledge arguments. In section

4 we present additional applications of our methods.

2 Model and De�nitions

Let Alice (the prover) and Bob (the veri�er) be interacting Turing machine

[GMR, B] which share an access to a security parameter n, and a common

communication tapes. Each has a private input and output tapes and a private

random tape. When Alice and Bob's programs are both polynomial time, we say

that the protocol is \e�cient" (we will assume this throughout), Alice usually

has a private tape in which a \witness" to the correctness of the common input

is written. We may consider Bob to be in�nitely-powerful when he wishes to

extract information from a protocol conversation, although he needs only poly

time computations to execute the protocol. Both parties share an input tape of

size k and and two \communication tapes": tapes for Alice to write in and Bob

to read and vice versa. Bob has a private history tape h.

2.1 Perfect Zero-Knowledge Arguments

An NP-proof protocol with polynomial-time prover is a protocol between

two polynomial time parties: a prover Alice and a veri�er Bob. The parties take

turns being \active", that is, reading the tapes and performing the computation,

outputting a \message" on the corresponding communication tape. Both parties

are probabilistic machines, (i.e., they have a read-only in�nite tape of truly

random bits which is private and read left-to-right). Alice also has a private



input with a witness to the input. (Without lose of generality, we can assume

that the input is a legal satis�ability (SAT) statement, since otherwise any NP

statement can be translated �rst to SAT, and Alice can translate the witness to

a witness to the SAT-statement). At the end of the protocol Bob moves to one

of two states: ACCEPT or REJECT.

De�nition 1 An NP-proof protocol with polynomial-time prover is called an

argument if:

1. There exists a polynomial-time program (in the statement size which is a

security parameter) for Alice such that given any statement in NP, Alice can

always convince polynomial-time Bob (that is make Bob move to ACCEPT

at the end of the interaction).

2. No polynomial-time Alice� interacting with Bob can convince Bob to AC-

CEPT, when the input is not true, except with negligible small probability

(that is for a polynomial p for large enough input the error becomes smaller

than 1=p(n).

For an input I and history h let CONVBob�(I; h) be the random variable

(depending on the parties' random tapes), which Bob� produces throughout an
interaction with Alice.

We note that similarly an argument can be prove "a possession of knowledge"

in the sense that one formally shows that a machine employing the prover can

extract a witness to the claimed NP statement [FFS, TW, BG]. (In the next

version we describe this as well).

We say that two distributions �1 and �2 on f0; 1g
n are almost identical if for

all polynomials p(n) , large enough n and for all A � f0; 1gn, j�1(A)��2(A)j <

1=p(n).

De�nition 2 An argument is perfectly zero-knowledge if: for all veri�er

Bob�, there is a simulator which is a probabilistic expected polynomial-time ma-

chineMBob� , such that for any input I , it produces a random variable SIMBob� (I; h)

so that the distribution of SIMBob� (I; h) is identical to that of CONVBob� (I; h).

2.2 Commitment

De�nition 3 A bit commitment protocol consists of two stages:

{ The commit stage: Alice has a bit b on her input tape, to which she wishes

to commit to Bob. She and Bob exchange messages. At the end of the stage

Bob has some information that represents b written on its output tape.



{ The reveal (opening) stage: Alice and Bob exchange messages (where their

output tapes from the commit stage are serving as input tapes for this stage).

At the end of the exchange Bob writes on its output tape b.

De�nition 4 To be perfectly-secure commitment, the protocol must obey

the following: for all Turing machines Bob, for all probabilistic polynomial time

Alice, for all polynomials p and for large enough security parameter n

1. (Security property:) After the commit stage, when Alice follows the protocol

Bob cannot guess b with probability greater than 1
2
+ 1

p(n)
(even if Bob is

given unbounded computational resources).

2. (Binding property:) After the commit stage in which Bob follows the protocol,

with probability at least 1 � 1
p(n)

the polynomial-time Alice can reveal only

one possible value.

Note that the security property does not rely on Bob being polynomial time.

In addition, if Bob's algorithm can be performed in polynomial-time,we say that

the bit commitment is \e�cient"{ we concentrate on this case.

