
Streaming k-means on Well-Clusterable Data

Vladimir Braverman∗ Adam Meyerson† Rafail Ostrovsky‡ Alan Roytman§

Michael Shindler¶ Brian Tagiku‖

Abstract

One of the central problems in data-analysis is k-means
clustering. In recent years, considerable attention in
the literature addressed the streaming variant of this
problem, culminating in a series of results (Har-Peled
and Mazumdar; Frahling and Sohler; Frahling, Mone-
mizadeh, and Sohler; Chen) that produced a (1 + ε)-
approximation for k-means clustering in the streaming
setting. Unfortunately, since optimizing the k-means
objective is Max-SNP hard, all algorithms that achieve
a (1 + ε)-approximation must take time exponential in
k unless P=NP.

Thus, to avoid exponential dependence on k, some
additional assumptions must be made to guarantee
high quality approximation and polynomial running
time. A recent paper of Ostrovsky, Rabani, Schulman,
and Swamy (FOCS 2006) introduced the very natural
assumption of data separability : the assumption closely
reflects how k-means is used in practice and allowed
the authors to create a high-quality approximation for
k-means clustering in the non-streaming setting with
polynomial running time even for large values of k.
Their work left open a natural and important question:
are similar results possible in a streaming setting? This
is the question we answer in this paper, albeit using
substantially different techniques.

We show a near-optimal streaming approximation
algorithm for k-means in high-dimensional Euclidean
space with sublinear memory and a single pass, under
the same data separability assumption. Our algorithm
offers significant improvements in both space and run-

∗Computer Science Department, UCLA, vova@cs.ucla.edu.

Supported in part by NSF grants 0830803, 0916574.
†Computer Science Department, UCLA, awm@cs.ucla.edu.

Research partially supported by NSF CIF Grant CCF-1016540.
‡Computer Science and Mathematics Departments, UCLA,

rafail@cs.ucla.edu. Research partially supported by IBM Faculty
Award, Xerox Innovation Award, the Okawa Foundation Award,
Intel, Teradata, NSF grants 0830803, 0916574, BSF grant 2008411
and U.C. MICRO grant.
§Computer Science Department, UCLA, alanr@cs.ucla.edu.

Research partially supported by NSF CIF Grant CCF-1016540.
¶Computer Science Department, UCLA, shindler@cs.ucla.edu
‖Computer Science Department, UCLA, btagiku@cs.ucla.edu

ning time over previous work while yielding asymptoti-
cally best-possible performance (assuming that the run-
ning time must be fully polynomial and P 6= NP).

The novel techniques we develop along the way
imply a number of additional results: we provide a
high-probability performance guarantee for online fa-
cility location (in contrast, Meyerson’s FOCS 2001 al-
gorithm gave bounds only in expectation); we develop
a constant approximation method for the general class
of semi-metric clustering problems; we improve (even
without σ-separability) by a logarithmic factor space
requirements for streaming constant-approximation for
k-median; finally we design a “re-sampling method” in
a streaming setting to convert any constant approxima-
tion for clustering to a [1 + O(σ2)]-approximation for
σ-separable data.

1 Introduction

In this paper, we consider the problem of Euclidean k-
means in the streaming model. Points in Euclidean
space are read sequentially; when the data stream
finishes, we must select k of these to designate as
facilities. Our cost is the sum of squared distances from
each point in the stream to its nearest facility.

A series of recent results [21, 15, 12, 10] produced
1 + ε approximations for streaming k-means. The
general approach first appeared in the paper of Har-
Peled and Mazumdar in STOC 2004 [21]. They used
the concept of a (k, ε)-coreset: a weighted set of points
such that any set of k facilities has within 1 + ε of
the same cost on the original points or the coreset.
Subsequent results improved the time and space bounds
for computing coresets. In 2005, Frahling and Sohler
[15] designed a new way to construct coresets based
on grids. Two years later, Chen [10] designed a new
way to generate coresets by randomly sampling from
rings around an approximate set of facilities. Later in
the same year, Feldman, Monemizadeh, and Sohler [12]
used the concept of a weak coreset (due to [6]), where
the size of the coreset is independent of n.

While these recent results claimed a 1 + ε approx-
imation for streaming k-means, this requires producing
an exact solution on the coreset itself, which takes time

2Õ(k/ε). When k is part of the input, this is exponential
time, and it cannot be substantially improved since the
objective is Max-SNP hard to optimize [7].

In this paper, we are interested in algorithms with
truly polynomial runtimes. We seek to produce good
approximations while optimizing space and runtime re-
quirements. Since we cannot obtain 1 + ε in polynomial
time, we will make the natural assumption of data sep-
arability, introduced by Ostrovsky, Rabani, Schulman,
and Swamy [31]; this closely reflects how k-means is used
in practice and allowed the authors to create a good ap-
proximation in the non-streaming setting. Our main
result is a streaming algorithm where n data points ar-
rive one at a time, which produces a set of k means while
making only a single pass through the data. We guaran-
tee that the space requirement and processing time per
point are logarithmic in n, and we produce an approxi-
mation factor of 1+O(ε)+O(σ2) when the original data
is σ-separable. While it is possible to modify the prior
coreset-based approaches to obtain similar approxima-
tion bounds, our algorithm improves substantially on
both space and time requirements. In fact our algorithm
requires less space (by a factor of log n) than the best
previous constant approximation for the problem. We
give both results in expectation and with high probabil-
ity; our results are compared to previous coreset-based
results for k-means in table 1.

The techniques that we develop along the way es-
tablish additional results: we provide a high-probability
performance guarantee for online facility location (Mey-
erson’s results [30] gave bounds only in expectation); we
develop a constant approximation method for the gen-
eral class of semi-metric clustering problems; we im-
prove (even without σ-separability) by a logarithmic
factor space requirements the previous best streaming
algorithm for k-median; finally we show a novel “re-
sampling method” in a streaming setting to reduce any
constant approximation for clustering to 1 +O(σ2).

1.1 Related Work The k-means problem was con-
sidered as early as 1956 by Steinhaus [34]. A simple
local search heuristic for the problem was proposed in
1957 by Lloyd [27]. The heuristic begins with k arbitrar-
ily chosen points as facilities. At each stage, it allocates
the points X into clusters (each point assigned to clos-
est facility) and then computes the center of mass for
each cluster. These centers of mass become the new
facilities for the next phase, and the process repeats
until the solution stabilizes. Lloyd’s algorithm has a
rich history including psychologists in 1959-67 [36] and
from 1960 to the modern day in computer science lit-
erature [29, 28, 11, 26, 16, 17, 22, 35, 38, 14, 13, 20, 8,
23, 2, 32, 33, 25, 31]. Unfortunately, Lloyd’s algorithm

has no provable approximation bound, and arbitrarily
bad examples exist. Furthermore, the worst-case run-
ning time is superpolynomial [3]. Despite these draw-
backs, Lloyd’s algorithm (frequently known simply as
k-means) remains common in practice.

The best polynomial-time approximation factor for
k-means is by Kanungo, Mount, Netanyahu, Piatko,
Silverman, and Wu [25]. They base their result on the k-
median algorithm of Arya, Garg, Khandekar, Meyerson,
Munagala, and Pandit [5]. Both papers use local search;
the k-means case produces a 9 + ε approximation.
However, Lloyd’s experimentally observed runtime is
superior, and this is a high priority for real applications.

Ostrovsky, Rabani, Schulman and Swamy [31] ob-
served that the value of k is typically selected such that
the data is “well-clusterable” rather than being an ar-
bitrary part of the input. They defined the notion of
σ-separability, where the input to k-means is said to be
σ-separable if reducing the number of facilities from k to
k−1 would increase the cost of the optimum solution by
a factor 1

σ2 . They designed an algorithm with approx-
imation ratio 1 + O(σ2). They also showed that their
notion of σ-separability is robust and generalizes a num-
ber of other intuitive notions of “well-clusterable” data.
The main idea of their algorithm is a randomized seed-
ing technique which guarantees (with high probability)
one initial facility belonging to each optimum cluster.
They then perform a “ball k-means” step (Lloyd-like
re-clustering) using only points which are near facili-
ties. Subsequently, Arthur and Vassilvitskii [4] showed
that the same procedure produces an O(log k) approxi-
mation for arbitrary instances of k-means.

