
Optimal Sampling from Sliding Windows

Vladimir Braverman∗
University of California Los

Angeles
vova@cs.ucla.edu

Rafail Ostrovsky†
University of California Los

Angeles
rafail@cs.ucla.edu

Carlo Zaniolo
University of California Los

Angeles
zaniolo@cs.ucla.edu

ABSTRACT

APPEARED IN ACM PODS-2009.

A sliding windows model is an important case of the
streaming model, where only the most “recent” elements re-
main active and the rest are discarded in a stream. The sliding
windows model is important for many applications (see, e.g.,
Babcock, Babu, Datar, Motwani and Widom (PODS 02); and
Datar, Gionis, Indyk and Motwani (SODA 02)). There are
two equally important types of the sliding windows model
– windows with fixed size, (e.g., where items arrive one at
a time, and only the most recent n items remain active for
some fixed parameter n), and bursty windows (e.g., where
many items can arrive in “bursts” at a single step and where
only items from the last t steps remain active, again for some
fixed parameter t).

Random sampling is a fundamental tool for data streams,
as numerous algorithms operate on the sampled data instead
of on the entire stream. Effective sampling from sliding win-
dows is a nontrivial problem, as elements eventually expire.
In fact, the deletions are implicit; i.e., it is not possible to
identify deleted elements without storing the entire window.
The implicit nature of deletions on sliding windows does not
allow the existing methods (even those that support explicit
deletions, e.g., Cormode, Muthukrishnan and Rozenbaum
(VLDB 05); Frahling, Indyk and Sohler (SOCG 05)) to be
directly “translated” to the sliding windows model. One triv-
ial approach to overcoming the problem of implicit deletions
is that of over-sampling. When k samples are required, the
over-sampling method maintains k′ > k samples in the hope
that at least k samples are not expired. The obvious disad-
vantages of this method are twofold: (a) It introduces addi-
tional costs and thus decreases the performance; and (b) The
memory bounds are not deterministic, which is atypical for
∗Supported in part by NSF grant 0830803
†Department of Computer Science and Department of Mathemat-
ics, UCLA, Los Angeles, CA 90095, USA. Supported in part by
IBM Faculty Award, Xerox Innovation Group Award, NSF grants
0430254, 0716835, 0716389, 0830803 and U.C. MICRO grant.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM PODS ’09 Providence, RI, USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

streaming algorithms (where even small probability events
may eventually happen for a stream that is big enough).

Babcock, Datar and Motwani (SODA 02), were the first
to stress the importance of improvements to over-sampling.
They formally introduced the problem of sampling from
sliding windows and improved the over-sampling method
for sampling with replacement. Their elegant solutions for
sampling with replacement are optimal in expectation, and
thus resolve disadvantage (a) mentioned above. Unfortu-
nately, the randomized bounds do not resolve disadvantage
(b) above. Interestingly, all algorithms that employ the ideas
of Babcock, Datar and Motwani have the same central prob-
lem of having to deal with randomized complexity (see e.g.,
Datar and Muthukrishnan (ESA 02); Chakrabarti, Cormode
and McGregor (SODA 07)). Further, the proposed solutions
of Babcock, Datar and Motwani for sampling without re-
placement are based on the criticized over-sampling method
and thus do not solve problem (a). Therefore, the ques-
tion of whether we can solve sampling on sliding windows
optimally (i.e., resolving both disadvantages) is implicit in
the paper of Babcock, Datar and Motwani and has remained
open for all variants of the problem.

In this paper we answer these questions affirmatively and
provide optimal sampling schemas for all variants of the
problem, i.e., sampling with or without replacement from
fixed or bursty windows. Specifically, for fixed-size win-
dows, we provide optimal solutions that require O(k) mem-
ory; for bursty windows, we show algorithms that require
O(k log n), which is optimal since it matches the lower bound
by Gemulla and Lehner (SIGMOD 08). In contrast to the
work of of Babcock, Datar and Motwani, our solutions have
deterministic bounds. Thus, we prove a perhaps somewhat
surprising fact: the memory complexity of the sampling-
based algorithm for all variants of the sliding windows model
is comparable with that of streaming models (i.e., without the
sliding windows). This is the first result of this type, since
all previous “translations” of sampling-based algorithms to
sliding windows incur randomized memory guarantees only.

Categories and Subject Descriptors. F.2 [ANALYSIS
OF ALGORITHMS AND PROBLEM COMPLEXITY.]:
Miscellaneous.

Keywords. Data Streams, Sliding Windows, Random Sam-
pling.

1

1. Introduction

Random sampling and sliding windows are two fundamen-
tal concepts for data streams. Sampling is a very natural way
to summarize data properties with sublinear space; indeed, it
is a key component of many streaming algorithms and tech-
niques. Just to mention a few, the relevant papers include
Aggarwal [2]; Alon, Duffield, Lund and Thorup [3]; Alon,
Matias and Szegedy [4]; Babcock, Babu, Datar, Motwani
and Widom [8]; Babcock, Datar and Motwani [10]; Bar-
Yossef [13]; Bar-Yossef, Kumar and Sivakumar [17]; Bu-
riol, Frahling, Leonardi, Marchetti-Spaccamela and Sohler
[20]; Chakrabarti, Cormode and McGregor [21]; Chaudhuri
and Mishra [26]; Chaudhuri, Motwani and Narasayya [27];
Cohen [29]; Cohen and Kaplan [30]; Cormode, Muthukrish-
nan and Rozenbaum [32]; Dasgupta, Drineas, Harb, Kumar
and Mahoney [35]; Datar and Muthukrishnan [37]; Duffield,
Lund and Thorup [38]; Frahling, Indyk and Sohler [43];
Gandhi, Suri and Welzl [46]; Gemulla [47]; Gemulla and
Lehner [48]; Gibbons and Matias [49]; Guha, Meyerson,
Mishra, Motwani and O’Callaghan [54]; Haas [55]; Kolonko
and Wäsch [58]; Li [62]; Palmer and Faloutsos [67]; Szegedy
[70]; and Vitter [72]; These papers illustrate the vitality of
effective sampling methods for data streams. Among other
methods, uniform random sampling is the most general and
well-understood. Most applications maintain multiple sam-
ples using two popular methods: namely, sampling with re-
placement and sampling without replacement. The former
method assumes independence among samples; the latter
forbids repetitions. While sampling without replacement
preserves more information, sampling with replacement is
sometimes preferred due to its simplicity; thus both schemas
are important for applications.

The concept of sliding windows expresses the importance
of recent data for applications. In this model, analysis is re-
stricted to the most recent portion of the stream; the outdated
elements must not be considered. The significance of sliding
windows has been emphasized from the very beginning of
data stream research. We cite, e.g., the influential paper of
Babcock, Babu, Datar, Motwani and Widom [8]:

Imposing sliding windows on data streams is a
natural method for approximation that has sev-
eral attractive properties. It is well-defined and
easily understood: the semantics of the approxi-
mation are clear, so that users of the system can
be confident that they understand what is given
up in producing the approximate answer. It is
deterministic, so there is no danger that unfortu-
nate random choices will produce a bad approx-
imation. Most importantly, it emphasizes recent
data, which in the majority of real-world appli-
cations is more important and relevant than old
data: if one is trying in real-time to make sense of
network traffic patterns, or phone call or trans-
action records, or scientific sensor data, then in
general insights based on the recent past will be
more informative and useful than insights based
on stale data. In fact, for many such applications,

sliding windows can be thought of not as an ap-
proximation technique reluctantly imposed due
to the infeasibility of computing over all histor-
ical data, but rather as part of the desired query
semantics explicitly expressed as part of the users
query.

The importance of the sliding windows model is well illus-
trated by the considerable amount of relevant papers in both
theory and database communities. A small sample subset of
relevant papers includes the work of Arasu, Babcock, Babu,
Cieslewicz, Datar, Ito, Motwani, Srivastava and Widom [5];
Arasu and Manku [6]; Ayad and Naughton [7]; Babcock,
Babu, Datar, Motwani and Thomas [9]; Babcock, Babu,
Datar, Motwani and Widom [8]; Babcock, Datar and Mot-
wani [10, 11]; Babcock, Datar, Motwani and O’Callaghan
[12]; Das, Gehrke and Riedewald [34]; Datar, Gionis, Indyk
and Motwani [36]; Datar and Motwani, Chapter 8, [1]; Datar
and Muthukrishnan [37]; Feigenbaum, Kannan and Zhang
[39]; Gibbons and Tirthapura [50]; Golab, DeHaan, De-
maine, Lopez-Ortiz and Munro [51]; Golab and Özsu [52];
Lee and Ting [61]; Li, Maier, Tufte, Papadimos and Tucker
[64]; and Tatbul and Zdonik [71].