We say that a commitment scheme is polynomial-time simulatable (with re-

spect to the receiver) if given a polynomial-time receiver Bob�, its history of

conversations is a probability space simulatable by having Bob� taking part in a

computation with an expected polynomial time machine S (as in the de�nition

of zero-knowledge).

We call a commitment a commitment of knowledge if there is a polynomial-

time machine X (extractor) interacting with the sender performing the commit

stage, such that the probability that X outputs a bit b is close to the probability

that the reveal stage outputs same bit b (assuming reveal ended successfully).

(A formal de�nition, is postponed to the full version).

In de�ning the properties that a bit commitment protocol must obey, we have

assumed a scenario where Bob cannot guess b with probability greater than 1
2

prior to the execution of the commit protocol. In the more general case, Bob has

some auxiliary input that might allow him to guess b with probability q > 1
2
.

The de�nition for this case is that as a result the commit stage the advantage

that Bob gains in guessing b is less than 1
p(n)

. All the results of this paper hold

for this more general case as well.

2.3 One-way functions and permutations

We de�ne the underlying cryptographic operations we assume.



Let f be a length preserving function f : f0; 1g� ! f0; 1g� computable in

polynomial time.

De�nition 5 [One-way function.] f is one-way if for every probabilistic poly-

nomial time algorithm A, for all polynomials p and all su�ciently large n,

Pr
�
f(x) = f(A(f(x))) j x 2R f0; 1g

n
�
< 1=p(n):

The above de�nition is of a strong one-way function. Its existence is equiv-

alent to the existence of the weaker somewhat one-way function using Yao's

ampli�cation technique [Y82] or the more e�cient method of [GILVZ] (which

is applicable only to permutations or regular functions). (A somewhat one-way

function has the same de�nition as above, but the hardness of inversion is smaller,

i.e. its probability is inverse polynomially away from 1.)

If in addition f is 1-1 then we say the f is a One-Way Permutation. For

the construction outlined in Section 3 we require a one-way permutation f . (We

note that we can also employ k-regular one-way functions in our protocol, since

they can be converted into an "almost a permutation" [GKL]).

3 Perfectly-Secure Simulatable Bit Commitment

We present a perfectly-secure scheme and its proof of security. The polynomial

commiter generates a bit encryption which comes from two possible distribu-

tions. The commiter will be able to open the encryption only as a member of

one distribution (even though the distribution are identical).

3.1 The Scheme based on any one-way permutation

Let f be a strong one-way permutation f on f0; 1gn. Let S denote the sender

Alice (as de�ned in 2.1) and R the receiver Bob (as de�ned). In the beginning

of the protocol, S is given a secret input bit b. B(x; y) denotes the dot-product

mod 2 of x and y.

Commit Stage.

Commit to a bit b.

1. The sender S selects x 2R f0; 1g
n at random and computes y  f(x). S

keeps both x and y secret from R.



2. The receiver R selects h1; h2; : : :hn�1 2 f0; 1gn such that each hi is a random
vector over GF [2] of the form 0i�11f0; 1gn�i (i.e. i � 1 0's followed by a

1 followed by an arbitrary choice for the last n � i positions). Note that

h1; h2; : : :hn�1 are linearly independent over GF [2]

3. For j from 1 to n� 1

{ R sends hj to S.

{ S sends cj  B(hj ; y) to R.

4. At this point there are exactly two vectors y0; y1 2 f0; 1g
n such that for

i 2 f0; 1g, cj = B(yi; hj) for all 1 � j � n � 1. y0 is de�ned to be the

lexicographically smaller of the two vectors. Both S and R compute y0 and

y1. Let

c =

(
0 if y = yb

1 if y = y1�b

5. S computes c and sends it to R.

Reveal Stage.

1. S sends b and x to R.

2. R veri�es that y = f(x) obeys cj = B(hj ; y) for all 1 � j � n�1 and veri�es

that if c = 0, then y = yb and if c = 1, then y = y1�b.

end-commit-protocol

It is clear that the protocol described above can be executed in polynomial

time by both parties. In the next subsection we will see that it is indeed a

perfectly secure bit commitment protocol.