When a k-means type algorithm is run in practice,
the goal is to group the data based on a natural
clustering. Balcan, Blum, and Gupta [7] use this
observation to extend the notion of σ-separability to
η-closeness: two clusterings are η-close if they disagree
on only η fraction of the points, and an instance of the
problem has the (c, η) property if any c-approximation is
η-close to the target clustering for that instance. Their
main contribution is to show how to use an existing
constant approximation to modify a solution on an
agreeable dataset to be a better solution. When the
(c, η) property assumption holds, they are able to find
very accurate approximations to the subjective correct
clustering. In particular, any instance of k-means that
has a (1 +α, η)-property can be clustered to be O(η/α)
close to the target. However, their approach is memory
intensive and not amenable to direct adaptation to the
streaming model.

Each of these algorithms assumed that the entire
input was available for processing in any form the
algorithm designer needed. Our work focuses instead

Result Space Requirements (points) Runtime PROB

[21] + [31] O(k(log2d+2 nε−d)) Od(n(k5 + log2(kε−1))) EXP

[15] + [31] O(((log ∆ + log n)3k2 log4 ∆)ε−2d−6) Od(n log2 ∆(log ∆ + log n)) EXP
Ours O(kε−1 log n) Od(nk log n) EXP

[12] + [31] O(k2ε−5 log10 n) Od(nk
2ε−1 log2 n) WHP

[10] + [31] O(d2k2ε−2 log8 n) Od(nk log2 n polylog(kε−1)) WHP

Ours O(kε−1 log2 n) Od(nk log n) WHP

Table 1: Streaming 1 +O(ε) +O(σ2) approximations to k-means

on the streaming model, where the set of points X to
cluster is extremely large and the algorithm is required
to make only a single in-order pass through this data.
This is typically used to model the case where the
data must be read in a circumstance that lacks random
access, such as a large amount of data stored on a hard
disk.

The early work on streaming k-service clustering fo-
cused on streaming k-median. In 2000, Guha, Mishra,
Motwani, and O’Callaghan [19] produced an O(21/ε) ap-
proximation for streaming k-median using O(nε) mem-
ory. Their algorithm reads the data in blocks, clus-
tering each using some non-streaming approximation,
and then gradually merges these blocks when enough
of them arrive. An improved result for k-median was
given by Charikar, O’Callaghan, and Panigrahy in 2003
[9], producing an O(1) approximation using O(k log2 n)
space. Their work was based on guessing a lower bound
on the optimum k-median cost and running O(log n)
parallel versions of the online facility location algorithm
of Meyerson [30] with facility cost based on the guessed
lower bound. When these parallel calls exceeded the
approximation bounds, they would be terminated and
the guessed lower bound on the optimum k-median cost
would increase.

A recent result for streaming k-means, due to Ailon,
Jaiswal, and Monteleoni [1], is based on a divide and
conquer approach, similar to the k-median algorithm
of Guha, Meyerson Mishra, Motwani, and O’Callaghan
[18]. It uses the result of Arthur and Vassilvitskii [4]
as a subroutine, finding 3k log k centers and producing
an approximation ratio of 64 with probability at least
1/4 in a non-streaming setting. By dividing the input
stream and running this repeatedly on pieces of the
stream, they achieve an O(2O(1/ε) log k) approximation
using O(nε) memory.

1.2 High Level Ideas Our goal is to produce a fully
polynomial-time streaming approximation for k-service
clustering. A natural starting point is the algorithm
of Charikar, O’Callaghan, and Panigrahy [9]; however

their result as stated applies only to the k-median
problem. Since their algorithm depends heavily on calls
to the online facility location algorithm of Meyerson
[30], we first consider (and improve) results for this
problem.

We produce new high probability bounds on the
performance of online facility location, showing that
the algorithm achieves within constants of its expected
behavior with probability 1 − 1

n (Theorem 3.1). To
achieve this result, we inductively bound the probability
of any given service cost being obtained prior to opening
a facility in each of a collection of facility-less regions.
We combine this with deterministic bounds on the
service cost subsequent to opening a facility in the local
region, and with Chernoff bounds on the number of
facilities opened. Coupling our result with the algorithm
of Charikar, O’Callaghan, and Panigrahy [9] improves
our memory bound and processing time per point by a
Θ(log n) factor. Our analysis extends to cases where the
triangle inequality holds only approximately, allowing
us to apply the streaming algorithm to k-means as well.
This yields the first streaming constant-approximation
for k-means and k-median to store only O(k log n)
points in memory (Theorem 3.2).

The execution of the algorithm of [9] is divided into
phases, each of which corresponds to a “guess” at the
optimum cost value. Each phase induces overhead to
merge the existing clusters from the previous phase.
The number of these phases is bounded by O(n); we
show that a modification of the algorithm along with an
appropriate choice of constants can guarantee that each
phase processes at least k(1 + log n) new points from
the data stream, thus reducing the number of phases
to O(n/k log n). This reduction improves the overall
running time to O(nk log n).

Next, we would like to improve our approximation
result to an FPTAS for the important case of Euclidean
k-means. This is hard in general, as the problem is Max-
SNP hard [7]. We instead make the σ-separability as-
sumption of Ostrovsky, Rabani, Schulman, and Swamy
[31] and show that we can obtain a 1+O(ε)+O(σ2) ap-

proximation using space for O(kε log n) points and poly-
nomial time.

The first step is to consider applying a ball k-
means step to our constant-approximation; this involves
selecting the points which are much closer to one of
our facilities than to any other (the “ball” of that
facility) and computing the center of mass on those
points. We show that given any O(1) approximation
to k-means, applying the ball k-means step will reduce
the approximation factor to 1 + O(σ2). The idea is
that the optimum facilities for such an instance must
be far apart; any constant-approximation must include
a facility close to each of the optimum ones. Combining
these facts gives a one-to-one mapping between our
facilities and optimums, and we show that the points
which are very close to each of our facilities must
therefore belong to distinct optimum ones. This would
enable us to produce a 1 + O(σ2) approximation to k-
means via two passes through the stream – the first pass
would run the algorithm of Charikar, O’Callaghan, and
Panigrahy [9] with our modifications, then the second
pass would run the ball k-means step.

Of course, we wish to compute our entire solution
with only one pass through the data. To do this, we
prove that sampling works well for computing center of
mass. A random sample of constant size (independent
of the size of the cluster) provides a constant approxi-
mation (Theorem 4.1). Our goal is thus to produce a
suitable random sample of the points belonging to each
of the “balls” for our final ball k-means step.

Unfortunately, we do not know what our final
cluster centers will be until the termination of the
stream, making it difficult to sample uniformly from
the balls. Instead, we show that the clusters from our
solution are formed by adding points one at a time
to clusters and by merging existing clusters together.
This process permits us to maintain at all times a
random sample of the points belonging to each of our
clusters (section 4). Of course, randomly sampling
from the points in these clusters is not the same as
randomly sampling from the balls in the ball k-means
step. However, we then show that the set we are actually
sampling from (our cluster about a particular facility)
and the set we “should be” sampling from (the points
which are much closer to this particular facility than any
other one of our facilities) are roughly (within constants)
the same set of points, and that as the separability value
σ approaches zero, these sets of points converge and
become effectively identical (Theorem 5.2).

Putting it all together, our overall result maintains
a sample of size 1

ε from each of our clusters at all times.
The number of clusters will never exceed O(k log n),
so the total memory requirement is O(kε log n) points

for a chosen constant ε. The approximation factor for
our final solution is 1 + O(ε) + O(σ2) for σ-separable
data, and our overall running time is O(nk log n). While
this result holds in expectation, we also give a similar
result which holds with high probability (at least 1− 1

n)
in Appendix C. Our space requirement for the high
probability result is O(kε log n log(nd)), and by applying
the result of Johnson and Lindenstrauss [24] we can
reduce this to O(kε log2 n). We also note that the value
of σ need not be known to our algorithm at runtime.

We stress that our result improves over all previous
streaming algorithms for k-means (or k-median) in the
memory requirement and running time, while obtaining
very good approximation results provided the data set
is “well-clusterable” (as per [31]).

1.3 Our Techniques vs. Prior Work Our im-
provement of the analysis from Meyerson’s online fa-
cility location result [30] uses similar techniques to the
original paper. As before, the optimum clusters are di-
vided up into “regions” based on proximity to the op-
timum center, and arguments are made about the cost
prior to and subsequent to opening a facility in each
region. Extending this approach to handle approxi-
mate triangle inequality is straightforward. The main
new idea involves producing a high-probability bound,
specifically on the service cost paid prior to opening fa-
cilities in each region. Here we use induction to produce
an upper bound on the actual probability of paying at
least a given cost prior to opening the facilities; by set-
ting the target probability appropriately, we can show
that the chance of exceeding the expected cost by more
than a constant is exponentially small in the number of
regions. Combining this with a straightforward appli-
cation of Chernoff bounds (for the number of facililties)
completes the result.