Two types of sliding windows are widely recognized. Fixed-
size (or sequence-based) windows define a fixed amount of
the most recent elements to be active. For instance an ap-
plication may restrict an analysis to the last trillion of the
elements. Fixed-size windows are important for applica-
tions where the arrival rate of the data is fixed (but still
extremely fast), such as sensors or stock market measure-
ments. In bursty (or timestamp-based) windows the validity
of an element is defined by an additional parameter such as
a timestamp. For instance, an application may restrict an
analysis to elements that arrived within the last hour. Bursty
windows are important for applications with asynchronous
data arrivals, such as networking or database applications.

The importance of both concepts raises two natural ques-
tions of optimal sampling from sliding windows:

Question 1.1. Is it possible to maintain a uniform random
sampling from sliding windows using provably optimal mem-
ory bounds?

Question 1.2. Is sampling from sliding windows algorith-
mically harder than sampling from the entire stream?

In this paper, perhaps somewhat surprisingly, we defini-
tively answer both questions. Informally, what we show is
that it is possible to “translate” (with optimal deterministic
memory bounds for all sampling-based algorithms) sampling
with and without replacement on the entire stream to sam-
pling with or without replacement in all variants of the sliding
windows model. We state precise results in Theorems 2.1,
2.2, 3.6, 4.4 and 5.1.

1.1 Discussion and Related Work

In spite of their apparent simplicity, both Questions 1.1
and 1.2 have no trivial solution. Indeed, the sliding windows

2

model implies eventual deletions of samples; thus, none of
the well-known methods for insertion-only streams (such
as the reservoir method [72]) are applicable. Moreover, the
deletions are implicit, i.e., they are not triggered by an explicit
user’s request. Thus, the algorithms for streams with explicit
deletions (such as [32, 43]) do not help. Let us illustrate the
inherent difficulty of sampling from sliding windows with the
following example. Consider the problem of maintaining
a single sample from a window of the last 250 elements.
Assume that the 100-th element is picked as an initial sample.
Eventually, the (250 +100)-th element arrives, in which case
the sample is outdated. But at this time, the data has already
been passed and cannot be sampled.

Babcock, Datar and Motwani [10] were the first to ad-
dress the problem of sampling from sliding windows. They
criticized “naive” solutions and stressed the importance of
further improvements; we repeat their important arguments
here. Periodic sampling is a folklore method for fixed-size
windows. This method replaces an expired sample with the
newly arrived element. While this method gives worst-case
optimal memory bounds, the predictability of samples is not
acceptable for many applications (see also [48, 55]). An-
other obvious approach is over-sampling using the Bernoulli
method. If k samples are required, then each element is
picked w.p. O(k log n

n), independently, in the hope that at
least k samples are not expired. This method has two draw-
backs: first, the expected memory is O(k log n), where n is a
window size; and second, with small but positive probability,
the sample size will be smaller than k.

The key idea of the elegant algorithms in [10] is a “succes-
sors list”; in fact, this idea has been used in almost all subse-
quent papers. The successors list method suggests backing
up a sample with a list of active successors. When a sam-
ple expires, the next successor in the list becomes a sample;
thus a sample is available at any moment. Based on this
idea, Babcock, Datar and Motwani built solutions for sam-
pling with replacement. For sequence-based windows of size
n, their chain sampling algorithm picks a successor among
n future elements, and stores it as it arrives. They show
that such schema has an expected memory bound of O(k)
and with high probability will not exceed O(k log n). For
timestamp-based windows, their priority sampling method
associates a priority with every new element. A priority is a
random number from (0, 1); a sample is an element p with
highest priority; and a sample’s successor is an element with
the highest priority among all elements that arrived after p.
Priority sampling requires O(k log n) memory words in ex-
pectation and with high probability. There is a lower bound
of Ω(k log n) for timestamp-based windows that was shown
in [48]. Thus, the methods of Babcock, Datar and Motwani
are optimal in expectation. However, the inherent problem of
the replacement method is that the size of the successors list
is itself a random variable; thus this method cannot provide
worst-case optimal bounds. Moreover, Babcock, Datar and
Motwani suggested over-sampling as a solution for sampling
without replacement; thus the problem of further improve-
ments is implicitly present in their paper. In his excellent
survey, Haas [55] gave a further detailed discussion of their
solutions.

Zhang, Li, Yu, Wang and Jiang [73] provide an adaptation
of reservoir sampling to sliding windows. However, their
approach implies storing the window in memory; thus it is
applicable only for small windows. In an important work,
Gemulla and Lehner [48] addressed the question of sampling
without replacement for timestamp-based windows. They
suggest a natural extension of priority sampling by maintain-
ing a list of elements with k-highest priorities. This gives
an expected O(k log n) solution. However, their memory
bounds are still randomized. Gemulla [47] and Gemulla
and Lehner [48] recently addressed the problem of random
sampling from timestamp-based windows with a bounded
memory. This setting is different from the original problem
of Babcock, Datar and Motwani [10]. Namely, it introduces
additional uncertainty in the following sense: there is no
guarantee that a sample is available at any moment. They
provide a “local” lower bound on the success probability that
depends on the window’s data. However, there is no “global”
lower bound; as Gemulla [47] states in his thesis:

we cannot guarantee a global lower bound other
than 0 that holds at any arbitrary time without a-
priori knowledge of the data stream.

Thus, the problem of optimal sampling for the entire life-
span of the stream from sliding windows remained an open
problem for all versions until today. We stress that, while
this problem is important in its own right, it also has fur-
ther implication for many other problems. Indeed, uniform
random sampling is a key tool for many streaming problems
(see, e.g., [66]). “Translations” to sliding windows using
previous methods introduce randomized complexity instead
of deterministic memory bounds (see, e.g., [21]).

1.2 Our Contribution

In this paper we answer affirmatively to Questions 1.1 and
1.2 for all variants of the problem, i.e., for sampling with
and without replacement from fixed-size or bursty windows.
Our solutions have provable optimal memory guarantees and
are stated precisely in Theorems 2.1, 2.2, 3.6, 4.4 and 5.1.
In particular, we give O(k) bounds for fixed-size windows
(for sampling with or without replacement) and O(k log n)
bounds for bursty windows (for sampling with or without
replacement). This is a strict improvement over previous
methods that closes the gap between randomized and deter-
ministic complexity, an important fact in its own right.

Furthermore, we prove a perhaps somewhat surprising re-
sult: that the memory complexity of the sampling-based
algorithm for all variants of the sliding windows model is
comparable with that of streaming models (i.e., without the
sliding windows). This is the first result of this type, since
all previous “translations” of sampling-based algorithms to
sliding windows incur randomized memory guarantees only.

Finally, this paper introduces surprisingly simple (yet novel)
techniques that are different from all previous approaches.
In particular, we reduce the problem of sampling without re-
placement to the problem of sampling with replacement for

3

all variants of the sliding windows model. This may be of in-
dependent interest, since the former method is a more general
case then the latter; thus our paper also proves equivalence
for sliding windows, as discussed in the next section.

1.3 High-Level Ideas of Our Approach

We start by describing four key ideas: equivalent-width
partitions, covering decomposition, generating implicit events,
and black-box reduction. Also, we outline our approach by
giving high-level descriptions of the most important steps.

Equivalent-Width Partitions. Our methods for the sequence-
based windows are based on a surprisingly simple (yet novel)
idea of equivalent-width partitions: consider sets A,B,C
such that C ⊆ B ⊆ A ∪ C and A ∩ C = ∅ and |B| = |A|.
Our goal is to obtain a sample from B, given samples from A
and C. We use the following rule: if a sample from A belongs
to B, then we assign it to be a sample from B; otherwise, we
assign a sample from C to be a sample from B. The direct
computations show the correctness of this schema, i.e., the
result is always a uniform sample from B.