3.2 Proof of security

Theorem1. If f is a one-way permutations exist, then the scheme presented in

Section 3.1 is a perfectly-secure computationally-binding bit commitment scheme.

Theorem 1 follows from the two theorems below, the security theorem and

the binding theorem, respectively.

Theorem2. For any receiver R0, after the commit stage the bit b is hidden

information-theoretically.

Proof : We can prove inductively on j, that for any choice of h1; h2; : : :hj

the conditional distribution of y given h1; h2; : : :hj c1; c2; : : :cj is uniform in the

subspace de�ned by h1; h2; : : :hj and c1; c2; : : :cj . Thus, at step 4 the probability

that y = y0 is exactly
1
2
. Therefore giving away c yields nothing about b. 2



Theorem3. Assume there exists a probabilistic polynomial time S0(n) that fol-
lowing the commit stage can reveal to a honest receiver two di�erent values for

b with non-negligible probability (over its coin-ips) " = "(n). Then there ex-

ists a probabilistic polynomial time algorithm A that inverts f on non-negligible

fraction of the y's in f0; 1gn.

Proof : Using such an S0 we now construct the algorithm A to invert f . A has

a �xed polynomial time bound and it aborts if its runtime exceeds the bound.

By assumption, there exists a set 
 of "(n) fraction of strings such that if the

tape of S0 is initialized with ! 2 
, S0 succeeds in revealing two di�erent values

for b after the commit stage of n� 1 rounds. We may �x such an ! and view S0

as deterministic. This is true, since one can repeatedly run A with the random

tape of S0 initialized with !i; i := 1; : : : ;m = 1="2 and with probability 1�e�
p
m

some !i 2 
. We treat S0 as a deterministic algorithm from now on.

The responses ci of S
0 to the queries hi sent by R de�ne a rooted tree T

whose edges are labeled in f0; 1g. A path from the root to a leaf is de�ned by an

assignment to h1; h2; : : :hn�1 and it is labeled with c1; c2; : : : cn�1. A node U at

level i corresponds to a state of S0 after i�1 stages. It de�ned by h1; : : : ; hi�1 and
c1; : : : ; ci�1. The outgoing edges of U correspond to R's 2n�i possible queries.

These edges are labeled with the responses of S0. Note that since S0 may be

cheating, his answers need not be consistent and that on the same query S0 may

give di�erent answers depending on the previous queries.

For a leaf u, let fy0(u); y1(u)g be the set consistent with S0s answers; we say
u is good if given that R's queries de�ne u, then S0 succeeds in opening the bit

committed in two di�erent ways: i.e. S0 inverts on both y0(u) and y1(u).

Description of A: A gets as an input a random image y in f0; 1gn and it

attempts to invert y. In order to compute f�1(y), A tries to �nd a good leaf u

such that y 2 fy0(u); y1(u)g. Starting at the root, A develops node by node a

path consistent with y. Fix j to be n � 8(logn=�+ 1). For j rounds A does as

follows: for 1 � i < j at the i round the path so far is de�ned by h1; h2; : : :hi�1
and the labels are c1; c2; : : : ci�1 such that ci = B(hi; y). Now, a random h of

the 0i�11f0; 1gn�i is chosen (note that h is linearly independent from hk; k < i

is chosen. If the edge h is labeled with B(h; y), then hi  h and the path is

expanded by the new node. Otherwise, S0 is reset to the state before its reply,

and a new candidate for hi is chosen. This is repeated until either a success or

until there are no more candidates left, in which case A aborts. If A reaches

the jth level, it guesses the remaining n� j queries hj; hj+1; : : :hn�1 and checks

whether the path to the leaf is labeled consistently with B(y; hi). If it is and the

leaf reached is good, then A has succeeded in inverting y.