While our overcall algorithm bears some similarity
to the result of Charikar, O’Callaghan, and Panigrahy
[9], our techniques are quite different. They break
their process into phases, then show that each phase
“succeeds” with reasonably high probability. They then
require substantial work to bound the number of phases
to be linear in the number of points. In contrast, we
show that we only require “success” of a randomized
algorithm at a particular critical phase; prior phases are
always guaranteed to have bounded cost. This allows
a substantial improvement, and unlike their work, our
performance and success probability do not depend
on the number of phases. Nonetheless, bounding the
number of phases is important for the running time. We
obtain a better-than-linear bound by simply requiring
each phase to read in at least a logarithmic number of
new points; this analysis is much simpler and enables us

to perform a simple matching at the end of each phase
(reducing the number of facilities sufficiently) rather
than approximating k-means on the facilities of the prior
phase. Of course, our ideas about using sampling and a
“ball k-means” step to improve the approximation were
not part of [9] at all, although the general idea (without
the sampling/streaming aspect) appeared in Ostrovsky,
Rabani, Schulman, and Swami [31].

1.4 Definitions

Definition 1.1. (k-service clustering) We are
given a finite set X of points, a possibly infinite set Y
(with X ⊆ Y) of potential facilities, and a cost function
δ : X × Y → <+. Our goal is to select K ⊆ Y of
size k to be designated as facilities, so as to minimize∑
i∈X minj∈K{δ(i, j)}. The cost function is known as

the service cost to connect a point to a facility.

This encapsulates a family of problems, including
k-median, where δ is a metric on space Y , and k-
means, where Y is Euclidian space and δ is the square
of Euclidian distance. The related facility location
is formed by removing the constraint that |K| = k,
replacing it with a facility cost f , and adding f |K| to
the objective function. Note that the k-means service
costs satisfy 2-approximate triangle inequality:

Definition 1.2. (α-Approximate Triangle In-
equality) If, for any points a, b, c the following ap-
plies: α[δ(a, b) + δ(b, c)] ≥ δ(a, c), then we say that α-
approximate triangle inequality is satisfied.

Definition 1.3. (σ-separable dataset) A set of
input data for the k-service clustering problem is said
to be σ-separable if the ratio of the optimal k-service
clustering cost to the optimal k − 1-service clustering
cost is at most σ2.

This captures the notion that the kth facility must
be meaningful for the clustering to be as well. This has
been applied to k-means by [31].

2 Streaming Algorithm for k-means

In this section, we will provide a constant-
approximation for k-service clustering, for any instance
in which X ⊆ Y and where α-approximate triangle
inequality applies to δ.

Algorithm 1 summarizes our entire process for
streaming k-service clustering. It takes as input a data
stream known to contain n points and a value k for
the number of desired means. The algorithm is defined
in terms of constants β, γ; we will give precise values
for these constants in section 3.2. The algorithm as

described also requires a (non-streaming) O(1) approx-
imation to k-service clustering to be available as a sub-
routine. One candidate algorithm for this when running
k-means is the approximation of Kanungo et al [25].

At several points in our algorithm, we refer to
placing points at the front of the data stream. An easy
way to implement this is to maintain a stack structure.
When placing an item at the front of the stream, push
it to the stack. When reading from the stream, check
first if the stack is empty: if it is not, read by popping
from the stack. If the stack is empty, read from the
stream as normal. This also allows us to place items
with weight on the stream, and we consider each item
from the stream to be of weight one.

Algorithm 1 One pass, constant approximation k-
service clustering algorithm.

1: L1 ← 1
2: i← 1
3: while solution not found do
4: K ← ∅
5: cost ← 0
6: f ← Li/(k(1 + log n))
7: while there are points still in the stream do
8: x← next point from stream
9: y ← facility in K that minimizes δ(x, y)

10: if probability min{weight(x)·δ(x,y)f , 1} then

11: K ← K ∪ {x}
12: else
13: cost ← cost + weight(x) · δ(x, y)
14: weight(y) ← weight(y) + weight(x)
15: if cost > γLi or |K| > (γ−1)(1+log n)k then
16: break and raise flag
17: if flag raised then
18: push facilities in K onto stream
19: Li+1 ← βLi
20: i← i+ 1
21: else
22: Cluster K to yield exactly k facilities
23: Declare solution found

3 A constant approximation

Our algorithm is quite similar to that of Charikar,
O’Callaghan, and Panigrahy [9]. Both approaches are
based on running online facility location [30] (lines 5-12
in our algorithm) with facility costs based on gradually
improving lower bounds on the optimum cost. We
will show an improved online facility location analysis,
which enables us to run only a single copy of online
facility location (instead of O(log n) copies as in [9])
while maintaining a high probability of success. We
will also show that we do not require the randomized

Symbol Meaning Symbol Meaning
∆ diameter of dataset d dimensionality of data
k desired number of means ε parameter of algorithm
σ separability of dataset n number of points

Table 2: Notation used in this paper

online facility location algorithm to “succeed” at every
phase, only at the critical final phase of the algorithm;
this allows us to improve our approximation factor from
that of [9]. Finally, we will show that we can bound
the number of phases by O(n/k log n) rather than just
O(n); this improves the running time of our algorithm
substantially from that of [9], obtaining O(nk log n)
time.

3.1 Improved Analysis of Online Facility Lo-
cation The online facility location algorithm of [30] is
used implicitly in lines 7-16 of algorithm 1 and works as
follows. We are given a facility cost f . As each point
arrives, we measure the service cost δ for assigning that
point to the nearest existing facility. With probability
min{ δf , 1} we create a new facility at the arriving point.
Otherwise, we assign the point to the nearest existing
facility and pay the service cost δ.

Theorem 3.1. Suppose we run the online facility loca-
tion algorithm of [30] with f = L

k(1+logn) where L ≤
OPT and that the service costs satisfy α-approximate
triangle inequality. Then the expected total service cost
is at most (3α+1)OPT and the expected number of facil-
ities generated by the algorithm is at most (3α+1)k(1+
log n)OPTL . Further, with probability at least 1 − 1

n the
service cost is at most (3α+ 2e

e−1)OPT and the number

of facilities generated is at most (6α+1)k(1+log n)OPTL .

Proof. Consider each optimum facility c∗i . Let C∗i be the
points assigned by OPT to c∗i , A

∗
i be the total service

cost of optimum cluster C∗i and a∗i = A∗i /|C∗i |. Let δ∗p
be the optimum service cost for point p. We divide the
optimum cluster C∗i into regions Sji for j ≥ 1 where

|Sji | = |C∗i |/2j and all the points in Sji have optimum
service cost at most the optimum service cost of points
in Sj+1

i . This will probably produce “fractional” points
(i.e. points which are split between many regions);
however this does not affect the analysis. Let Aji be the

total optimum service cost of points in Sji , such that

ΣjA
j
i = A∗i .

For each region Sji we may eventually open a
facility at some point q in this region. Once we do so,
subsequent points p arriving in the region must have
bounded service cost of at most α(δ∗p + δ∗q). Since

q ∈ Sji and all points in Sji have smaller optimum

service cost than points in Sj+1
i , we can conclude that

δ∗q ≤ Aj+1
i /|Sj+1

i |. Summing the resulting expression

over all points in Sji gives us service cost of at most

α(Aji + 2Aj+1
i). Summing this over all the regions give

service cost at most 3αA∗i subsequent to the arrival
of the first facility in the regions. Note that this is a
deterministic guarantee.