As a next step, observe that the above idea can be applied
to the sliding windows model. We partition (logically) the
entire stream into disjoint intervals (we call them buckets) of
size n, where n is the size of the window. For each bucket
we maintain a random sample using any one-pass algorithm
(e.g., the reservoir sampling method). If the window co-
incides with the most recent bucket, then our task is easy;
we assign this bucket’s sample to be the output. Otherwise,
the window intersects the two most recent buckets. It must
be the case that the most recent bucket is “partial”; i.e., not
all elements have arrived yet. But this case matches pre-
cisely our key idea: the most recent bucket corresponds to
C, our window corresponds to B and the second-most re-
cent bucket corresponds to A. We thus can apply the above
rule and obtain our sample using only samples from the two
buckets. Since we need only these samples, the optimality
of our schema is straightforward.

The above idea can be generalized to the sampling without
replacement. Indeed, we show that, given k-samples without
replacement from A and C, we take the portion of A’s sample
that belongs to B and complete it with the random portion
from C’s sample. We show that the result is a k-sample
without replacement from B. As before, we apply this idea
to sliding windows; the detailed proofs can be found in the
main body of this paper.

Covering Decomposition and Generating Implicit Events.

For timestamp-based windows, the size of the window is
unknown; moreover, it was shown (see, e.g., [36]) that the
size of the window cannot be computed precisely with sub-
linear memory. This negative result is a key difference be-
tween timestamp-based windows and all other models, such
as insertion-only streams and streams with explicit deletions
(the turnstile model). In fact, this negative result is one of

the main reasons for the randomized bounds in previous so-
lutions. Indeed, it is not clear at all how to obtain uniformity
if even the size of the sampled domain is unknown.

Our key observation is that it is possible to sample from
a window without even a knowledge of its size. As before,
consider disjoint sets A,B, C such that C ⊆ B ⊆ A∪C and
A ∩ C = ∅. In the current scenario we do not assume that
|A| = |B| and still obtain samples from B. We show that if
|A| ≤ |B|, and it is possible to generate random events w.p.
|A|
|B| , then it is possible to “combine” the samples from A and
C into a sample from B. The new rule is a generalization
of our above ideas. We assign the sample from A to be a
sample from B if the A’s sample belongs to B (for technical
reasons, we decrease the probability of this event by |A|

|B|
multiplicative factor). Otherwise, we assign the sample from
C to be the sample from B. We show that this rule gives a
uniform sample from B.

To apply this idea to sliding windows, we need to overcome
two problems. First, we must be able to maintain such an A
and C (as before we associate B with our window). This task
is nontrivial, since the size of the window is unknown. Our
second key idea is a novel covering decomposition structure.
Using this structure, we are able to maintain such an A and
C at any moment. In fact, we obtain an important property
that |A| ≤ |C|. This structure can be seen as a modification
and generalization of the smooth histogram [19] method.

Second, we need the ability to generate events w.p. |A|
|B|

which is still an unknown probability since |B| is the size
of our window. Our third key idea is a novel technique that
we call generating implicit events. At the heart of our tech-
nique lies the idea of gradually decreasing the probabilities,
starting from 1, until we achieve the desired probability of
|A|/|B|. In particular, we show that it is possible to generate
a non-uniform distribution over the elements of A, where the
probability of picking an element is a function of the ele-
ment’s timestamp (or index). The function is constructed in
such a way that the probability of picking an element among
the last i elements of A is equal to i

|C|+i . That is, the proba-

bility of picking an expired element is |C|
|B| . Since |A| ≤ |C|

and since we know the values of |A| and |C|, it is possible
to generate events w.p. |A|

|B| . The details can be found in the
main body of this paper.

Black-Box Reduction. Finally, we show that a k-sample
without replacement may be generated from k independent
samples, R0, . . . , Rk−1. We apply our fourth key idea, a
black-box reduction from sampling without replacement to
sampling with replacement. The novelty of our approach
is based on sampling from different domains; in fact, Ri

samples all but i last active elements. Such samples can be
generated if, in addition, we store the last k elements.

Independence of Disjoint Windows. Our algorithms gener-
ate independent samples for non-overlapping windows. The
independency follows from the nice property of the reservoir

4

algorithm (that we use to generate samples in the buckets).
Let R1 be a sample generated for the bucket B, upon arrival of
i elements of B. Let R2 be a fraction of the final sample (i.e.,
the sample when the last element of B arrives) that belongs
to the last |B| − i elements. The reservoir algorithm implies
that R1 and R2 are independent. Since the rest of the buckets
contain independent samples as well, we conclude that our
algorithms are independent for non-overlapping windows.

1.4 Roadmap and Notations

We use the following notations throughout our paper. We
denote by D a stream and by pi, i ≥ 0 its i-th element. For
0 ≤ x < y we define [x, y] = {i, x ≤ i ≤ y}. Finally,
bucket B(x, y) is the set of all stream elements between px

and py−1: B(x, y) = {pi, i ∈ [x, y − 1]}.

Our bounds are expressed in memory words; that is we
assume that a single memory word is sufficient to store a
stream element or its index or a timestamp.

Section 2 presents sampling for sequence-based windows,
with and without replacement. Sections 3 and 4 are devoted
to sampling for timestamp-based windows, with and without
replacement. Section 5 outlines possible applications for our
approach. Due to the lack of space, some proofs are omitted
from the main body of the paper, but they can all be found in
the appendix.

2. Equivalent-Width Partitions and Sampling
for Sequence-Based Windows

2.1 Sampling With Replacement

Let n be the predefined size of a window. We say that a
bucket is active if all its elements have arrived and at least
one element is non-expired. We say that a bucket is partial
if not all of its elements have arrived. We show below how
to create a single random sample. To create a k−random
sample, we repeat the procedure k times, independently.

We divide D into buckets B(in, (i + 1)n), i = 0, 1,
At any point in time, we have exactly one active bucket and
at most one partial bucket. For every such bucket B, we
independently generate a single sample, using the reservoir
algorithm [72]. We denote this sample by XB .

Let B be a partial bucket and C ⊆ B be the set of all
arrived elements. The properties of the reservoir algorithm
imply that XB is a random sample of C.

Below, we construct a random sample Z of all non-expired
elements. Let U be the active bucket. If there is no par-
tial bucket, then U contains only all non-expired elements.
Therefore, Z = XU is a valid sample. Otherwise, let V be
the partial bucket. Let Ue = {x : x ∈ U, x is expired}, Ua =
{x : x ∈ U, x is non-expired}, Va = {x : x ∈ V, x arrived}.

Note that |Va| = |Ue| and let s = |Va|. Also, note that

our window is Ua ∪ Va and XV is a random sample of Va.
The random sample Z is constructed as follows. If XU is
not expired, we put Z = XU , otherwise Z = XV . To prove
the correctness, let p be a non-expired element. If p ∈ Ua,
then P (Z = p) = P (XU = p) = 1

n . If p ∈ Va, then

P (Z = p) = P (XU ∈ Ue, XV = p) =

P (XU ∈ Ue)P (XV = p) =
s

n

1
s

=
1
n

.

Therefore, Z is a valid random sample. We need to store
only samples of active or partial buckets. Since the number
of such buckets is at most two and the reservoir algorithm
requires Θ(1) memory, the total memory of our algorithm
for k-sample is Θ(k). Thus,

Theorem 2.1. It is possible to maintain k-sampling with re-
placement for sequence-based windows using O(k) memory
words.

2.2 Sampling Without Replacement

We can generalize the idea above to provide a k-random
sample without replacement. In this section k-sample means
k-random sampling without replacement.

We use the same buckets B(in, (i+1)n), i = 0, 1, For
every such bucket B, we independently generate a k-sample
XB , using the reservoir algorithm.

Let B be a partial bucket and C ⊆ B be the set of all
arrived elements. The properties of the reservoir algorithm
imply that either XB = C, if |C| < k, or XB is a k-sample
of C. In both cases, we can generate an i-sample of C using
XB only, for any 0 < i ≤ min(k, |C|).

Our algorithm is as follows. Let U be the active bucket.
If there is no partial bucket, then U contains only all active
elements. Therefore, we can put Z = XU . Otherwise, let
V be the partial bucket. We define Ue, Ua, Va, s as before
and construct Z as follows. If all elements of XU are not
expired, Z = XU . Otherwise, let i be the number of expired
elements, i = |Ue ∩XU |. As we mentioned before, we can
generate an i-sample of Va from XV , since i ≤ min(k, s).
We denote this sample as Xi

V and put

Z = (XU ∩ Ua) ∪Xi
V .