The rest of this proof is devoted for showing that A as de�ned above has

probability at least "10=8e3n8 for inverting y. Note that A as described above

does not necessarily halt after a polynomial number of steps. However, as we

shall see at the end of the proof, we can limit the total number of unsuccessful

attempts at �nding a consistent h to 8n without decreasing signi�cantly the

probaiblity that A succeeds in inverting y.

Before we continue we introduce some notation. Since we are dealing with

several types of vectors of length n over GF [2] we will distinguish them by calling

those vectors that are sent by R as queries and those vectors which may be the

image that y attempts to invert as images. Let U be a node at the ith of the

tree de�ned by h1; h2; : : :hi�1 and c1; c2; : : :ci�1. We say that y 2 f0; 1gn is an

image in U if B(hk; y) = ck for all 1 � k < i. We denote the set of images of U

by I(U ). We know that jI(U )j = 2n�i+1. We say that h 2 f0; 1gn is a query of

U if it is of the form 0i�11f0; 1gn�i).

Let A(U; y) = jfhjh is a query of U and B(h; y) agrees with the label h of

Ugj

An image y is balanced in Ui, a node of the ith level if

1�
1

n
�

A(Ui; y)

2n�i�1
� 1 +

1

n

An image y is fully balanced in U , a node of the jth level, if it is balanced in all

the ancestors of U . De�ne F(U ) as the set of all y 2 I(U ) and are fully balanced

in U . For a set of queries H at a node U and an image y of U the discrepancy

of y at H is the absolute di�erence between jHj=2 and the number of queries in

H that agree with y. Finally, recall that j = n� 8(logn=" + 1).

Lemma4. For any node U of level j at least 2n�j(1 � �) for � = 2�3=4(n�j)

of the images of U have the property that 2n�j � 27=8(n�j) � A(U; y) � 2n�j +
27=8(n�j)

Proof : First note that any pair of queries h0; h00 of U has the property that h00

is linearly independent of h0; h1; h2; : : :hj�1. Now suppose that an image y of U

is chosen at random and consider the indicator ah which is 1 whenever B(h; y)

is equal to U 's response on h. For any h we have that Prob[ah = 1] = 1=2 and

for every pair h0; h00 the events ah0 and ah00 are pairwise independent. We are

essentially interested in

Prob

0
@j X

h query of U

ah �E[
X

h query of U

ah]j � 27=8(n�j)

1
A (1)



By Chebyschev's inequality

Prob

0
@j X

h query of U

ah � E[
X

h query of U

ah]j � �

q
V AR[

X
ah]

1
A � 1

�2

V ar[
P

h ah] is 2
n�j and hence (1) is at most 2�3=4(n�j).

Lemma5. For any node U of level j and random image y of U the probability

that y is fully balanced in U is at least 1�  for  = n2�5=8(n�j)

Proof : Let U1; U2; : : :Uj = U be the nodes on the path to U . For any 1 � i � j

we can partition the 2n�i queries of Ui into 2j�i subsets H1;H2; : : :H2j�i of size

2n�j each such that for any 1 � ` � 2j�i and h0; h00 2 H` we have that h0

is linearly independent of hi+1; : : :hj; h
00. Therefore, similar to Lemma 4, we

have that Prob[j
P

h2H`
�E[

P
h2H`

ah]j > 27=8(n�j)] � 2�3=4(n�j). Therefore by
Markov's inequality the probability that more than 2�1=8(n�j) fraction of the

H`'s have a discrepancy larger than 27=8(n�j) is at most 2�5=8(n�j). Therefore
with probability at least 1 � 2�5=8(n�j) the total discrepancy at node Ui is at

most

2�1=8(n�j)2n�j2j�i + (1� 2�1=8(n�j))27=8(n�j)2j�i � 2 � 27=8n+1=8j�i (2)

and hence with the probability at least 1� 2�5=8(n�j) we have

1�
1

n
� 1� 2�1=8(n�j)+1 �

A(Ui; y)

2n�i�1
� 1 + 2�1=8(n�j)+1 � 1 +

1

n

The probability that y is balanced in all the levels is therefore at least 1 �

n2�5=8(n�j) = 1.