It remains to bound the service cost paid prior to
the first facility opened in each region. In expectation,
each region will pay at most f in service cost before
opening a facility. Further, regions labeled j > log n
contain only one point in total, and the overall service
cost for this point cannot exceed f . Thus the expected
total service cost is at most k(1 + log n)f + 3αΣiA

∗
i ≤

L + 3αOPT . Since L ≤ OPT , this gives expected
service cost at most 1 + 3α times optimum. For the
high probability guarantee, let P [x, y] be the probability
that given x regions which do not yet have a facility,
the remaining service cost due to points in these regions
arriving prior to the region having a facility is more than

yf . We will prove by induction that P [x, y] ≤ ex−y(e−1
e),

where e is the base of the natural log. Note that this
is immediate for x = 0 and for very small values of
y (i.e. y ≤ x e

e−1). To prove this is always true,
suppose that x is the smallest value where this can be
violated, and y is the smallest value where it can be

violated for this x. Thus P [x, y] > ex−y(
e−1
e). Suppose

that the first request in one of the facility-less regions
computes a service cost of δ > 0. Then we have:
P [x, y] = δ

f P [x− 1, y] + (1− δ
f)P [x, y − δ

f].
The first term corresponds to opening a facility

at this point, thus reducing the number of facility-less
regions by one; the second term corresponds to paying
the service cost. Applying the definition of x and y:

ex−y(
e−1
e) < P [x, y]

≤ δ

f
ex−1−y(

e−1
e) + (1− δ

f
)ex−(y−

δ
f)(

e−1
e)

Dividing both sides by the left-hand expression

leaves 1 < δ
ef + (1 − δ

f)e
δ
f
e−1
e . This provides a

contradiction.
Thus the probability that the total cost prior to

facilities over all the regions is more than e
e−1 (2k)(1 +

log n)f is at most P [k(1 + log n), e
e−1 (2k)(1 + log n)] ≤

e−k(1+logn) ≤ 1
2n . Substituting for f gives the bound

claimed.
We now consider the facility count. The first in

each region gives us a total of k(1 + log n) facilities;
this is a deterministic guarantee. Now we must bound
the number of facilities opened in the various regions
subsequent to the first. Each point p has probability
δp/f to open a new facility, where δp is the service
cost when p arrives. Note that we already had a
deterministic guarantee that for points arriving after a
facility in their region, we have Σpδp ≤ 3αOPT . Thus
we have a sum of effectively independent Bernoulli trials
with expectation at most 3αOPT

f = 3αk(1 + log n)OPTL .
We can now apply Chernoff bounds for the result.

3.2 Analysis of Algorithm 1 We first need to
define the constants β, γ. Let cOFL be the constant
factor on the service cost obtained from online facility
location with high probability from Theorem 3.1, and let
kOFL be such that online facility location guarantees to
generate at most kOFLk(1 + log n)OPTL facilities. Note
that cOFL, kOFL are constants which depend on α and
on the desired “high probability” bound for success. We
now define the constants as β = 2α2cOFL + 2α; γ =
max{4α3c2OFL + 2α2cOFL, βkOFL + 1}.

We will assume that cOFL ≥ 2α from this point
on; this is implicit in the proof of Theorem 3.1 and we
can always replace cOFL with a larger value since it is
a worst-case guarantee.

Define a phase in Algorithm 1 to be a single
iteration of the outermost loop. Within each phase
i, we maintain a lower bound Li on OPT and run
the online facility location algorithm using facility cost
f = Li

k(1+logn) . We try reading as many points as we

can until either our service cost grows too high (more
than γLi) or we have too many facilities (more than
(γ − 1)k(1 + log n)). At this point, we conclude that
our lower bound Li is too small, so we increase it by a
factor β and start a new phase.

In a phase, we pay at most f = Li/k(1+log n) for a
weighted point and there are at most (γ−1)k(1+log n)
weighted points from the previous phase. Our service
cost for these points can be at most (γ − 1)Li so we
successfully cluster all weighted points in a phase. Thus
at the start of each phase, the stream looks like some
weighted points from only the preceeding phase followed
by unread points. Additionally, we can show that all
these points on the stream have a clustering with service
cost comparable to OPT .

Lemma 3.1. Let X ′ be any subset of points in the
stream at the start of phase i. Then the total service

cost of the optimum k-service clustering of X ′ is at most

α ·OPT + γ
(

α2

β−α

)
Li.

Proof. Consider an original point x ∈ X. Say that
y ∈ K represents x in phase ` if y is the assigned facility
for x or for x’s phase `−1 representative. Note that the
weight of y ∈ K is the number of points it represents.
Moreover, once a point x becomes represented in phase
`, it is represented for all future phases.

At the start of phase i, the stream looks like the
weighted facilities from phase i − 1 followed by unread
points. Let us examine our cost if we use the optimum
facilities (for X) to serve all of these points. Fix a point
x ∈ X and let us bound the service cost due to this
point. Let j be the phase in which x was first clustered.
Let yj , yj+1, . . . , yi−1 be x’s respective representatives in
phases j up through i− 1. Then the service cost due to
x will be δ(yi−1, y

∗) where y∗ is the cheapest optimum
facility for yi−1. By α-approximate triangle inequality

δ(yi−1, y
∗) ≤ αδ(x, y∗) + αδ(x, yi−1)

≤ αδ(x, y∗) +

i−j∑
`=2

α`δ(yi−`, yi−`+1)

+ αi−jδ(x, yj)

Thus, summing over all points x in or represented
by points in X ′, and noting that our service cost in
phase ` is bounded by γL` ≤ γLi

1
βi−`

, gives a total
service cost of at most

cost ≤ α ·OPT + γαLi

i−1∑
`=1

(
α

β

)i−`
= α ·OPT + γ

(
α2

β − α

)
Li

The above lemma shows that there exists a low cost
clustering for the points at each phase, provided we can
guarantee that Li ≤ OPT . Call the last phase where
Li ≤ OPT the critical phase. We will show that we in
fact terminate at or before the critical phase with high
probability.

Lemma 3.2. With probability at least the success prob-
ability of online facility location from Theorem 3.1, Al-
gorithm 1 terminates at or before the critical phase.

Proof. Let i be the critical phase, and let OPTi be the
optimum cost of clustering all the points (weighted or
not) seen on the stream at the start of phase i. By
Lemma 3.1 and the fact that OPT ≤ βLi, we have

OPTi ≤ α ·OPT + γ

(
α2

β − α

)
Li

≤
(
αβ + γ

α2

β − α

)
Li.

Theorem 3.1 guarantees the online facility location
algorithm yields a solution with at most βkOFL(1 +
log n)k facilities and of cost at most cOFLOPTi with
high probability. Our definitions for β, γ guarantee that
cOFLOPTi ≤ γLi. In addition, our definition for γ
guarantees that (γ−1)k(1+log n) ≥ βkOFLk(1+log n).
Thus if online facility location “succeeds,” the critical
phase will allow the online facility location algorithm to
run to completion.

Corollary 3.1. With high probability (same as that
for online facility location), Algorithm 1 completes the
final phase with a solution of cost at most αβγ

β−α · OPT .
Applying the values for the constants gives an ap-
proximation factor of 4α4c2OFL + 4α3cOFL provided
4α3c2OFL + 2α2cOFL ≥ βkOFL + 1.

Proof. Consider a point x ∈ X. As in the proof of
Lemma 3.1, let yj , yj+1, . . . , yi−1, yi be x’s respective
representatives in phases j up through i. The service
cost due to x is δ(x, yi). By α-approximate triangle
inequality, we can bound this by

δ(x, yi) ≤ αi−jδ(x, yj) +

i−j∑
`=1

α`δ(yi−`, yi−`+1).

Summing over all points x, and noting that our
service cost in phase ` is bounded by γL`, combined with
the knowledge that with high probability, we terminate
at a phase where Li ≤ OPT , gives a total service cost
of at most:

cost ≤ αγLi + α2γLi−1 + α3γLi−2 + · · ·+ αiγL1

≤ αγLi
i−1∑
`=0

(
α

β

)`
≤ αβγ

β − α
·OPT.

However, this solution uses much more than k facil-
ities. To prune down to exactly k facilities, we can use
any non-streaming O(1)-approximation to cluster our
final (weighted) facilities (line 22 of the algorithm). If
this non-streaming clustering algorithm has an approx-
imation ratio of cKS , our overall approximation ratio
increases to (α+ 4α5c2OFL + 4α4cOFL)cKS .

Theorem 3.2. With high probability, our algorithm
achieves a constant approximation to k-service cluster-
ing if α-approximate triangle inequality holds for fixed
constant α. This uses exactly k facilities and stores
O(k log n) points in memory.

3.3 Pruning the Runtime As presented, Algo-
rithm 1 can see as many as O(logβ OPT) phases in
expectation, which gives the runtime an undesireable
dependence on OPT . We now show how to modify Al-
gorithm 1 so that it has at most O(n/k log n) phases
and running time bounded by O(nk log n).

Theorem 3.3. For any fixed α, Algorithm 1 can be
modified to run in O(nk log n)-time.

Proof. Consider any phase. The phase starts by reading
the weighted facilities from the previous phase and
paying a cost of at most f = Li

k(1+logn) for each, at

the end of which the cost is at most (γ − 1)Li. Each
additional point gives us a service cost of at most

Li
k(1+logn) , so the phase must read at least k(1 + log n)

additional unread points before it can terminate due to
cost exceeding γLi.