We will prove now that Z is a valid random sample. Let
Q = {pj1 , . . . , pjk

} be a fixed set of k non-expired elements
such that j1 < j2 < ... < jk. Let i = |Q ∩ VA|, so
{pj1 , . . . , pjk−i

} ⊆ Ua and {pjk−i+1 , . . . , pjk
} ⊆ Va. If

i = 0, then Q ⊆ U and

P (Z = Q) = P (XU = Q) =
1(
n
k

) .

Otherwise, by independency of XU and Xi
V

P (Z = Q) =

P (|XU ∩ Ue| = i, {pj1 , . . . , pjk−i
} ⊆ XU ,

Xi
V = {pjk−i+1 , . . . , pjk

}) =

5

P (|XU ∩ Ue| = i, {pj1 , . . . , pjk−i
} ⊆ XU)∗

P (Xi
V = {pjk−i+1 , . . . , pjk

}) =
(
s
i

)
(
n
k

) ∗ 1(
s
i

) =
1(
n
k

) .

Therefore, Z is a valid random sample of non-expired
elements. Note that we store only samples of active or partial
buckets. Since the number of such buckets is at most two
and the reservoir algorithm requires O(k) memory, the total
memory of our algorithm is O(k). Thus,

Theorem 2.2. It is possible to maintain k-sampling without
replacement for sequence-based windows using O(k) mem-
ory words.

3. Sampling With Replacement for Timestamp-
Based Windows

Let n = n(t) be the number of non-expired elements. For
each element p, timestamp T (p) represents the moment of
p’s entrance. For a window with (predefined) parameter t0,
p is active at time t if t − T (p) < t0. We show below how
to create a single random sample. To create a k−random
sample, we repeat the procedure k times, independently.

3.1 Notations

A bucket structure BS(x, y) is a set

{px, x, y, T (x), Rx,y, Qx,y, r, q},
where T (x) is a timestamp of px, Rx,y and Qx,y are indepen-
dent random samples from B(x, y) and r, q are indexes of the
picked (for random samples) elements. We denote by N(t)
the size of D at the moment t and by l(t) the index of the earli-
est active element. Note that N(t) ≤ N(t+1), l(t) ≤ l(t+1)
and T (pi) ≤ T (pi+1).

3.2 Covering Decomposition

Let a ≤ b be two indexes. A covering decomposition of a
bucket B(a, b), ζ(a, b), is an ordered set of bucket structures
with independent samples inductively defined below.

ζ(b, b) := BS(b, b + 1),

and for a < b,

ζ(a, b) := 〈BS(a, c), ζ(c, b)〉 ,
where c = a + 2blog (b+1−a)c−1. Note that

|ζ(a, b)| = O(log (b− a)),

so ζ(a, b) uses O(log (b− a)) memory.

Given pb+1, we inductively define an operator Incr(ζ(a, b))
as follows.

Incr(ζ(b, b)) := 〈BS(b, b + 1), BS(b + 1, b + 2)〉 .

For a < b, we put

Incr(ζ(a, b)) := 〈BS(a, v), Incr(ζ(v, b))〉 ,
where v is defined below.

If blog(b + 2 − a)c = blog(b + 1 − a)c, then we put
v = c, where BS(a, c) is the first bucket structure of ζ(a, b).
Otherwise, we put v = d, where BS(c, d) is the second
bucket structure of ζ(a, b). (Note that ζ(a, b) contains at
least two buckets for a < b.)

We show how to construct BS(a, d) from BS(a, c) and
BS(c, d). We have in this case blog(b + 2− a)c = blog(b +
1−a)c+1, and therefore b+1−a = 2i−1 for some i ≥ 2.
Thus c− a = 2blog (2i−1)c−1 = 2i−2 and

blog(b + 1− c)c = blog (b + 1− a− (c− a))c =
⌊
log

(
2i − 2i−2 − 1

)⌋
= i− 1.

Thus d − c = 2blog(b+1−c)c−1 = 2i−2 = c − a. Now
we can create BS(a, v) by unifying BS(a, c) and BS(c, d):
BS(a, v) = {pa, d− a,Ra,d, Qa,d, r

′, q′}. We put Ra,d =
Ra,c with probability 1

2 and Ra,d = Rc,d otherwise. Since
d− c = c− a, and Rc,d, Ra,c are distributed uniformly, we
conclude that Ra,d is distributed uniformly as well. Qa,d

is defined similarly and r′, q′ are indexes of the chosen
samples. Finally, the new samples are independent of the
rest of ζ’s samples. Note also that Incr(ζ(a, b)) requires
O(log (b− a)) operations.
Lemma 3.1. For any a and b, Incr(ζ(a, b)) = ζ(a, b + 1).
Lemma 3.2. For any t with a positive number of active el-
ements, we are able to maintain one of the following:

1. ζ(l(t), N(t)),
or

2. BS(yt, zt), ζ(zt, N(t)),
where yt < l(t) ≤ zt, zt− yt ≤ N(t) + 1− zt and all
random samples are independent.

3.3 Generating Implicit Events

We use the following notations for this section. Let B1 =
B(a, b) and B2 = B(b,N(t) + 1) be two buckets such that
pa is expired, pb is active and |B1| ≤ |B2|. Let BS1 and
BS2 be corresponding bucket structures, with independent
random samples R1, Q1 and R2, Q2. We put α = b − a
and β = N(t) + 1 − b. Let γ be the (unknown) number of
non-expired elements inside B1, so n = β + γ. We stress
that α, β are known and γ is unknown.
Lemma 3.3. It is possible to generate a random sample
Y = Y (Q1) of B1, with the following distribution:

P (Y = pb−i) =
β

(β + i)(β + i− 1)
, 0 < i < α,

P (Y = pa) =
β

β + α− 1
.

Y is independent of R1, R2, Q2 and can be generated within
constant memory and time, using Q1.

6

Lemma 3.4. It is possible to generate a zero-one random
variable X such that P (X = 1) = α

β+γ . X is independent
of R1, R2, Q2 and can be generated using constant time and
memory.

Lemma 3.5. It is possible to construct a random sample V
of all non-expired elements using only the data of BS1, BS2

and constant time and memory.

3.4 Main Results

Theorem 3.6. We can maintain a random sample over all
non-expired elements using Θ(log n) memory.

PROOF. By using Lemma 3.2, we are able to maintain one
of two cases. If case 1 occurs, we can combine random vari-
ables of all bucket structures with appropriate probabilities
and get a random sample of all non-expired elements. If case
2 occurs, we use notations of Section 3.3, interpret the first
bucket as B1 and combine buckets of covering decomposi-
tion to generate samples from B2. Properties of the second
case imply |B1| ≤ |B2| and therefore, by using Lemma 3.5,
we are able to produce a random sample as well. All pro-
cedures described in the lemmas require Θ(log n) memory.
Therefore, the theorem is correct.

Lemma 3.7. The memory usage of maintaining a random
sample within a timestamp-based window has a lower bound
Ω(log(n)).

4. Black-Box Reduction

In this section, we present black-box reduction from sam-
pling without replacement to sampling with replacement. As
a result, we obtain an optimal algorithm for sampling with-
out replacement for timestamp-based windows. Informally,
the idea is as follows. We maintain k independent random
samples R0, . . . , Rk−1 of active elements, using the algo-
rithm from Section 3. The difference between these samples
and the k-sample with replacement is that Ri samples all
active elements except the last i. This can be done using
O(k + k log n) memory. Finally, a k-sample without re-
placement can be generated using R0, . . . , Rk−1 only.

Let us describe the algorithm in detail. First, we construct
Ri. To do this, we maintain an auxiliary array with the last
i elements. We repeat all procedures in Section 3, but we
“delay” the last i elements. An element is added to covering
decomposition only when more then i elements arrive after
it. We prove the following variant of Lemma 3.2.

Lemma 4.1. Let 0 < i ≤ k. For any t with more then i ac-
tive elements, we are able to maintain one of the following:

1. ζ(l(t), N(t)− i),
or

2. BS(yt, zt), ζ(zt, N(t)− i),
where yt < l(t) ≤ zt and zt − yt ≤ N(t) + 1− i− zt

and all random samples of the bucket structures are
independent.

The proof is presented in the appendix. The rest of the proce-
dure remains the same. Note that we can use the same array
for every i, and therefore we can construct R0, . . . , Rk−1

using Θ(k + k log n) memory.

In the reminder of this section, we show how R0, . . . , Rk−1

can be used to generate a k-sample without replacement. We
denote by Rj

i a i-random sample without replacement from
[1, j].