Lemma6. The probability that a node U of the jth level is reached by an exe-

cution of A is at least 1�
e

of the probability that it is reached by an execution

of S0

Proof : Let U1; U2; : : :Uj = U be the nodes on the path to U 's from the root.

For any node Ui the probability that Ui is reached in S0 is
Qj�1

i=1
1

2n�i . On the

other hand

Prob[U is reached by A] =
X

y2I(U)

Prob[y is chosen and U is reached] �



X
y2F(U)

Prob[y is chosen and U is reached] =
X

y2F(U)

1=2n
j�1Y
i=1

1

A(Ui; y)
�

X
y2F(y;U)

1=2n
j�1Y
i=1

1

(1 + 1=n)2n�i�1
�
X

y2F(U)

1=2n
j�1Y
i=1

1

(1 + 1=n)2n�i�1
�

2n�j+1(1� )

2n
�

1

(1 + 1=n)n

j�1Y
i=1

1

2n�i�1
�

(1� )

e

j�1Y
i=1

1

2n�i

Lemma7. The probability that the image A is trying to invert is fully balanced

at the jth level is at least (1�)2
e

Proof : For every node of the jth level and every fully balanced image y of U

we have that Prob[y is chosen and U is reached] �
(1�)
2ne

Qj�1
i=1

1
2n�i�1 . Hence,

Prob[U is reached with a fully balanced y] �

2n�j(1 � ) �
1� 

e2n

j�1Y
i=1

1

2n�i�1
=

(1� )2

e

j�1Y
i=1

1

2n�i

The number of nodes at the jth level is
Qj�1

i=1 2
n�i and therefore the probability

that the image chosen is fully balanced at the jth level is at least
(1�)2

e
.

Call a node good if at least " of the leaves at the subtree rooted at U have the

property that S0 succeeds in cheating, i.e., inverting both images. By assumption,

the fraction of good nodes U is at least ". Hence, by Lemma 6 the probability

that A reaches a good U at level j is at least 1�
e
�.

Lemma8. In any good node U of level j the fraction of the good leaves that

have at least one image that is in F(U ) is at least "=2.

Proof : Any pair of images y1 6= y2 in I(U ) can be together in at most 1=2n�j

of the leaves: in any node U 0 along the way from U to the leaves and for random

query h of U 0 we have Prob[B(h; y1) = B(h; y2)] = 1=2. Since there are at most

2n�j+1 images that are not fully balanced in U , then at most�
2n�j+1

2

�
=2n�j�1 � 222n�j � n22�1=4(n�j)+1 = n22�2(logn="+1)+1 �

"2

2

of the leaves have both of their images from the unbalanced. Therefore at least

" � "2

2
� "=2 of the leaves are both good and have at least one image which is

fully balanced at U .

Lemma9. For any good node U of level j and z 2 F(U ), given that U was

reached with a fully balanced y, the probability that y = z is at least 1
e22n�j+1



Proof : We would like to bound from below

Prob[z is chosen and U is reached]

Prob[U is reached and the image is fully balanced]
(3)

We know that Prob[U is reached and the image is fully balanced] =

X
z2F(U)

Prob[z is chosen and U is reached] =
X

y2F(U)

1=2n
j�1Y
i=1

1

A(Ui; y)
�

X
y2F(U)

1=2n
j�1Y
i=1

1

(1� 1=n)2n�i�1
�
X

y2F(U)

e=2n
j�1Y
i=1

1

2n�i�1
�

2n�j

2n
� e

j�1Y
i=1

1

2n�i�1
� e

j�1Y
i=1

1

2n�i

As can be seen from the proof of Lemma 6 for any z 2 F(U ) we have that

Prob[z is chosen and U is reached] �
1

e2n�j+1

j�1Y
i=1

1

2n�i

Therefore (3) is at least 1
e22n�j+1

Lemma10. The probability that A is successful is at least "10

4e3n8

Proof : Suppose that (a) A reaches a good node U at level j and the y is fully

balanced and (b) that hj ; hj+1; : : :hn�1 de�ne a path to a good leaf that has at

least one image in F(U ). Call this image z. Then by Lemma 9 we know that

the probability that y = z is at least 1
e22n�j . The probability that (a) occurs is

at least " (1�)
2

e
by Lemma 7 and that (b) occurs given (a) is at least "=2 by

Lemma 8. Therefore the probability of success is at least "2
(1�)2
2n�je3

� "10=4e3n8

Note that we have only considered A successes when y was fully balanced at

level j. However, given that y is fully balanced at level j, the probability that

A had many unsuccessful candidates until he reached the jth level is small: we

know that y is balanced at Ui for all 1 � i < j and therefore A(U; y)=2n�i > 1=4.