Now suppose that the phase ends due to having
too many facilities without reading at least k(1 + log n)
additional points. Since each new point can create at
most one facility, the previous phase must have had at
least (γ − 2)k(1 + log n) facilities already. Consider
an optimal k-service clustering over the set X ′ of all
the weighted points during this phase. Let OPT ′

denote the total service cost of this solution and OPT ′r
denote the optimum total service cost if we are instead
restricted to only selecting points from X ′. Note that
by α-approximate triangle inequality, we have OPT ′r ≤
2αOPT ′. Thus, by Lemma 3.1, we have OPT ′r ≤
2α(α+ γ α2

β−α)OPT .

Since OPT ′r is only allowed k facilities, it must pay
non-zero service cost for at least (γ − 3)(1 + log n)k
weighted points. Define the nearest neighbor function
π : X ′ → X ′ where for each point x ∈ X ′, π(x)
denotes closest other point (in terms of service costs)
in X ′. Then note that ∆x = weight(x) · δ(x, π(x))
gives a lower bound on the service cost for x if it is
not chosen as a facility. Thus, the sum η of all but the
k highest ∆x gives a lower bound on OPT ′r. It follows
that η

2α(α+γ α2

β−α)
≤ OPT.

We will set Li to the maximum of this new lower
bound and βLi−1, eliminate k(1 + log n) facilities and
increase service cost to at most Li. This guarantees that
the next time the number of facilities grows too large
we will have read Ω(k log n) new points, bounding the
number of phases by O(n

k logn).

Let X̂ ⊆ X ′ denote the set of points with ∆x ≤
η[2α(α + γ α2

β−α)(1 + log n)k]−1. Suppose that |X̂| <
2k(1 + log n). The number of points which contribute
to η is at least (γ − 3)k(1 + log n), and at least
(γ − 5)k(1 + log n) of these points would not belong to
X̂. Thus the sum of ∆x for such points is bounded by

η(γ−5)
2α(α+γ α2

β−α)
≤ η. Canceling and solving this equation

for γ yields γ(1− 2α3

β−α) ≤ 2α2 + 5.
Plugging in the values for β and γ along with

cOFL ≥ 2α and α ≥ 1 yields a contradiction. Thus
it follows that |X̂| ≥ 2k(1 + log n). We assume |X̂| even
for simplicity of analysis. Some points in X̂ have their
nearest neighbor in X ′ − X̂. For the remaining points
in X̂, consider the nearest neighbor graph induced by
these points. This graph has no cycles of length 3 or
longer. Thus, the graph is bipartite and we can find
a vertex cover C of size at most |X̂|/2. We can add
additional points to C from X̂ to get precisely |X̂|/2
points. Note that all points in X̂ − C have a nearest
neighbor not in X̂ −C. Thus, we can remove X̂ −C as
facilities and increase our service cost by at most

η(1 + log n)k

2α(α+ γ α2

β−γ)(1 + log n)k
=

η

2α(α+ γ α2

β−α)
≤ Li.

We can compute η in time O(k2 log2 n), X̂ in time
O(k log n), and the vertex cover in time linear in |X̂|
(using a greedy algorithm; note that it needn’t be a
minimum vertex cover). Additionally, all these can be
computed using space to store O(k log n) points. The
running time for reading a new (unweighted) point is
O(k log n), so the total running time is the time to read
unweighted points plus the overhead induced by starting
new phases (and reading weighted points). Each of
these is at most O(nk log n).

4 Maintaining samples during streaming
k-means

Definition 4.1. Let S be a set of cardinality n. Let
<q = {p ∈ Sq : ∀i, j ∈ [q] pi 6= pj}. A random element
E is a q-random sample without replacement from S if
E has uniform distribution over <q.

First, we establish that we can maintain a uniform
at random sample for each facility’s service points. This
is identical to the problem of sampling uniformly at
random from a stream, as all the points assigned to
the facility can be treated as a single stream. Methods
for streaming sampling are well-known, see e.g., [37].

We must also show that we are able to maintain
a uniformly at random sample from the union of two
clusters, for the two times in our algorithm in which
two clusters are combined, and that samples of optimal

clusters are sufficient to find approximate centers of
mass. The proofs of these appear in Appendix A.

Lemma 4.1. There exists an algorithm that, given a
stream X and q, maintains a q-random sample without
replacement from X and uses O(q) memory.

Lemma 4.2. Let S1, S2 be two disjoint sets. Given
independent q-samples without replacement from S1 and
S2 and |S1|, |S2|, it is possible to generate a q-sample
without replacement from S1 ∪ S2. The algorithm
requires O(q) time and O(q) additional memory.

Theorem 4.1. Suppose we have a set X of points and
are given some arbitrarily selected Y ⊆ X. If Z is a
set of q points selected uniformly at random from Y
(without replacement), then the center of mass for Z is

a (1 + 1
q −

q−1
q(|Y |−1))(

|X|
|Y |)-approximation to the optimum

one-mean solution for X in expectation.

There is an analog to this theorem that applies with
high probability; it is detailed in Appendix C.

5 From Constant to Converging to One

Given a c-approximation to k-means (where c is con-
stant) for a σ-separable point set, we now show that
we can perform a single recentering step, called a ball
k-means step, and obtain an approximation ratio of
(1+σ2) which converges to one as σ approaches 0. While
a full ball k-means step requires another pass through
the point stream, we will establish that it is sufficient
to use a smaller random sample of points.

Theorem 5.1. Suppose we have a c-approximation to
k-means, and an σ-separable data set where 1

σ2 > 2γ(c+
1) + 1 for γ ≥ 169

4 . Then we can apply a ball k-means
step, by associating with each of our approximate means
ν(i) the set of points Bν(i), then computing a new mean
ν(i)′ = com(Bν(i)). This yields an approximation to
k-means which approaches one as σ approaches zero.

Theorem 5.2. Suppose we have a c-approximation to
k-means for an σ-separable data set where 1

σ2 > 2γ(c+
1) + 1 for γ ≥ 169

4 . Additionally, suppose that instead
of being given the entire point set, we are only given
small random samples Zν(i) of size 1

ε of each cluster
Cν(i) in this approximate solution. Then we can apply
a ball k-means step computing a new mean ν(i)′ by
computing the center of mass of (Bν(i) ∩ Zν(i)). This
yields a Θ((1 + ε)(1 + σ2c))-approximation to k-means
which approaches one as ε and σ approach zero.

References

[1] Nir Ailon, Ragesh Jaiswal, and Claire Monteleoni.
Streaming k-means approximation. In NIPS, 2009.

[2] Khaled Alsabti, Sanjay Ranka, and Vineet Singh. An
efficient k-means clustering algorithm. In Proc. 1st
Workshop on High Performance Data Mining, 1998.

[3] David Arthur and Sergei Vassilvitskii. How Slow is the
k-means Method? In SCG, 2006.

[4] David Arthur and Sergei Vassilvitskii. k-means++:
The Advantages of Careful Seeding. In SODA, 2007.

[5] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam
Meyerson, Kamesh Munagala, and Vinayaka Pandit.
Local search heuristic for k-median and facility location
problems. In STOC, 2001.

[6] Mihai Bādoiu, Sariel Har-Peled, and Piotr Indyk.
Approximate clustering via core-sets. In STOC, 2002.

[7] Maria-Florina Balcan, Avrim Blum, and Anupam
Gupta. Approximate clustering without the approx-
imation. In SODA, 2009.

[8] Geoffrey H. Ball. Data analysis in the social sciences:
what about the details? In AFIPS ’65 (Fall, part I):
Proceedings of the November 30–December 1, 1965, fall
joint computer conference, part I, pages 533–559, New
York, NY, USA, 1965. ACM.

[9] Moses Charikar, Liadan O’Callaghan, and Rina Pani-
grahy. Better streaming algorithms for clustering prob-
lems. In STOC, 2003.

[10] Ke Chen. On coresets for k-median and k-means
clustering in metric and euclidean spaces and their
applications. SIAM J. Comput., 2009.

[11] Arthur Pentland Dempster, Nan McKenzie Laird, and
Donald Bruce Rubin. Maximum likelihood from in-
complete data via the EM algorithm (with discus-
sion). Journal of the Royal Statistical Society. Series
B (Methodological), 39:1–38, 1977.

[12] Dan Feldman, Morteza Monemizadeh, and Christian
Sohler. A PTAS for k-means clustering based on weak
coresets. In SCG, 2007.