Lemma 4.2. Rb+1
a+1 can be generated using independent Rb

a,
Rb+1

1 samples only.

Lemma 4.3. Rn
k can be generated using only independent

samples Rn
1 , Rn−1

1 ,. . . , Rn−k+1
1 .

PROOF. By using Lemma 4.2, we can generate Rn−k+2
2

using Rn−k+1
1 and Rn−k+2

1 . We can repeat this procedure
and generate Rn−k+j

j , 2 ≤ j ≤ k, using Rn−k+j−1
j−1 (that we

already constructed by induction) and Rn−k+j
1 . For j = k

we have Rn
k .

By using Lemma 4.3, we can generate a k-sample with-
out replacement using only R0, . . . , Rk−1. Thus, we have
proved

Theorem 4.4. It is possible to maintain k-sampling without
replacement for timestamp-based windows using O(k log n)
memory words.

5. Applications

Consider that algorithm Λ is sampling-based, i.e., it oper-
ates on a uniformly chosen subset of D instead of the whole
stream. Such an algorithm can be immediately transformed
to sliding windows by replacing the underlying sampling
method with our algorithms. We obtain the following gen-
eral result and illustrate it with the examples below.

Theorem 5.1. For the sampling-based algorithm Λ that solves
problem P , there exists an algorithm Λ′ that solves P on
sliding windows. The memory guarantees are preserved for
sequence-based windows and have a multiplicative overhead
of log n for timestamp-based windows.

Frequency moment is a fundamental problem in data stream
processing. Given a stream of elements, such that pj ∈ [m],
the frequency xi of each i ∈ [m] is defined as |{j|pj = i}|
and the k-th frequency moment is defined as Fk =

∑m
i=1 xk

i .
The first algorithm for frequency moments for k > 2 was
proposed in the seminal paper of Alon, Matias and Szegedy
[4]. They present an algorithm that uses O(m1− 1

k) memory.
Numerous improvements to lower and upper bounds have
been reported, including the works of Bar-Yossef, Jayram,
Kumar and Sivakumar [14], Chakrabarti, Khot and Sun [23],
Coppersmith and Kumar [33], and Ganguly[44]. Finally,
Indyk and Woodruff [57] and later Bhuvanagiri, Ganguly,
Kesh and Saha [18] presented algorithms that use Õ(m1− 2

k)
memory and are optimal. The algorithm of Alon, Matias

7

and Szegedy [4] is sampling-based, thus we can adapt it to
sliding windows using our methods. The memory usage is
not optimal, however this is the first algorithm for frequency
moments over sliding windows that works for all k. Re-
cently Braverman and Ostrovsky [19] adapted the algorithm
from [18] to sliding windows, producing a memory-optimal
algorithm that uses Õ(m1− 2

k). However, it involves kk mul-
tiplicative overhead, making it infeasible for large k; thus
these results generally cannot be compared. We have

Corollary 5.2. For any k > 2, there exists an algorithm
that maintains an (ε, δ)-approximation of the k-th frequency
moment over sliding windows using Õ(m1− 1

k) bits.

Recently, numerous graph problems were addressed in the
streaming environment. Stream elements represent edges of
the graph, given in arbitrary order (we refer readers to [20] for
a detailed explanation of the model). One of the fundamen-
tal graph problems is estimating a number of small cliques
in a graph, in particular the number of triangles. Effective
solutions were proposed by Jowhari and Ghodsi [59], Bar-
Yosseff, Kumar and Sivakumar [15] and Buriol, Frahling,
Leonardi, Marchetti-Spaccamela and Sohler [20]. The last
paper presented an (ε, δ)-approximation algorithm that uses
O(1 + log |E|

|E|
1
ε2
|T1|+2|T2|+3|T3|

|T3| log 2
δ) memory ([20], The-

orem 2) that is the best result so far. Here, |Ti| represents
the number of node-triplets having i edges in the induced
sub-graph. The algorithm is applied on a random sample
collected using the reservoir method. By replacing the reser-
voir sampling with our algorithms, we obtain the following
result.

Corollary 5.3. There exists an algorithm that maintains an
(ε, δ)-approximation of the number of triangles over slid-
ing windows. For sequence-based windows it uses O(1 +
log |EW |
|EW |

1
ε2
|T1|+2|T2|+3|T3|

|T3| log 2
δ) memory, where EW is the

set of active edges. Timestamp-based windows adds a mul-
tiplicative factor of log n.

Following [20], our method is also applicable for incidence
streams, where all edges of the same vertex come together.

The entropy of a stream is defined as H = −∑m
i=1

xi

N log xi

N ,
where xi is as above. The entropy norm is defined as
FH =

∑m
i=1 xi log xi. Effective solutions for entropy and

entropy norm estimations were recently reported by Guha,
McGregor and Venkatasubramanian [53]; Chakrabarti, Do
Ba and Muthukrishnan [22]; Harvey, Nelson and Onak [56];
Chakrabarti, Cormode and McGregor [21]; and Zhao, Lall,
Ogihara, Spatscheck, Wang and Xu [74].

The paper of Chakrabarti, Cormode and McGregor presents
an algorithm that is based on a variation of reservoir sam-
pling. The algorithm maintains entropy using O(ε−2 log δ−1)
that is nearly optimal. The authors also considered the sliding
window model and used a variant of priority sampling [10]
to obtain the approximation. Thus, the worst-case mem-
ory guarantees are not preserved for sliding windows. By
replacing priority sampling with our methods, we obtain

Corollary 5.4. There exists an algorithm that maintains an

(ε, δ)-approximation of entropy on sliding windows using
O(ε−2 log δ−1 log n) memory.

Moreover, our methods can be used with the algorithm
from [22] to obtain Õ(1) memory for large values of the en-
tropy norm. This algorithm is based on reservoir sampling
and thus can be straightforwardly implemented in sliding
windows. As a result, we build the first solutions with prov-
able memory guarantees on sliding windows.

Our algorithms can be naturally extended to some biased
functions. Biased sampling [2] is non-uniform, giving larger
probabilities for more recent elements. The distribution is
defined by a biased function. We can apply our methods
to implement step biased functions, maintaining samples
over each window with different lengths and combining the
samples with corresponding probabilities. Our algorithm
can extend the ideas of Feigenbaum, Kannan, Strauss and
Viswanathan [42] for testing and spot-checking to sliding
windows. Finally, we can apply our tools to the algorithm of
Procopiuc and Procopiuc for density estimation [69], since
it is based on the reservoir algorithm as well.

6. References

[1] C. Aggarwal (editor), Data Streams: Models and
Algorithms, Springer Verlag, 2007.

[2] C. Aggarwal, “On biased reservoir sampling in the presence
of stream evolution”, Proceedings of the 32nd international
conference on Very large data bases, pp. 607–618, 2006.

[3] N. Alon, N. Duffield, C. Lund, M. Thorup, “Estimating
arbitrary subset sums with few probes”. Proceedings of the
twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pp. 317–325, 2005.

[4] N. Alon, Y. Matias, M.Szegedy, “The space complexity of
approximating the frequency moments”. Proceedings of the
twenty-eighth annual ACM symposium on Theory of
computing, pp. 20–29, 1996.

[5] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K.
Ito, R. Motwani, U. Srivastava, J. Widom, “STREAM: The
Stanford Data Stream Management System”, Book Chapter,
“Data-Stream Management: Processing High-Speed Data
Streams”, Springer-Verlag, 2005.

[6] A. Arasu, G. S. Manku, “Approximate counts and quantiles
over sliding windows”, Proceedings of the twenty-third
ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, 2004.

[7] A. M. Ayad, J. F. Naughton, “Static optimization of
conjunctive queries with sliding windows over infinite
streams”, Proceedings of the 2004 ACM SIGMOD
international conference on Management of data, 2004.

[8] B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom,
“Models and issues in data stream systems”, Proceedings of
the twenty-first ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, 2002.

[9] B. Babcock, S. Babu, M. Datar, R. Motwani, D. Thomas,
“Operator scheduling in data stream systems”, The VLDB
Journal The International Journal on Very Large Data
Bases, v.13 n.4, pp.333–353, 2004.

8

[10] B. Babcock, M. Datar, R. Motwani, “Sampling from a
moving window over streaming data”, Proceedings of the
thirteenth annual ACM-SIAM symposium on Discrete
algorithms, pp.633–634, 2002.