Therefore the probability that A had to try more than 8n candidate for the

hi's until reaching level j is exponentially small in n and we have that even if

we bound the run time of A by 8n2 the probability of success is still at least

"10=8e3n8. If " is non negligible, then this is non negligible as well. This concludes

the Proof of Theorem 3.

For our applications we need a simulatable bit commitment and commitment

of knowledge (to be de�ned in the full version along the lines of [BG]).



Theorem11. There is a perfectly-secure commitment scheme which is simulat-

able, and is commitment of knowledge.

Proof sketch: All actions of S are in polynomial time, so simulatability

(generating the same distribution in polynomial time) is given.

To achieve simulatable commitment of knowledge, one has to modify the

basic protocol described above as follows. The protocol's steps 1,2, and 3 will be

�rst performed twice. At this point R asks S to open the chosen x which is the

pre-image of y of one of the instances and continue the protocol with the other

instance. Obviously, the security and binding properties are maintained.

To get a commitment of knowledge, we have an extraction algorithm X which

plays the steps 1,2, and 3 twice. Then, it decides on which instance to continue,

it asks to open it and gets y, then the simulation is backtracked and the other

instance is asked to be opened, and the actual commitment is done using the

(by now known) y in step 4 and 5 (given the input bit b to the machine X).

The probability that the commitment will be di�erent is negligible assuming the

hardness assumption as was shown above. 2

Next, we can state the following known \reduction theorems" present in the

works on computational (perfect) zero-knowledge proofs (arguments) [GMW,

BCC, IY].

Theorem12. If there is a (perfectly-secure commitment) [commitment] scheme

which is simulatable by an expected probabilistic polynomial-time machine (\in-

teracting" with the receiver) and the receiver is polynomial-time, then there is a

(perfect zero-knowledge argument) [computationally zero-knowledge proof] for any

statement in NP.

The perfectly-secure simulatable bit-commitment protocol can be used in the

general scheme above. In addition, the general proof system scheme can also be

shown to give a \proof of possession of a witness" (i.e., proof of knowledge)

as was formalized [FFS, TW, BG]. Thus, combining the above, gives our main

result:

Theorem13. If any one-way permutation exists, then there exist perfect zero-

knowledge arguments for proving language-membership as well as for proving knowledge-

of-witness.



4 Discussion

There are various other applications to information-theoretically secure bit com-

mitment. For example, another application of the bit commitment above is a

"coin-ipping protocol" (introduced by Blum [B]), with perfect security, and

assuming only a one-way permutations.

For practical purposes consider the data encryption standard (DES) [Kon].

Given a k-regular [GKL] one-way function (i.e. the number of pre-images of a

point is � k and is k on a signi�cant fraction), one can transform it into a

one-way function which is 1-1 almost everywhere [GILVZ]. We apply this to the

function DES(k;m) = y (k = key, m= message) where (actual used parameters

are) k 2 f0; 1g56, m; y 2 f0; 1g64. Assuming that DES is not breakable on-line

(say in 10 seconds), then it is a good candidate for our scheme. We explore this

further in the full version of the paper. The security of the commitment is not

perfect but rather almost-perfect (guessing the commitment is not exactly 1/2,

but it is close to 1/2). We note that DES is available in many machines and

usually on an optimized hardware circuit.

It is an interesting question whether a general one-way function with no

additional property su�ces for zero-knowledge arguments. Reducing the rounds

(by more than the achievable logarithmic factor) is interesting as well.
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