[13] Walter D. Fisher. On grouping for maximum homo-
geneity. Journal of the American Statistical Associa-
tion, 53:789–798, 1958.

[14] Edward Forgey. Cluster analysis of multivariate data:
efficiency vs. interpretability of classification. Biomet-
rics, 21:768, 1965.

[15] Gereon Frahling and Christian Sohler. Coresets in
dynamic geometric data streams. In STOC, 2005.

[16] Allen Gersho and Robert M. Gray. Vector quantization
and signal compression. Kluwer, 1992.

[17] Robert M. Gray and David L. Neuhoff. Quanti-
zation. IEEE Transactions on Information Theory,
44(6):2325–2384, October 1998.

[18] Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev
Motwani, and Liadan O’Callaghan. Clustering data
streams: Theory and practice. In IEEE Transactions
on Data and Knowledge Engineering (TDKE), 2003.

[19] Sudipto Guha, Nina Mishra, Rajeev Motwani, and
Liadan O’Callaghan. Clustering data streams. In
FOCS, 2000.

[20] David J. Hall and Geoffrey H. Ball. ISODATA: a novel

method of data analysis and pattern classification.
Technical report, Stanford Research Institute, 1965.

[21] Sariel Har-Peled and Soham Mazumdar. On coresets
for k-means and k-median clustering. In STOC ’04,
pages 291–300, New York, NY, USA, 2004. ACM.

[22] Anil Kumar Jain, M Narasimha Murty, and
Patrick Joseph Flynn. Data clustering: a review. ACM
Computing Surveys, 31(3), September 1999.

[23] Robert C. Jancey. Multidimensional group analysis.
Australian Journal of Botany, 14:127–130, 1966.

[24] W. Johnson and J. Lindenstrauss. Extensions of
Lipschitz maps into a Hilbert space. In Contemporary
Mathematics, 1984.

[25] Tapas Kanungo, David Mount, Nathan Netanyahu,
Christine Piatko, Ruth Silverman, and Angela Wu.
A local search approximation algorithm for k-means
clustering. In SCG, 2002.

[26] Yoseph Linde, Andres Buzo, and Robert M. Gray. An
algorithm for vector quantization design. IEEE Trans-
actions on Communication, COM-28:84–95, January
1980.

[27] Stuart Lloyd. Least Squares Quantization in PCM. In
Special issue on quantization, IEEE Transactions on
Information Theory, volume 28, pages 129–137, 1982.

[28] James MacQueen. Some methods for classification
and analysis of multivariate observations. In Proc.
5th Berkeley Symp. on Math. Statistics and Probability,
pages 281–297, 1967.

[29] Joel Max. Quantizing for minimum distortion. IEEE
Transactions on Information Theory, 1960.

[30] Adam Meyerson. Online facility location. In FOCS,
2001.

[31] Rafail Ostrovsky, Yuval Rabani, Leonard Schulman,
and Chaitanya Swamy. The Effectiveness of Lloyd-
Type Methods for the k-Means Problem. In FOCS,
2006.

[32] Dan Pelleg and Andrew Moore. Accelerating exact k-
means algorithms with geometric reasoning. In Proc.
5th ACM KDD, pages 277–281, 1999.

[33] Steven J. Phillips. Acceleration of k-means and related
clustering problems. In ALENEX, 2002.

[34] Hugo Steinhaus. Sur la division des corp materiels en
parties. Bull. Acad. Polon. Sci., C1. III vol IV:801–804,
1956.

[35] Laszlo Fejes Toth. Sur la representation d’une popula-
tion infinie par un nombre fini d’elements. Acta math.
Acad. Sci. Hung., 10:76–81, 1959.

[36] Robert Choate Tryon and Daniel Edgar Bailey. Cluster
Analysis. McGraw-Hill, 1970. Pages 147-150.

[37] Jeffrey S. Vitter. Random sampling with a reservoir.
In ACM Transactions on Mathematical Software, 1985.

[38] Paul L. Zador. Development and evaluation of proce-
dures for quantizing multivariate distributions. PhD
thesis, Stanford University, 1963. Stanford University
Department of Statistics Technical Report.

A Proofs of lemmas and Theorems from
Section 4

For notational convenience, we use com(A) to mean the
center of mass for a point set A. Note the relation in any
cluster of the difference in cost for replacing the center
of mass with an arbitrary other point:

Fact A.1.
∑
x∈X d

2(x, y) = |X|d2(com(X), y) +∑
x d

2(x, com(X))

A.1 Proof of Lemma 4.1 For our purposes, it will
be useful to prove the following alternative definition.

Lemma A.1. Let S be a set and let X1, . . . , Xq be the
following random variables. X1 is distributed uniformly
on S, and, for 1 < i ≤ q Xi is distributed uniformly
over S \ {X1, . . . , Xi−1}. Then an ordered q-tuple X =
〈X1, . . . , Xq〉 is a q-random sample without replacement
from S.

Proof. Consider a fixed q-tuple p = 〈p1, . . . , pq〉 ∈ <q.
We shall show that P (X = p) = 1

|<q| = 1

q!(nq)
.

P (X = p) =

P (X1 = p1)× P (X2 = p2|X1 = p1)

× · · · × P (Xq = pq|∀j<qXj = pj).

By the definition of X1, P (X1 = p1) = 1
n . By the

definition of Xi and since pi /∈ {p1, . . . , pi−1}, we have
for all fixed X1, . . . Xi−1: P (Xi = pi|∀j<iXj = pj) =

1
n−i+1 .

Thus, P (X = p) =
∏q
i=1

1
n−i+1 = 1

q!(nq)
.

A.2 Proof of Lemma 4.2 The algorithm is similar
in spirit to the merging process in Merge Sort. Let
X = {X1, . . . , Xq} and Y = {Y1, . . . , Yq} be random
samples from S1 and S2. Take the first element of X

with probability equal to |X|
|X|+|Y | ; otherwise, take from

Y . Repeat this until q are chosen, and call the set
formed by those taken Z.

The performance bounds follow from the descrip-
tion of the algorithm. To show the correctness, it
is sufficient to show that Zi is distributed uniformly
over (S1 ∪ S2) \ {Z1, . . . , Zj−1} and then use Lemma
A.1. First, consider i = 1. By Lemma A.1, X1 and
Y1 are distributed uniformly over S1 and S2 respec-
tively. Consider arbitrary and fixed w ∈ S1 ∪ S2.
W.l.o.g., assume that w ∈ S1. Then since the ran-
domness of the algorithm is independent of X we have:
P (Z1 = w) = n1

n1+n2
P (X1 = w) = 1

n1+n2
. Thus, Z1 is

distributed uniformly over S1 ∪ S2.
Let i > 1; and consider any fixed Z1, . . . , Zi−1.

By Lemma A.1, Xi1 is distributed uniformly over S1 \

{X1, . . . , Xi1−1} and Yi2 is distributed uniformly over
S1 \ {Y1, . . . , Yi2−1}. Consider any fixed w ∈ (S1 ∪S2) \
{Z1, . . . , Zi−1}. W.l.o.g., assume that w ∈ S1. Since
{Z1, . . . , Zj−1} = {Y1, . . . , Yi2−1} ∪ {X1, . . . , Xi1−1}, it
follows that w ∈ S1 \ {X1, . . . , Xi1−1}. Thus, we have

P (Zi = w) =
n1

n1 + n2
P (Xi1 = w)

=
n1

n1 + n2
(

1

n1
)

=
1

n1 + n2
.

The values of n1 and n2 imply that the probability
is uniform over (S1 ∪ S2) \ {Z1, . . . , Zi−1}. Indeed,

n1 +n2 = |S1|− i1 + 1 + |S2|− i2 + 1 = |S1 ∪S2|− i+ 1.

Thus, we have shown that Z1 is a uniform sample
from S1 ∪ S2 and for any j > l, Zj is a sample from
(S1∪S2)\{Z1, . . . , Zj−1}. The correctness follows from
Lemma A.1.

A.3 Proof of Theorem 4.1

Lemma A.2. Let X be a set of points and Y ⊆ X.

Then C(com(Y), X) ≤ |X||Y |C(com(X), X).