[11] B. Babcock, M. Datar, R. Motwani, “Load Shedding for
Aggregation Queries over Data Streams”, Proceedings of the
20th International Conference on Data Engineering, 2004.

[12] B. Babcock, M. Datar, R. Motwani, L. O’Callaghan,
“Maintaining variance and k-medians over data stream
windows”, Proceedings of the twenty-second ACM
SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pp.234–243, 2003.

[13] Z. Bar-Yossef, “Sampling lower bounds via information
theory”, STOC, 2003.

[14] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, “An
Information Statistics Approach to Data Stream and
Communication Complexity”, Proceedings of the 43rd
Symposium on Foundations of Computer Science, pp.
209–218, 2002.

[15] Z. Bar-Yosseff, R. Kumar, D. Sivakumar, “Reductions in
streaming algorithms, with an application to counting
triangles in graphs”, Proceedings of the thirteenth annual
ACM-SIAM symposium on Discrete algorithms, pp.623–632,
2002.

[16] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, L.
Trevisan, “Counting Distinct Elements in a Data Stream”,
Proceedings of the 6th International Workshop on
Randomization and Approximation Techniques, pp.1-10,
2002.

[17] Z. Bar-Yossef, R. Kumar, D. Sivakumar, “Sampling
algorithms: lower bounds and applications”, STOC, 2001.

[18] L. Bhuvanagiri, S. Ganguly, D. Kesh, C. Saha, “Simpler
algorithm for estimating frequency moments of data
streams”, Proceedings of the seventeenth annual ACM-SIAM
symposium on Discrete algorithm, pp.708–713, 2006.

[19] V. Braverman, R. Ostrovsky, “Smooth histograms on stream
windows”, Proceedings of the 48th Symposium on
Foundations of Computer Science, 2007.

[20] L. S. Buriol, G. Frahling, S. Leonardi, A.
Marchetti-Spaccamela, C. Sohler, “Counting triangles in
data streams”, Proceedings of the twenty-fifth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pp.253–262, 2006.

[21] A. Chakrabarti, G. Cormode, A. McGregor, “A near-optimal
algorithm for computing the entropy of a stream”. In
Proceedings of ACM-SIAM Symposium on Discrete
Algorithms, 2007.

[22] A. Chakrabarti, K. Do Ba, S. Muthukrishnan, “Estimating
Entropy and Entropy Norm on Data Streams”, In
Proceedings of the 23rd International Symposium on
Theoretical Aspects of Computer Science, 2006.

[23] A. Chakrabarti, S. Khot, X. Sun, “Near-optimal lower
bounds on the multi-party communication complexity of
set-disjointness”, Proceedings of the 18th Annual IEEE
Conference on Computational Complexity, 2003.

[24] K. L. Chang, R. Kannan, “The space complexity of
pass-efficient algorithms for clustering”, in ACM-SIAM
Symposium on Discrete Algorithms, 2006, pp. 1157-1166.

[25] M. Charikar, C. Chekuri, T. Feder, R. Motwani,
“Incremental clustering and dynamic information retrieval”,
SIAM J. Comput., 33 (2004), pp. 1417-1440.

[26] K. Chaudhuri, N. Mishra, “When Random Sampling
Preserves Privacy”, CRYPTO, 2006.

[27] S. Chaudhuri, R. Motwani, V. Narasayya, “On random
sampling over joins”, Proceedings of the 1999 ACM
SIGMOD international conference on Management of data,
pp.263-274, 1999.

[28] Y. Chi, H. Wang, P. S. Yu, R. R. Muntz, “Moment:
Maintaining Closed Frequent Itemsets over a Stream Sliding
Window”, Fourth IEEE International Conference on Data
Mining (ICDM’04), pp. 59–66, 2004.

[29] E. Cohen, “Size-estimation framework with applications to
transitive closure and reachability,” Journal of Computer
and System Sciences, v.55 n.3, pp.441–453, 1997.

[30] E. Cohen, H. Kaplan, “Summarizing data using bottom-k
sketches,”, Proceedings of the twenty-sixth annual ACM
symposium on Principles of distributed computing, 2007.

[31] G. Cormode, M. Datar, P. Indyk, S. Muthukrishnan,
“Comparing Data Streams Using Hamming Norms (How to
Zero In)”, IEEE Transactions on Knowledge and Data
Engineering, v.15 n.3, pp.529–540, 2003.

[32] G. Cormode, S. Muthukrishnan, I. Rozenbaum,
“Summarizing and mining inverse distributions on data
streams via dynamic inverse sampling”, Proceedings of the
31st international conference on Very large data bases,
2005.

[33] D. Coppersmith, R. Kumar, “An improved data stream
algorithm for frequency moments”, Proceedings of the
fifteenth annual ACM-SIAM symposium on Discrete
algorithms, pp.151–156, 2004.

[34] A. Das, J. Gehrke, M. Riedewald, “Semantic Approximation
of Data Stream Joins”, IEEE Transactions on Knowledge
and Data Engineering, v.17 n.1, pp.44–59, 2005.

[35] A. Dasgupta, P. Drineas, B. Harb, R. Kumar, M. W.
Mahoney, “Sampling algorithms and coresets for lp
regression”, SODA, 2008.

[36] M. Datar, A. Gionis, P. Indyk, R. Motwani, “Maintaining
stream statistics over sliding windows: (extended abstract)”,
Proceedings of the thirteenth annual ACM-SIAM symposium
on Discrete algorithms, pp.635–644, 2002.

[37] M. Datar, S. Muthukrishnan, “Estimating Rarity and
Similarity over Data Stream Windows”, Proceedings of the
10th Annual European Symposium on Algorithms,
pp.323–334, 2002.

[38] N. Duffield, C. Lund, M. Thorup, ”Flow sampling under
hard resource constraints”, ACM SIGMETRICS Performance
Evaluation Review, v.32 n.1, 2004.

[39] J. Feigenbaum, S. Kannan, and J. Zhang, “Computing
diameter in the streaming and sliding-window models”,
Algorithmica, 41:25–41, 2005.

[40] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, J. Zhang,
“Graph distances in the streaming model: the value of
space”, SODA, 2005.

[41] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, J. Zhang,
“On graph problems in a semi-streaming model”, Theor.
Comput. Sci., 2005.

[42] J. Feigenbaum, S. Kannan, M. Strauss, M. Viswanathan,
“Testing and Spot-Checking of Data Streams”,
Algorithmica, 34(1): 67-80, 2002.

[43] G. Frahling, P. Indyk, C. Sohler, “Sampling in dynamic data
streams and applications”, Proceedings of the twenty-first
annual symposium on Computational geometry, 2005.

9

[44] S. Ganguly. “Estimating Frequency Moments of Update
Streams using Random Linear Combinations”. Proceedings
of the 8th International Workshop on Randomized
Algorithms, pp. 369-380, 2004.

[45] S. Ganguly, “Counting distinct items over update streams”,
Theoretical Computer Science, pp.211–222, 2007.

[46] S. Gandhi, S. Suri, E. Welzl, “Catching elephants with mice:
sparse sampling for monitoring sensor networks”, SenSys,
2007.

[47] R. Gemulla, “Sampling Algorithms for Evolving Datasets”,
PhD Dissertation.

[48] R. Gemulla and W. Lehner, “Sampling time-based sliding
windows in bounded space”, In Proc. of the 2008 ACM
SIGMOD Intl. Conf. on Management of Data, pp. 379–392.

[49] P. B. Gibbons, Y. Matias, “New sampling-based summary
statistics for improving approximate query answers”,
Proceedings of the 1998 ACM SIGMOD international
conference on Management of data, pp.331–342, 1998.

[50] P. B. Gibbons, S. Tirthapura, “Distributed streams
algorithms for sliding windows”, Proceedings of the
fourteenth annual ACM symposium on Parallel algorithms
and architectures, pp.10–13, 2002.

[51] L. Golab, D. DeHaan, E. D. Demaine, A. Lopez-Ortiz, J. I.
Munro, ”Identifying frequent items in sliding windows over
on-line packet streams”, Proceedings of the 3rd ACM
SIGCOMM conference on Internet measurement, 2003.

[52] L. Golab , M. T. Özsu, “Processing sliding window
multi-joins in continuous queries over data streams”,
Proceedings of the 29th international conference on Very
large data bases, pp.500–511, 2003.

[53] S. Guha, A. McGregor, S. Venkatasubramanian, “Streaming
and sublinear approximation of entropy and information
distances”, Proceedings of the seventeenth annual
ACM-SIAM symposium on Discrete algorithm, pp.733-742,
2006.

[54] S. Guha, A. Meyerson, N. Mishra, R. Motwani, L.
O’Callaghan, “Clustering Data Streams: Theory and
Practice”, IEEE Trans. on Knowledge and Data
Engineering, vol. 15, 2003.

[55] P. J. Haas, “Data stream sampling: Basic techniques and
results”, In M. Garofalakis, J. Gehrke, and R. Rastogi (Eds.),
Data Stream Management: Processing High Speed Data
Streams, Springer.

[56] N. Harvey, J. Nelson, K. Onak, “Sketching and Streaming
Entropy via Approximation Theory”, The 49th Annual
Symposium on Foundations of Computer Science (FOCS
2008).

[57] P. Indyk, D. Woodruff, “Optimal approximations of the
frequency moments of data streams”, Proceedings of the
thirty-seventh annual ACM symposium on Theory of
computing, pp.202–208, 2005.

[58] M. Kolonko, D. Wäsch, “Sequential reservoir sampling with
a nonuniform distribution”, v.32, i.2, pp.257–273, 2006.

[59] H. Jowhari, M. Ghodsi, “New streaming algorithms for
counting triangles in graphs”, Proceedings of the 11th
COCOON, pp. 710–716, 2005.

[60] L. K. Lee, H. F. Ting, “Frequency counting and aggregation:
A simpler and more efficient deterministic scheme for
finding frequent items over sliding windows”, Proceedings
of the twenty-fifth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems (PODS ’06),
pp. 290–297, 2006.

[61] L. K. Lee, H. F. Ting, “Maintaining significant stream
statistics over sliding windows”, Proceedings of the
seventeenth annual ACM-SIAM symposium on Discrete
algorithm, pp.724–732, 2006.

[62] K. Li, “Reservoir-sampling algorithms of time complexity
O(n(1 + log(N/n)))”, ACM Transactions on Mathematical
Software (TOMS), v.20 n.4, pp.481–493, Dec. 1994.

[63] J. Li, D. Maier, K. Tufte, V. Papadimos, P. A. Tucker,
“Semantics and Evaluation Techniques for Window
Aggregates in Data Streams”, SIGMOD, 2005.

[64] J. Li, D. Maier, K. Tufte, V. Papadimos, P. A. Tucker, “No
pane, no gain: efficient evaluation of sliding-window
aggregates over data streams”, ACM SIGMOD Record, v.34
n.1, 2005.

[65] G. S. Manku, R. Motwani, “Approximate frequency counts
over data streams”. In Proceedings of the 28th International
Conference on Very Large Data Bases, pp.356–357, 2002.

[66] S. Muthukrishnan, “Data Streams: Algorithms And
Applications” Foundations and Trends in Theoretical
Computer Science, Volume 1, Issue 2.

[67] C. R. Palmer, C. Faloutsos, “Density biased sampling: an
improved method for data mining and clustering”,
Proceedings of the 2000 ACM SIGMOD international
conference on Management of data, pp.82–92, 2000

[68] V. Paxson, G. Almes, J. Mahdavi, M. Mathis, ”Framework
for IP performance metrics”, RFC 2330, 1998.

[69] C. Procopiuc, O. Procopiuc, “Density Estimation for Spatial
Data Streams”, Proceedings of the 9th International
Symposium on Spatial and Temporal Databases ,
pp.109–126, 2005.

[70] M. Szegedy, “The DLT priority sampling is essentially
optimal”, Proceedings of the thirty-eighth annual ACM
symposium on Theory of computing, pp.150–158, 2006.

[71] N. Tatbul, S. Zdonik, “Window-aware load shedding for
aggregation queries over data streams”, Proceedings of the
32nd international conference on Very large data bases,
2006.

[72] J. S. Vitter, “Random sampling with a reservoir”, ACM
Transactions on Mathematical Software (TOMS), v.11 n.1,
pp.37–57, 1985.

[73] L. Zhang, Z. Li, M. Yu, Y. Wang, Y. Jiang, ”Random
sampling algorithms for sliding windows over data streams”,
Proc. of the 11th Joint International Computer Conference,
pp. 572–575, 2005.

[74] H. Zhao, A. Lall, M. Ogihara, O. Spatscheck, J. Wang, J.
Xu, “A data streaming algorithm for estimating entropies of
od flows”, Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement, 2007.

APPENDIX

Lemma 3.1. For any a and b, Incr(ζ(a, b)) = ζ(a, b + 1).

PROOF. We prove the lemma by induction on b − a. If
a = b then, since b + 1 = b + 2blog ((b+1)+1−b)c−1, we have,
by definition of ζ(b, b + 1),

ζ(b, b + 1) = 〈BS(b, b + 1), ζ(b + 1, b + 1)〉 =

〈BS(b, b + 1), BS(b + 1, b + 2)〉 = Incr(ζ(b, b)).

10

We assume that the lemma is correct for b − a < h and
prove it for b − a = h. Let BS(a, v) be the first bucket of
Incr(ζ(a, b)). Let BS(a, c) be the first bucket of ζ(a, b).
By definition, if blog(b + 2 − a)c = blog(b + 1 − a)c then
v = c. We have

v = c = a + 2blog (b+1−a)c−1 = a + 2blog (b+2−a)c−1.

Otherwise, let BS(c, d) be the second bucket of ζ(a, b). We
have from above blog(b + 2− a)c = blog(b + 1− a)c+ 1,
d− c = c− a and v = d. Thus

v = d = 2c− a = 2
(
a + 2blog (b+1−a)c−1

)
− a =

a + 2blog (b+1−a)c = a + 2blog (b+2−a)c−1.

In both cases v = a+2blog ((b+1)+1−a)c−1 and , by definition
of ζ

ζ(a, b + 1) = 〈BS(a, v), ζ(v, b + 1)〉 .
By induction, since b − v < h, we have Incr (ζ(v, b)) =
ζ(v, b + 1). Thus

ζ(a, b + 1) = 〈BS(a, v), ζ(v, b + 1)〉 =

〈BS(a, v), Incr (ζ(v, b))〉 = Incr(ζ(a, b)).

Lemma 3.2. For any t with a positive number of active
elements, we are able to maintain one of the following:

1. ζ(l(t), N(t)),
or

2. BS(yt, zt), ζ(zt, N(t)),
where yt < l(t) ≤ zt, zt − yt ≤ N(t) + 1− zt and all
random samples are independent.

PROOF. We prove the lemma by induction on t. First
we assume that t = 0. If no element arrives at time 0,
the stream is empty and we do nothing. Otherwise, we
put ζ(0, 0) = BS(0, 1), and for any i, 0 < i ≤ N(0) we
generate ζ(0, i) by executing Incr(ζ(0, i − 1)). Therefore,
at the end of this step, we have ζ(0, N(0)) = ζ(l(0), N(0)).
So, the case 1 is true.

We assume that the lemma is correct for t and prove it for
t + 1.

1. If for t the window is empty, then the procedure is the
same as for the basic case.

2. If for t we maintain case 1, then we have three sub-cases.
(a) If pl(t) is not expired at the moment t+1, then l(t+

1) = l(t). Similar to the basic case, we apply the
Incr procedure for every new element with index
i,N(t) < i ≤ N(t + 1). Due to the properties
of Incr, we have at the end ζ(l(t + 1), N(t + 1)).
Therefore case 1 is true for t + 1.

(b) If pN(t) is expired, then our current bucket struc-
tures represent only expired elements. We delete
them and apply the procedure for the basic case.

(c) The last sub-case is the one when pN(t) is not ex-
pired and pl(t) is expired. Let 〈BS1, . . . , BSh〉,
(BSi = BS(vi, vi+1)) be all buckets of ζ(l(t), N(t)).
Since pN(t) is not expired, there exists exactly one
bucket structure, BSi, such that pvi is expired and
pvi+1 is not expired. We can find it by checking all
the bucket structures, since we store timestamps for
pvis. We put

yt+1 = vi, zt+1 = vi+1.

We have by definition

ζ(zt+1, N(t)) = ζ(vi+1, N(t)) =

〈BSi+1, . . . , BSk〉 .
Applying the Incr procedure to all new elements,
we construct ζ(zt+1, N(t + 1)). Finally, we have:

zt+1− yt+1 = vi+1− vi = 2blog (N(t)+1−vi)c−1 ≤
1
2
(N(t) + 1− vi) =

1
2
(N(t) + 1− yt+1).