Proof. Let C(a,A) be the one-means cost of using a
as a mean for A. Let d1 = d(com(X), com(Y)) and
d2 = d(com(X−Y), com(X)). From triangle inequality,
d(com(Y), com(X−Y)) ≤ d1 +d2. Applying Fact A.1
repeatedly gives:

C(com(Y), X) =C(com(Y), Y)

+ C(com(X − Y), X − Y)

+ |X − Y |(δ1 + δ2)2

C(com(X), X) =C(com(Y), Y)

+ |Y |d21
+ C(com(X − Y), X − Y)

+ |X − Y |d22

C(com(Y), X)

C(com(X), X)
≤ |X − Y |(d1 + d2)2

|Y |d21 + |X − Y |d22
To maximize the ratio, we take the derivative with

respect to d2 and set the resulting expression to zero,
obtaining |Y |d21 + |X − Y |d22 = |X − Y |(d1 + d2)d2;

solving this yields d2 = |Y |
|X−Y |d1. Note that the other

boundary conditions for the expression are at d2 = 0
and d2 tends to infinity, both of which easily satisfy the
required inequality. Substitution gives:

C(com(Y), X)

C(com(X), X)
≤ |X|2/|X − Y |
|Y |+ (|Y |2/|X − Y |)

≤ |X|
|Y |

By linearity of expectation, it is enough to
show that the above holds in one-dimensional space.
Applying Fact A.1 gives us C(com(Z), X) ≤
|X|d2(com(Z), com(X))+C(com(X), X). We will need
to bound the expected value of d2(com(Z), com(X)).
Since we can assume one dimensional space, we use the
definition of center of mass to get:

E[d2(com(Z), com(X)] = E[(

∑
z∈Z z

|Z|
−
∑
x∈X x

|X|
)2]

We can compute the square and use linearity of
expectation, noticing that since the points of Z are
uniformly chosen from Y , we have E[(1/|Z|)Σz∈Zz] =
(1/|Y |)

∑
y∈Y y. We need to bound E[(

∑
z∈Z z)

2]. For
each y1 ∈ Y , there is a probability |Z|/|Y | that this
point appeared also in the randomly selected set Z. If
so, we will obtain an expected contribution to the sum
of squares which looks like y21 + y1E[Σz∈Z−{y1}z|y1 ∈
Z], where the latter term is just |Z|−1|Y |−1

∑
y2∈Y,y2 6=y1 y2.

Summing these gives us:

E[(
∑
z∈Z

z)2] =
|Z|
|Y |

∑
y∈Y

y2

+
|Z|
|Y |

∑
y1∈Y

∑
y2∈Y,y2 6=y1

|Z| − 1

|Y | − 1
y1y2

We can rewrite this, adding and subtracting terms
representing the sum of squared elements of Y , as:

E[(
∑
z∈Z

z)2] =
|Z|
|Y |

[(1−|Z| − 1

|Y | − 1
)
∑
y∈Y

y2+
|Z| − 1

|Y | − 1
(
∑
y∈Y

y)2]

We have C(com(Y), Y) = Σy∈Y y
2 − 1

|Y | (Σy∈Y y)2,

and we can substitute this to get:

E[(
∑
z∈Z

z)2] =
|Z|
|Y |

[(1− |Z| − 1

|Y | − 1
)C(com(Y), Y)

+
|Z|
|Y |

(
∑
y∈Y

y)2]

We observe that d2(com(Y), X) can be formulated
similarly to d2(com(Z), X), and when we combine the
various terms we obtain the following bound:

E[d2(com(Z),com(X)] =

1

|Y ||Z|
[(1− |Z| − 1

|Y | − 1
)C(com(Y), Y)]

+ d2(com(Y), com(X))

To compute the cost of C(com(Z), X), we multiply by
|X| and add C(com(X), X). We also observe that since
Y ⊆ X, we will have C(com(Y), Y) ≤ C(com(X), X),
and we apply theorem A.2 to reach:

E[C(com(Z),X)] ≤
|X|
|Y |

(1 +
1

|Z|
− |Z| − 1

|Z|(|Y | − 1)
)C(com(X), X)

B Proofs from Section 5

B.1 Proof of Theorem 5.1 For each optimum
mean i, let C∗i be the points OPT assigns to i and let
ν(i) be the closest mean to i in our c-approximate solu-
tion. We can show that i and ν(i) are in fact very close
together:

Lemma B.1. For any i, we have d(ν(i), i) ≤√
2(c+1)OPT
|C∗i |

.

Proof. Consider the points S = {x ∈ C∗i | d(i, x) ≤
d(i, ν(i))}. For each x ∈ S, we can bound d2(i, ν(i))
using 2-approximate triangle inequality. Summing over
all S gives

d2(i, ν(i)) ≤ 2

|S|

(∑
x∈S

d2(i, x) +
∑
x∈S

d2(x, ν(i))

)
.

The first term in the right-hand side is bounded by
OPT −

∑
x/∈S d

2(i, x) whereas the second term is at
most c · OPT . Substituting and using the fact that
d2(i, ν(i)) < d2(i, x) for all x /∈ S proves the claim.

Moreover, our point set being σ-separable implies
that the optimum means must be fairly far apart:

Lemma B.2. In an σ-separable point set, any two opti-

mum means i, j satisfy d(i, j) ≥
√

OPT
σ2|C∗i |

− OPT
|C∗i |

.

Proof. For any two means i, j, we can always eliminate
mean i and reassign any points in C∗i . This produces a
solution using k − 1 means and, since i is the center of
mass of C∗i , increases cost by at most |C∗i |d2(i, j). By
σ-separability, the total cost of this solution must be at
least OPT

σ2 which gives the above bound on d(i, j).

Lemmas B.1 and B.2 show that for sufficiently small
σ, each optimum mean i has unique ν(i) which is much
closer i than to any other optimum mean. In particular,
if 1
σ2 > 2γ(c+ 1) + 1 for some γ to be specified later, it

follows that for any optimum mean i, the next closest

optimum mean is at least distance
√
γ
√

2(c+1)OPT
|C∗i |

away

and the closest mean ν(i) is at most
√

2(c+1)OPT
|C∗i |

away.

Lemma B.3. Define Bν(i) to consist of all points x such
that 2d(x, ν(i)) ≤ d(x, ν(j)) for any j 6= i. Then
Bν(i) ⊆ C∗i and |Bν(i)| ≥ (1 − 9

2(c+1)(
√
γ−5)2)|C∗i | when

γ ≥ 169
4 .

Proof. We first show Bν(i) ⊆ C∗i . Fix i, j and suppose
x ∈ Bν(i). By definition, 2d(x, ν(i)) ≤ d(x, ν(j)). Ap-
plying triangle inequalities gives 2d(x, i) ≤ 2d(i, ν(i)) +
d(j, ν(j))+d(x, j). If d(x, j) ≤ d(x, i), then it will follow
that d(x, i) ≤ 2d(i, ν(i)) + d(j, ν(j)). Each of these is
bounded according to Lemma B.1, so we can conclude
that

d(i, j) ≤ 2d(x, i)

≤ 4

√
2(c+ 1)OPT

|C∗i |
+ 2

√
2(c+ 1)OPT

|C∗j |

≤ 6

√
2(c+ 1)OPT

min{|C∗i |, |C∗j |}
.

However, Lemma B.2 implies that d(i, j) ≥√
2γ(c+1)OPT

min{|C∗i |,|C∗j |}
. Provided that γ > 36, this is a con-

tradiction. We conclude that d(x, i) < d(x, j) and that
therefore x ∈ C∗i and Bν(i) ⊆ C∗i .

Notice that the service cost of points in C∗i is at
most OPT . By Markov’s inequality, for any µ ≥ 1

2(c+1)

there are at least
(

1− 1
2(c+1)µ

)
|C∗i | points of C∗i within

distance
√

2µ(c+1)OPT
|C∗i |

of i. For any such point x and

optimum mean j 6= i, triangle inequality along with
Lemmas B.1 and B.2 gives

d(x, ν(j)) ≥ d(i, j)− d(i, ν(i))− d(j, ν(j))− d(x, ν(i))

≥ (
√
γ − 2)

√
2(c+ 1)OPT

min{|C∗i |, |C∗j |}
− d(x, ν(i))

Setting µ = 1
9 (
√
γ − 5)2 ensures that d(x, ν(j)) ≥

2d(x, ν(i)) and that x ∈ Bν(i). However, this imposes

the additional constraint that γ ≥ 169
4 in order to ensure

that µ ≥ 1
4 ≥

1
2(c+1) .

By Lemma B.3, we have Bν(i) ⊆ C∗i and |Bν(i)| ≥
|C∗i |(1 − 9

2(c+1)(
√
γ−5)2). It follows from Theorem 4.1

that we obtain an approximation to k-means of ratio
at worst 1 + 9

2(c+1)(
√
γ−5)2−9 . As σ becomes smaller

γ becomes larger, and thus the approximation ratio
converges to one.