Therefore zt+1 − yt+1 ≤ N(t) + 1 − zt+1 ≤
N(t + 1) + 1 − zt+1. Thus, case 2 is true for
t + 1. We discard all non-used bucket structures
BS1, . . . , BSi−1.

3. Otherwise, for t we maintain case 2. Similarly, we have
three sub-cases.
(a) If pzt is not expired at the moment t + 1, we put

yt+1 = yt, zt+1 = zt. We have

zt+1 − yt+1 = zt − yt ≤

N(t) + 1− zt ≤ N(t + 1) + 1− zt+1.

Again, we add the new elements using the Incr pro-
cedure and we construct ζ(zt+1, N(t + 1)). There-
fore case 2 is true for t + 1.

(b) If pN(t) is expired, we apply exactly the same pro-
cedure as for 2b.

(c) If pzt is expired and pN(t) is not expired, we apply
exactly the same procedure as for 2c.

Therefore, the lemma is correct.

Lemma 3.3. It is possible to generate a random sample
Y = Y (Q1) of B1, with the following distribution:

P (Y = pb−i) =
β

(β + i)(β + i− 1)
, 0 < i < α,

P (Y = pa) =
β

β + α− 1
.

Y is independent of R1, R2, Q2 and can be generated within
constant memory and time, using Q1.

PROOF. Let {Hj}α−1
j=1 be a set of zero-one independent

random variables such that

P (Hj = 1) =
αβ

(β + j)(β + j − 1)
.

11

Let D = B1 × {0, 1}α−1 and Z be the random vector with
values from D, Z = 〈Q1, H1, ..., Hα−1〉. Let {Ai}α

i=1 be a
set of subsets of D:

Ai = {〈qb−i, a1, . . . , ai−1, 1, ai+1, . . . , aα−1〉 |
aj ∈ {0, 1}, j 6= i}.

Finally we define Y as follows

Y =
{

qb−i, if Z ∈ Ai, 1 ≤ i < α,
qa, otherwise.

Since Q1 is independent of R1, R2, Q2, Y is independent of
them as well. We have

P (Y = pb−i) = P (Z ∈ Ai) =

P (Q1 = qb−i,Hi = 1,Hj ∈ {0, 1} for j 6= i) =

P (Q1 = qb−i)P (Hi = 1)P (Hj ∈ {0, 1} for j 6= i) =

P (Q1 = qb−i)P (Hi = 1) =

1
α

αβ

(β + i)(β + i− 1)
=

β

(β + i)(β + i− 1)
.

Also,

P (Y = pa) = 1−
α−1∑

i=1

P (Y = pb−i) =

1−
α−1∑

i=1

β

(β + i)(β + i− 1)
=

1− β

α−1∑

i=1

(
1

β + i− 1
− 1

β + i

)
=

1− β

(
1
β
− 1

β + α− 1

)
=

β

β + α− 1
.

By definition of Ai, the value of Y is uniquely defined by Q1

and exactly one H . Therefore, the generation of the whole
vector Z is not necessary. Instead, we can calculate Y by
the following simple procedure. Once we know the index of
Q1’s value, we generate the corresponding Hi and calculate
the value of Y . We can omit the generation of other Hs, and
therefore we need constant time and memory.

Lemma 3.4. It is possible to generate a zero-one random
variable X such that P (X = 1) = α

β+γ . X is independent
of R1, R2, Q2 and can be generated using constant time and
memory.

PROOF. Since γ is unknown, it cannot be generated by
flipping a coin; a slightly more complicated procedure is
required.

Let Y (Q1) be the random variable from Lemma 3.3. We
have

P (Y is not expired) =
γ∑

i=1

P (Y = qb−i) =

γ∑

i=1

β

(β + i)(β + i− 1)
=

β

γ∑

i=1

(
1

β + i− 1
− 1

β + i

)
=

β

(
1
β
− 1

β + γ

)
=

γ

β + γ
.

Therefore P (Y is expired) = β
β+γ .

Let S be a zero-one variable, independent of R1, R2, Q2, Y
such that

P (S = 1) =
α

β
.

We put

X =
{

1, if Y is expired AND S = 1,
0, otherwise.

We have

P (X = 1) = P (Y is expired, S = 1) =

P (Y is expired)P (S = 1) =
β

β + γ

α

β
=

α

β + γ
.

Since Y and S are independent of R1, R2, Q2, X is in-
dependent of them as well. Since we can determine if Y is
expired within constant time, we need a constant amount of
time and memory.

Lemma 3.5. It is possible to construct a random sam-
ple V of all non-expired elements using only the data of
BS1, BS2 and constant time and memory.

PROOF. Our goal is to generate a random variable V that
chooses a non-expired element w.p. 1

β+γ . Let X be the
random variable generated in Lemma 3.4. We define V as
follows.

V =
{

R1, R1 is not expired AND X = 1,
R2, otherwise.

Let p be a non-expired element. If p ∈ B1, then since X
is independent of R1, we have

P (V = p) = P (R1 = p, X = 1) =

P (R1 = p)P (X = 1) =
1
α

α

β + γ
=

1
β + γ

=
1
n

.

If p ∈ B2, then

P (V = p) =

(1− P (R1 is not expired)P (X = 1))P (R2 = p) =
(

1− γ

α

α

β + γ

)
1
β

=
1

β + γ
=

1
n

.

12

Lemma 3.7. The memory usage of maintaining a random
sample within the time-based window has a lower bound
Ω(log(n)).

PROOF. Let D be a stream with the following property.
For timestamp i, 0 ≤ i ≤ 2t0, we have 22t0−i elements and
for i > 2t0, we have exactly one element per timestamp.

For timestamp 0 ≤ i ≤ t0, the probability of choosing p
with T (p) = i at the moment t0 + i− 1 is

22t0−i

∑i+t0−1
j=i 22t0−j

=
22t0−i

2t0−i+1
∑t0−1

j=0 2t0−j−1
=

2t0−1

∑t0−1
j=0 2j

=
2t0−1

2t0 − 1
>

1
2
.

Therefore, the expected number of distinct timestamps that
will be picked between moments t0 − 1 and 2t0 − 1 is at
least

∑2t0−1
i=t0−1

1
2 = t0+1

2 . So, with a positive probability we
need to keep in memory at least t0

2 distinct elements at the
moment t0. The number of active elements n at this moment
is at least 2t0 . Therefore the memory usage at this moment
is Ω(log n), with positive probability. We can conclude that
log(n) is a lower bound for memory usage.

Lemma 4.1. Let 0 < i ≤ k. For any t with more
then i active elements, we are able to maintain one of the
following:

1. ζ(l(t), N(t)− i),
or

2. BS(yt, zt), ζ(zt, N(t)− i),
where yt < l(t) ≤ zt and zt − yt ≤ N(t) + 1 − i −
zt and all random samples of the bucket structures are
independent.

PROOF. The proof is the same as in Lemma 3.2, except
for cases 1, 2b, 3b. For these cases, when the current window
is empty, we keep it empty unless more then i elements are
active. We can do this using our auxiliary array. Also, when
new elements arrive, some of them may already be expired
(if we kept them in the array). We therefore cannot apply the
Incr procedure for any “new” element. Instead, we should
first skip all expired elements and then apply Incr. The rest
of the proof remains the same.

Lemma 4.2. Rb+1
a+1 can be generated using independent

Rb
a, Rb+1

1 samples only.

PROOF. The algorithm is as follows.

Rb+1
a+1 =

{
Rb

a ∪ {b + 1}, if Rb+1
1 ∈ Rb

a,
Rb

a ∪Rb+1
1 , otherwise .

Let X = {x1, . . . , xa+1} be a set of points from [1, b+1],
such that x1 < x2 < · · · < xa < xa+1.

If xa+1 < b + 1, then we have

P (Rb+1
a+1 = X) =

P

a+1⋃

j=1

(Rb+1
1 = xj ∩Rb

a = X\{xj})

 =

a+1∑

j=1

P (Rb+1
1 = xj)P (Rb

a = X\{xj}) =

(a + 1)
1

b + 1
1(
b
a

) =
1(

b+1
a+1

) .

Otherwise,

P (Rb+1
a+1 = X) =

P
(
Rb

a = X\{b + 1}, Rb+1
1 ∈ X

)
=

1(
b
a

) a + 1
b + 1

=
1(

b+1
a+1

) .

13