B.2 Proof of Theorem 5.2 We have shown that
we can perform a ball k-means step on our approxi-
mate solution to achieve an approximation ratio which
approaches 1 as σ approaches 0. While performing a
full ball k-means step requires another pass through the
point set, we can avoid this second pass if we are given a
random sample of 1

ε points from each of the balls Bν(i)
and performing the Ball k-means step on just these sam-
ple points. By Theorem 4, this gives us an approxima-

tion ratio of (1+σ−
1
ε−1

1
ε (|Bν(i)∩Cν(i)|−1)

)
|C∗i |

|Bν(i)∩Cν(i)|
within

each cluster.
However, our algorithm only returns a random

sample of q points in each of our clusters Cν(i). Thus, we
need to show that, in expectation, a constant fraction
of these points are in Bν(i). Indeed, we now show
that this fraction approaches 1 and that |Bν(i) ∩ Cν(i)|
approaches |Bν(i)| as σ tends toward 0. Thus, our
overall approximation ratio still converges to 1 as ε and
σ approach 0.

We first give an upper bound on the number of
points in Bν(i) that aren’t in Cν(i). These points are
never candidates in the randomly selected points from
Cν(i) and so may hurt our approximation if there are
too many. Fortunately, we can prove that there is only
a small number of them:

Lemma B.4. |Bν(i) − Cν(i)| ≤ c
8(
√
γ−2)2(c+1) |C

∗
i |.

Proof. Consider x ∈ Bν(i) − Cν(i) and let ν(j) be the
mean such that x ∈ Cν(j). Triangle inequality and the
fact that x /∈ Bν(j) gives d(x, ν(j)) ≥ d(i, j)−d(i, ν(i))−
d(j, ν(j))− 1

2d(x, ν(j)). Solving for d(x, ν(j)), applying
Lemmas B.1 and B.2 and squaring gives

d(x, ν(j))2 ≥

(
2(
√
γ − 2)

√
2(c+ 1)OPT

min{ni, nj}

)2

≥ 4(
√
γ − 2)2

(
2(c+ 1)OPT

|C∗i |

)
.

If we sum over all such x, we should get no more
than c · OPT since we have a c-approximation. This
bounds |Bν(i) − Cν(i)| as desired.

We can now use Lemmas B.3 and B.4 to give a
lower bound on fraction of Bν(i) contained in Cν(i).
Accordingly, this fraction approaches 1 as σ diminishes,

showing that roughly the entirety of Bν(i) is in our
sample space. We can also bound the cardinality of
Bν(i) ∩ Cν(i) in terms of C∗i which will become useful
later.

Corollary B.1. |Bν(i) ∩ Cν(i)| ≥(
1− c(

√
γ−5)2

4(
√
γ−2)2(2(c+1)(

√
γ−5)2−9)

)
|Bν(i)|.

Corollary B.2. |Bν(i) ∩ Cν(i)| ≥(
1− 9

2(c+1)(
√
γ−5)2 −

c
8(
√
γ−2)2(c+1)

)
|C∗i |.

Though roughly all of Bν(i) lies in Cν(i), there are
other points in Cν(i). If there are too many of these
points, then we would expect that a very small fraction
of the q′ sampled points are actually in Bν(i), driving
our approximation ratio upwards. Thus, we must show
that the number of these points tends towards 0.

Lemma B.5. |Cν(i) ∩ Bν(i)| ≥(
1− 9

2(c+1)(
√
γ−5)2

− c
8(
√
γ−2)2(c+1)

)
(
1+ c

2(c+1)(
√
γ−2)2

) |Cν(i)|.

Proof. Consider an x ∈ Cν(i) − Bν(i). Since j /∈
Bν(i), we must have 2d(x, ν(i)) ≥ d(x, ν(j)) for some
j. Proceeding in a fashion similar to the proof of
Lemma B.4 shows

|Cν(i) −Bν(i)| ≤
c

2(c+ 1)(
√
γ − 2)2

|C∗i |.

Thus, we can bound the number of elements in our
cluster by

|Cν(i)| = |Cν(i) ∩Bν(i)|+ |Cν(i) −Bν(i)|

≤
(

1 +
c

2(c+ 1)(
√
γ − 2)2

)
|C∗i |.

Combining with Corollary B.2 gives the desired
result.

C High Probability Guarantee

We now prove an analog of Theorem 4.1 to give a high
probability guarantee. We do this by giving a series of
lemmas.

Lemma C.1. If X = {x1, . . . , xn} ⊆ R and Y = Z −S,
where Z is a random sample from from X and S =
com(X) = 1

n

∑
i xi, then E[Y] = 0 and V ar[Y] =

1
nOPT (here OPT is the optimal 1-means solution for
X).

Proof. The expected value of Y is E[Y] = E[Z − S] =
E[Z]− S = S − S = 0. The variance of Y is

V ar[Y] = E[Y 2]− E[Y]2

= E[Y 2]

=
1

n

n∑
i=1

(xi − S)2

=
1

n
OPT

Now consider taking the mean of q random samples from
X, with replacement:

Lemma C.2. If X = {x1, . . . , xn} ⊆ R and Y = 1
q (Z1+

· · · + Zq) − S, where each Zi is a random sample from
X (with replacement) and S = com(X), then E[Y] = 0
and V ar[Y] = 1

qnOPT (here OPT is the optimal 1-

means solution for X).

Proof. The expected value of Y is E[Y] =
E[1q

∑q
i=1 Zi−S] = 1

q

∑q
i=1E[Zi]−S = S−S = 0 (here

we used Lemma C.1). Notice that we can rewrite Y as
Y = 1

q

∑q
i=1 Yi, where the Yi = Zi − S are independent

random variables. Hence, the variance of Y (by Lemma
C.1) is given by

V ar[Y] =
1

q2

q∑
i=1

V ar[Yi] =
1

q2
q

n
OPT

Using the same notation, we now have the following
constant probability bound:

Lemma C.3. If B = 1
q (Z1 + · · · + Zq), where q = 100

ε ,

then P [|B − S| ≥
√

εOPT
n] ≤ 1

100 .

Proof. By Chebyshev’s inequality, we have:

P [|B − S| ≥
√
εOPT

n
] = Pr[|Y | ≥

√
εOPT

n
]

≤ nV ar[Y]

εOPT

=
1

qε
=

1

100

where Y is the same as in Lemma C.2.

We now take the median of means:

Lemma C.4. Let B1, . . . , Bt be independent random
variables, where t = O(log nd) and each Bi is as in
Lemma C.3. Let B = median(B1, . . . , Bt). Then

P [|B − S| ≥
√

εOPT
n] ≤ 1

nd .

Proof. This follows from a standard application of Cher-
noff bounds.

We now concentrate on points from Rd and give some
notation and definitions. Let X = {x1, . . . , xn} ⊆ Rd
and let xij denote the j-th coordinate of xi. Let
S = 1

n

∑
i xi, and define Sj = 1

n

∑
i xij (so that S =

(S1, . . . , Sd)). Define OPTj =
∑n
i=1(xij − Sj)2. Notice

that OPT =
∑n
i=1

∑d
j=1(xij − Sj)

2 =
∑d
j=1OPTj ,

where OPT is the optimal 1-means solution for X. We
now come to our main lemma:

Lemma C.5. Let U ∈ Rd be a vector with coordinates
U = (U1, . . . , Ud), where the Ui are independent and
each has the same distribution as B from Lemma C.4
with respect to the set of j-th coordinates {x1j , . . . , xnj}.
Let A =

∑n
i=1 d

2(U, xi). Then A ≤ (1 + ε)OPT with
probability at least 1− 1

n .

Proof. By Lemma C.4, we know that P [|Uj − Sj | ≥√
εOPTj
n] ≤ 1

dn . By applying the union bound, we

know that with probability at least 1 − 1
n we have

|Uj − Sj |2 ≤ εOPTj
n holds over all dimensions (i.e.

for all 1 ≤ j ≤ d). By Fact A.1, we know that
A =

∑n
i=1 d

2(U, xi) = nd2(U, S) + OPT . We have the
following upper bound on d2(U, S):

d2(U, S) =

d∑
j=1

(Uj − Sj)2 ≤
d∑
j=1

εOPTj
n

=
εOPT

n

The lemma follows.

We can now apply similar methods used in our result for
the expectation guarantee and achieve the same result
for sufficiently large Y which are subsets of the set X.

